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Abstract: This research focused its interest on the mathematical modeling of the demographic dynamics
of semelparous biological species through branching processes. We continued the research line started
in previous papers, providing new methodological contributions of biological and ecological interest.
We determined the probability distribution associated with the number of generations elapsed before the
possible extinction of the population in its natural habitat. We mathematically modeled the phenomenon
of populating or repopulating habitats with semelparous species. We also proposed estimates for the
offspring parameters governing the reproductive strategies of the species. To this purpose, we used
the maximum likelihood and Bayesian estimation methodologies. The statistical results are illustrated
through a simulated example contextualized with Labord chameleon (Furcifer labordi) species.
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1. Introduction

This research focuses its interest on the mathematical modeling of the population dynamics of
semelparous biological species. A species is called semelparous when it has a single reproductive
episode before dying. Semelparity (sometimes called big-bang reproduction) occurs in very diverse
biological species, see [1], including amphibians (e.g., Hyla frogs), arachnids (e.g., Pardosa licosidae
spider, australian redback spider, desert spider, or black widow spider), fish (e.g., Pacific salmon, or
sockeye salmon), insects (e.g., some butterflies, cicadas, or mayflies), mammals (e.g., some didelphids
or dasyurid marsupials), mollusks (some squids or octopuses), reptiles (e.g., Labord chameleon, or
some lizards), etc.
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Methodologies for modeling dynamic biological systems, such as those based on population via-
bility analysis (see [2,3]) or compartmental modeling (see [4, 5]) usually require information about
environmental variables, mortality rates, growth rates, etc. In practice, such information is difficult to
obtain. In this work, we shall consider the methodology based on branching processes. These stochastic
processes are appropriate mathematical models to describe the evolution of dynamical systems whose
components, after a certain life period, reproduce and die in such a way that the transition from one
to another state of the system is made according to a certain probability distribution. For theoretical
concepts and applications about such types of processes, we refer the reader to some classical mono-
graphs [6-8], where several applications to cell kinetics, cell biology, chemotherapy, gene amplification,
human evolution, and molecular biology are presented. See also the contributions, based on branching
processes, by [9, 10], in nuclear physics and complex contagion adoption dynamics, respectively.

In fact, branching processes are routinely used to describe the population dynamics of biological
species with both asexual and sexual reproduction. We are especially interested in the mathematical
modeling of the demographic dynamics of biological species with sexual reproduction. To this end,
a fairly rich literature has emerged about discrete-time two-sex branching processes, see the surveys
in [11,12] and the discussions therein. Most of these branching processes assume that all of the
progenitor couples have a similar reproductive behavior, see [13—15]. It is also frequently assumed that
mating and reproduction depend on the current number of progenitor couples existing in the population,
see [16—18]. However, it is known that, due to various environmental factors, e.g., weather conditions,
food supply, fertility parameters, or predators, in many biological species mating and reproduction
occur in a non-predictable environment influenced by the current number of females and males in
the population. For stochastic modeling about the demographic evolution of such species, two-sex
branching processes had not been sufficiently developed. With such motivation, in [19], a new class of
two-sex branching processes, which takes into account the possibility of various mating and reproduction
strategies, both depending on the number of females and males in the population, was introduced. This
class of processes is appropriate for the description of the demographic dynamics of semelparous
species, which are characterized by having diverse behaviors in the mating and reproduction phases.
In [20,21], some results about such a class of two-sex processes were established. The main purpose
of this work is to continue this research line by providing new methodological (probabilistic and
statistical) contributions.

The paper is organized as follows. In Section 2, the probability model is mathematically described
and interpreted. In Section 3, some probabilistic results are provided. The probability distribution
associated with the number of generations elapsed before the possible extinction of the population (time
to the extinction) is determined. The class of processes under study is then used to mathematically
model phenomena concerning to populate or repopulate habitats with endangered semelparous species.
In Section 4, statistical results are derived. By considering maximum likelihood and Bayesian estimation
methodologies, approximations for the main reproductive parameters involved in the probability model
are proposed. To this purpose, information about the reproduction of the couples is incorporated. As
illustration, a simulated example contextualized with a species of chameleons (Labord’s chameleon) is
presented. Concluding remarks and some questions for research are included in Section 5.
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2. Mathematical model and preliminary results

Let us consider the discrete-time two-sex branching process introduced in [19], denoted by {X,}* .
X, = (F,, M,) representing the number of female and male individuals at generation n. The underlying
probability model is described as follows, with N and N, denoting the non-negative and the positive
integers, respectively:

1) The mating phase is represented by a sequence of n,, > 1 two arguments integer-valued functions
{Li}iery,» Ny := {1,...,n,}. Each L, is assumed to be non-decreasing and such that L,(F,0) =
L,(0,M) =0, F, M € N. At generation n, according to the /th mating strategy (function), L,(F,, M,,)
couples female-male are formed.

