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Abstract: The pursuit of effective vaccination strategies against COVID-19 remains a critical en-
deavour in global public health, particularly amidst challenges posed by immunity loss and evolving
epidemiological dynamics. This study investigated optimal vaccination strategies by considering age
structure, immunity dynamics, and varying maximal vaccination rates. To this end, we formulated an
SEIR model stratified into n age classes, with the vaccination rate as an age-dependent control vari-
able in an optimal control problem. We developed an objective function aimed at minimising critical
infections while optimising vaccination efforts and then conducted rigorous mathematical analyses to
ensure the existence and characterization of the optimal control. Using data from three countries with
diverse age distributions, in expansive, constrictive, and stationary pyramids, we performed numerical
simulations to evaluate the optimal age-dependent vaccination strategy, number of critical infections,
and vaccination frequency. Our findings highlight the significant influence of maximal vaccination
rates on shaping optimal vaccination strategies. Under constant maximal vaccination rates, prioritising
age groups based on population demographics proves effective, with higher rates resulting in fewer
critically infected individuals across all age distributions. Conversely, adopting age-dependent maxi-
mal vaccination rates, akin to the WHO strategy, may not always lead to the lowest critical infection
peaks but offers a viable alternative in resource-constrained settings.
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1. Introduction

The quest for effective vaccination strategies against COVID-19, coupled with the challenges posed
by immunity loss and evolving epidemiological dynamics, constitutes a multifaceted endeavour at the
forefront of global public health efforts. This endeavour encompasses various facets, ranging from the
durability of vaccine-induced immunity to the emergence of new viral variants and the imperative of
sustained vaccination efforts [1].

The optimisation of control strategies, particularly for vaccination allocation in the context of
COVID-19, has been extensively studied and discussed. Research has varied, with some focusing
on managing the pandemic through non-pharmaceutical interventions (NPIs) like social distancing and
mask-wearing [2, 3], while others have concentrated on vaccination strategies. Various studies offer
insights into optimal vaccination strategies under different conditions. For instance, Gonzales-Parra,
Cogollo, and Arenas [4] examined strategies considering factors like case fatality rates and popula-
tion age structure. Hogan et al. [5] suggested targeting the elderly when vaccine supplies are scarce
but recommended focusing on key transmitters to protect the susceptible population when supplies are
plentiful and other interventions are ongoing. The study in [6] addressed the cost-effectiveness of com-
bining vaccination with social distancing. Further research includes [7], which investigated disease
control through combined vaccination, isolation, and treatment strategies. The authors of [8] explored
the efficacy of single-dose vaccines under conditions of low transmission and high single-dose efficacy
(SDE), showing that such a strategy could prevent up to 22% more deaths compared to a two-dose
strategy prioritising the elderly. The impact of various control strategies on SARS-CoV-2 and simul-
taneous influenza infections was analyzed in [9]. Additionally, the implications of limited vaccine
supplies and different vaccination rates and efficacies on virus transmission were explored in several
studies, including those that assume a limited availability of effective COVID-19 rapid tests [10]. Ur-
ban et al. [11] assessed five vaccination approaches considering restricted vaccine access, daily rates,
and efficacy. Finally, Zhou et al. [12] investigated the spatial heterogeneity of COVID-19 transmission
in urban areas, optimising vaccine distribution strategies based on spatial priorities.

Central to this discourse is the concept of classical herd immunity, rooted in mathematical models
that delineate the relationship between vaccination coverage and epidemic control. Defined as hC =

1–1/R0, where R0 denotes the basic reproduction number, classical herd immunity underscores the
pivotal role of vaccination in curtailing transmission dynamics [13].

However, the influence of age structure on epidemic transmission dynamics cannot be overstated.
Age-dependent variations in susceptibility, transmission, and disease severity, as evidenced by em-
pirical studies, underscore the need for tailored vaccination strategies that account for demographic
nuances [14]. While younger individuals may exhibit lower risks of severe illness, they can serve as
significant vectors of viral spread within communities. Conversely, older populations are at height-
ened risk of severe outcomes, necessitating prioritized vaccination efforts to safeguard vulnerable co-
horts [15–17].

Age-related factors extend beyond susceptibility and severity to encompass vaccine response dy-
namics, necessitating tailored dosing regimens and booster strategies to optimise long-term protection,
particularly in older adults [18, 19]. Consequently, a comprehensive vaccination approach must in-
tricately navigate these age-related nuances to optimise population-level immunity and mitigate the
overall impact of COVID-19 [20].
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Existing studies [20–22] have elucidated the role of age heterogeneity in achieving herd immunity
thresholds and optimising vaccination prioritization; the transition to an endemic state underscores
the need for sustained, long-term vaccination strategies. This necessitates a nuanced understanding
of immunity loss dynamics, vaccine distribution logistics, and healthcare system constraints across
diverse countries.

Addressing these challenges requires an interdisciplinary approach that integrates mathematical
modeling and optimisation [23, 24]. Optimal control theory offers a principled framework for devis-
ing vaccination strategies that balance epidemiological efficacy with practical constraints. Previous
research [6, 21] has explored short-term vaccination optimisation under resource constraints taking
into consideration the age structure of the population. In [6], the authors presented an age-structured
model to optimise vaccination and distancing for Brazil. However, several limitations arise. The vacci-
nation compartment, condensed into a single equation, neglects the nuanced interplay of infection and
recovery among vaccinated individuals. Additionally, assuming vaccination solely prevents infection
without affecting transmission dynamics oversimplifies the complex relationship between vaccination
and transmission. In [21], we provided a model to optimise the short-term vaccination strategy for the
three age distributions where the vaccinated compartment undergoes the same epidemiological process
of infection with different parameters. This study extends this paradigm to investigate the long-term
implications of age and immunity loss on vaccination strategies.

