
MBE, 21(6): 6336–6358.

DOI: 10.3934/mbe.2024276

Received: 02 January 2024

Revised: 18 March 2024

Accepted: 16 May 2024

Published: 17 June 2024

http://www.aimspress.com/journal/MBE

Research article

Research on MEC computing offload strategy for joint optimization of

delay and energy consumption

Mingchang Ni1, Guo Zhang1,*, Qi Yang2,* and Liqiong Yin2

1 Faculty of Information Engineering and Automation, Kunming University of Science and
Technology, Kunming 650504, China

2 Kunming Iron & Steel Holding Co., Ltd. Kunming 650302, China

* Correspondence: Email: 12309021@kust.edu.cn, kisco_yq@sina.cn.

Abstract: The decision-making process for computational offloading is a critical aspect of mobile
edge computing, and various offloading decision strategies are strongly linked to the calculated
latency and energy consumption of the mobile edge computing system. This paper proposes an
offloading scheme based on an enhanced sine-cosine optimization algorithm (SCAGA) designed
for the “edge-end” architecture scenario within edge computing. The research presented in this
paper covers the following aspects: (1) Establishment of computational resource allocation models
and computational cost models for edge computing scenarios; (2) Introduction of an enhanced sine
and cosine optimization algorithm built upon the principles of Levy flight strategy sine and cosine
optimization algorithms, incorporating concepts from roulette wheel selection and gene mutation
commonly found in genetic algorithms; (3) Execution of simulation experiments to evaluate the
SCAGA-based offloading scheme, demonstrating its ability to effectively reduce system latency
and optimize offloading utility. Comparative experiments also highlight improvements in system
latency, mobile user energy consumption, and offloading utility when compared to alternative
offloading schemes.

Keywords: mobil edge computing; computing offloading; computational resource allocation; sine
and cosine optimization algorithms

6337

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

1. Introduction

Owing to constraints related to battery power and computing resources, intelligent mobile
terminal equipment (IMTE) faces challenges in handling intricate problems, including massive
computing tasks and delay-sensitive tasks arising in the context of intelligent manufacturing
processes.

In intelligent manufacturing environments, IMTE is generally used to collect data from sensors,
extract meaningful information, and make corresponding decisions based on changes in the data.
However, the emergence of new technologies requires IMTE to have high performance and strict
real-time response, such as object detection based on computer vision, automatic route planning,
perception, and end-to-end decision-making and so on. IMTE is difficult to support the growing
amount of computing due to limitations in energy supply and unit size. With the emergence of
Mobile Edge Computing (MEC) technology, IMTE can offload computing tasks to edge servers,
which to some extent improves the computational efficiency of IMTE.

Computing offloading decision-making, as one of the primary research focuses in MEC, has
continuously attracted the attention of numerous scholars. Considering the allocation of computing
resources, Huang et al. [1] proposed a computing offloading algorithm based on a greedy approach,
which effectively reduced system costs. Tran et al. [2] used convex optimization and quasi convex
optimization to solve resource allocation problems, and proposed a new heuristic algorithm to solve the
task offloading subproblem, whose solution is close to the optimal solution. Tang et al. [3] proposed a
task offloading and resource allocation algorithm based on Lyapunov optimization theory, which
maximizes the average time benefit of MEC systems. The algorithm exhibits good performance in
terms of latency, reliability, and system benefits. Wu et al. [4] proposed a distributed offloading
algorithm based on game theory, which minimizes the system cost of energy consumption and delay
for users, and proves that the algorithm can obtain a global optimal solution. Hu et al. [5] proposed a
task offloading algorithm based on minority game theory for task offloading in heterogeneous
environments with incomplete information, and proved that the proposed offloading algorithm can
obtain suboptimal solutions close to the optimal solution. Zheng et al. [6] proposed a computational
offloading algorithm and resource allocation strategy based on the dual auction algorithm, which can
effectively reduce system losses. Based on the non-cooperative game interaction between wireless
characteristics and mobile users, Zang et al. [7] developed an iterative mechanism to jointly
determine the computational offloading scheme. The offloading algorithm demonstrates fast
convergence speed and excellent energy efficiency performance.

With the continuous advancement of deep learning, intelligent computing offloading solutions
based on online learning have emerged as a prominent research focus in recent years. Meng et al. [8]
proposed an optimal offloading strategy for random task generation using enhanced Q-learning and
deep learning, resulting in reduced energy consumption and a 38.1% reduction in delay weighted
sum. Qiu et al. [9] introduced a novel online computation offloading algorithm based on model-free
deep reinforcement learning; experimental results demonstrated the algorithm’s rapid convergence
and its ability to obtain favorable suboptimal solutions. Zhu et al. [10] proposed an enhanced particle
swarm optimization algorithm that incorporates a genetic algorithm, surpassing both genetic
algorithm and particle swarm algorithm in terms of latency and energy consumption. Cong et al. [11]
proposed a task offloading strategy with two-stage heuristic characteristics suitable for vehicular
networks, the algorithm achieves optimal resource allocation during the offloading process and can

6338

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

improve task offloading efficiency. Yang et al. [12] designed a computational offloading method
(HFOA) based on a hybrid fruit fly algorithm, and its experiments showed that the algorithm has
certain improvements in system computing latency, computing energy consumption, convergence,
and other aspects.

Based on a comprehensive analysis of the above literature, computing offloading decision has
attracted extensive attention and sustained research in the field of MEC. Various algorithms and
strategies have been proposed to solve problems such as resource allocation, energy consumption,
and latency, and have achieved significant performance improvements. In addition, computing
offloading scheme based on swarm intelligence optimization has also become one of the main
research directions in the field of edge computing, by searching different regions in the space and
utilizing multiple random and adaptive variables, these algorithms effectively avoid getting stuck in
local optima and converge towards global optima.

In recent years, the sine and cosine optimization algorithm, as a novel intelligent optimization
algorithm, has found successful applications across various domains. Because the sine and cosine
optimization algorithm is a stochastic optimization approach with high adaptability, it can readily
address optimization challenges in diverse areas such as production scheduling, path planning, and
complex problem-solving.