2) The reproduction phase is modeled by a sequence of n, > 1 offspring probability distributions
{Pihher» N, i=A{1,...,n,}, P := {PZ,S}(k,s)eSh’ with §;, € N? and p,’;s being the probability for a
given couple to produce exactly k females and s males, when P, is the reproductive strategy.

3) Ineach generation, the mating and reproduction strategies are determined through suitable functions
¢, and ¢,, both defined on N2, taking values on N,, and N,, respectively.

Initially, Xy = xo € N2, and the number of couples originated L, (,,(xo) > 0. Given that X,, = x €
N2, it is then derived that, in the nth generation, L, (., and P, are the corresponding mating and
reproductive strategies, respectively. Hence, at generation n + 1,

Ly ((x)

Xy = Y (LML), h=g.x), n€N, 2.1)
i=1

with F" and M", denoting, respectively, the number of female and male individuals originated by
the ith couple at generation n, providing that the reproductive strategy /# has been considered. For
each h € N,, the random vectors (F ,’Z i M,’; Di=1,..., L, v(x), are assumed to be independent and

identically distributed (i.i.d.) with offspring probability distribution P, i.e.,

P(FZ,I = k’ MZ,] = S) = PZ,S’ (ka S) € Sh-

Remark 2.1 Functions L;, ¢,,, and ¢, should be flexible enough in order to fit the main features
of the semelparous species we pretend to describe. Usually, such functions will depend of certain
biological/ecological parameters of interest in the demographic dynamics of the species.

Remark 2.2 It is verified that {X,}”  is a homogeneous Markov chain. In fact, given
X0y« -+ s Xy Xpp1 € N2, taking into account that for each & € N,, independent of n, the random vec-
tors (F' ,M"), i = 1,...,L,, (), are iid.,

n,i’

me (xp)(xn)
Pt = Xt | Xo = X0, Xy = %) = Pt = %o | X =) = P[> (FEO, o) = x|
i=1

Note that if, for some n > 1, X,, = (0,0), then X,,,; = (0,0), j > 1, thus (0, 0) is an absorbing state.
Consequently, in such a case, the population will become extinct. Let us denote by:

q(x0) 1= P(lim X, = 0| Xo = x0), %o € N7,
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the extinction probability, associated with {X,}*” |, when initially Xo = xo. Assuming that, for each
heN,:
max {P(F}, = 0), (M}, = 0)} > 0, (2.2)

it has been proved in [20] the extinction-explosion property:

g(x0) + P(lim g(X,) = 00 | Xo = x0) = 1, (23)
where for F, M € N,
gF,M)=aF +M, >0, >0, a+B>0.

Also, by considering the rate:

my(x) := g0 E[g(Xue1) | X, = x] = Li(x)g(ug(0)™,
sufficient conditions for the extinction/survival of a biological population, described through the
model (2.1), have been established in [20].
In particular, the following cases have a special biological significance: g(F, M) = F, g(F, M) = M, or
g(F; M) = F+ M, namely, the number of females, males, or total individuals in the population, respectively.

Remark 2.3 For each /i € N,, let us denote by " (,ul, /12) and X! = (0' )i,j=1,2 the mean vector and

the covariance matrix of (F”" {’1), respectively, 1.e.,

1,1°

,ufl = Z kipzl’kz, i = 1727 (2'4)
(k1,k2)€S 1
ol = Z (ki — Yk = 1} e i =1,2. (2.5)
(k1,k2)€S p
Given x € N?,
Li(x) Li(x)
E[Xy1 | X, = x] = Z(F,’:,, M| = > E[(FL, M| = Loy,
i=1

and

VarlX,.1 | X, = x1 = Var| Y (Fh, Mi)| = > Var|(Fl, M].)| = Loz,

n,i’
i=1

Li(x) } Li(x)

where [ = ¢,,(x) and h = ¢,(x).
The research about this class of two-sex branching processes will now continue investigating new
probabilistic and statistical questions of biological/ecological interest.