In this study, we leverage mathematical optimisation techniques to formulate vaccination strategies
tailored to the age demographics and immunity dynamics of three distinct age distributions. By catego-
rizing age distributions into expansive, stationary, and constrictive pyramids, represented respectively
by Senegal, USA, and Tunisia, we illuminate the profound influence of population age structure and
immunity loss on disease transmission dynamics and optimal age-dependent vaccination [25].

In fact, we explore the impact of varying maximal vaccination rates on optimal vaccination strate-
gies, ranging from uniform rates across all age groups to age-dependent approaches reminiscent of
World Health Organization (WHO) guidelines [26]. Through rigorous mathematical analysis and nu-
merical simulations, we elucidate the implications of these strategies on the optimal age-dependent
vaccination strategy and the number of critical infections and vaccination frequencies, offering action-
able insights for policymakers and healthcare professionals alike.

The remainder of this paper is structured as follows: Section 2 presents the formulation of the
optimal control problem and underlying assumptions. In Section 3, we conduct mathematical analysis
to establish the well-posedness of the model and characterise the optimal control. Section 4 delves
into the analysis and discussion of numerical simulation results, while Section 5 concludes with key
insights and avenues for future research.

2. Model formulation

2.1. Epidemiological model description

This paper extends previous work [21] to explore the influence of age distribution and immunity
loss on the optimal vaccination strategies over the long term. In our previous work [21], the model
was developed to optimise an age-dependent vaccination in the short term, accounting for vaccine
shortages. Building upon this foundation, we now introduce modifications to the model to incorpo-
rate immunity loss and vaccination across all compartments except for severely infected and deceased
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individuals.
In fact, similarly to the previous work, the population is divided into n age classes, with each age

class i, 1 ≤ i ≤ n divided into vaccinated and unvaccinated groups. Considering that vaccination
reduces infection and death rates rather than stopping it, it is assumed that both the vaccinated and
unvaccinated groups go through the same epidemiological process: individuals leave the susceptible
compartments S i (respectively vaccinated S v

i ), toward the exposed Ei (respectively vaccinated Ev
i )

through contact with either exposed or infected individuals, whether they are vaccinated or not and
of any age class j. The exposed can either develop or not a severe form of infection moving to one of
the infected compartments I1i (respectively vaccinated Iv

1i) for the non-severe form and I2i (respectively
vaccinated Iv

2i) for the severe form. Subsequently, they either move toward the recovered compartments
Ri (respectively vaccinated Rv

i ) or the dead one Di. However, we assume that for each age group i, all
epidemiological compartments except severely infected and dead are subjected to vaccination at a time-
dependent rate τi. Additionally, we incorporate the concept that a segment of recovered individuals,
both from vaccinated and unvaccinated groups, lose their immunity with respective rates ψ1 and ψ2,
and revert to the susceptible compartment. As both vaccine-induced immunity and infection-induced
one are lost with similar time scales, we choose not to differentiate between the types and merely use
the term immunity regardless of the gaining way. This aspect is depicted in Figure 1.

The model proposed is given by:

Ṡ i = −

n∑
j=1

p j

(
βi

E j

N j
+ βv

i

Ev
j

N j
+ α1i

I1 j

N j
+ α2i

I2 j

N j
+ αv

1i

Iv
1 j

N j
+ αv

2i

Iv
2 j

N j

)
di jS i − τiS i + ψ1Ri + ψ2Rv

i (2.1)

Ėi =

n∑
j=1

p j

(
βi

E j

N j
+ βv

i

Ev
j

N j
+ α1i

I1 j

N j
+ α2i

I2 j

N j
+ αv

1i

Iv
1 j

N j
+ αv

2i

Iv
2 j

N j

)
di jS i − τiEi − (q1i + q2i)Ei (2.2)

İ1i = q1iEi − τiI1i − r1iI1i (2.3)
İ2i = q2iEi − r2iI2i − µiI2i (2.4)
Ṙi = r1iI1i + r2iI2i − τiRi − ψ1Ri (2.5)

Ṡ v
i = τiS i − δ

n∑
j=1

p j

(
βi

E j

N j
+ βv

i

Ev
j

N j
+ α1i

I1 j

N j
+ α2i

I2 j

N j
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N j
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i (2.6)

Ėv
i = δ

n∑
j=1

p j

(
βi

E j

N j
+ βv

i

Ev
j

N j
+ α1i

I1 j

N j
+ α2i

I2 j

N j
+ αv

1i

Iv
1 j

N j
+ αv

2i

Iv
2 j

N j

)
di jS v

i + τiEi − (qv
1i + qv

2i)E
v
i (2.7)

İv
1i = qv

1iE
v
i + τiI1i − r1iIv

1i (2.8)
İv
2i = qv

2iE
v
i − r2iIv

2i − µ
v
i Iv

2i (2.9)
Ṙv

i = r1iIv
1i + r2iIv

2i + τiRi − ψ2Rv
i (2.10)

Ḋi = µiI2i + µ
v
i Iv

2i (2.11)

subject to positive initial conditions:
S i(0) > 0, Ei(0) > 0, I1i(0) > 0, I2i(0) > 0,Ri(0) > 0, S v

i (0) ≥ 0, Ev
i (0) ≥ 0, Iv

1i(0) ≥ 0, Iv
2i(0) ≥ 0 and

Rv
i (0) ≥ 0, for all 1 ≤ i ≤ n.

