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Abstract: The decision-making process for computational offloading is a critical aspect of mobile 
edge computing, and various offloading decision strategies are strongly linked to the calculated 
latency and energy consumption of the mobile edge computing system. This paper proposes an 
offloading scheme based on an enhanced sine-cosine optimization algorithm (SCAGA) designed 
for the “edge-end” architecture scenario within edge computing. The research presented in this 
paper covers the following aspects: (1) Establishment of computational resource allocation models 
and computational cost models for edge computing scenarios; (2) Introduction of an enhanced sine 
and cosine optimization algorithm built upon the principles of Levy flight strategy sine and cosine 
optimization algorithms, incorporating concepts from roulette wheel selection and gene mutation 
commonly found in genetic algorithms; (3) Execution of simulation experiments to evaluate the 
SCAGA-based offloading scheme, demonstrating its ability to effectively reduce system latency 
and optimize offloading utility. Comparative experiments also highlight improvements in system 
latency, mobile user energy consumption, and offloading utility when compared to alternative 
offloading schemes. 

Keywords: mobil edge computing; computing offloading; computational resource allocation; sine 
and cosine optimization algorithms 
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1. Introduction  

Owing to constraints related to battery power and computing resources, intelligent mobile 
terminal equipment (IMTE) faces challenges in handling intricate problems, including massive 
computing tasks and delay-sensitive tasks arising in the context of intelligent manufacturing 
processes. 

In intelligent manufacturing environments, IMTE is generally used to collect data from sensors, 
extract meaningful information, and make corresponding decisions based on changes in the data. 
However, the emergence of new technologies requires IMTE to have high performance and strict 
real-time response, such as object detection based on computer vision, automatic route planning, 
perception, and end-to-end decision-making and so on. IMTE is difficult to support the growing 
amount of computing due to limitations in energy supply and unit size. With the emergence of 
Mobile Edge Computing (MEC) technology, IMTE can offload computing tasks to edge servers, 
which to some extent improves the computational efficiency of IMTE. 

Computing offloading decision-making, as one of the primary research focuses in MEC, has 
continuously attracted the attention of numerous scholars. Considering the allocation of computing 
resources, Huang et al. [1] proposed a computing offloading algorithm based on a greedy approach, 
which effectively reduced system costs. Tran et al. [2] used convex optimization and quasi convex 
optimization to solve resource allocation problems, and proposed a new heuristic algorithm to solve the 
task offloading subproblem, whose solution is close to the optimal solution. Tang et al. [3] proposed a 
task offloading and resource allocation algorithm based on Lyapunov optimization theory, which 
maximizes the average time benefit of MEC systems. The algorithm exhibits good performance in 
terms of latency, reliability, and system benefits. Wu et al. [4] proposed a distributed offloading 
algorithm based on game theory, which minimizes the system cost of energy consumption and delay 
for users, and proves that the algorithm can obtain a global optimal solution. Hu et al. [5] proposed a 
task offloading algorithm based on minority game theory for task offloading in heterogeneous 
environments with incomplete information, and proved that the proposed offloading algorithm can 
obtain suboptimal solutions close to the optimal solution. Zheng et al. [6] proposed a computational 
offloading algorithm and resource allocation strategy based on the dual auction algorithm, which can 
effectively reduce system losses. Based on the non-cooperative game interaction between wireless 
characteristics and mobile users, Zang et al. [7] developed an iterative mechanism to jointly 
determine the computational offloading scheme. The offloading algorithm demonstrates fast 
convergence speed and excellent energy efficiency performance. 