3. Probabilistic results

From a probabilistic point of view, attention will be focused on two issues of special interest. First,
assuming the possible extinction of the population in the habitat, we will look at the determination of the
probability distribution associated with the number of generations elapsed before the possible extinction
occurs. Second, we will investigate the application of the class of two-sex branching processes under
study to the phenomenon of populating or repopulating habitats with endangered semelparous species.
We will assume condition (2.2) and g(xy) € (0, 1). Note that, taking into account (2.3), the cases
q(xo) = 0 or g(xp) = 1 mean the explosion or the extinction of the population, respectively.
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3.1. Time to the extinction

Let us denote by Z, := L, x,)(X,) the number of couples formed at generation n. Clearly, if for some
n > 1, Z, = 0, then the population will be extinct. Given that X, = xo = (Fy, My) € Ni, let us introduce
the random variable:
T(xp) :==sup{n>0: Z, >0},

representing the number of generations elapsed before the extinction of the population occurs, when
there were F,, females and M, males in the population. Assuming that 7'(xy) < oo, the next result
provides the probability distribution associated with T(x;), and also its main moments (mean and
variance). In the case that the population goes extinct, such probability distribution shows how quickly
the extinction will probably occur.

Let u,(s) := E[s*], 0 < 5 < 1, be the probability generating function of Z,. By simplicity, it will be
denoted by u;(0) := u,+1(0) — u,(0), n € N.
Theorem 3.1

(@) P(T(x0) = n | T(x) < 00) = q(x0)~'u;(0), n € N.

(b) E[T(xo) | T(xp) < o] = ;(1 — q(x0)~"u, (0)).
2
(¢) Var[T(xo) | T(x0) < oo] = q(x0)~" ; n?u;(0) — g(xo) ™! (gl(q(x()) - un(O)) l :
Proof. First, note that P(T (xy) < 00) = q(xp).
(a) Using that Zy := Ly, ,(x0) > 0, it is derived that uy(0) = P(Z, = 0) = 0. Therefore,

P(T(x0) = 0| T(x0) < 00) = P(T(xp) < )™ P(T(x0) = 0) = q(x0)”' P(Z1 = 0)
= q(x0) " u1(0) = q(x0)™" (1 (0) = up(0)) = g(x0) ™ 15(0).

Now, forn € N,,

P(T(x0) = n| T(xp) < 00) = q(x0)”' P(T(x0) = n)
= q(x0)” (P(T(x0) < n) = P(T(xp) < n — 1))
= q(x0)" (P(Zy1 = 0) = P(Z, = 0))
= q(x0)™ (tn41(0) = 1, (0)) = g(x0)™' 13 (0).

(b) Using that T'(xy) is a non-negative random variable, it is derived, see [22, pg. 84], that

E[T(x0) | T(x0) < o] = Y (1 = P(T(x0) < n | T(x) < 0)).
n=0

Hence, using that P(T'(xp) < n) = P(Z,+1 = 0) = u,,11(0),
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E[T(xo) | T(x0) < oo] = Z(l — P(T(xo) < n | T(xp) < 00))

3
(=]

(1 = g00) ™' P(T(x0) < m)

DM 1M

(1= qCo) " wa () = D~ (1= g(x0) ' ,(0))..

n=1

1l
(=)

n

(c) The result is derived, from Theorem 3.1(b), using that:
Var[T(x0) | T(xo) < o0] = E[T(x0)” | T(xo) < o0] — E[T(x0) | T(x0) < oo,

and taking into account that:

E[T(x0)* | T(xy) < 00] = > n?P(T(x0) = 1| T(x0) < o)

n=1

= q(x0)™ ) (P(T(xo) < m) = P(T(x5) <= 1))

n=1

= q0x0)" )1 (P(Zyy = 0) = P(Z, = 0))
n=1

= q0x0)™" ) (U (0) = u(0) = qx0) ™ ) nu(0).  (B.1)
n=1 n=1

3.2. Application to populate or repopulate a habitat

Let us consider a certain habitat in which a semelparous species has become extinct, or it is in serious
danger of extinction. The purpose is to populate or repopulate the habitat with such species. To this
end, of ecological significance, several attempts to repopulate the species in the habitat will probably be
necessary. Next, the class of two-sex branching processes {X,,} ,, defined in (2.1), will be used as the
mathematical model.

In fact, let {Xf,j)};":o, J € N, be independent processes where, for each j € N,, {Xf,j)};"zo 1S a two-sex
branching process, like the one defined in (2.1), which describes the population dynamics concerning
the jth attempt of repopulating. Thus, vector X,(,j) = (F ﬁ,j ), M,(f )) represents the number of female and
male individuals in the habitat at generation 7, in the jth attempt of repopulating. All processes {X,(lj)}f;o,
J € N, have the same mating and reproductive strategies, i.€., they have the same sequences {L;}en,,
and {P}}sen,. Assume condition (2.2) holds and g (xy) € (0, 1).