The parameters of the model for all 1 ≤ i ≤ n are:

• (di j)1≤i, j≤n is the contact matrix, and each coefficient di j > 0,∀i, j ∈ {1, . . . , n}, denotes the proba-
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bility that an individual of age i contacts an individual of age j.
• Ni is the total number of individuals of age class i given by: Ni = S i + Ei + I1i + I2i + Ri + S v

i +

Ev
i + Iv

i1 + Iv
i2 + Rv

i + Di.

• pi is the probability of an individual to be of age class i. (i.e., pi =
Ni

N(0) ), where N(0) =
n∑

i=1

Ni is

the total population.
• βi, β

v
i , α1,i, α2,i, α

v
1,i and αv

2,i are the infection rates of Ei ,Ev
i , I1i, I2i, Iv

1i and Iv
2i, respectively.

• δ denotes the infection reduction rate.
• q1i, q2i, qv

1i, q
v
2i are the rates at which an exposed develops severe or non-severe forms of infection,

respectively, for vaccinated and unvaccinated groups. Noteworthy the rate of developing a severe
infection is higher among the non-vaccinated than the vaccinated i.e., q2i > qv

2i.
• r1i, rv

1i, r2i and rv
2i are the recovery rates for vaccinated and unvaccinated individuals, respectively.

• µi and µv
i are disease-induced mortality rates for the vaccinated and unvaccinated, respectively.

All parameters of the model are assumed to be positive constants. Additionally, the demographic
process is not taken into account for this model. Therefore, the population size for each age class i, Ni,
and the total population size, N, are supposed constant.

Figure 1. Model conceptual diagram where Fi =
n∑

j=1
p j

(
βi

E j

N j
+ βv

i
Ev

j

N j
+ α1i

I1 j

N j
+ α2i

I2 j

N j
+ αv

1i

Iv
1 j

N j
+ αv

2i

Iv
2 j

N j

)
di j =

n∑
j=1

p jFi jdi j.

2.2. Objective function

Considering that vaccines do not stop infection, but rather reduce the rate of severe forms of it
among the population, and that we are setting a long-term vaccination schedule, we aim to minimise
the number of severe infections (vaccinated or not) and the cost of vaccination by controlling the age-
dependent vaccination rate. Therefore, the objective function is given by:

J(τ) =
∫ T

0
A1

(
||I2(t)||22 + ||I

v
2(t)||22

)
+ A2||τ(t)||22dt. (2.12)
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where:

• I2 = (I2i)1≤i≤n is the vector of unvaccinated critical infected and Iv
2 = (Iv

2i)1≤i≤n is the vector of
vaccinated critical infected individuals subject to ((2.1)–(2.11))
• τ = (τi)1≤i≤n is the control variables vector.
• T denotes the time horizon of control.
• A1 and A2 are cost balancing factors and || ||2 stands for the Euclidean norm.

Minimising this function results in minimising the number of critical infections among both vacci-
nated and unvaccinated individuals, ||I2(t)||22+||I

v
2(t)||22, with a minimal vaccination effort, ||τ(t)||22. Deaths

are not explicitly present in the objective function, as minimising the number of critically infected in-
dividuals in hospitals has a direct impact on the minimisation of the number of disease-induced deaths.
Due to the limitations that face various healthcare systems, we assume that there is a maximal threshold
for the vaccination rate. And since we aim to control the vaccination rate according to age, we assume
that the maximal vaccination rates are age-dependent, and then 0 ≤ τi(t) ≤ τmax

i for all i ∈ {1, . . . , n}
and for all t ∈ [0,T ].

This problem can be written as follows:
min
τ∈U

J

subject to ((2.1)–(2.11)) where

U =
{
τ = (τ1, . . . , τn) ∈ l∞([0,T ],Rn) : 0 ≤ τi(t) ≤ τmax

i ∀i ∈ {1, . . . , n} and∀t ∈ [0,T ]
}

(2.13)

3. Mathematical analysis

3.1. Positivity and boundedness of the solutions

To ensure that the model is biologically meaningful, it is important to prove that all solutions with
non-negative initial conditions will remain non-negative at all positive times. The following proposition
shows that the model is suitable to study living populations. Let X(t) = (X1(t), . . . , Xn(t)) be the vector
of state variables, where

Xi(t) = (S i(t), Ei(t), I1i(t), I2i(t),Ri(t), S v
i (t), E

v
i (t), Iv

1i(t), I
v
2i(t),R

v
i (t),Di(t)) = (X j

i )1≤ j≤11

for all i ∈ {1, . . . , n} and for all t > 0.

Proposition 1. For any non-negative initial condition Xi(0), the solution Xi(t) remains positive, for all
t > 0 and i ∈ {1, . . . , n}. Furthermore, the set Ω given by:

Ω = {X = (X1, . . . , Xn) ∈ (R11)n : 0 < X j
i ≤ Ni(0)∀ 1 ≤ j ≤ 11 and 1 ≤ i ≤ n}

is positively invariant under system ((2.1)–(2.11)).

Hint of the proof. [1)]
Existence and uniqueness of the solution: The right-hand side functions of the system are all
of class C1. Thus, the mere application of the Cauchy-Lipchitz theorem yields the existence and
uniqueness of the solution.
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•• Positivity: For all 1 ≤ j ≤ 11, if X j
i = 0 and all other variables are positive i.e., Xk

i ≥ 0 for k , j,
Ẋ j

i ≥ 0. Then, the vector field is always either pointing to the inside of the positive region or
invariant on each of the previously mentioned hyperplanes. Consequently, the solution can never
leave the positive region.