With the continuous advancement of deep learning, intelligent computing offloading solutions 
based on online learning have emerged as a prominent research focus in recent years. Meng et al. [8] 
proposed an optimal offloading strategy for random task generation using enhanced Q-learning and 
deep learning, resulting in reduced energy consumption and a 38.1% reduction in delay weighted 
sum. Qiu et al. [9] introduced a novel online computation offloading algorithm based on model-free 
deep reinforcement learning; experimental results demonstrated the algorithm’s rapid convergence 
and its ability to obtain favorable suboptimal solutions. Zhu et al. [10] proposed an enhanced particle 
swarm optimization algorithm that incorporates a genetic algorithm, surpassing both genetic 
algorithm and particle swarm algorithm in terms of latency and energy consumption. Cong et al. [11] 
proposed a task offloading strategy with two-stage heuristic characteristics suitable for vehicular 
networks, the algorithm achieves optimal resource allocation during the offloading process and can 
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improve task offloading efficiency. Yang et al. [12] designed a computational offloading method 
(HFOA) based on a hybrid fruit fly algorithm, and its experiments showed that the algorithm has 
certain improvements in system computing latency, computing energy consumption, convergence, 
and other aspects. 

Based on a comprehensive analysis of the above literature, computing offloading decision has 
attracted extensive attention and sustained research in the field of MEC. Various algorithms and 
strategies have been proposed to solve problems such as resource allocation, energy consumption, 
and latency, and have achieved significant performance improvements. In addition, computing 
offloading scheme based on swarm intelligence optimization has also become one of the main 
research directions in the field of edge computing, by searching different regions in the space and 
utilizing multiple random and adaptive variables, these algorithms effectively avoid getting stuck in 
local optima and converge towards global optima. 

In recent years, the sine and cosine optimization algorithm, as a novel intelligent optimization 
algorithm, has found successful applications across various domains. Because the sine and cosine 
optimization algorithm is a stochastic optimization approach with high adaptability, it can readily 
address optimization challenges in diverse areas such as production scheduling, path planning, and 
complex problem-solving. 

A hybrid meta-heuristic algorithm is presented in [13], combining the salp group algorithm and 
the sine and cosine algorithm (SSCA) to enhance convergence speed and attain optimal accuracy in 
practical engineering applications. Reference [14] introduces an enhanced sine and cosine algorithm 
known as Hierarchical Multi-leader SCA (HMLSCA), which addresses the balance issue within SCA 
by employing an efficient hierarchical multi-leader search mechanism. The results show that 
HMLSCA outperforms other algorithms in various tests and has achieved remarkable achievements 
in support vector machine parameters and COVID-19 diagnosis. In [15], C-CHOA-SC algorithm is 
proposed, which combines chimpanzee optimization algorithm and sine and cosine algorithm, 
aiming at solving complex multi-objective optimization problems. The analysis shows that the 
performance of the proposed algorithm is obviously better than other methods, and the overall 
performance is better than the competition algorithm. In [16], a hybrid Harris Hawk 
Optimization-Sine-cosine algorithm (hHHO-SCA) is proposed to develop a home energy 
management system based on meta-heuristics, which is used to optimize the scheduling of intelligent 
devices and reduce the cost of energy use. The experimental results show that hHHO-SCA is 
relatively effective in reducing cost and peaking ratio, and can be applied to multi-family residential 
areas. Reference [17] proposes a simplified sine-cosine algorithm (SSCA) to solve the optimal 
reactive power scheduling (ORPD) problem by estimating control variables. The algorithm uses the 
sine and cosine functions to generate several random solutions, and seeks the best solution through 
fluctuations. SSCA is used for ORPD problems to find the best control variable for minimum power 
loss and maximum net savings. MA-SCA algorithm is proposed in [18], which combines multi-agent 
system and sine-cosine algorithm, and has been successfully applied to optimize the deployment of 
distributed energy and shunt capacitor distribution networks. A hybrid intelligence method (ISCA-BP) 
based on improved sine and cosine algorithm and BP neural network is proposed in [19], which 
effectively improves the accuracy of transformer fault diagnosis. Reference [20] introduces the 
Enhanced Sine and Cosine Algorithm (ESCA) aiming to address multi-objective power flow 
functions encompassing power plant generation cost, loss, emissions, etc., and to enhance voltage 
stability. The experimental results show that ESCA is superior to other techniques in both 
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convergence speed and global optimal solution. The improved sine-cosine algorithm has certain 
advantages in the application of various fields, but it is rarely applied in the field of computing 
offloading problem under edge computing environment. In this paper, based on the structure of the 
solution of computing offloading problem, a hybrid sine-cosine genetic optimization algorithm 
(SCAGA) is proposed by combining the elite strategy with the mutation strategy of genetic algorithm 
and sine-cosine algorithm. 