A hybrid meta-heuristic algorithm is presented in [13], combining the salp group algorithm and
the sine and cosine algorithm (SSCA) to enhance convergence speed and attain optimal accuracy in
practical engineering applications. Reference [14] introduces an enhanced sine and cosine algorithm
known as Hierarchical Multi-leader SCA (HMLSCA), which addresses the balance issue within SCA
by employing an efficient hierarchical multi-leader search mechanism. The results show that
HMLSCA outperforms other algorithms in various tests and has achieved remarkable achievements
in support vector machine parameters and COVID-19 diagnosis. In [15], C-CHOA-SC algorithm is
proposed, which combines chimpanzee optimization algorithm and sine and cosine algorithm,
aiming at solving complex multi-objective optimization problems. The analysis shows that the
performance of the proposed algorithm is obviously better than other methods, and the overall
performance is better than the competition algorithm. In [16], a hybrid Harris Hawk
Optimization-Sine-cosine algorithm (hHHO-SCA) is proposed to develop a home energy
management system based on meta-heuristics, which is used to optimize the scheduling of intelligent
devices and reduce the cost of energy use. The experimental results show that hHHO-SCA is
relatively effective in reducing cost and peaking ratio, and can be applied to multi-family residential
areas. Reference [17] proposes a simplified sine-cosine algorithm (SSCA) to solve the optimal
reactive power scheduling (ORPD) problem by estimating control variables. The algorithm uses the
sine and cosine functions to generate several random solutions, and seeks the best solution through
fluctuations. SSCA is used for ORPD problems to find the best control variable for minimum power
loss and maximum net savings. MA-SCA algorithm is proposed in [18], which combines multi-agent
system and sine-cosine algorithm, and has been successfully applied to optimize the deployment of
distributed energy and shunt capacitor distribution networks. A hybrid intelligence method (ISCA-BP)
based on improved sine and cosine algorithm and BP neural network is proposed in [19], which
effectively improves the accuracy of transformer fault diagnosis. Reference [20] introduces the
Enhanced Sine and Cosine Algorithm (ESCA) aiming to address multi-objective power flow
functions encompassing power plant generation cost, loss, emissions, etc., and to enhance voltage
stability. The experimental results show that ESCA is superior to other techniques in both

6339

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

convergence speed and global optimal solution. The improved sine-cosine algorithm has certain
advantages in the application of various fields, but it is rarely applied in the field of computing
offloading problem under edge computing environment. In this paper, based on the structure of the
solution of computing offloading problem, a hybrid sine-cosine genetic optimization algorithm
(SCAGA) is proposed by combining the elite strategy with the mutation strategy of genetic algorithm
and sine-cosine algorithm.

In this study, we investigated the potential application of the sine and cosine optimization
algorithm in making computing offloading decisions. We also introduced an enhanced sine and
cosine optimization algorithm (SCAGA), which incorporates the concepts of roulette wheel selection
and gene mutation from genetic algorithms, aiming to enhance the efficiency and performance of
MEC systems. SCAGA is employed to address the challenges of computing resource allocation and
computing offloading in MEC systems, with the following main functions:

1) Construct a multi-user concurrent edge computing system model, considering factors such as
edge computing latency, mobile user energy consumption, and edge server computing resources as
constraints. The weighted value function, which incorporates edge computing latency and energy
consumption, is utilized to assess the calculation offloading strategy. Consequently, the edge
computing model's offloading strategy, subject to multiple constraints, is reformulated as an
optimization problem of the weighted value function under multi-constraint conditions.

2) Within the “edge-end” model framework, develop a hybrid optimization algorithm that
integrates the adaptive sine and cosine optimization algorithm with the genetic algorithm. The
adaptive sine and cosine optimization algorithm can yield relatively excellent suboptimal solutions
within the established model. Given that the computing offloading strategy matrix comprises {0,1}
elements, this format aligns with the initial solution structure of the genetic algorithm. To further
improve the solving capability and precision of the hybrid algorithm, a roulette wheel selection
genetic algorithm is employed.

3) Apply experiments to verify the optimization effect of the computing offloading strategy
based on SCAGA, and compare and analyze it with other classic algorithm in terms of system
latency, energy consumption, and other indicators.

2. System model and problem description

The edge computing system composed of edge servers and users is shown in Figure 1, assuming
that its wireless communication uses the 5G standard. Each micro workspace has a micro base
station, which mainly provides communication resources and does not provide computing resources,
MEC servers are deployed in the micro base station.

Assuming the IMTE representation of the micro workspace is 𝑁 ൌ ሼ1,2,3. . . , 𝑁ሽ, each IMTE is
assigned a delay-sensitive and indivisible computing task, and IMTE utilizes a fixed channel
approach to access the network. Within the edge computing system, there are multiple micro
workspaces, and the system assigns a dedicated wireless channel to each IMTE requiring
computation and offloading.

6340

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

Node 11

ES 1 ES 2 ES n

Edge server cluster

Wired

Node 12 Node 1n

ITME (Node)

Node21 Node22 Node2n

Node31 Node32 Node3n

Wireless

Figure 1. Edge computing architecture.

2.1. Local computing model

Assuming that the i-th user in the micro workspace has a huge amount of data and a latency
sensitive computing task to complete, the task is: 𝑡𝑎𝑠𝑘௜ ൌ ሼ𝑀௜, 𝐷௜,ሽ, Where 𝐷௜ is the data size of the
task (including program code and input parameters, etc.), 𝑀௜ is the CPU cycle required to process
this computing task. IMTE has a certain ability to process computing tasks. When the edge
computing network is severely congested, the computing task can be executed locally, and when the
edge computing network channel conditions are good, IMTE can choose to unload the computing
task to the edge server with rich computing resources.

The latency and energy consumption for executing computing tasks locally are:

 𝑇௜
௟௢௖௔௟ ൌ

𝑀௜

𝑓௜
௟௢௖௔௟ (1)

 𝐸௜
௟௢௖௔௟ ൌ 𝑘ሺ𝑓௜

௟௢௖௔௟ሻଶ𝑀௜ (2)

where 𝑘 is the energy coefficient of the CPU of this IMTE, and it depends on the CPU structure of
IMTE, the general value is 𝑘 ൌ 10ିଶହ.

𝑓௜
௟௢௖௔௟ represent the computing power of IMTE, measured in cycles per second of the CPU.

2.2. Computing offloading model

The MEC system is deployed within the micro base station, where edge servers can provision
IMTE with limited resources like computing and storage. IMTE uploads computing tasks to micro
base stations via the Radio Access Network (RAN). Due to the wired connection between MEC
servers and base stations, the delay and energy consumption between MEC and base stations may not
be factored in. Every IMTE will be allocated a specific wireless subchannel to access the edge
computing network. If 𝑝௜ is the transmission power of the device, 𝑔௜ is the wireless channel gain,
and 𝜎ଶ is the noise power. The transmission rate at which IMTE uploads computing tasks to edge
servers is:

6341

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

𝑅௜ ൌ 𝑊 𝑙𝑜𝑔ଶሺ 1 ൅

௣೔௚೔

ఙమ ሻ ሾbit/s] (3)

where 𝑊 is the transmission bandwidth of each IMTE.
The total delay of IMTE offloading computing tasks to edge servers includes two parts: upload

delay 𝑇௜
௨௣ and processing delay 𝑇௜

௘௫௘, respectively represented as:

𝑇௜

௨௣ ൌ
𝐷௜

𝑅௜
 (4)

𝑇௜

௘௫௘ ൌ
𝑀௜

𝑓௜
௘ௗ௚௘ (5)

 𝑇௜
௘ௗ௚௘ ൌ 𝑇௜

௨௣ ൅ 𝑇௜
௘௫௘ ൌ

𝐷௜

𝑅௜
൅

𝑀௜

𝑓௜
௘ௗ௚௘ (6)

where 𝑇௜
௘ௗ௚௘ is the total latency for IMTE to offload computing tasks to the edge server, 𝑓௘ௗ௚௘

௠௔௫ is

the computing power of the edge server (in cycles per second of the CPU), 𝑓௜
௘ௗ௚௘is to offload the

computing resources obtained by the user from the edge server the energy consumption for
offloading computing tasks is:

𝐸௜
௘ௗ௚௘ ൌ ෍

𝐷௜

𝑅௜
𝑥௜

௜ୀே

௜ୀଵ

 (7)

𝐸௜
௘ௗ௚௘ is the transmission energy consumption of IMTE when uploading computing tasks.