• Boundedness: For all t ≥ 0, X j
i (t) ≤ Ni(t) =

11∑
j=1

X j
i (t). And since Ṅi(t) = 0, one has Ni constant

and consequently equals Ni(0) as the age classes are supposed constant. Then, one has X j
i (t) ≤

Ni(0).
This proposition deals with both mathematical and biological existence problems. The first part

makes sure that the model is well-posed in terms of having a solution whereas the second part of it
deals with its suitability for application to living populations.

3.2. Optimal control problem analysis

Considering the loss of immunity, we formulate an optimal control problem to find the optimal
vaccination rate under given constraints.
The optimal control problem consists of finding a piece-wise continuous control

τ∗(t) = (τ∗1(t), τ∗2(t), . . . , τ∗n(t))

and the associated state variables X∗ = (S ∗i , E
∗
i , I
∗
1i, I

∗
2i,R

∗
i , S

v∗
i , E

v∗
i , I

v∗
1i , I

v∗
2i ,R

v∗
i ,D

∗
i ), for i ∈ {1, . . . , n} to

minimise the given objective functional (2.12), i.e.,

J(τ∗) = min
τ∈U

J(u) = min
τ∈U

∫ T

0
||I2(t)||22 + ||I

v
2(t)||22 + ||τ(t)||22dt.

subject to ((2.1)–(2.11)) and their initial conditions.
The following proposition concerns the existence of an optimal control for the vaccination.

Proposition 2. There exists an optimal control variable τ∗ ∈ U such that J(τ∗) = min
τ∈U

J(τ), subject to

the controlled system ((2.1)–(2.11)).

Hint of the proof. To prove the existence of the optimal control, we use the results by Fleming and
Rishel (1975) and by Lukes (1982) [27]. One can easily verify that:

1) The set of controls and corresponding state variables is nonempty.
2) The admissible set U is convex and closed.
3) The right-hand side of the state variables system ((2.1)–(2.11)) is bounded by a linear function in

the state and control variables.
4) The integrand of the objective functional J is convex onU and there exist constants ω1 > 0, ω2 >

0 and ρ > 1 such that

J(τ) ≤ ω2 + ω1(
n∑

i=1

∣∣∣τi|
2
) ρ

2

where ρ = 2, ω1 =
ϵ

2
√

nτmax
+ 1, ω2 =

ϵ
2 and ϵ =

n∑
i=1

(
I2
2i(0) + Iv2

2i (0)
)

e−2r2iT .
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The previous proposition answers the mathematical requirements of not characterising the control
before ensuring its existence. Once the existence of optimal control has been proven, we use the
minimum principle of Pontryagin [28], which transforms the optimality problem into a problem of
minimisation of the Hamiltonian H with respect to the controls τ, to characterise this optimal control.

Therefore, we define the Hamiltonian given by:

H(t, τ, X, λ) =< λ(t), Ẋ(t) > +A1(||I2(t)||22 + ||I
v
2(t)||22) + A2||τ(t)||22.

Proposition 3. Given an optimal control τ∗ ∈ U and solution X∗ = (S ∗i , E
∗
i , I
∗
1i, I

∗
2i,R

∗
i , S

v∗
i , E

v∗
i , I

v∗
1i , I

v∗
2i ,

Rv∗
i ,D

∗
i ), i = (1, . . . , n) of the corresponding state system ( (2.1)–(2.11)), there exists a vector of adjoint

variables λ = (λ1
i , . . . , λ

11
i ), for all i ∈ {1, . . . , n}, satisfying:



dλ1
i

dt
= λ1

i (
n∑

j=1

p jFi jdi j + τi) − λ2
i

n∑
j=1

p jFi jdi j − λ
6
i τi

dλ2
i

dt
= λ2

i (τi + +q1,i + q2,i) − λ3
i q1,i − λ

4
i q2,i − λ

7
i τi +

βi

N
di,i(λ1

i S i − λ
2
i S i + δλ

6
i S v

i − δλ
7
i S v

i )

dλ3
i

dt
= λ3

i (τi + r1
i ) − λ5

i r1
i − λ

8
i τi +

α1,i

N
di,i(λ1

i S i − λ
2
i S i + δλ

6
i S v

i − δλ
7
i S v

i )

dλ4
i

dt
= −2A1I2,i + λ

4
i (r2

i + µi) − λ5
i r2

i − λ
11
i µi +

α2,i

N
di,i(λ1

i S i − λ
2
i S i + δλ

6
i S v

i − δλ
7
i S v

i )

dλ5
i

dt
= −λ1

i ψ1 + λ
5
i (τi + ψ1) − λ10

i τi

dλ6
i

dt
= δ

n∑
j=1

p jFi jdi j(λ6
i − λ

7
i )

dλ7
i

dt
= λ7

i (qv
1,i + qv

2,i) − λ
8
i qv

1,i − λ
9
i qv

2,i +
βv

i

N
di,i(λ1

i S i − λ
2
i S i + δλ

6
i S v

i − δλ
7
i S v

i )

dλ8
i

dt
= r1

i (λ8
i − λ

10
i ) +

αv
1,i

N
di,i(λ1

i S i − λ
2
i S i + δλ

6
i S v

i + δλ
7
i S v

i )

dλ9
i

dt
= −2A1Iv

2,i + λ
9
i (r2

i + µ
v
i ) − λ

10
i r2

i − λ
11
i µ

v
i +

αv
2,i

N
di,i(λ1

i S i − λ
2
i S i + δλ

6
i S v

i − δλ
7
i S v

i )

dλ10
i

dt
= ψ2(λ10

i − λ
1
i )

dλ11
i

dt
= 0

(3.1)

with transversality conditions

λ
j
i (T ) = 0, i ∈ {1, . . . , n}, j ∈ {1, . . . , 11}.