In this study, we investigated the potential application of the sine and cosine optimization 
algorithm in making computing offloading decisions. We also introduced an enhanced sine and 
cosine optimization algorithm (SCAGA), which incorporates the concepts of roulette wheel selection 
and gene mutation from genetic algorithms, aiming to enhance the efficiency and performance of 
MEC systems. SCAGA is employed to address the challenges of computing resource allocation and 
computing offloading in MEC systems, with the following main functions: 

1) Construct a multi-user concurrent edge computing system model, considering factors such as 
edge computing latency, mobile user energy consumption, and edge server computing resources as 
constraints. The weighted value function, which incorporates edge computing latency and energy 
consumption, is utilized to assess the calculation offloading strategy. Consequently, the edge 
computing model's offloading strategy, subject to multiple constraints, is reformulated as an 
optimization problem of the weighted value function under multi-constraint conditions. 

2) Within the “edge-end” model framework, develop a hybrid optimization algorithm that 
integrates the adaptive sine and cosine optimization algorithm with the genetic algorithm. The 
adaptive sine and cosine optimization algorithm can yield relatively excellent suboptimal solutions 
within the established model. Given that the computing offloading strategy matrix comprises {0,1} 
elements, this format aligns with the initial solution structure of the genetic algorithm. To further 
improve the solving capability and precision of the hybrid algorithm, a roulette wheel selection 
genetic algorithm is employed. 

3) Apply experiments to verify the optimization effect of the computing offloading strategy 
based on SCAGA, and compare and analyze it with other classic algorithm in terms of system 
latency, energy consumption, and other indicators. 

2. System model and problem description 

The edge computing system composed of edge servers and users is shown in Figure 1, assuming 
that its wireless communication uses the 5G standard. Each micro workspace has a micro base 
station, which mainly provides communication resources and does not provide computing resources, 
MEC servers are deployed in the micro base station. 

Assuming the IMTE representation of the micro workspace is 𝑁 ൌ ሼ1,2,3. . . , 𝑁ሽ, each IMTE is 
assigned a delay-sensitive and indivisible computing task, and IMTE utilizes a fixed channel 
approach to access the network. Within the edge computing system, there are multiple micro 
workspaces, and the system assigns a dedicated wireless channel to each IMTE requiring 
computation and offloading. 
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Figure 1. Edge computing architecture. 

2.1. Local computing model 

Assuming that the i-th user in the micro workspace has a huge amount of data and a latency 
sensitive computing task to complete, the task is: 𝑡𝑎𝑠𝑘௜ ൌ ሼ𝑀௜, 𝐷௜,ሽ, Where 𝐷௜ is the data size of the 
task (including program code and input parameters, etc.), 𝑀௜ is the CPU cycle required to process 
this computing task. IMTE has a certain ability to process computing tasks. When the edge 
computing network is severely congested, the computing task can be executed locally, and when the 
edge computing network channel conditions are good, IMTE can choose to unload the computing 
task to the edge server with rich computing resources.  

The latency and energy consumption for executing computing tasks locally are: 

 𝑇௜
௟௢௖௔௟ ൌ

𝑀௜

𝑓௜
௟௢௖௔௟ (1)

                         𝐸௜
௟௢௖௔௟ ൌ 𝑘ሺ𝑓௜

௟௢௖௔௟ሻଶ𝑀௜ (2)

where 𝑘 is the energy coefficient of the CPU of this IMTE, and it depends on the CPU structure of 
IMTE, the general value is 𝑘 ൌ 10ିଶହ. 