Due to the typically smaller output size compared to the input and the higher data transmission
rate in the downlink relative to the uplink, the transmission delay of the output is disregarded in the
model.

2.3. Computing cost model

The cost of an edge computing system primarily comprises the time delay in completing
computing tasks and the energy consumption of IMTE. These factors also influence the quality of
service provided by the MEC system. Therefore, according to the above model, the computing
offloading cost 𝐶௜

௧௢௧௔௟ of each IMTE is defined as:

𝐶௜
௧௢௧௔௟ ൌ 𝛼𝑇௜ ൅ 𝛽𝐸௜ (8)

𝑇௜ is the task completion time of IMTE, and 𝐸௜ is the energy consumption of IMTE. 𝛼 and 𝛽
are the delay parameters and energy consumption parameters of the MEC system (𝛼 ൅ 𝛽 ൌ 1 and

𝛼，𝛽 ∈ ሾ0,1ሿ).

By optimizing and adjusting the delay and energy consumption parameters, the edge computing

6342

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

system can dynamically adapt to varying business requirements under diverse communication and
energy conditions. The total system cost 𝐶௧௢௧௔௟ is used to evaluate the performance of the entire
edge computing system, and 𝐶௧௢௧௔௟ is defined as:

𝐶௧௢௧௔௟ ൌ ෍ሺ𝑇௜ ൅ 𝐸௜ሻ

௜ୀே

௜ୀଵ

 (9)

𝐶௧௢௧௔௟ ൌ ෍ሺ1 െ 𝑥௜ሻ𝐶௜

௟௢௖௔௟ ൅ 𝑥௜𝐶௜
௘ௗ௚௘

௜ୀே

௜ୀଵ

 (10)

where C୧
୪୭ୡୟ୪ is the cost for IMTE to execute offloading decisions locally, and C୧

ୣୢ୥ୣ is the cost for

IMTE to offload computing tasks to edge servers. 𝑥௜ ∈ ሼ0，1ሽ is the parameters of computing

offloading decision, 𝑥௜ = 0 indicates that IMTE’s computing tasks will be executed locally, while
𝑥௜ = 1 indicates that IMTE will offload the computing tasks to the edge server.

By combining the above calculation models, the overall calculation model of the system can be
obtained:

𝑃1: 𝑚𝑖𝑛ሼ 𝐶௧௢௧௔௟ ൌ ሺ1 െ 𝑥௜ሻ𝐶௜
௟௢௖௔௟ ൅ 𝑥௜𝐶௜

௘ௗ௚௘ሽ

𝑠. 𝑡.

𝐶1: 𝑥௜ ∈ ሼ0,1ሽ

𝐶2: 𝛼 ൅ 𝛽 ൌ 1; 𝛼, 𝛽 ∈ ሾ0,1ሿ

𝐶3: ෍ 𝑓௜
௘ௗ௚௘ ൏ 𝑓௘ௗ௚௘

௠௔௫

௜∈௎

𝐶4: 0 ൏ 𝑓௜
௘ௗ௚௘ ൏ 𝑓௘ௗ௚௘

௠௔௫

(11)

In the total calculation model given in formula (11), The minimum value of problem P1 will be
obtained under multiple constraints of C1 െ C4.

𝐶1 indicates that the offloading decision parameter, whose value can only be 0 or 1. A value of
0 indicates that the computing task will be executed locally, while a value of 1 indicates that the
computing task will be offloaded to an appropriate edge server for execution.

𝐶2 represents the delay coefficient and energy consumption coefficient, used for joint
optimization of Calculated delay and energy consumption.

𝐶3 indicates the computing resources allocated to a single task, which is less than the total
resources of the edge server.

𝐶4 represents the computing resources occupied by offloading all computing tasks to edge
servers, which is less than the total computing resources of all edge servers.

3. Joint optimization of resource allocation and task offloading decisions

In computational offloading research, joint optimization can enhance the efficient utilization of

6343

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

computational resources and task execution performance. Resource allocation entails assigning
computing tasks to suitable nodes or devices to fulfill their requirements and constraints. Task
offloading decisions involve transferring selected tasks from IMTE to edge servers to accomplish
objectives like load balancing, latency reduction, or energy conservation. Consequently, jointly
optimizing resource allocation and task offloading decisions can significantly enhance the overall
efficiency of MEC systems.

The joint optimization of task offloading and resource allocation under multiple constraints
creates a nonlinear programming problem involving mixed integers. Due to the interdependency of
these constraints, the problem becomes challenging to solve directly. As a result, the MINLP problem
is divided into two sub-problems: resource allocation and computational task offloading. To solve
these sub-problems, we employ a Sine and Cosine Algorithm (SCA) in conjunction with convex
function optimization. SCA, a swarm intelligence optimization algorithm, efficiently reaches
near-optimal solutions, reducing problem complexity under specific conditions and ensuring rapid
convergence.

3.1. Computational resource allocation

The allocation of computing resources in the edge server can reduce the total delay of the
system in structure, improve the service quality of the MEC system and the quality of user
experience of IMTE, and enhance the queuing efficiency of computing tasks.

Because the MEC server allocates computing resources only for the user tasks that are
determined to be unloaded, given 𝑈 is the unloaded user set, 𝑈 ൌ ሼ𝑖|𝑎௜ ൌ 1ሽ ,and
𝑠 ൌ ሼ𝑠ଵ, 𝑠ଶ, 𝑠ଷ, … , 𝑠ேሽ is the computing resource allocation set.

𝐶௧௢௧௔௟ሺ𝑠ሻ ൌ ෍ሺ𝛼
𝐷௜

𝑅௜
൅ 𝛼

𝑀௜

𝑓௜
௘ௗ௚௘ሻ ൅ ෍ 𝛽

𝑝௜𝐷௜

𝑅௜௜∈௎௜∈௎

𝑠. 𝑡.