Initially (attempt j = 1), it is assumed that X(()l) = xo = (Fo, Mp) € Ni, 1.e., Fy females and M, males
of the species under consideration are introduced in the habitat. If, after a certain number of generations,
the population becomes extinct, then it will be necessary to restart the repopulating, by introducing
again (attempt j = 2) F, females and M, males in the habitat, i.e., X(()z) = Xxp, and so on. This iterative
procedure continues until a sufficient number of females and males are achieved in the habitat, so that
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the risk of extinction disappears (for simplicity, this fact will be referred to as implementation of the
species in the habitat). It is deduced that

P(lim X = 01X = ) = g (), j€ N,

Let TY (xo) := sup {n >0: ZV > 0}, AL ety X)), j € N, namely, the time to the
extinction at the jth attempt of repopulation. It is derived that {7 (xo)};?‘;1 is a sequence of i.i.d. random
variables with the probability distribution given in Theorem 3.1(a).

Let us denote by N(xy) the number of attempts until the implementation of the species occurs. It is
then verified that N(xy) is distributed according to a geometric law with parameter 1 — g(x,). Hence,

P(N(xo) = n) = q(x0)"(1 — q(x0)), n €N, (3.2)

and
E[N(xo)] = g(x0)(1 — g(x))™" and Var[N(x)] = q(x0)(1 — g(x0)) ™. (3.3)

Finally, let us consider the variable:

N(xo)

T'(xo) i= ) T9(xo), (3.4)

J=1

representing the total number of generations elapsed until the implementation of the species in the
habitat occurs. The next result establishes the probability distribution of 77(x() and its main moments.

Theorem 3.2

(a) P(T*(xo) = n) = q*(xp)~" (5n,0 + i Q(Xo)an(Xo)(*j)) , n €N,

j=1
(b) E[T*(x0)] = g"(x0) ;1 (q(x0) — u,(0)).

[>9)

2
(c) Var[T"(xo)] = q*(xo) 1(61()60) - un(O))) l

(1+4°0) 3 wu,(0) - glx)” (

n=

where
g (x0) :== (1 —q(x0))™", 6,0:=1if n=0 or 0 ifn#0,
Pu(xo) = P(TV(x) = n | TV(xp) < ), Po(x)™ := D" Py (x0)...P; (x0).
i1+...+ij:n
Proof.

(a) Taking into account (3.2) and (3.4),

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6407-6424.
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P(T"(x0) =n) = Z P(T"(x0) = n| N(xo) = )P(N(xo) = J)

/=0

o j
= q"(xo)”" ((5;1,0 > q(x())fP(Z T (xp) = n}}

=1 =1

= ¢ (x0)”" [5n,0 + Z q(x0) P,y (x0)™” ], n€N.
j=1
(b) From (3.3), (3.4), and Theorem 3.1(b),
E[T*(x0)] = EING)IE [TV(x0) | T®(x0) < 0] = g"(x0) ) (q(x0) = 0,(0)).
n=1

(c) Using (3.3), (3.4), and Theorem 3.1(b),(c), we can obtain that:
Var(T" (x0)] = EINGeo)IVar [T (x0) | TV(x0) < 00| + VarlN(xo)IE (T (x0))* | T (x0) < 0.

Remark 3.1 By simplicity in the underlying probabilistic development, it has been assumed that in
the proposed iterative procedure, for each j € N,, Xf)j) = xo = (Fo, My), that is, each iteration begins
with F, females and M, males in the habitat. In practice, this assumption is not a problem. It implies
that the extinction probability g(x,) is the same for all iterations. Therefore, it is deduced that N(xy) is
distributed according to a geometric law with parameter 1 — g(xy).

4. Statistical results

With the aim to check some possible changes in the demographic dynamics of the semelparous
species, it is important to determine accurate approximations for the main statistical parameters (offspring
means, variances, and covariances) specified in (2.4) and (2.5), respectively. The application of
estimation methodologies based on population viability analysis requires having information on various
variables related to the biological species under consideration. In practice, the information about such
variables is difficult to obtain. In this scenario, estimation based in Bayesian methodology provides
a reasonable solution. In fact, by considering a parametric statistical context about the reproductive
strategies P,, h € N,, estimates for such statistical parameters have been determined in [19]. More
recently, by using approximate Bayesian computation techniques, estimates have also been proposed
in [21]. The application of such techniques requires a large number of simulations from the mathematical
model. Consequently, it involves a significant computational effort. In this section, we shall consider
the more general nonparametric framework about the reproductive strategies P, h € N,, that is, no
functional form is assumed for the probabilities pz”s, (k, s) € Sj. By using maximum likelihood and
Bayesian estimation methodologies, we will determine approximations for such probabilities and also
for pf, O'?j, ij=1,2.