𝑓௜
௟௢௖௔௟ represent the computing power of IMTE, measured in cycles per second of the CPU. 

2.2. Computing offloading model 

The MEC system is deployed within the micro base station, where edge servers can provision 
IMTE with limited resources like computing and storage. IMTE uploads computing tasks to micro 
base stations via the Radio Access Network (RAN). Due to the wired connection between MEC 
servers and base stations, the delay and energy consumption between MEC and base stations may not 
be factored in. Every IMTE will be allocated a specific wireless subchannel to access the edge 
computing network. If 𝑝௜ is the transmission power of the device, 𝑔௜ is the wireless channel gain, 
and 𝜎ଶ is the noise power. The transmission rate at which IMTE uploads computing tasks to edge 
servers is: 
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𝑅௜ ൌ 𝑊 𝑙𝑜𝑔ଶሺ 1 ൅

௣೔௚೔

ఙమ ሻ ሾbit/s]    (3)

where 𝑊 is the transmission bandwidth of each IMTE. 
The total delay of IMTE offloading computing tasks to edge servers includes two parts: upload 

delay 𝑇௜
௨௣ and processing delay 𝑇௜

௘௫௘, respectively represented as: 

 
𝑇௜

௨௣ ൌ
𝐷௜

𝑅௜
 (4)

 
𝑇௜

௘௫௘ ൌ
𝑀௜

𝑓௜
௘ௗ௚௘ (5)

 𝑇௜
௘ௗ௚௘ ൌ 𝑇௜

௨௣ ൅ 𝑇௜
௘௫௘ ൌ

𝐷௜

𝑅௜
൅

𝑀௜

𝑓௜
௘ௗ௚௘ (6)

where 𝑇௜
௘ௗ௚௘ is the total latency for IMTE to offload computing tasks to the edge server, 𝑓௘ௗ௚௘

௠௔௫ is 

the computing power of the edge server (in cycles per second of the CPU), 𝑓௜
௘ௗ௚௘is to offload the 

computing resources obtained by the user from the edge server the energy consumption for 
offloading computing tasks is: 

 

𝐸௜
௘ௗ௚௘ ൌ ෍

𝐷௜

𝑅௜
𝑥௜

௜ୀே

௜ୀଵ

 (7)

𝐸௜
௘ௗ௚௘ is the transmission energy consumption of IMTE when uploading computing tasks. 

Due to the typically smaller output size compared to the input and the higher data transmission 
rate in the downlink relative to the uplink, the transmission delay of the output is disregarded in the 
model. 

2.3. Computing cost model  

The cost of an edge computing system primarily comprises the time delay in completing 
computing tasks and the energy consumption of IMTE. These factors also influence the quality of 
service provided by the MEC system. Therefore, according to the above model, the computing 
offloading cost 𝐶௜

௧௢௧௔௟ of each IMTE is defined as: 
 

𝐶௜
௧௢௧௔௟ ൌ 𝛼𝑇௜ ൅ 𝛽𝐸௜ (8)

𝑇௜ is the task completion time of IMTE, and 𝐸௜ is the energy consumption of IMTE. 𝛼 and 𝛽 
are the delay parameters and energy consumption parameters of the MEC system (𝛼 ൅ 𝛽 ൌ 1 and 

𝛼，𝛽 ∈ ሾ0,1ሿ). 

By optimizing and adjusting the delay and energy consumption parameters, the edge computing 
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system can dynamically adapt to varying business requirements under diverse communication and 
energy conditions. The total system cost 𝐶௧௢௧௔௟ is used to evaluate the performance of the entire 
edge computing system, and 𝐶௧௢௧௔௟ is defined as: 
 

𝐶௧௢௧௔௟ ൌ ෍ሺ𝑇௜ ൅ 𝐸௜ሻ

௜ୀே

௜ୀଵ

 (9)

 
𝐶௧௢௧௔௟ ൌ ෍ሺ1 െ 𝑥௜ሻ𝐶௜

௟௢௖௔௟ ൅ 𝑥௜𝐶௜
௘ௗ௚௘

௜ୀே

௜ୀଵ

 (10)

where C୧
୪୭ୡୟ୪ is the cost for IMTE to execute offloading decisions locally, and C୧

ୣୢ୥ୣ is the cost for 

IMTE to offload computing tasks to edge servers. 𝑥௜ ∈ ሼ0，1ሽ is the parameters of computing 

offloading decision, 𝑥௜ = 0 indicates that IMTE’s computing tasks will be executed locally, while 
𝑥௜ = 1 indicates that IMTE will offload the computing tasks to the edge server. 