𝐶1: 𝑥௜ ∈ ሼ0,1ሽ

𝐶2: 𝛼 ൅ 𝛽 ൌ 1; 𝛼, 𝛽 ∈ ሾ0,1ሿ

𝐶3: ෍ 𝑓௜
௘ௗ௚௘ ൏ 𝑓௘ௗ௚௘

௠௔௫

௜∈௎

𝐶4: 0 ൏ 𝑓௜
௘ௗ௚௘ ൏ 𝑓௘ௗ௚௘

௠௔௫

(12)

Calculate the second derivative of the function to obtain:

∂ଶ𝐶௧௢௧௔௟ሺ𝑓ሻ
∂𝑓௜ ∂𝑓௝

ൌ ቐ

2𝛼𝑀௜

ሺ𝑓௜
௘ௗ௚௘ሻଷ

൒ 0, 𝑖 ൌ 𝑗

0, 𝑖 ് 𝑗
 (13)

Since the positive parameters in the Hesse matrix, the Hessian matrix of objective function
𝐶௧௢௧௔௟ሺ𝑠ሻ is positively definite, 𝐶௧௢௧௔௟ሺ𝑠ሻ is a convex function, and the related optimizations belong
to convex optimizations. Therefore, the objective function is solved using the Lagrange multiplier
method. Introducing Lagrange multipliers 𝜆，P1 can be rewritten as:

6344

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

𝐿ሺ𝑓௜

௘ௗ௚௘, 𝜆ሻ ൌ 𝐶௧௢௧௔௟ሺ𝑠ሻ ൅ 𝜆ሺ∑ 𝑓௜
௘ௗ௚௘ െ 𝑓௘ௗ௚௘

௠௔௫
௜∈௎) (14)

Through KKT conditions, it can be concluded that:

∂𝐿ሺ𝑓௜
௘ௗ௚௘, 𝜆ሻ

∂𝑓௜
௘ௗ௚௘ ൌ

𝛼𝑀௜

𝑓௜
௘ௗ௚௘ ൅ 𝜆𝑓௜

௘ௗ௚௘ ൌ 0 (15)

 ∂𝐿ሺ𝑓௜
௘ௗ௚௘, 𝜆ሻ
∂𝜆

ൌ ෍ 𝑓௜
௘ௗ௚௘ െ 𝑓௘ௗ௚௘

௠௔௫

௜∈௎

 (16)

Solve formulas (15) and (16) to obtain the optimal solution 𝑓௜
௘ௗ௚௘∗

：

𝑓௜
௘ௗ௚௘∗

ൌ
ඥ𝛼𝑀௜

∑ ඥ𝛼𝑀௜௜∈௎
𝑓௘ௗ௚௘

௠௔௫ (17)

Substitute the optimal solution 𝑓௜
௘ௗ௚௘∗

 into problem P1 in formula (12), it can be concluded

that:

𝐶௧௢௧௔௟ሺ𝑥ሻ ൌ ሺ1 െ 𝑥௜ሻሾሺ𝛼
𝑀௜

𝑓௜
௟௢௖௔௟ሻ ൅ 𝛽𝑘ሺ𝑓௜

௟௢௖௔௟ሻଶ𝑀௜ሿ

൅𝑥௜ሾ𝛼
𝐷௜

𝑅௜
൅ 𝛼

𝑀௜

𝑓௜
௘ௗ௚௘∗ ൅ 𝛽

𝑝௜𝐷௜

𝑅௜
ሿ

(18)

3.2. Joint Optimization of offloading Decision for Computing Tasks

After completing the allocation of computing resources on edge servers, the original problem (11)
is transformed into a task offloading decision problem (19), and the objective model of optimal
offloading strategy is obtained under the constraints of the highest tolerance delay for delay sensitive
tasks and total computing resources:

𝑃2: 𝑚𝑖𝑛 𝐶௧௢௧௔௟ ሺ𝑥ሻ ൌ 𝑚𝑖𝑛 ෍ሺ1 െ 𝑥௜ሻሾሺ𝛼
𝑀௜

𝑓௜
localሻ ൅ 𝛽𝑘ሺ𝑓௜

௟௢௖௔௟ሻଶሿ

௜ୀே

௜ୀଵ

൅𝑥௜ሾ𝛼
𝐷௜

𝑅௜
൅ 𝛼

𝑀௜

𝑓௜
௘ௗ௚௘∗ ൅ 𝛽

𝑝௜𝐷௜

𝑅௜
ሿ

𝑠. 𝑡.

𝐶1: 𝑥௜∈ሾ0,1ሿ, 𝑖 ∈ ሼ1,2, . . . , 𝑁ሽ

𝐶2: ෍ 𝑓௜
௘ௗ௚௘ ൏ 𝑓௘ௗ௚௘

௠௔௫

௜∈௎

(19)

6345

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

The model described above represents a 0–1 programming model, Attaining the optimal
solution for this problem becomes challenging, especially with concurrent large-scale tasks.
Consequently, in meeting multi-objective constraints, a mixed sine-cosine optimization algorithm
can be deployed to identify suboptimal solutions for the problem.

4. Computing offloading decision based on SCAGA

4.1. Sine and Cosine Optimization Algorithm (SCA) and its improvement

The Sine and Cosine Optimization Algorithm (SCA) is a stochastic optimization method
suitable for addressing the optimization challenges inherent in computing offloading decisions within
MEC systems. The optimization process in SCA entails two key stages: during the exploration stage,
the algorithm rapidly explores feasible regions within the solution space by incorporating specific
random solutions; in the exploitation stage, the random solutions undergo gradual changes, with a
slower rate of change compared to the exploration phase.

In the Sine and Cosine Algorithm (SCA), the initial candidate solution is randomized. Then, the
value of the current solution in each dimension is updated through a combination of the sine or
cosine function along with random factors. The update equation is shown below:

𝑋௜

௧ାଵ ൌ ቊ
𝑋௜

௧ ൅ 𝑟ଵ ∗ 𝑠𝑖𝑛ሺ 𝑟ଶሻ ∗ |𝑟ଷ𝑃௜
௧ െ 𝑋௜

௧|, 𝑟ସ ൏ 0.5
𝑋௜

௧ ൅ 𝑟ଵ ∗ 𝑐𝑜𝑠ሺ 𝑟ଶሻ ∗ |𝑟ଷ𝑃௜
௧ െ 𝑋௜

௧|, 𝑟ସ ൐ 0.5
 (20)

In the formula (20), 𝑋௜
௧ represents an individual with the i-th dimension and the t-th iteration;

𝑟ଶ is a random number between 0 and 2𝜋; 𝑟ଷ is a random number between 0 and 2; 𝑟ସ is a random
number between 0 and 1; 𝑃௜

௧ represents an optimal individual with the i-th dimension and the t-th
iteration。𝑟ଵ can be obtained from the following equation:

𝑟ଵ ൌ 𝑎 െ ሺ𝑡
𝑎
𝑇

ሻଶ (21)

In Eq (21), a smaller value of A will help enhance the local development ability of algorithm,
while a larger value of A will help improve the global exploration ability of algorithm. In recent
years, SCA algorithm has been widely used in various engineering fields because of its excellent
performance in exploration ability. On the basis of formula (21), this paper rewrites 𝑟ଵ as:

𝑟ଵሺ𝑡ሻ ൌ 𝑎௦௧௔௥௧ െ ሺ𝑎௦௧௔௥௧ െ 𝑎௘௡ௗሻଶ ∗ lnሺ1 ൅

ሺ𝑒 െ 1ሻ ∗ 𝑡
𝑇

ሻ (22)

𝑎௦௧௔௥௧ ൌ 1 and 𝑎௘௡ௗ ൌ 0 are the initial and final values of control parameter 𝑎
(𝑎௦௧௔௥௧>𝑎௘௡ௗ ൒ 0). It can be seen from formula (22) that 𝑟ଵሺ𝑡ሻ changes nonlinearly with the
increase of iterations, which can effectively balance the exploration and development capabilities of
SCA.