Let {X,} ", be the two-sex branching process described in the previous section. Assume, for a given
n, the following observed information over time in a set of generations, denoted by G, up to the nth
generation is reached:

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6407-6424.
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Sy = {Xo = (Fo, Mo), Zi.s)> (k,s) €S gxy, 1 € Gn} , 4.1)
where
Leyx)(Xi)
Ziks) = Z I{(Ffj’.‘xi),Mf]’.(xi)):(k,s)}’ 4.2)

=1
with I, denoting the indicator function of A. The variable Z; 4 5, represents the total number of couples

at generation i, which produce exactly k females and s males, (k, s) € |J S,.
heN,

For h € N,, let Gﬁ ={i € G, : ¢.(X;) = h}, 1.e., the set of observed generations of G, where P, has
been the reproductive strategy. Clearly,

L JGi=G. GinG) =0, hiWeN, h#k.
heN,

In what follows, it will be assumed that G" # 0, h € N,. From (4.2), let us introduce the variables:
Vf?,(k,s) = Z Ziks) » h €N,.
ieGh

Note that Vfl’ (s Tepresents the total number of couples in the observed generations that have

originated exactly k females and s males, with P, being the underlying reproductive strategy.
4.1. Maximum likelihood estimates

According to this estimation methodology, taking into account the sample information given in (4.1)
and (4.2), we have to determine, for i € N,, the values of pz’s, (k, s) € S, that maximize the correspond-
ing likelihood function.

Theorem 4.1 The maximum likelihood estimates for pZ’S, u, and O'flj i,j=1,2, h € N, are given by:

(a) pz,s = (Vr}zl)_l V:,(k,s)’ (k, S) S Sh_

) w =" X Vi
(k1,k2)€S 1

© ol =(VEA+VOY Vi Y kkVE - D kLY YV
ij —\'n n n ™ P n(ky ko) ) T ny(ky ko) Cony (b)) |
(k1,k2)€S ) (k1,k2),(11,12)ES 1

where V! := Y Vh
" ks, RV
Proof. Taking into account (4.1), the corresponding likelihood function is given by:

is assumed to be positive.

ny

LP. P 1S) =] [ e (4.3)

h=1 (k.s)eS,
From (4.3), the log-likelihood function is then deduced:

nr

E(Py, ..., Py | S,) = log(L(Py,.... Py | Sy)) = Z Ve log(pr). (4.4)

h=1 (k,s)€S}

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6407-6424.
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In order to determine the maximum likelihood estimates for pZ’S, (k, s) € S}, it is necessary to obtain
the values that maximize the likelihood function (4.3), or equivalently, the log-likelihood function (4.4),
subject to the constraints:

h h
D ph=1 pl20, h=1...n.
(k,$)eS

Consequently, using the Lagrange multipliers technique, it is required to determine the values of pZ S
that maximize the function:

W(P1,.. Py) = Py Py 1 SO+ (L= D pl),
(k,5)ES )

where A;, h = 1,...,n, denotes the corresponding Lagrange multipliers. Now, it is obtained:

p .
— | EPr P IS A= D Ph)| = () Vi — =0, (4.5)
k,s (k,$)eS,

From (4.5), it is deduced that A, = V,’j. Hence, the solutions of the equations given in (4.5) are the
expressions given in Theorem 4.1(a). It can be checked that such solutions maximize function (4.4).

Intuitively, notice that pz’s is the proportion of progenitor couples that generate exactly k females and s
males when P, is the underlying reproductive strategy.
Estimates given in Theorem 4.1(b),(c), are then determined using (2.4), (2.5), and Theorem 4.1(a).

