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Abstract: For numerous viruses, their capsid assembly is composed of two steps. The first step is
that virus structural protein monomers are polymerized to building blocks. Then, these building blocks
are cumulative and efficiently assembled to virus capsid shell. These building block polymerization
reactions in the first step are fundamental for virus assembly, and some drug targets were found in this
step. In this work, we focused on the first step. Often, virus building blocks consisted of less than
six monomers. That is, dimer, trimer, tetramer, pentamer, and hexamer. We presented mathematical
models for polymerization chemical reactions of these five building blocks, respectively. Then, we
proved the existence and uniqueness of the positive equilibrium solution for these mathematical models
one by one. Subsequently, we also analyzed the stability of the equilibrium states, respectively. These
results may provide further insight into property of virus building block polymerization chemical
reactions in vivo.
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1. Introduction

A virus is an infectious microbe containing nucleic acid (either DNA or RNA) and protein. A virus
cannot replicate by itself; instead, it must infect human, animal or plant cells and use components of the
host cell to give rise to numerous progenies. These progenies are usually genetically and structurally
identical to the parent virus. Often, a virus ends up killing the host cell in its reproduction process,
causing damage to the host organism. Well-known examples of viruses causing human disease include
COVID-19, acquired immune deficiency syndrome (AIDS), smallpox, and measles. In particular,
the COVID-19 pandemic is claiming millions of lives in only three years [1], and the World Health
Organization said that 1.3 million people were newly infected worldwide in 2022. These viruses have
brought huge losses to mankind.
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All viruses depend on cells for their reproduction, and the styles of virus reproduction are numerous.
Here, human immunodeficiency virus (HIV) for example shows the reproduction process for a kind of
virus. HIV enters the human body. Once it encounters a T-cell, it actively attaches itself to the T-
cell. Attachment is a specific binding between proteins on the viral surface and proteins that serve as
receptors on the T-cell surface. Then viral fusion occurs and fusion allows the genetic material of the
virus to be injected directly into the cell’s cytoplasm. The cellular machinery is hijacked to produce the
necessary components of HIV, such as new genetic material and structural proteins. These components
are transported to the inside of the cell membrane. Structural proteins are assembled and begin to
deform a section of the membrane to form the new viral envelope. Viral genetic material is gathered
into the envelope, and a viral budder is formed. Lastly, it is released and a new virus is reproduced [2].
A lot of research has unraveled the ways to stop viral replication within human cells.

Assembly of structural proteins is a key process for a kind of viral replication. It is composed of
two steps. The first step is that structural protein monomers are polymerized to building blocks. The
second step is that these building blocks are assembled to virus capsid. The first step provides a
foundation for the second step. Its aim is to form the building block to improve assembly efficiency of
virus capsid. In this work, we focus on the first step. In general, building blocks formed in the first
step include five types: dimer (for example, Hepatitis B virus [3]), trimer (for example, SARS-CoV-2
Omicron [4]), tetramer (for example, La Crosse virus [5]), pentamer (for example,
Betapolyomavirus [6]), and hexamer (for example, HIV-1 [7]). The crystal structures [8] of building
blocks for these viruses are shown in Figure 1.

A B C D E

Figure 1. Crystal structures of building blocks. A) Dimer building block of Hepatitis B
virus [3, 8], PDB ID: 3KXS. B) Trimer building block of SARS-CoV-2 Omicron [4, 8],
PDB ID: 7WZ1. C) Tetramer building block of La Crosse virus [5, 8], PDB ID: 4BHH. D)
Pentamer building block of Betapolyomavirus [6, 8], PDB ID: 7B6C. E) Hexamer building
block of Hepatitis B virus [7, 8], PDB ID: 6VWS.

Numerous biologists and pharmacists are interested in the synthesis chemical reactions of virus
building blocks. Wang and Hou [9] analyzed drug and drug candidate building blocks.
Chen et al. [10] presented a general approach to study modular self-assembly of biomolecules with
protein building blocks. Christiansen et al. [11] found that the trimeric major capsid protein of
Mavirus was stabilized by its interlocked N-termini enabling core flexibility for capsid assembly.
Ni and Chau [12] constructed a spherical artificial virus by using building blocks and studied the
intricate morphology and the intracellular transformation of the spherical virus. Liu et al. [13] studied
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dynamical analysis of synthesis reactions for these five building blocks including dimer, trimer,
tetramer, pentamer and hexamer in vitro, where the total concentration of proteins for building blocks
is constant.