In order to increase SCA’s global collection and search ability and escape local optimal ability,
Levy flight strategy is introduced in this paper, which makes the algorithm more randomness in the
optimization process and avoids the algorithm falling into local optimal.

6346

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

𝛿௨ ൌ ሾ
୻ሺଵାఛሻ ୱ୧୬ቀ

ഏഓ
మ

ቁ

୻ቀ
భశഓ

మ
ቁఛ∗ଶ

ഓషభ
మ

ሿ
భ
ഓ,𝛿௩ ൌ 1 (23)

 𝑙𝑒𝑣𝑦ሺ𝜏ሻ ൌ
𝑢

|𝑣|ିఛ (24)

In formula (24), 𝑢 ∼ 𝑁ሺ0, 𝛿௨ሻ,𝑣 ∼ 𝑁ሺ0, 𝛿௩ሻ, take τ = 1.5.
In this paper, Levy flight strategy is added on the basis of formula (20), so formula (20) is

rewritten as:

𝑋௜

௧ାଵ ൌ ቊ
𝑋௜

௧ ൅ 𝑟ଵሺtሻ ∗ 𝑠𝑖𝑛ሺ 𝑟ଶሻ ∗ |𝑟ଷ𝑃௜
௧ െ 𝑋௜

௧| ൅ 0.1 ∗ 𝑙𝑒𝑣𝑦ሺ𝜏ሻ, 𝑟ସ ൏ 0.5
𝑋௜

௧ ൅ 𝑟ଵሺtሻ ∗ 𝑐𝑜𝑠ሺ 𝑟ଶሻ ∗ |𝑟ଷ𝑃௜
௧ െ 𝑋௜

௧| ൅ 0.1 ∗ 𝑙𝑒𝑣𝑦ሺ𝜏ሻ, 𝑟ସ ൐ 0.5
 (25)

4.2. SCAGA algorithm

The solution of the computing offloading model proposed in this article consists of a binary
structure composed of {0, 1} elements. Due to its alignment with the genetic algorithms’ gene
concept, this enables genetic algorithms to bolster local development capabilities and enhance
algorithm accuracy. Following the acquisition of an excellent suboptimal solution group in SCA,
diverse solutions are chosen as the genetic algorithm’s genome, and various operations, including
selection and mutation, are employed to ultimately yield an outstanding binary solution.

Since the decision structure for computing offloading is: 𝐴 ൌ ሼ0, ,1ሽ, which is highly
similar to the structure of genes in genetic algorithms. In the mutation step of the genetic algorithm,
each decision element undergoes a certain probability of mutation (mutation probability 𝜍 ൌ 0.05).
Since the coupling relationship between each decision variable, the mutation of each gene locus will
have a certain impact on the offloading utility. The specific steps of genetic mutation are shown in
the following Figure 2.

1 0 0 1 0 1 0 0 0 1

1 0 0 0 0 1 0 1 0 1

Genetic
variation

Genetic
variation

SCA sub-optimal
solution

Latest solution
of SCAGA

Offload to the edge
server

Local execution

Figure 2. Genetic variation diagram.

6347

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

4.3. SCAGA architecture

The SCAGA algorithm integrates the gene mutation of the genetic algorithm and roulette wheel
selection method on the basis of the SCA optimization algorithm, and structurally optimizes the
offloading decision based on the SCA optimization algorithm. The specific process is shown in
Figure 3.

0 1 0 1 1 0 0 1

0 1 0 1 1 0 0 1

0 1 0 1 1 0 0 1

Duplicate
multiple

…
…

Optimal individual of
SCA algorithm with
Levy flight strategy

Bit-by-bit variation
Variation probability =0.05

The calculation cost of each
individual is recalculated
according to formula (19)

Find the individual with the
lowest fitness value

Using meritocracy,
Elite ratio 100%

Whether it is
 better than the original

optimal solution

No

Yes

The optimal solution information is
stored in the optimal solution group

Is the number of
iterations reached?

The optimal individual of this
iteration replaces the original

solution individual

No

Output the optimal solution
of the optimal solution set

Replace the
original solution
with the optimal

one from the
previous iteration

Yes

Figure 3. Genetic variation diagram.

The specific algorithm flowchart is as follows:

6348

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

Input algorithm
parameters

Random strategies generate
initial populations

The calculation cost of the individual is
calculated and sorted according to

formula (19)

The individual positions are updated
according to the sine-cosine update equation

combining nonlinear strategy and Levy
flight strategy

The calculation cost of the individual is
calculated and sorted according to formula

(19)

New individuals are selected to
form the initial population

Is the number of
iterations reached?

Output the optimal
individual

Using the elite strategy, the
sub-optimal solution group is

reconstructed

All individual positions are
updated using a dimensional-by-

dimension variation strategy

The optimal solution
group is stored

Is the number of
iterations reached?

Output the optimal
individual of the optimal

solution set

Select the best
individual

No NoYes

Yes

Figure 4. Flow chart of SCAGA algorithm.

5. Experiment and analysis

In order to verify the performance of SCAGA, local computation offloading algorithm (LA),
random offloading algorithm (RA), computation offloading algorithm based on sine and cosine
optimization algorithm (SCA), computation offloading algorithm based on genetic algorithm (GA),
computation offloading algorithm based on COSCA [21], and complete offloading algorithm (AA)
were selected. Under the same experimental conditions and environment, comparisons were made on
indicators such as system latency, user energy consumption, and computational costs.

All experiments were implemented using Python programming. The operating system of
experimental environment is Windows 10 64 bit, and the hardware configuration is AMD Ryzen R5
5600 CPU with 16GB of memory.

5.1. Experimental parameter settings

The simulation scenario for SCAGA is depicted in Figure 1, and all simulation parameters are
randomly generated within the specified range, as illustrated in Table 2. Each decision-making

6349

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

method underwent 10 simulations, and the results were then averaged across these 10 experiments.
The communication parameters adhere to the specifications of the third-generation partnership
project [22].