4.2. Bayesian estimates

First, in order to apply the Bayesian estimation methodology, it is necessary to choose a suitable class
of prior densities n(Py, ..., P, ) for (Py,..., P, ). From the mathematical expression given in (4.3), it is
derived that an appropriate class of prior densities for (P, ..., P, ) is the product of Dirichlet densities:

r Th B
a(Pr,.. P = o0 | ] @l (4.6)
h=1  (k.s)ESy
where for each 1 € N,,

Ty = (TZ’S, (k,s)e S h) is a vector of positive constants,

-1 0
Dy= [l T(h (F(TZS)) L= Y T, D)= [ e xdx, u> 0.
(k,$)ES ) ’ k.s)eSy

Theorem 4.2 By considering the squared error loss function, the Bayesian estimates for pZ » u, and
o{’j, i,j=1,2,h € N,, are given by:

(@ pr=(WHIWE (k,s) €S,

b) W=WhH R kW

(k1,k2)€S )

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6407-6424.
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(©) o = (W1 +wh)” (Wf > kW, - % le;i’.szz'Tzz)
(k1,k2)€S (k1,k2),(I1,12)€S 1

where

h ._ +h h h . _ h
Wis =Tis+t Vg Wii= E W
(k,S)ES/,

Proof. Taking into account (4.6), the posterior density of (P, ..., P, ), incorporating the information
provided by (4.1), is given by the product of Dirichlet densities:

a(Pr,..., ,,,|3,,)_]_[D* [ 1@k, 4.7

h=1 (k,$)eSn
where for each h € N,,
W= (Wi, (ks)eSy), Dy= [] rawhaowg™.
(k,$)eS

Given (k,l) € S}, from (4.7) we deduce, as marginal posterior density for pZ’S, the Beta density:

(W) h_wh
Tr(pz’s | Sn) = (pz,b) * (1 pk A)W W”T 1’

i, €00, 1), 4.8
(W OT(WE = W) Prs €0, 1) (4.8)

Finally, from (4.8), using the squared error loss function, it is obtained as Bayesian estimate for p :

1
Pi = f pia(pls 1 Sodpy, = (WhH' W (4.9)
0

From (2.4), (2 5), and (4.9), the expressions given in Theorem 4.2(b),(c), are deduced as Bayesian

estimates for ;1 and 0'1 o i,j=1,2, h € N, respectively.

Remark 4.1 From (4.8), we can determine the highest posterior density (HPD) credibility sets for pz,s,
namely, sets of the form:

1Q) = {pi, : 7(pi, 1S =0}, 0>0,

where given a certain credibility coefficient 1 — «, the constant Q is calculated taking into account that:

f (P 1 Sodpl, = 1 - a.
J(Q)

To determine HPD credibility sets for x/ and for O'f’j, i,j=1,2, h € N,, it is necessary to approximate
the corresponding posterior densities for such parameters. An appropriate procedure is based on
the simulation, from ﬂ(pZ’S | S,), of a sufficiently large number of values of pz’s. Then, from (2.4)
and (2.5), the corresponding values for ,uf.‘ and for 0'?]., i,j=1,2, h € N, are determined. From these
values, applying a suitable Gaussian kernel method, see e.g., [23], approximated posterior densities
for such parameters can be obtained. Using such approximated densities, we can then determine the
corresponding empirical HPD credibility sets.

Remark 4.2 In order to simulate data from model (2.1), to calculate the proposed estimates for the
parameters, and to determine the corresponding HPD credibility sets, we have implemented some
specific programs using the statistical software R, see [24].
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4.3. Illustrative example

Labord’s chameleon (Furcifer labordi) is a native reptile of southwestern Madagascar, where it usually
lives in dry deciduous forests. It is considered the shortest-lived tetrapod animal. It spends most of its
life in the developing embryo phase (8 to 9 months) and, after that, it experiences a very rapid growth.
It has a short lifespan (4 to 5 months), reaching its sexual maturity at an early age (2 months). There
are no rigorous studies in the specialized scientific literature about their social organization or on their
mating and reproduction strategies. The few studies that have been carried out are based on monitoring
experiments through radio telemetry. From the information recorded, it has been detected that females
exhibit high habitat fidelity, moving small cumulative and linear distances with low dispersion rates.
Males move greater distances, in a less predictable manner, with higher dispersal rates than females.
This species of chameleon constitutes a particular example of semelparous life (progenitors die shortly
after reproducing). Their mating and reproductive strategies, highly conditioned by the number of
females and males in the habitat, must adapt to these temporal limitations existing in intense competition
and fighting between males. It has been suggested that they possess a wide range of different mating
systems, generally polygamous matings. Males can mate with more than one female and females can
mate with different males during the same ovarian cycle (the dynamics of male color change could
also affect the choice of partner). The female lays a clutch of eggs and the progenitor male and female
die. Some studies reported that females can lay between 6 and 8 eggs. Due to various random factors,
mainly predators and environmental factors, a high percentage of eggs will not hatch. See [25-28] for
more information about this species of chameleon.