Synthesis chemical reactions for virus building block polymers in vivo are more complex than that
in vitro. In vivo, monomers will be produced continuously, and building blocks will decrease for
assembly at the same time. As a result, mathematical models for synthesis chemical reactions in vivo
are more complex than that in vitro. In this work, we will focus on synthesis chemical reactions in vivo
for five types of building blocks, including dimers, trimers, tetramer, pentamer and hexamer. We will
present mathematical models for these synthesis chemical reactions. Then the existence, uniqueness,
and stability of the positive equilibrium solution of these models will be proved. Mathematical analysis
of these models will be carried on one by one. These theoretical results will support that synthesis
chemical reactions of virus building blocks in vivo will be tend to a stable state for any initial state.

2. Synthesis reactions and properties

2.1. Dimer building block

We first consider that the dimer is the building block of a kind of virus assembly in vivo. The
example is shown in Figure 1(A). Two monomers are polymerized to a dimer, and their chemical
reactions are as follows.

M1 + M1

k+1
GGGGGGBFGGGGGG

k−1
M2

ϕ
µ
−→ M1

M2
r
−→ virus assemble

(2.1)

where M1 is the monomer, M2 is the dimer building block, k+1 is the on-rate constant, k−1 is the off-rate
constant, r is the assemble rate of virus by using dimer building blocks, and ϕ

µ
−→ M1 describes the

production of the monomer with the rate µ.
The concentration of monomers will decrease as they polymerize to dimers. They will increase

as they are produced with the rate µ. Moreover, they will also increase as dimers dissociate to them.
Based on the mass action law and mass conservation law [14], we can get

d[M1]
dt

= −2k+1 [M1]2 + 2k−1 [M2] + µ.

where [M1] and [M2] are the concentrations of M1 and M2, respectively.
So similarly, we obtain the following mathematical model for the above polymerization chemical

reactions in vivo. 
d[M1]

dt
= − 2k+1 [M1]2 + 2k−1 [M2] + µ

d[M2]
dt

=k+1 [M1]2 − k−1 [M2] − r[M2]
(2.2)

The initial condition is
[M1] = C0, [M2] = 0.
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where C0 is a constant.
Theorem 1. The mathematical model for dimer building block polymerization chemical

reactions (2.2) exists a unique solution.
Proof. Let

f (t, [M1], [M2]) =
−2k+1 [M1]2 + 2k−1 [M2] + µ
k+1 [M1]2 − k−1 [M2] − r[M2]

 . (2.3)

We can get 
∂ f1

∂[M1]
,
∂ f1

∂[M2]
∂ f2

∂[M1]
,
∂ f2

∂[M2]

 =
−4k+1 [M1],2k−1

2k+1 [M1], − k−1 − r

 . (2.4)

Obviously, functions in Eq (2.4) are all continuous in [0,+∞] × [0,C0] × [0,C0]. So, f (t, [M1], [M2])
satisfies the Lipschitz condition for all [M1], [M2],[M1]′, [M2]′

|| f (t, [M1], [M2]) − f (t, [M1]′, [M2]′)||2 ≤ L||([M1], [M2]) − ([M1]′, [M2]′)||2 (2.5)

where L is a constant.
Therefore, based on the Picard theorem, the mathematical model for dimer building block

polymerization chemical reactions (2.2) exists a unique solution.
Theorem 2. The positive equilibrium point of the mathematical model for dimer building block

polymerization chemical reactions (2.2) exists and is unique.
Proof. Let d[Mi]

dt = 0, i = 1, 2 for system (2.2). We can get−2k+1 [M1]2 + 2k−1 [M2] + µ = 0
k+1 [M1]2 − k−1 [M2] − r[M2] = 0

(2.6)

Based on the second equation of Eq (2.6), we can get

[M2] =
k+1

k−1 + r
[M1]2. (2.7)

Substitute Eq (2.7) into the first equation of Eq (2.6). We can get

[M1] =
√

µ

2k+1 −
2k−1 k+1
k−1+r

. (2.8)

Add Eq (2.8) to Eq (2.7). We can get
[M2] =

µ

2r
. (2.9)

Therefore, the positive equilibrium point of the mathematical model for dimer building block
polymerization chemical reactions (2.2) exists and is unique.

Theorem 3. Mathematical model for dimer building block polymerization chemical reactions (2.2)
is locally asymptotic stable.