Table1. Experimental parameter settings.

Parameters Values

Computing power of mobile device (GHz) 1–1.2

Computing power of edge server (GHz) 40

Data volume of task (Mb) 0.1–1.2

Computing intensity of task (Hz) 600–1200

Transmission power of mobile device (W) 0.5

Transmission channel gain (dB) 137 + 30*𝑙𝑜𝑔ଵ଴ 𝑑 ሾ22ሿ

Transmission distance (m) 0–1000

Population size 20

Number of iterations 60

Gaussian channel noise (W) 2 ൈ 10ିଵଷ

5.2. Impact of IMTE quantity on Calculated cost

The purpose of this experiment is to compare the offloading efficiency of various algorithms
under different task quantities, including the system latency and the energy consumption of mobile
user.

This experiment sets the computing power of MEC to 40GHz, 𝛼 ൌ 0.8，𝛽 ൌ 0.2. Test the

Calculated cost generated when the number of mobile users is 20, 25, 30, 35, 40, 45, and 50. The
experimental results are shown in Figure 5 and Table 2.

Figure 5. IMTE quantity - Calculated cost of different algorithms.

6350

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

Table2. IMTE quantity - Calculated cost relationship table.

In mobile edge computing, the decision-making performance of the full offload algorithm (AA)
gradually declines as the number of mobile users increases. Initially, the local offload algorithm (LA)
demonstrates the poorest performance with a small number of mobile users; however, as the user
count grows, its calculated cost gradually improves. This shift occurs due to the finite nature of
resources available on edge servers—a scenario in which, if all users opt for offloading their
computing tasks, the edge servers allocate fewer computing resources compared to local computing
resources.

Other optimization algorithms such as random offloading algorithm (RA), GA algorithm,
COSCA algorithm, and SCA algorithm are also superior to AA algorithm and LA algorithms. The
offloading scheme based on SCAGA algorithm has the best performance, compared to the offloading
schemes of AA algorithm, LA algorithm, RA algorithm, GA algorithm, COSCA algorithm, and SCA
algorithm. When the number of IMTEs is 35, their Calculated cost decreases by 32.76, 33.51, 15.95,
13.87, 3.24 and 5.71%, respectively. Therefore, in the unloading problem of edge computing
environment, the unloading scheme based on SCAGA algorithm has a great advantage. And during
the process of increasing the number of IMTEs from 20 to 50, the SCAGA based offloading scheme
still outperforms the comparison algorithms listed in the article. As the number of IMTEs continues
to increase, the benefits of SCAGA based offloading schemes become more apparent compared to
other comparative algorithms.

5.3. Impact of IMTE quantity on system latency

Table 3 and Figure 6 show the influence of the number of IMTE on the calculation delay.
Choosing midpoint 35 [20, 50] as the value of IMTE helps to observe the sensitivity of the system to
this variable and to some extent represents the entire range. The experimental results show that in
terms of handling system latency, the offloading scheme based on SCAGA algorithm reduces system
latency by 33.69, 34.55, 10.39, 8.86, 3.17 and 3.83% respectively compared to AA, LA, RA, GA,
COSCA and SCA, demonstrating certain advantages.

Regarding the impact of the increase in the number of IMTEs on computation latency, it can be
observed that as the number of IMTEs increases, the computation latency of each algorithm also
shows a corresponding increasing trend. However, with an increase in the number of IMTEs, the
offloading scheme based on the SCAGA still maintains a competitive advantage over other
algorithms. This can be attributed to the fact that the SCAGA is more effectively adapted to the

 Calculated cost
IMTE quantity 20 25 30 35 40 45 50
AA 3.14 4.63 6.73 8.76 11.56 14.72 17.51
LA 5.76 6.81 8.36 9.43 10.90 12.37 13.29
RA 3.88 4.72 5.94 7.46 8.49 10.87 11.50
GA 3.31 4.63 5.68 7.28 8.59 10.73 11.27
COSCA 3.00 3.99 5.34 6.48 7.97 9.43 10.43
SCA 3.34 4.30 5.51 6.65 8.09 9.49 10.46
SCAGA 2.91 3.90 5.16 6.27 7.77 9.20 10.18

6351

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

characteristics of large-scale tasks, thus exhibiting better robustness and effectiveness in handling
system delays. Therefore, the unloading scheme based on SCAGA shows obvious potential
advantages in edge computing environment, especially in processing system delay. These results
provide important research reference value for task scheduling and optimization of SCAGA in edge
computing environment.

The relevant experimental results are shown in Figure 6 and Table 3.

Table 3. Calculated delay-IMTE quantity relationship table.

Figure 6. Calculated delay-IMTE quantity relationship diagram.

5.4. Impact of computing resources in edge server on Offload effect

As shown in Table 4 and Figure 7 (The experimental parameters are set to 𝛼 ൌ 0.8，𝛽 ൌ 0.2),

overall, with the increase of MEC computing resources, the computational cost based on AA
continues to decrease and gradually surpasses that of LA. This experiment proves that with the
increase of computing resources, mobile users will obtain less computing latency and energy

 Calculated delay /s
IMTE quantity 20 25 30 35 40 45 50
AA 4.03 6.94 8.98 12.88 15.39 19.34 24.66
LA 6.44 9.02 9.81 12.03 12.72 14.22 16.36
RA 4.25 6.36 7.88 9.53 10.24 11.87 14.61
GA 5.47 7.36 7.62 9.37 10.68 11.65 14.12
COSCA 3.61 5.73 6.69 8.82 9.69 11.25 13.38
SCA 3.71 5.9 6.79 8.88 9.67 11.18 13.35
SCAGA 3.43 5.6 6.51 8.54 9.71 10.83 12.97

6352

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

consumption when offloading computing tasks to MEC. With the increase of MEC computing
resources, the computing costs of offloading schemes based on AA, LA, RA, GA, COSCA, SCA,
and SCAGA are gradually decreasing. In the process of linear increase of MEC computing resources,
the computing costs of offloading schemes based on SCAGA algorithm are always lower than those
based on AA, LA, RA, GA, COSCA, and SCA. Compared to GA based offloading solutions, the
computational cost of SCA based offloading solutions will continue to increase. The computational
cost of COSCA based offloading schemes is much lower when MEC resources are limited compared
to SCAGA based offloading schemes. As MEC resources continue to increase, the computational
cost of COSCA based offloading schemes gradually approaches that of SCAGA based offloading
schemes. This indicates that the offloading scheme based on SCAGA has strong robustness and
optimization in the process of constantly changing MEC resources.

Table 4. Table of the impact of computing resources on Calculated cost.

Figure 7. Diagram of the impact of computing resources on Calculated cost.