Unfortunately, there is no real data available on the demographic dynamics of this reptile species.
Next, taking into account the special characteristics of this species of chameleon, a simulated example
is presented where mating and reproduction strategies close to reality are assumed. Let us consider a
population of chamaleon of Labord with the following population dynamics:

1) Females and males form couples according to the n,, = 2 mating strategies:
L(F,M) = min{F, M}, L,(F,M)= Fmin{l, M}, F,M e N.

According to L, the females and males practice fidelity, and they are allowed to have at most one
mate. According to L,, in each generation, a dominant male mates with each female. The other
males do not participate in the mating process.

2) Since the number of eggs laid by a female is between 6 and 8, and it is known that a high
percentage of eggs do not hatch, it will be assumed in our simulation the n, = 2 reproductive
strategies P, = {p,};s}(k,s)es . h=1,2, where

S1=382=1{(0,0),(3,3),(4,3),(3,4),(4,4),(5,3), (3,5},
Poo = 0.71, pi; =0.08, py5 =0.06, p3, = 0.05, p;, =0.03, ps; =0.03, p}5=0.04,
Poo = 0.71, p35 =0.08, pi; =0.05, p3, =0.06, p;, = 0.03, p55 = 0.04, p35 = 0.03.

From P, and P,,

= 1.02, ub = 1.03, o}, = 2.679, o), = 2.749, o}, = 2.519,
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wh=1.03, 15 = 1.02, o}, = 2.749, 03, = 2.679, o3, = 2.519.

P slightly favors the birth of males, with a ratio of males/females of the means equal to 1.01. This
ratio has a value of 0.99 for P,, which slightly favors the birth of females. From such reproductive
strategies, it is deduced that:

max{P(Fj, = 0), P(M, = 0)} =0.71, h = 1,2.
Hence, condition (2.2) holds.
3) In each generation, it is assumed that the functions ¢,, and ¢, are given by:
Cn(F, M) := 1 - Lyremrsx) + 2 - Yprrmyi<xy, @ (F M) = 1-Xipapy + 2 - Lipory, F,M €N
K < 1 is a suitable threshold for the proportion of males in the population.

Let {X,} >, be the two-sex branching process described in (2.1) with the mating and reproduction
strategies mentioned previously. By way of illustration, taking X, = (10, 10) and K = 0.8, we have
developed a simulation for the first n = 100 generations of such a chameleon Labord population, i.e., in
this case, Gioo = {1,2, ..., 100}, see Figure 1.

Generations

Figure 1. The evolution of the number of females (red color) and males (black color) in the
successive generations belonging to Ggp.

According to the obtained simulation, it is derived that P, has been the reproductive strategy in 19
generations and P; has been the reproductive strategy in 81 generations. In fact,
Gioo = (2,3,5,6,8,9,10,12,17,18,20,24,26,33,34,36,52,54,56}, Gy = Gioo — G1oo-

Taking into account the special reproductive characteristics of this biological species, with a high
probability of unsuccessful hatching, we have considered the prior density given in (4.7), where

T =1,=(29, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5).

Using the information provided in the simulation, from Theorems 4.1 and 4.2, we have determined
the corresponding maximum likelihood and Bayesian estimates for p} ,, u!, and o{lj, i, j,h =1,2, see
Tables 1 and 2.
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Table 1. The true values of p; ,, (k,[) € S, u, ol
and Bayesian estimates.

il j = 1,2, and their maximum likelihood

p<1)0 p§3 p}m p§4 p}t,4 p§3 pés
True values 0.71 0.08 0.06 0.05 0.03 0.03 0.04
Maximum likelihood estimates  0.712  0.079  0.061 0.049 0.028 0.029 0.041
Bayesian estimates 0.712  0.079 0.061 0.049 0.028 0.029 0.041
H M o Ty T
True values 1.02 1.03 2679 2749 2519
Maximum likelihood estimates 1.012 1.023  2.664 2738 2.505
Bayesian estimates 1.013  1.024 2.666 2740 2.507

Table 2. The true values of sz’ (k, 1) e S,, ,ul,
and Bayesian estimates.