Proof. The characteristic equation of Eq (2.2) is as follows.∣∣∣∣∣∣ −4k+1 [M1] − λ 2k−1
2k+1 [M1] −k−1 − r − λ

∣∣∣∣∣∣ = 0.
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λ2 + (4k+1 [M1] + k−1 + r)λ + 4k+1 r[M1] = 0.

λ1,2 =
−(4k+1 [M1] + k−1 + r) ±

√
(4k+1 [M1] + k−1 + r)2 − 16k+1 r[M1]

2

For k+1 r[M1] > 0, (4k+1 [M1]+k−1 + r) >
√

(4k+1 [M1] + k−1 + r)2 − 16k+1 r[M1]. Therefore, the real parts
of λ1,2 are all negative.

Therefore, the mathematical model for dimer building block polymerization chemical
reactions (2.2) is locally asymptotic stable.

2.2. Trimer building block

We consider that the trimer is the building block of a kind of virus assembly in vivo. The example
is shown in Figure 1(B). The polymerization chemical reactions are as follows.

M1 + M1

k+1
GGGGGGBFGGGGGG

k−1
M2

M1 + M2

k+2
GGGGGGBFGGGGGG

k−2
M3

ϕ
µ
−→ M1

M3
r
−→ virus assemble

(2.10)

where Mi is the protein with i monomers, k+i is the on-rate constant, k−i is the off-rate constant i = 1, 2, 3,
µ is the production rate of the monomers, and r is the assemble rate of the virus.

The mathematical model for the polymerization chemical reactions in vivo is as follows [14].

d[M1]
dt

= − 2k+1 [M1]2 − k+2 [M1][M2] + 2k−1 [M2] + k−2 [M3] + µ

d[M2]
dt

=k+1 [M1]2 + k−2 [M3] − k−1 [M2] − k+2 [M1][M2]

d[M3]
dt

=k+2 [M1][M2] − k−2 [M3] − r[M3]

(2.11)

where [Mi] is the concentrations of Mi, i = 1, 2, 3.
The initial condition is

[M1] = C0, [M2] = 0, [M3] = 0.

Theorem 4. The positive equilibrium point of the mathematical model for trimer building block
polymerization chemical reactions (2.11) exists and is unique.

Proof. Let d[Mi]
dt = 0, i = 1, 2, 3 for system (2.11). We can get

−2k+1 [M1]2 − k+2 [M1][M2] + 2k−1 [M2] + k−2 [M3] + µ = 0
k+1 [M1]2 + k−2 [M3] − k−1 [M2] − k+2 [M1][M2] = 0

k+2 [M1][M2] − k−2 [M3] − r[M3] = 0
(2.12)
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Let the second equation of Eq (2.12) multiply by 2 and let the third equation of Eq (2.12) multiply
by 3. Then, add them to the first equation of Eq (2.12), and we can get

[M3] =
µ

3r
. (2.13)

Add the above equation to the last equation of Eq (2.12), we can get

[M2] =
µ(k−2 + r)
3rk+2 [M1]

. (2.14)

Add Eq (2.13) and the last equation of Eq (2.12) to the second equation of Eq (2.12). We can get

[M2] =
3k+1 [M1]2 − µ

3k−1
. (2.15)

Add Eq (2.15) to Eq (2.14). We can get

3rk+1 k+2 [M1]3 − rµk+2 [M1] − µk−1 (k−2 + r) = 0. (2.16)

Let
f ([M1]) = 3rk+1 k+2 [M1]3 − rµk+2 [M1] − µk−1 (k−2 + r).

f ′([M1]) = 9rk+1 k+2 [M1]2 − rµk+2 .

Then

f ′([M1]) < 0 f or 0 < [M1] <
√
µ

9k+1
.

f ′([M1]) ≥ 0 f or 0 < [M1] ≥
√
µ

9k+1
.

So y = f ([M1]) decreases monotonically in
[
0,
√
µ

9k+1

]
, and it increases monotonically in[√

µ

9k+1
,+∞
]
. Moreover,

f (0) = −µk−1 (k−2 + r) < 0.
f (+∞) > 0.

y = f ([M1]) has only one intersection with the positive horizontal axis. So Eq (2.16) has only one
positive solution, denoted by [M∗]. Then,

[M2] =
3k+1 [M∗1]2 − µ

3k−1
, [M3] =

µ

3r
.