 Calculated cost

computing resource/GHz 10 20 30 40 50 60 70

AA 34.15 17.19 11.94 8.84 7.20 6.44 5.34

LA 9.56 9.58 9.52 9.57 9.59 9.51 9.59

RA 12.84 9.67 8.82 6.97 6.97 6.59 6.34

GA 10.62 8.31 7.71 7.15 6.81 6.55 6.83

COSCA 9.99 8.37 7.66 6.59 6.14 5.75 5.11

SCA 8.74 7.90 7.48 6.73 6.32 6.02 5.81

SCAGA 8.66 7.81 7.30 6.37 5.94 5.59 5.00

6353

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

5.5. Impact of different computational intensities on offloading utility Sub-subheading

As shown in Table 5 and Figure 8, when the number of IMTEs is 35, α = 0.8, β = 0.2 Under
experimental conditions with MEC computing resources of 40GHz, simulation results show that with
the increase of computing task intensity (computing cycle required for computing tasks), the
computing cost of GA, COSCA, SCA based offloading schemes will not change dramatically with
changes in computing tasks. This indicates that offloading schemes based on GA, COSCA, and SCA
have certain robustness. At the same time, it can be seen that the computational cost of the SCAGA
based uninstallation scheme is lower than that of the AA, LA, RA, GA, COSCA, and SCA
uninstallation programs. Compared with the offloading schemes based on AA, LA, RA, GA, COSCA,
and SCA, the computational cost of the proposed offloading scheme in this paper is roughly reduced
by 27.3, 32.2, 12.2, 10.5, 4.1 and 4.6%, respectively.

Table 5. Table of the impact of computing intensity on Calculated.

Figure 8. Computing intensity-offloading utility diagram.

 Calculated cost
computing intensity/GHz 0.2 0.4 0.6 0.8 1.0 1.2
AA 8.82 8.76 8.64 9.10 8.54 9.22
LA 9.51 9.41 9.20 9.75 9.13 9.92
RA 7.34 7.00 7.15 7.54 7.59 7.34
GA 7.21 6.89 7.05 7.42 7.12 7.38
COSCA 6.58 6.56 6.37 6.78 6.38 7.03
SCA 6.71 6.62 6.47 6.88 6.58 7.21
SCAGA 6.57 6.35 6.17 6.52 6.18 6.82

6354

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

5.6. The impact of delay parameter (𝛼) and energy consumption parameter (𝛽) on the Calculated
cost

This section of the experiment is a simulation experiment conducted in an environment with
MEC computing resources of 40GHz and 35 tasks. In order to explore the effects of latency and
energy consumption parameters on computational costs in the offloading scheme based on the

SCAGA algorithm, this section set up three sets of experiments (Experiment 1: 𝛼 ൌ 0.8，𝛽 ൌ 0.2,

Experiment 2: 𝛼 ൌ 0.5，𝛽 ൌ 0.5, Experiment 3:𝛼 ൌ 0.2，𝛽 ൌ 0.8). The specific experimental

results are shown in Figure 9. From Figure 9, it can be concluded that under the same experimental
environment, the larger the delay parameter, the higher its corresponding computational cost.
Conversely, the smaller the delay parameter, the lower its corresponding computational cost.
Experimental parameters and energy consumption parameters do not require optimization algorithms
for optimization. The delay parameters and energy consumption parameters are considered by mobile
users based on the network environment and their own battery level. If the delay sensitivity of the
task is strong, the delay parameters can be adjusted higher. If the battery level of the task is low or
the IMTE needs to work for a long time and consumes more power, the high energy consumption
parameters can be adjusted.

Figure 9. The impact of weight changes on computational costs.

5.7. Comparison of convergence of various algorithms

This section provides a thorough analysis of the convergence and accuracy of the proposed
SCAGA algorithm. In this section of the simulation experiment, the experimental parameters are set
to a. In this section, we will analyze the convergence of the algorithm in detail through two

6355

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

simulation experiments, 𝛼 ൌ 0.8，𝛽 ൌ 0.2 and The number of IMTEs is set to 35. Through

in-depth comparison of the iterative graphs of the algorithms, it was found that the SCAGA
algorithm exhibited good convergence. Specifically, the convergence of the SCAGA algorithm far
exceeds that of traditional genetic algorithms (GA) and is slightly better than the COSCA algorithm.
This indicates the improvement of our proposed algorithm compared to traditional algorithms, and it
has a faster convergence speed when solving problems.

In addition, SCAGA also demonstrates outstanding performance in terms of accuracy. The
experimental results show that the accuracy of SCAGA algorithm is much higher than SCA and GA
algorithms, and slightly better than COSCA algorithm. This means that our algorithm can more
reliably find the optimal solution or approach the optimal solution, providing more reliable and
effective support for solving practical problems.

These findings not only emphasize the potential of the SCAGA algorithm in solving
optimization problems, but also demonstrate that our method has achieved better performance in the
optimization process compared to traditional methods and other improved algorithms. The algorithm
iteration diagrams of each comparative algorithm are shown in Figures 10, respectively

Figure 10. Algorithm iteration diagram.

5.8. The effect of the number of tasks per minute on the computational cost

All of the above experiments were conducted with one computing task per IMTE at a certain
point in time. The experimental conditions in this section were set as IMTE would produce multiple
tasks within one minute. In this experiment, 5, 10, 15, 20, 25 and 30 computing tasks were set within
one minute, and the number of IMTE was set to 35. α = 0.8, β = 0.2, the total computing resources of
the edge server is 40 GHz, and other simulation parameters are set according to Table 1. The
following figure shows the computational cost reduction of SCAGA’s unloading scheme compared to
the unloading scheme of other comparison algorithms. That is, the calculation cost of SCAGA
scheme minus the calculation cost of other schemes.

6356

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

(a)Comparison of SCAGA with baseline
algorithms

(b)Comparison of SCAGA and swarm
intelligence algorithm

Figure 11. Comparison of SCAGA and other algorithms under multi-task conditions.

The experiment in this section assumes that each IMTE will generate 5–30 computing tasks per
minute. According to the above simulation data, the more computing tasks generated per minute, the
more the unloading scheme of SCAGA will reduce the computing cost of unloading schemes of
other algorithms, especially those based on AA, LA, RA and GA. SCAGA’s offloading solution will
get better as the number of computing tasks increases. When the number of computing tasks per
minute increases, the gap between the computing cost and that of SCAGA is also increasing. When
the number of tasks per minute is 30, the gap between the computing cost of SCa-based unloading
scheme and that of SCAGA is 12, which indicates that the more computing tasks per minute, the
greater the number of computing tasks per minute. The computational cost of SCAGA compared to
the computational cost of SCA will become more and more obvious.