Furthermore, the optimal control τ∗ = (τ1, . . . , τn) is given by:

τ∗i = min
{

max
{

0,
1

2A2

[
S i(λ1

i − λ
6
i ) + Ei(λ2

i − λ
7
i ) + I1,i(λ3

i − λ
8
i ) + Ri(λ5

i − λ
10
i )

]}
; τi,max

}
,∀i ∈ {1, . . . , n}. (3.2)
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Hint of the proof. The adjoint equations and transversality conditions are determined using Pontrya-
gin’s minimum principle such that:

Ẋ j
i (t) =

dH

dλ j
i

(t, X(t), λ(t), τ(t)) (3.3)

λ̇
j
i (t) = −

dH

dX j
i

(t, X(t), λ(t), τ(t)) (3.4)

where Xi = (X j
i )T

1≤ j≤11 = (S i, Ei, I1i, I2i,Ri, S v
i , E

v
i , I

v
1i, I

v
2i,R

v
i ,Di)T , λi = (λ j

i )
T for all i ∈ {1, . . . , n}.

By minimising the Hamiltonian H, for all i ∈ {1, . . . , n}, the optimal control τ∗i can be obtained from
the optimality condition:

dH
dτi
= 0

In fact, since the optimal control τ∗ ∈ U, it is easy to obtain τ∗ in the form given in (3.2).

4. Numerical simulations and discussion

The objective of this section is to investigate the impact of different age distributions and immunity
loss on the optimal vaccination strategy of model ((2.1)–(2.11)). Age distributions are classified into
three major categories *. The first category is expansive, where most of the population is constituted
of young individuals and the older classes get, the fewer individuals there are. The second type is
the stationary age distribution. Such distribution tends to remain constant, exhibiting a more or less
equal distribution for all age categories. And the third type is the constrictive one, where middle-aged
individuals form the majority of the population and fewer individuals are to be found in the oldest and
youngest classes. For that, for the numerical simulations, we have chosen three countries presenting
the previous three different age distributions: Senegal, the USA, and Tunisia (See Figure 2 for age class
distribution per country).

(a) Expansive pyramid (b) Constrictive pyramid (c) Stationary pyramid

Figure 2. The age pyramid for Senegal, Tunisia and the United States of America.

For each one of the studied countries, the initial conditions were estimated based on data from its
own population†. All populations were divided into six age groups : G1 = [0, 14], G2 = [15, 29],

*https://populationeducation.org/what-are-different-types-population-pyramids/
†https://raw.githubusercontent.com/CSSEGISandData/.../time series covid19 confirmed global.csv
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G3 = [30, 44], G4 = [45, 59], G5 = [60, 74], and G6 ≥ 75, according to data from WHO database‡.
Moreover, considering that these countries have distinct economical classification, their healthcare

systems face disparate limitations. Hence, we would add to the age distribution the impact of maximal
age-dependant vaccination rate τi,max, for all 1 ≤ i ≤ n. We study four scenarios according to the value
of τi,max. For the first three scenarios τi,max = τmax,∀1 ≤ i ≤ 6, is constant for all age classes and
corresponds respectively to 0.005, 0.01, and 0.05, whereas the fourth is age-dependant as it is given by
a vector (τi,max)1≤i≤6 = (0, 005; 0.005; 0.01; 0.01; 0.05; 0.05).

The problem is solved numerically using the fourth-order Runge–Kutta method. The used parame-
ters are listed in the Appendix A.

In what follows, we present the numerical simulations’ results in two parts. The first one corre-
sponds to the effect of constant maximal vaccination rate (τmax) and age distribution on the optimal
vaccination strategy for the three studied age distributions, while the second part displays the impact
of setting an age-dependant maximal vaccination rate.

4.1. Impact of constant maximal vaccination rate

In what follows, we evaluate the optimal vaccination strategy and its impact on the number of
critical infections for the three countries and with three maximal vaccination rates, τmax = 0.005, 0.01,
and 0.05. To do so, we plot the optimal vaccination (3.2) resulting from solving the optimal control
problem ((2.1)–(2.11)) (Figure 3), and the total number of critical infections without vaccination, τ = 0,
and with an optimal vaccination (Figure 4).

For τmax = 0.005, the optimal vaccination strategies for the three countries exhibit consistent fea-
tures: they remain constant over time and are set equal to the maximal vaccination rate across all age
classes. Indeed, Figure 3(a)–(c) shows that the age distribution does not affect the determination of an
age-tailored optimal vaccination strategy.

This induces a first peak of critical infections among the unvaccinated individuals that mimics the
no-vaccination peak (see Figure 4(a)–(c)). This peak is lowest in Senegal, gets higher for Tunisia, and
is highest for the USA. However, in the case of Senegal, no second peak is observed, unlike Tunisia
where its beginnings start to appear by the end of the year, or the USA where it is more clearly noticed.
In fact, in the absence of vaccination, we notice that all countries register a high peak of infection
followed by a lower one.