Therefore, the positive equilibrium point of the mathematical model for trimer building block
polymerization chemical reactions (2.11) exists and is unique.

Theorem 5. Mathematical model of the trimer building block polymerization reactions (2.11) is
locally asymptotic stable.

Proof. The characteristic equation of mathematical model (2.11) is as follows.∣∣∣∣∣∣∣∣∣
−4k+1 [M1] − k+2 [M2] − λ −k+2 [M1] + 2k−1 k−2

2k+1 [M1] − k+2 [M2] −k−1 − k+2 [M1] − λ k−2
k+2 [M2] k+2 [M1] −k−2 − r − λ

∣∣∣∣∣∣∣∣∣ = 0.
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By using the symbolic computational toolbox of the MATLAB software, we get

λ3 + aλ2 + bλ + c = 0.

where

a = k−1 + k−2 + r + 4k+1 [M1] + k+2 [M1] + k+2 [M2],
b = k−1 k−2 + k−1 r + 6k+1 k+2 [M1]2 + 4k+1 k−2 [M1] + 3k−1 k+2 [M2]+

4k+1 r[M1] + k+2 r[M1] + k+2 r[M2],
c = 6k+1 k+2 r[M1]2 + 3k−1 k+2 r[M2].

The Routh-Hurwitz matrix of the above characteristic equation is as follows

RH =


c11 c12 0
c21 c22 0
c31 0 0
c41 0 0

 (2.17)

where c11 = 1, c12 = b, c21 = a, c22 = c.

We get values of the first column elements in Routh-Hurwitz matrix (2.17) by using the symbolic
computational toolbox of the MATLAB software. For their expression is too complex, we only show
their signs as follows.

c11 = 1 > 0,
c21 = k−1 + k−2 + r + 4k+1 [M1] + k+1 [M1] + k+1 [M2] > 0,

c31 =

−

∣∣∣∣∣∣∣∣∣
c11 c12

c21 c22

∣∣∣∣∣∣∣∣∣
c21

> 0

c41 =

−

∣∣∣∣∣∣∣∣∣
c21 c22

c31 0

∣∣∣∣∣∣∣∣∣
c31

> 0

Based on the Routh-Hurwitz rule, their real parts of all eigenvalues in the above characteristic
equation are all negative. Therefore, based on the theorem [15], the trimer building block
polymerization reaction system (2.11) is locally asymptotic stable.
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2.3. Tetramer building block

We consider that the tetramer is the building block of a kind of virus assembly in vivo. The example
is shown in Figure 1(C). The polymerization reactions are as follows.

M1 + M1

k+1
GGGGGGBFGGGGGG

k−1
M2

M1 + M2

k+2
GGGGGGBFGGGGGG

k−2
M3

M1 + M3

k+3
GGGGGGBFGGGGGG

k−3
M4

ϕ
µ
−→ M1

M4
r
−→ virus assemble

(2.18)

where Mi is the protein with i monomers, k+i is the on-rate constant, k−i is the off-rate constant i =
1, 2, 3, 4 , µ is the production rate of the monomers, and r is the assemble rate of the virus.

The mathematical model for the above polymerization chemical reactions in vivo is as follows [14].

d[M1]
dt

= − 2k+1 [M1]2 − k+2 [M1][M2] − k+3 [M1][M3]+

2k−1 [M2] + k−2 [M3] + k−3 [M4] + µ
d[M2]

dt
=k+1 [M1]2 + k−2 [M3] − k−1 [M2] − k+2 [M1][M2]

d[M3]
dt

=k+2 [M1][M2] + k−3 [M4] − k−2 [M3] − k+3 [M1][M3]

d[M4]
dt

=k+3 [M1][M3] − k−3 [M4] − r[M4]

(2.19)

where [Mi] is the concentration of Mi, i = 1, 2, 3, 4.
The initial condition is

[M1] = C0, [M2] = 0, [M3] = 0, [M4] = 0.

Theorem 6. The positive equilibrium point of the mathematical model for the tetramer building
block polymerization reaction system (2.19) exists and is unique.