6. Conclusions

For the challenge of computing offloading in a Multi-access Edge Computing (MEC) system
involving concurrent multitasking, the allocation of computing resources in an edge server is
considered. This paper introduces a Computing Offloading Strategy based on the SCAGA algorithm.
The SCAGA algorithm initially employs the cosine optimization algorithm to identify suboptimal
solutions, and subsequently utilizes the roulette wheel selection method and genetic algorithm’s gene
mutation approach for continuous iteration and calculation to arrive at the optimal solution. Through
addressing the task offloading problem in MEC systems, a superior computing offloading decision is
ultimately achieved.

Simulation experiments have verified the feasibility of the SCAGA algorithm in computing
offloading decisions. Compared with other offloading algorithms, the SCAGA can effectively reduce
system latency, energy consumption of mobile user, and optimize Calculated cost.

6357

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. D. Huang, L. Yu, J. Chen, T. Wei, Research on joint computation offloading and resource
allocation strategy for mobile edge computing, J. East China Normal Univ., 2021 (2021), 88–99.
https://doi.org/ 10.3969/j.issn.1000-5641.2021.06.010

2. T. X. Tran, D. Pompili, Joint task offloading and resource allocation for multi-server
mobile-edge computing networks, IEEE Trans. Veh. Technol., 68 (2018), 856–868.
https://doi.org/10.1109/TVT.2018.2881191

3. L. Tang, Y. J. Hu, T. Liu, Q. B. Chen, Task offloading and resource allocation algorithm based
on Lyapunov in mobile edge computing, Comput. Eng., 47 (2021), 29–36.
https://doi.org/10.19678/j.issn.1000-3428.0058268

4. B. Wu, J. Zeng, L. Ge, X. Su, Y. Tang, Energy-latency aware offloading for hierarchical mobile
edge computing, IEEE Access, 7 (2019), 121982–121997.
https://doi.org/10.1109/ACCESS.2019.2938186

5. M. Hu, Z. Xie, D. Wu, Y. Zhou, X. Chen, L. Xiao, Heterogeneous edge offloading with
incomplete information: A minority game approach, IEEE Trans. Parallel Distrib. Syst., 31
(2020), 2139–2154. https://doi.org/10.1109/TPDS.2020.2988161

6. J. S. Zheng, X. L. Jia, Double-auction-based task offloading and resource allocation strategy for
mobile edge computing, Comput. Syst. Appl., 32 (2023), 45–56.
https://doi.org/10.15888/j.cnki.csa.009110

7. X. J. Zang, W. G. Wu, C. Zhang, Y. X. Chai, S. Y. Yang, X. Wang, Energy-efficient computing
offloading algorithm for mobile edge computing network, J. Software, 34 (2023), 849–867.
https://doi.org/10.13328/j.cnki.jos.006417

8. H. Meng, R. Huo, Q. Y. Guo, T. Huang, Y. J. Liu, Machine learning-based stochastic task
offloading algorithm in mobile-edge computing, J. Beijing Univ. Posts Telecommun., 42 (2019),
25–30. https://doi.org/10.13190/j.jbupt.2018-078

9. X. Qiu, L. Liu, W. Chen, Z. Hong, Z. Zheng, Online deep reinforcement learning for
computation offloading in blockchain-empowered mobile edge computing, IEEE Trans. Veh.
Technol., 68 (2019), 8050–8062. https://doi.org/10.1109/TVT.2019.2924015

10. S. F. Zhu, M. Y. Zhao, Z. Y. Chai, Computing offloading scheme based on particle swarm
optimization algorithm in edge computing scene, J. Jilin Univ., 52 (2022), 2698–2705.
https://doi.org/10.13229/j.cnki.jdxbgxb20210328

11. Y. L. Cong, W. X. Sun, K. Xue, Z. H. Qian, M. S. Chen, Research on task offloading strategy of
Internet of vehicles based on improved hybrid genetic algorithm, J. Commun., 43 (2022), 77–85.
https://doi.org/10.11959/j.issn.1000-436x.2022188

6358

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6336–6358.

12. Z. X. Yang, W. Z. Zhang, P. Cheng, S. H. Xie, Computation offloading decision strategy based
on hybrid fruit fly optimization algorithm, J. Chinese Comput. Syst., 44 (2023), 1290–1296.
https://doi.org/10.20009/j.cnki.21-1106/TP.2021-0749

13. S. Chauhan, G. Vashishtha, L. Abualigah, A. Kumar, Boosting salp swarm algorithm by
opposition-based learning concept and sine cosine algorithm for engineering design problems,
Soft Comput., 2023 (2023), 1–28. https://doi.org/10.1007/s00500-023-09147-z

14. M. Zhong, J. Wen, J. Ma, H. Cui, Q. Zhang, M. K. Parizi, A hierarchical multi-leadership sine
cosine algorithm to dissolving global optimization and data classification: The COVID-19 case
study, Comput. Biol. Med., 164 (2023), 107212.
https://doi.org/10.1016/j.compbiomed.2023.107212

15. S. Raj, C. K. Shiva , B. Vedik, S. Mahapatra, V. Mukherjee, A novel chaotic chimp sine cosine
algorithm Part-I: For solving optimization problem, Chaos Solitons Fractals, 173 (2023),
113672. https://doi.org/10.1016/j.chaos.2023.113672

16. K. Paul, D. Hati, A novel hybrid Harris hawk optimization and sine cosine algorithm based home
energy management system for residential buildings, Building Serv. Eng. Res. Technol., 2023
(2023), 01436244231170387.

17. S. K. Gupta, M. K. Kar, L. Kumar, S. Kumar, A simplified sine cosine algorithm for the solution
of optimal reactive power dispatch, Int. Trans. Electr. Energy Syst., 2022 (2022).
https://doi.org/10.1155/2022/2165966

18. C. D. Patel, T. K. Tailor, Multi-agent based sine–cosine algorithm for optimal integration of
DERs with consideration of existing OLTC in distribution networks, Appl. Soft Comput., 117
(2022), 108387. https://doi.org/10.1016/j.asoc.2021.108387

19. J. Cheng, Z. Feng, Y. Xiong, Transformer fault diagnosis based on an improved sine cosine
algorithm and BP neural network, Recent Adv. Electr. Electron. Eng., 15 (2022), 502–510.
https://doi.org/10.2174/2352096515666220819141443

20. S. Karimulla, K. Ravi. Solving multi objective power flow problem using enhanced sine cosine
algorithm, Ain Shams Eng. J., 12 (2021), 3803–3817. https://doi.org/10.1016/j.asej.2021.02.037

21. W. Y. Guo, Y. Wang, F. Dai, T. Liu, Alternating sine cosine algorithm based on elite chaotic
search strategy, Control Decis., 34 (2019), 1654–1662.
https://doi.org/10.13195/j.kzyjc.2018.0006

22. 3GPP Technical Specification Group Radio Access Network, Further advancements for E-UTRA
physical layer aspects (Release 9), 3GPP TR 36.814 V9.0.0, 2010. Available from:
https://documents.pub/document/3gpp-tr-36814-v900-2010-03.html?page=1.

©2024 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