By combining the above calculation models, the overall calculation model of the system can be 
obtained: 

 
 

𝑃1: 𝑚𝑖𝑛ሼ 𝐶௧௢௧௔௟ ൌ ሺ1 െ 𝑥௜ሻ𝐶௜
௟௢௖௔௟ ൅ 𝑥௜𝐶௜

௘ௗ௚௘ሽ

𝑠. 𝑡. 

𝐶1: 𝑥௜ ∈ ሼ0,1ሽ 

𝐶2: 𝛼 ൅ 𝛽 ൌ 1; 𝛼, 𝛽 ∈ ሾ0,1ሿ 

𝐶3: ෍ 𝑓௜
௘ௗ௚௘ ൏ 𝑓௘ௗ௚௘

௠௔௫

௜∈௎

 

𝐶4: 0 ൏ 𝑓௜
௘ௗ௚௘ ൏ 𝑓௘ௗ௚௘

௠௔௫ 

(11)

In the total calculation model given in formula (11), The minimum value of problem P1 will be 
obtained under multiple constraints of C1 െ C4. 

𝐶1 indicates that the offloading decision parameter, whose value can only be 0 or 1. A value of 
0 indicates that the computing task will be executed locally, while a value of 1 indicates that the 
computing task will be offloaded to an appropriate edge server for execution. 

𝐶2  represents the delay coefficient and energy consumption coefficient, used for joint 
optimization of Calculated delay and energy consumption. 

𝐶3 indicates the computing resources allocated to a single task, which is less than the total 
resources of the edge server. 

𝐶4 represents the computing resources occupied by offloading all computing tasks to edge 
servers, which is less than the total computing resources of all edge servers. 

3. Joint optimization of resource allocation and task offloading decisions 

In computational offloading research, joint optimization can enhance the efficient utilization of 
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computational resources and task execution performance. Resource allocation entails assigning 
computing tasks to suitable nodes or devices to fulfill their requirements and constraints. Task 
offloading decisions involve transferring selected tasks from IMTE to edge servers to accomplish 
objectives like load balancing, latency reduction, or energy conservation. Consequently, jointly 
optimizing resource allocation and task offloading decisions can significantly enhance the overall 
efficiency of MEC systems. 

The joint optimization of task offloading and resource allocation under multiple constraints 
creates a nonlinear programming problem involving mixed integers. Due to the interdependency of 
these constraints, the problem becomes challenging to solve directly. As a result, the MINLP problem 
is divided into two sub-problems: resource allocation and computational task offloading.  To solve 
these sub-problems, we employ a Sine and Cosine Algorithm (SCA) in conjunction with convex 
function optimization. SCA, a swarm intelligence optimization algorithm, efficiently reaches 
near-optimal solutions, reducing problem complexity under specific conditions and ensuring rapid 
convergence. 

3.1. Computational resource allocation 

The allocation of computing resources in the edge server can reduce the total delay of the 
system in structure, improve the service quality of the MEC system and the quality of user 
experience of IMTE, and enhance the queuing efficiency of computing tasks. 

Because the MEC server allocates computing resources only for the user tasks that are 
determined to be unloaded, given 𝑈  is the unloaded user set, 𝑈 ൌ ሼ𝑖|𝑎௜ ൌ 1ሽ ,and 
𝑠 ൌ ሼ𝑠ଵ, 𝑠ଶ, 𝑠ଷ, … , 𝑠ேሽ is the computing resource allocation set. 