Proof. Let d[Mi]
dt = 0, i = 1, 2, 3, 4 for mathematical model (2.19). We can get

−2k+1 [M1]2 − k+2 [M1][M2] − k+3 [M1][M3] + 2k−1 [M2]+
k−2 [M3] + k−3 [M4] + µ = 0

k+1 [M1]2 + k−2 [M3] − k−1 [M2] − k+2 [M1][M2] = 0
k+2 [M1][M2] + k−3 [M4] − k−2 [M3] − k+3 [M1][M3] = 0

k+3 [M1][M3] − k−3 [M4] − r[M4] = 0

(2.20)
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Let the second equation of Eq (2.20) multiply by 2, let the third equation of Eq (2.20) multiply by 3,
and let the fourth equation of Eq (2.20) multiply by 4. Then, add them to the first equation of Eq (2.20),
and we can get

[M4] =
µ

4r
. (2.21)

Add the above equation to the last equation of Eq (2.20). We can get

[M3] =
µ(k−3 + r)
4rk+3 [M1]

. (2.22)

Add Eqs (2.21) and (2.22), and the fourth equation of Eq (2.20) to the third equation of Eq (2.20).
We get

[M2] =
µk−2 (k−3 + r)

4rk+2 k+3 [M1]3 +
µ

4k+2 [M1]
. (2.23)

Add the third and fourth equation of Eq (2.20) to the second equation of Eq (2.20). We can get

k+1 [M1]2 − k−1 [M2] − r[M4] = 0. (2.24)

Add Eqs (2.21) and (2.23) to Eq (2.24). We can get

k+1 [M1]2 − k−1
µk−2 (k−3 + r)

4rk+2 k+3 [M1]3 −
µ

4k+2 [M1]
− r
µ

4r
= 0.

Let

f ([M1]) = k+1 [M1]2 − k−1
µk−2 (k−3 + r)

4rk+2 k+3 [M1]3 −
µ

4k+2 [M1]
− r
µ

4r
.

f ′([M1]) = 2k+1 [M1] + 3k−1
µk−2 (k−3 + r)

4rk+2 k+3 [M1]4 +
µ

4k+2 [M1]2 .

Because k±i > 0, [M1] > 0, f ′([M1]) > 0. f ([M1]) increases monotonically in (0,+∞). Moreover,

lim
[M1]→0+

f ([M1]) = −∞, lim
[M1]→+∞

f ([M1]) = +∞.

Therefore, there is a unique positive solution denoted by [M∗1] for f ([M∗1]) = 0 . Substitute [M∗1] to
Eqs (2.22) and (2.23), and we can get the unique positive values [M∗2], [M∗3]. Therefore, the positive
equilibrium point of mathematical model (2.19) exists and is unique.

Theorem 7. Mathematical model of tetramer building block polymerization reactions (2.19) is
locally asymptotic stable.

Proof. The characteristic equation of mathematical model (2.19) is as follows.∣∣∣∣∣∣∣∣∣∣∣
a11 − λ a12 a13 a14

a21 a22 − λ a23 0
a31 a32 a33 − λ a34

a41 0 a43 a44 − λ

∣∣∣∣∣∣∣∣∣∣∣ = 0.

where
a11 = −4k+1 [M1] − k+2 [M2] − k+3 [M3], a12 = −k+2 [M1] + 2k−1 ,

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6393–6406.



6402

a13 = −k+3 [M1] + k−2 , a14 = k−3 , a21 = 2k+1 [M1] − k+2 [M2]

a22 = −k−1 − k+2 [M1], a23 = k−2 , a31 = k+2 [M2] − k+3 [M3]

a32 = k+2 [M1], a33 = −k−2 − k+3 [M1], a34 = k−3
a41 = k+3 [M3], a43 = k+3 [M1], a44 = −k−3 − r

By using the symbolic computational toolbox of the MATLAB software, we get

λ4 + aλ3 + bλ2 + cλ + d = 0.

where
a = k−1 + k−2 + k−3 + r + 4[M1]k+1 + [M1]k+2 + [M2]k+2 + [M1]k+3 + [M3]k+3 ,
b = k−1 k−2 + k−1 k−3 + k−2 k−3 + k−1 r + k−2 r + 4[M1]k+1 k−2 + 3[M2]k−1 k+2+