For τmax = 0.01, (see Figure 3(d)–(f)), a slight difference in the vaccination strategies of the various
age classes becomes noticeable. For the three countries, vaccination starts at the same time at its
maximum simultaneously for all age classes. However, differences start to be noted as the various
age classes start to show disparate decreasing times of vaccination curve corresponding to various age
classes.

We observed that the optimal strategy is to vaccinate the most representative age groups for both
Senegal and Tunisia. Indeed, in Senegal (see Figure 3(d)), older age groups are vaccinated at a maxi-
mum rate for a shorter duration compared to younger age groups. The duration of vaccination increases
with age. Similarly, in Tunisia (refer to Figure 3(e)), a similar pattern is observed, with the duration of
vaccination overlapping across age groups. However, priority is given to middle-aged groups (classes
2–4), which are the most represented in the country’s constrictive population pyramid.

‡https://covid19.who.int
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(a) Optimal vaccination strategy for
Senegal with τmax = 0.005

(b) Optimal vaccination strategy for
Tunisia with τmax = 0.005

(c) Optimal vaccination strategy for
USA with τmax = 0.005

(d) Optimal vaccination strategy for
Senegal with τmax = 0.01

(e) Optimal vaccination strategy for
Tunisia with τmax = 0.01

(f) Optimal vaccination strategy for
USA with τmax = 0.01

(g) Optimal vaccination strategy for
Senegal with τmax = 0.05

(h) Optimal vaccination strategy for
Tunisia with τmax = 0.05

(i) Optimal vaccination strategy for
USA with τmax = 0.05

Figure 3. Optimal administration of the vaccine to the different age classes from the youngest
class 1 to the oldest class 6 of each country and with different constant values of maximal
vaccination rate τmax = 0.005, 0.01, 0.05. We observe that for τmax = 0.005, optimal vac-
cination strategies across three countries show uniformity over time, aligning with maximal
vaccination rates for all age classes, suggesting minimal age-based impact on strategy. As
τmax increases to 0.01, slight variations emerge, with priority given to younger age classes in
Senegal and middle age classes in Tunisia. τmax = 0.05 exacerbates disparities, emphasizing
consistent prioritization of the most represented age class within each population, particu-
larly evident with higher thresholds.

However, in the case of USA (see Figure 3(f)), despite doubling the maximal vaccination rate, we
continue to observe a simultaneous and constant vaccination equal to its maximal rate over the whole
vaccination time horizon.

Moreover, the first peak of unvaccinated critical infected individuals decreases considerably for the
case of Senegal and Tunisia and a little less for the case of the USA, while the second peaks vanish for
the three countries (see Figure 4(d)–(f)).

For a maximal vaccination rate of τmax = 0.05 (Figure 3(g)–(i)), the previously forming disparities
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(a) Total number of critical infec-
tions for Senegal with and without
control for τmax = 0.005

(b) Total number of critical infec-
tions for Tunisia with and without
control for τmax = 0.005

(c) Total number of critical infec-
tions for USA with and without con-
trol for τmax = 0.005

(d) Total number of critical infec-
tions for Senegal with and without
control for τmax = 0.01

(e) Total number of critical infec-
tions for Tunisia with and without
control for τmax = 0.01

(f) Total number of critical infections
for USA with and without control for
τmax = 0.01

(g) Total number of critical infec-
tions for Senegal with and without
control for τmax = 0.05

(h) Total number of critical infec-
tions for Tunisia with and without
control for τmax = 0.05

(i) Total number of critical infections
for USA with and without control for
τmax = 0.05

Figure 4. The impact of optimal vaccination at different constant maximal vaccination rates
on critical infections across three countries, compared to no vaccination. Orange curves rep-
resent infections without vaccination, while green and purple curves show unvaccinated and
vaccinated critical infections for τmax = 0.005, 0.01, 0.05. In the absence of vaccination (or-
ange curves), we notice that all countries register a high peak of infection followed by a lower
one. With τmax = 0.005, an initial peak of severe infections among the unvaccinated resem-
bles the no-vaccination peak, followed by a decrease in the second peak. Increasing τmax to
0.01 notably reduces the initial peak, particularly for expansive and constrictive distributions,
and eliminates the second peak across all distributions. At τmax = 0.05, the expansive distri-
bution exhibits no peaks, while the constrictive and stationary distributions display minimal
peaks.

become even more visible.
Like in previous cases, Senegal and Tunisia exhibit similar behaviors in their vaccination strategies,
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with a shorter common vaccination period observed for both countries (see Figure 3(h),(g)). However,
in Senegal, the optimal vaccination of the fifth and sixth age classes (the oldest) start decreasing since
t = 0.

Additionally, in the case of the USA, optimal vaccination curves begin to show a similar pattern to
those of Senegal and Tunisia. However, priority is given to the fourth age class (aged between 45 and
59), with the next level of priority granted to age classes 2 and 3. This results in no peaks at all in
Senegal, while a little bump being observed for Tunisia, and a considerably small peak noticed in the
USA (see Figure 4(g)–(i)).

These findings underscore the common feature of emphasizing the vaccination of the most rep-
resented class among the population. This, also, implies that vaccinating the young age classes can
protect old classes for old and middle-aged populations. However, the impact of the chosen maximal
vaccination rate differs according to the age distribution considered. The older the population is, the
higher the vaccination rate needed to control critical infections is.