lj’

i, j = 1,2, and their maximum likelihood

pg,o p§,3 pzzt,3 p§,4 pzzt,4 p§’3 p%,s
True values 0.71 0.08 0.05 0.06 0.03 0.04 0.03
Maximum likelihood estimates  0.706  0.072  0.051 0.068 0.028 0.049 0.026
Bayesian estimates 0.700 0.072 0.052 0.068 0.030 0.049 0.028
T T St o3, ot
True values 1.03 1.02 2749  2.679 2.519
Maximum likelihood estimates ~ 1.038  1.030 2.857 2.670 2.556
Bayesian estimates 1.081 1.054 2.898 2.722  2.595

From Tables 1 and 2,

h
max{ max =0.009, max{max
h= 12{(kl)eS |sz Pyl h= 12{; 12 i -

AI} 0.009, max{max|0' —0'|} 0.108,

h=1,2 i,j=12

—_—

max{ max |sz 1;;51} =0.008, max{max I,u, /;:.|} =0.051, max{max |0' - a'?jl} = 0.149,

h=12 (k,)eS, h=12 i=12

which shows good accuracy of the estimators.

0.60

T T T T T T T 1
10 20 30 40 50 60 70 80
Generations

p——

0.03 0.06 0.09
1 1 L

0.00

h=12 ij=12

T T T T T T T 1
10 20 30 40 50 60 70 80
Generations

Figure 2. On the left i is the the evolution of pO0 (black color) and p00 (red color) and on the

right is the evolution of p3 5 (black color) and p3 5 (red color) in the successive generations

belonging to G|,.
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Figure 3. On the left is the evolution of ;02’\0 (black color) and p(z),0 (red color) and on the

J——

right is the evolution of P§,5 (black color) and p§’5 (red color) in the successive generations
belonging to G7,,.

As an illustration, Figures 2 and 3 show the evolution of the estimates for pgo
successive generations belonglng to GIOO’

2
GlOO’

h=

and p, in the

1,2, respectively. Similarly, Figures 4 and 5 show the
evolution of the estimates for yi and ,ul. ,1 = 1,2, in the successive generations belonging to G}OO and

respectively. The 95% HPD credibility sets are also included in all figures (the true values for the

parameters are represented by horizontal lines). For a better visualization of the graphs, the generations
belonging to G}, and G7,, have been renumbered, from 1 to 81 and from 1 to 19, respectively.
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Generations

0.8

Generations

Figure 4. On the left is the evolution oi /jt\} (black color) and ;} (red color) and on the right is

the evolution of /jé (black color) and ,ué (red color) in the successive generations belonging

1
to G-

1.4

11

0.8

o0—o
o
n/O—O K \o—o\ O 2 0—0—0—90—0—
o—o °0—0—0
o/ \O—D\o/
T T T T T T
3 6 9 12 15 18

Generations

0.8

Generations

Figure 5. On the left is the evolution of :“1 (black color) and u | (red color) and on the right is

the evolution of 43 (black color) and y3 (red color) in the successive generations belonging

2
to G-
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5. Conclusions

In this research, we have continued the working line started in previous papers about mathematical
modeling concerning the demographic dynamics of semelparous biological species through two-sex
branching processes with multiple mating and reproduction strategies. It has been assumed that, in each
generation, both phases (mating and reproduction) are influenced by the current number of females
and males existing in the population (habitat). Several probabilistic and statistical contributions have
been established. In fact, the probability distribution associated to the variable number of generations
elapsed before the possible extinction of the population has been derived. Also, the aforementioned two-
sex branching processes have been used to mathematically describe the phenomenon of populating or
repopulating habitats with a semelparous species that has become extinct, or is in danger of extinction. By
considering the most general non-parametric statistical setting on the reproductive strategies associated
with the biological species, various inferential questions about the main parameters governing the
reproduction phase have been determined. To this purpose, information concerning the reproduction
of the couples has been included in the observed data sample. Using this information, estimates for
the reproductive parameters have been proposed. To this end, maximum likelihood and Bayesian
estimates, and the corresponding 95% HPD credibility sets, have been determined. To simulate data
from the mathematical model and also to calculate the estimates and the HPD credibility sets, the
necessary computing programs have been developed. By way of illustration, the proposed estimation
methodologies have been applied through a simulated example with Labord’s chamaleon populations.
The simulation performed has showed the accuracy of the proposed estimates.

Some possible direcions for research are, for example, to extend this class of two-sex branching
processes, including in the probability model the immigration of females, males, or couples, from
external populations; considering mating and/or reproduction in random environments; or assuming
multi-type populations. It is also necessary to explore other possible mathematical methodologies that
allow modeling the evolution of semelparous biological species with sexual reproduction. In this regard,
the survey in [29] provides interesting information to be considered.
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