[M1]k−1 k+3 + 4[M1]k+1 k−3 + [M3]k−1 k+3 + [M1]k+2 k−3 + [M2]k+2 k−3+
2[M3]k−2 k+3 + 4[M1]k+1 r + [M1]k+2 r + [M2]k+2 r + [M1]k+3 r+
[M3]k+3 r + 6[M1]2k+1 k+2 + 4[M1]2k+1 k+3 + [M1]2k+2 k+3+
2[M1][M2]k+2 k+3 + [M1][M3]k+2 k+3 ,

c = k−1 k−2 k−3 + k−1 k−2 r + 4[M1]k+1 k−2 k−3 + 3[M2]k−1 k+2 k−3 + 4[M3]k−1 k−2 k+3+
4[M1]k+1 k−2 r + 3[M2]k−1 k+2 r + [M1]k−1 k+3 r + [M3]k−1 k+3 r + 2[M3]k−2 k+3 r+
6[M1]2k+1 k+2 k−3 + 8[M1]3k+1 k+2 k+3 + 6[M1]2k+1 k+2 r + 4[M1]2k+1 k+3 r+
[M1]2k+2 k+3 r + 4[M1][M2]k−1 k+2 k+3 + 2[M1][M2]k+2 k+3 r + [M1][M3]k+2 k+3 r,

d = 8[M1]3k+1 k+2 k+3 r + 4[M1][M2]k−1 k+2 k+3 r + 4[M3]k−1 k−2 k+3 r.
The Routh-Hurwitz matrix of the above characteristic equation is as follows

RH =


c11 c12 c13 0
c21 c22 0 0
c31 c32 0 0
c41 0 0 0
c51 0 0 0


(2.25)

where c11 = 1, c12 = b, c13 = d, c21 = a, c22 = c.
We get values of the first column elements in the Routh-Hurwitz matrix (2.25) by using the symbolic

computational toolbox of the MATLAB software. For their expression is too complex, we only show
their signs as follows.

c11 > 0,
c21 > 0,

c31 =

−

∣∣∣∣∣∣∣∣∣
c11 c12

c21 c22

∣∣∣∣∣∣∣∣∣
c21

> 0,

c41 =

−

∣∣∣∣∣∣∣∣∣
c21 c22

c31 c32

∣∣∣∣∣∣∣∣∣
c31

> 0,

c51 =

−

∣∣∣∣∣∣∣∣∣
c31 c32

c41 0

∣∣∣∣∣∣∣∣∣
c41

> 0.

Based on the Routh-Hurwitz rule, real parts of all eigenvalues in the characteristic equation are all
negative. Therefore, based on the theorem [15], the mathematical model of tetramer building block
polymerization reactions (2.19) is locally asymptotic stable.
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2.4. Pentamer building block

We consider that the pentamer is the building block of a kind of virus assembly in vivo. The example
is shown in Figure 1(D). The polymerization reactions are as follows.

M1 + M1

k+1
GGGGGGBFGGGGGG

k−1
M2

M1 + M2

k+2
GGGGGGBFGGGGGG

k−2
M3

M1 + M3

k+3
GGGGGGBFGGGGGG

k−3
M4

M1 + M4

k+4
GGGGGGBFGGGGGG

k−4
M5

ϕ
µ
−→ M1

M5
r
−→ virus assemble

(2.26)

where Mi is the protein with i monomers, k+i is the on-rate constant, k−i is the off-rate constant i =
1, 2, ..., 5, µ is the production rate of the monomers, and r is the assemble rate of the virus.

The mathematical model for the above polymerization chemical reactions in vivo is as follows [14].

d[M1]
dt

= − 2k+1 [M1]2 − k+2 [M1][M2] − k+3 [M1][M3] − k+4 [M1][M4]+

2k−1 [M2] + k−2 [M3] + k−3 [M4] + k−4 [M5] + µ
d[M2]

dt
=k+1 [M1]2 + k−2 [M3] − k−1 [M2] − k+2 [M1][M2]

d[M3]
dt

=k+2 [M1][M2] + k−3 [M4] − k−2 [M3] − k+3 [M1][M3]

d[M4]
dt

=k+3 [M1][M3] + k−4 [M5] − k−3 [M4] − k+4 [M1][M4]

d[M5]
dt

=k+4 [M1][M4] − k−4 [M5] − r[M5]

(2.27)

where [Mi] is the concentration of Mi, i = 1, 2, 3, 4, 5.
The initial condition is

[M1] = C0, [M2] = 0, [M3] = 0, [M4] = 0, [M5] = 0.

Theorem 8. The positive equilibrium point of the mathematical model for pentamer building block
polymerization reaction Eq (2.27) exists and is unique.

Proof. The proof method is similar to the method of proving Theorem 6.
Theorem 9. The mathematical model of pentamer building block polymerization reaction

systems (2.27) is locally asymptotic stable.
Proof. The proof method is similar to the method of proving Theorem 7.
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2.5. Hexamer building block

We consider that the hexamer is the building block of a kind of virus assembly in vivo. The example
is shown in Figure 1(E). The polymerization reactions are as follows.