(a) Optimal vaccination proportion
for Senegal with τmax = 0.005

(b) Optimal vaccination proportion
for USA with τmax = 0.005

(c) Optimal vaccination proportion
for Tunisia with τmax = 0.005

(d) Optimal vaccination proportion
for Senegal with τmax = 0.01

(e) Optimal vaccination proportion
for Tunisia with τmax = 0.01

(f) Optimal vaccination proportion
for USA with τmax = 0.01

(g) Optimal vaccination proportion
for Senegal with τmax = 0.05

(h) Optimal vaccination proportion
for Tunisia with τmax = 0.05

(i) Optimal vaccination proportion
for USA with τmax = 0.05

Figure 5. Comparison between optimal vaccination proportions (in green) and correspond-
ing age classes (in blue) across the three countries for varying values of τmax. At lower
τmax values, vaccination proportions closely align with age distributions, prioritising over-
represented age groups. As τmax increases, vaccination proportions rise proportionally, main-
taining this trend. Notably, in expansive age distributions, younger age groups receive height-
ened priority compared to older ones.

Figure 5 displays a comparison between the age distribution of vaccinated individuals for the opti-
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mal strategy (in green) and the corresponding age distribution class (in blue) for each country and for
the three different values of the maximal vaccination rate τmax. For τmax = 0.005, the optimal vacci-
nation proportions show a similar appearance to that of the age distribution, with frequencies that are
nearly equal to twice the corresponding age classes for the three countries (see Figure 5(a)–(c)) with an
emphasis on the over-represented class of the distribution. Setting higher τmax = 0.01 and τmax = 0.05
does not change this aspect but rather increases the proportions to three or four times the age class (see
Figure 5(d)–(f) and (i)).

However, we notice that for the expansive age distribution and for τmax = 0.05, the frequency of
vaccinating the youngest age class is now twice that of the oldest class. The three constant maximal
vaccination rates τmax generated an age-distribution-like schedule, prioritising not only vulnerable age
classes but also giving significant attention to classes with the highest numbers of individuals.

4.2. Impact of age-dependent maximal vaccination rate

The inclusion of an age-dependant maximal vaccination rate generates different responses, and the
optimal strategy shows a drastic change (see Figure 6). We notice a similar vaccination strategy for
Senegal and Tunisia (see Figure 6(a),(b)) despite the difference in their age distributions. In fact, as
in the constant maximal vaccination scenario, we start by vaccinating all classes with a maximal rate;
however, the common vaccination period is shorter for the two oldest classes. The vaccination of these
two oldest classes stops nearly at the middle of the time horizon. Conversely, the vaccination curves
for the USA show a constant vaccination rate equal to its maximum over the whole time horizon for all
age classes, which can be explained by the stationary aspect of the age distribution (see Figure 6(c)).

(a) Optimal vaccination strategy for
Senegal with age-dependent τmax

(b) Optimal vaccination strategy for
Tunisia with age-dependent τmax

(c) Optimal vaccination strategy for
USA with age-dependent τmax

Figure 6. Optimal administration of the vaccine to the different age classes for each country
with age-dependent maximal vaccination rate τmax = (0.005, 0.005, 0.01, 0.01, 0.05, 0.05). In
the case of Senegal and Tunisia, all age classes are initially vaccinated at the maximum rate
but over different periods. In the case of the USA, a constant vaccination rate equal to its
maximum is maintained throughout the entire time horizon across all age groups.

The effect of optimal vaccination on the number of critical infections (see Figure 7(a)–(c)) shows,
for the three studied countries, a peak higher than that of the scenario with τmax = 0.05 (see Figure
4(g)–(i)), the scenario with the lowest peak among the four considered scenarios. Despite this fact, the
age-dependent vaccination strategy manages to contain infections similarly to the maximal vaccina-
tion rate of 0.01. Therefore, it represents a viable alternative to the latter strategy, which helps avoid
overwhelming medical staff and expanding the vaccination cost. These results suggest that, in the long
term, age-dependent vaccination rates can be an effective alternative to maximal vaccination strategies
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in certain situations and constant maximal rates can be more suitable in others.

(a) Total number of critical infec-
tions for Senegal with and without
control for τmax

(b) Total number of critical infec-
tions for Tunisia with and without
control for τmax

(c) Total number of critical infec-
tions for USA with and without con-
trol for τmax

Figure 7. The impact of the optimal vaccination at an age-dependent maximal vaccination
rate τmax = (0.005, 0.005, 0.01, 0.01, 0.05, 0.05) across three countries, compared to no vac-
cination. Orange curves represent infections without vaccination, while green and purple
curves show unvaccinated and vaccinated critical infections. For the three countries, one
peak of severe infections among the unvaccinated that resembles the no-vaccination peak is
observed. The second peak observed for the no-vaccination case is eliminated for the three
countries.

In the last figure (see Figure 8), we plot the proportion of the vaccinated individuals for each age
class for the three countries using an age-dependent maximal vaccination rate. We observe a huge al-
teration in the proportions compared to the constant maximal vaccination rate. Vaccination frequencies
across all countries exhibit a trend of decreasing frequency as individuals become younger, with the
most pronounced effect observed in populations with stationary age distributions, where vaccination
frequency for older classes is twice that of younger ones. These results indicate that the age-dependent
maximal vaccination strategy aligns with a WHO-like approach.