M1 + M1

k+1
GGGGGGBFGGGGGG

k−1
M2

M1 + M2

k+2
GGGGGGBFGGGGGG

k−2
M3

M1 + M3

k+3
GGGGGGBFGGGGGG

k−3
M4

M1 + M4

k+4
GGGGGGBFGGGGGG

k−4
M5

M1 + M5

k+5
GGGGGGBFGGGGGG

k−5
M6

ϕ
µ
−→ M1

M6
r
−→ virus assemble

(2.28)

where Mi is the protein with i monomers, k+i is the on-rate constant, k−i is the off-rate constant i =
1, 2, ..., 6 , µ is the production rate of the monomers, and r is the assemble rate of the virus.

The mathematical model for the above polymerization chemical reactions in vivo is as follows [14].

d[M1]
dt

= − 2k+1 [M1]2 − k+2 [M1][M2] − k+3 [M1][M3] − k+4 [M1][M4] − k+5 [M1][M5]+

2k−1 [M2] + k−2 [M3] + k−3 [M4] + k−4 [M5] + k−5 [M6] + µ
d[M2]

dt
=k+1 [M1]2 + k−2 [M3] − k−1 [M2] − k+2 [M1][M2]

d[M3]
dt

=k+2 [M1][M2] + k−3 [M4] − k−2 [M3] − k+3 [M1][M3]

d[M4]
dt

=k+3 [M1][M3] + k−4 [M5] − k−3 [M4] − k+4 [M1][M4]

d[M5]
dt

=k+4 [M1][M4] + k−5 [M6] − k−4 [M5] − k+5 [M1][M5]

d[M6]
dt

=k+5 [M1][M5] − k−5 [M6] − r[M6]

(2.29)

where [Mi] is the concentrations of Mi, i = 1, 2, 3, 4, 5, 6.
The initial condition is

[M1] = C0, [M2] = 0, [M3] = 0, [M4] = 0, [M5] = 0, [M6] = 0.

Theorem 10. The positive equilibrium point of the mathematical model for hexamer building block
polymerization reaction Eq (2.29) exists and is unique.
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Proof. The proof method is similar to the method of proving Theorem 6.
Theorem 11. The mathematical model of hexamer building block polymerization reaction

systems (2.29) is locally asymptotic stable.
Proof. The proof method is similar to the method of proving Theorem 7.

3. Conclusions and discussion

Building blocks are necessary for capsid assembly for numerous viruses. Sufficient building
blocks not only provide raw materials for virus assembly, but also ensure virus assembly efficiency.
Here, we focus on mathematical analysis of polymerization chemical reactions of building blocks.
Often, monomer numbers in most of virus building blocks are typically less than six. That is, building
blocks include dimer, trimer, tetramer, pentamer, and hexamer. We comprehensively consider all five
types of building block polymerization reactions in vivo. Then, we present the corresponding
mathematical models of these chemical reactions. We prove that the positive equilibrium point of
each mathematical model for building block polymerization reactions exists and is unique.
Furthermore, we prove that all mathematical models of building block polymerization reactions are
locally asymptotic stable. Therefore, we conclude that concentrations of intermediates and building
blocks will tend to be stable for any initial concentrations, respectively. Moreover, these stable
concentrations of intermediates and building blocks are constants, respectively. These obtained results
can provide further insight into property of virus building block polymerization chemical reactions
in vivo.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 12371487).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. S. Rahman, M. T. V. Montero, K. Rowe, R. Kirton, F. K. Jr, Epidemiology, pathogenesis, clinical
presentations, diagnosis and treatment of COVID-19: A review of current evidence, Expert Rev.
Clin. Pharmacol., 14 (2021), 601–621. https://doi.org/10.1080/17512433.2021.1902303

2. E. O. Freed, Advances in HIV-1 Assembly and Release, Springer, New York, 2013.
https://doi.org/10.1007/978-1-4614-7729-7

3. C. Packianathan, S. P. Katen, C. E. Dann III, A. Zlotnick, Conformational changes in the hepatitis
B virus core protein are consistent with a role for allostery in virus assembly, J. Virol., 84 (2010),
1607–1615. https://doi.org/10.1128/jvi.02033-09

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6393–6406.

https://dx.doi.org/https://doi.org/10.1080/17512433.2021.1902303
https://dx.doi.org/https://doi.org/10.1007/978-1-4614-7729-7
https://dx.doi.org/https://doi.org/10.1128/jvi.02033-09


6406

4. W. Zhan, X. Tian, X. Zhang, S. Xing, W. Song, Q. Liu, et al., Structural study
of SARS-CoV-2 antibodies identifies a broad-spectrum antibody that neutralizes the
omicron variant by disassembling the spike trimer, J. Virol., 96 (2022), e0048022.
https://doi.org/10.1128/jvi.00480-22

5. J. Reguera, H. Malet, F. Weber, S. Cusack, Structural basis for encapsidation of genomic RNA by
La Crosse Orthobunyavirus nucleoprotein, Proc. Natl. Acad. Sci. USA, 110 (2013), 7246–7251.
https://doi.org/10.1073/pnas.1302298110

6. E. M. Osipov, A. H. Munawar, S. Beelen, D. Fearon, A. Douangamath, C. Wild, et al.,
Discovery of novel druggable pockets on polyomavirus VP1 through crystallographic fragment-
based screening to develop capsid assembly inhibitors, RSC Chem. Biol., 3 (2022), 1013–1027.
https://doi.org/10.1039/d2cb00052k

7. S. M. Bester, G. Wei, H. Zhao, D. Adu-Ampratwum, N. Iqbal, V. V. Courouble, et al., Structural
and mechanistic bases for a potent HIV-1 capsid inhibitor, Science, 370 (2020), 360–364.
https://doi.org/10.1126/science.abb4808

8. wwPDB, Protein Data Bank archive (PDB), 2024. Available from: https://www.wwpdb.org/.

9. J. Wang, T. Hou, Drug and drug candidate building block analysis, J. Chem. Inf. Model., 50 (2010),
55–67. https://doi.org/10.1021/ci900398f

10. Z. Chen, M. C. Johnson, J. Chen, M. J. Bick, S. E. Boyken, B. Lin, et al., Self-assembling
2D arrays with de novo protein building blocks, J. Am. Chem. Soc., 141 (2019), 8891–8895.
https://doi.org/10.1021/jacs.9b01978

11. A. Christiansen, M. Weiel, A. Winkler, A. Schug, J. Reinstein, The trimeric major capsid protein
of mavirus is stabilized by its interlocked N-termini enabling core flexibility for capsid assembly,
J. Mol. Biol., 433 (2021), 166859. https://doi.org/10.1016/j.jmb.2021.166859

12. R. Ni, Y. Chau, Nano assembly of oligopeptides and DNA mimics the sequential disassembly of a
spherical virus, Angew. Chem., 132 (2020), 3606–3612. https://doi.org/10.1002/ange.201913611

13. Y. Liu, M. Zeng, S. Liu, C. Li, Dynamics analysis of building block synthesis
reactions for virus assembly in vitro, Math. Biosci. Eng., 20 (2023), 4082–4102.
https://doi.org/10.3934/mbe.2023191

14. J. Lei, Systems Biology Modeling, Analysis, and Simulation, Springer, Cham, 2021.
https://doi.org/10.1007/978-3-030-73033-8

15. A. Canada, P. Drabek, A. Fonda, Handbook of Differential Equations: Ordinary Differential
Equations, Elsvier, Amsterdam, 2004.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6393–6406.

https://dx.doi.org/https://doi.org/10.1128/jvi.00480-22
https://dx.doi.org/https://doi.org/10.1073/pnas.1302298110
https://dx.doi.org/https://doi.org/10.1039/d2cb00052k
https://dx.doi.org/https://doi.org/10.1126/science.abb4808
https://www.wwpdb.org/
https://dx.doi.org/https://doi.org/10.1021/ci900398f
https://dx.doi.org/https://doi.org/10.1021/jacs.9b01978
https://dx.doi.org/https://doi.org/10.1016/j.jmb.2021.166859
https://dx.doi.org/https://doi.org/10.1002/ange.201913611
https://dx.doi.org/https://doi.org/10.3934/mbe.2023191
https://dx.doi.org/https://doi.org/10.1007/978-3-030-73033-8
https://creativecommons.org/licenses/by/4.0

	Introduction
	Synthesis reactions and properties
	Dimer building block
	Trimer building block
	Tetramer building block
	Pentamer building block
	Hexamer building block

	Conclusions and discussion