(a) Optimal vaccination proportion
for Senegal with age-dependent τmax

(b) Optimal vaccination proportion
for Tunisia with age-dependent τmax

(c) Optimal vaccination proportion
for USA with age-dependent τmax

Figure 8. Comparison between optimal vaccination proportions (in green) and cor-
responding age classes (in blue) across three countries for an age-dependent τmax =

(0.005, 0.005, 0.01, 0.01, 0.05, 0.05). Notably, vaccination frequencies decrease as age de-
creases, with the most prominent effect observed in countries with stationary age distribu-
tions, where vaccination frequencies for older age groups are double those for younger ones.
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5. Conclusions

In this endeavour, our objective is to investigate the impact of age demographics and immunity loss
on long-term vaccination strategies. To achieve this goal, we established a controlled age-structured
SEIRD mathematical model, ensuring its biological validity. This model provided the framework
needed to scrutinise the repercussions of varying maximal vaccination rates on disease propagation
across distinct age distributions.

Having established the mathematical validity of our model, we formulated an optimal control prob-
lem and utilised the Pontryagin maximum principle to delineate the optimal course of the control.
Subsequently, through numerical simulations applied to three disparate age distributions—expansive,
constrictive, and stationary—we contrasted the outcomes of three distinct constant maximal vaccina-
tion rates (0.005, 0.01, and 0.05) with an age-dependent vaccination rate for each country.

We showed that the vaccination is most effective when applied to old and young age groups. How-
ever, our study shows also that in the long-term vaccination approach, two optimal strategies emerge
depending on the chosen maximal vaccination rate: constant or age-dependent. In our previous work
[21], the short-term vaccination strategy prioritised also the oldest age classes as well as the most sig-
nificant age class, irrespective of any constraints. This was also confirmed by the age-structured model
presented in [6], a study conducted for Brazil, which has a constrictive pyramid.

Furthermore, in this work, the results revealed that the optimal vaccination strategy is highly influ-
enced by the choice of the maximal vaccination rate. When examining constant maximal vaccination
rates, the significance of prioritising age groups based on population demographics became evident,
with more attention given to the most represented age classes within each population. Moreover, aug-
mented maximal vaccination rates led to a reduction in the number of critically infected individuals
across all countries.

Conversely, an age-dependent approach yielded a WHO-like strategy, with infection peaks of
greater magnitude than the maximal vaccination rate of 0.05 for all the nations under consideration.
This suggests the need for careful consideration of both age distribution and vaccination strategy when
designing public health interventions.

In summation, this research study contributes valuable insights into the field of optimal vaccination
planning, emphasising the importance of considering the nuances of age groups and the impact of
maximal vaccination efforts. The conclusions drawn from this research can inform policymakers and
decision-makers in their ongoing efforts to reduce the spread of infectious diseases. As perspectives to
this study, further exploration into the impact of memory on the dynamics of the model and the optimal
control would provide valuable avenues for future research.
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A. Appendix

The parameters of the model are either based on literature or estimated using the data of the coun-
tries [32, 33]. All these parameters are defined in Table A1.

The infection rates by unvaccinated type-one infected α1i , 1 ≤ i ≤ n, were estimated, with respect
to the value of R0 (R0 = 2.19), in a way to satisfy the following equations:

α1i + α2i + βi + α
v
1i + α

v
2i + β

v
i = 1 , 1 ≤ i ≤ n. (A.1)
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Table A2. Data at the beginning of the vaccination campaign.

Parameter description Country
Tunisia Senegal USA

Date of first case Mars 2, 2020 Mars 2, 2020 26 February 2020
Date of first vaccination t0 Mars 13, 2021 Feb 22, 2021 10 December 2020
Number of cumulative cases at t0 242,124 16,529 16,217,128
Number of active case at t0 24,554 6451 9,669,611

Table A3. The initial condition of the various countries.

Initial condition per country Tunisia Senegal USA

S (t0) Pi − (272124)Pi/Pop Pi − (23529)Pi/Pop Pi − (25916216)Pi/Pop

E(t0) (30000Pi/Pop (7000Pi/Pop (10000000Pi/Pop

I1(t0) (1 − 0.02η)(24554)Pi/Pop (1 − 0.02η)(6451)Pi/Pop (1 − 0.02η)(9669611)Pi/Pop

I2(t0) 0.02η(24554)Pi/Pop 0.02η(6451)Pi/Pop 0.02η(9669611)Pi/Pop

R(t0) 217570Pi/Pop 10078Pi/Pop 6246605Pi/Pop

S v(t0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)
Ev(t0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)
Iv
1(t0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)

Iv
2(t0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)

Rv(t0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)
D(t0) (0,0,0,0,0,0) (0,0,0,0,0,0) (0,0,0,0,0,0)

α2i = 0.1α1i , βi = 0.6α1i , ∀ 1 ≤ i ≤ n (A.2)

αv
ki = 0.8αki , k = 1, 2 , βv

i = 0.8 βi , ∀ 1 ≤ i ≤ n (A.3)

Noteworthy that R0 is not directly included in this study and is only used for parameter estimation.
More details are available in [21].

For the three different countries, Tunisia, Senegal, and the USA, the contact matrices, D, used are
estimated for 6 age groups based on [31].

The initial conditions used are estimated based on real data of the populations of the different
countries mentioned, at the beginning of the vaccination campaign see Table A2. And using the age
distribution of each country, the initial conditions for each infectious state and age per country are then
defined in Table A3.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6372–6392.

https://creativecommons.org/licenses/by/4.0

	Introduction
	Model formulation
	Epidemiological model description
	Objective function

	Mathematical analysis
	 Positivity and boundedness of the solutions 
	Optimal control problem analysis

	Numerical simulations and discussion
	Impact of constant maximal vaccination rate
	Impact of age-dependent maximal vaccination rate

	Conclusions 
	Appendix