 

𝐶௧௢௧௔௟ሺ𝑠ሻ ൌ ෍ሺ𝛼
𝐷௜

𝑅௜
൅ 𝛼

𝑀௜

𝑓௜
௘ௗ௚௘ሻ ൅ ෍ 𝛽

𝑝௜𝐷௜

𝑅௜௜∈௎௜∈௎

 

𝑠. 𝑡. 

𝐶1: 𝑥௜ ∈ ሼ0,1ሽ 

𝐶2: 𝛼 ൅ 𝛽 ൌ 1; 𝛼, 𝛽 ∈ ሾ0,1ሿ 

𝐶3: ෍ 𝑓௜
௘ௗ௚௘ ൏ 𝑓௘ௗ௚௘

௠௔௫

௜∈௎

 

𝐶4: 0 ൏ 𝑓௜
௘ௗ௚௘ ൏ 𝑓௘ௗ௚௘

௠௔௫ 

(12)

Calculate the second derivative of the function to obtain: 
 

∂ଶ𝐶௧௢௧௔௟ሺ𝑓ሻ
∂𝑓௜ ∂𝑓௝

ൌ ቐ

2𝛼𝑀௜

ሺ𝑓௜
௘ௗ௚௘ሻଷ

൒ 0, 𝑖 ൌ 𝑗

0, 𝑖 ് 𝑗
 (13)

Since the positive parameters in the Hesse matrix, the Hessian matrix of objective function 
𝐶௧௢௧௔௟ሺ𝑠ሻ is positively definite, 𝐶௧௢௧௔௟ሺ𝑠ሻ is a convex function, and the related optimizations belong 
to convex optimizations. Therefore, the objective function is solved using the Lagrange multiplier 
method. Introducing Lagrange multipliers 𝜆，P1 can be rewritten as: 
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𝐿ሺ𝑓௜

௘ௗ௚௘, 𝜆ሻ ൌ 𝐶௧௢௧௔௟ሺ𝑠ሻ ൅ 𝜆ሺ∑ 𝑓௜
௘ௗ௚௘ െ 𝑓௘ௗ௚௘

௠௔௫
௜∈௎ ) (14)

Through KKT conditions, it can be concluded that: 
 

∂𝐿ሺ𝑓௜
௘ௗ௚௘, 𝜆ሻ

∂𝑓௜
௘ௗ௚௘ ൌ

𝛼𝑀௜

𝑓௜
௘ௗ௚௘ ൅ 𝜆𝑓௜

௘ௗ௚௘ ൌ 0 (15)

 ∂𝐿ሺ𝑓௜
௘ௗ௚௘, 𝜆ሻ
∂𝜆

ൌ ෍ 𝑓௜
௘ௗ௚௘ െ 𝑓௘ௗ௚௘

௠௔௫

௜∈௎

 (16)

Solve formulas (15) and (16) to obtain the optimal solution 𝑓௜
௘ௗ௚௘∗

： 

 

𝑓௜
௘ௗ௚௘∗

ൌ
ඥ𝛼𝑀௜

∑ ඥ𝛼𝑀௜௜∈௎
𝑓௘ௗ௚௘

௠௔௫ (17)

Substitute the optimal solution 𝑓௜
௘ௗ௚௘∗

 into problem P1 in formula (12), it can be concluded 

that: 
 

𝐶௧௢௧௔௟ሺ𝑥ሻ ൌ ሺ1 െ 𝑥௜ሻሾሺ𝛼
𝑀௜

𝑓௜
௟௢௖௔௟ሻ ൅ 𝛽𝑘ሺ𝑓௜

௟௢௖௔௟ሻଶ𝑀௜ሿ

൅𝑥௜ሾ𝛼
𝐷௜

𝑅௜
൅ 𝛼

𝑀௜

𝑓௜
௘ௗ௚௘∗ ൅ 𝛽

𝑝௜𝐷௜

𝑅௜
ሿ 

(18)

3.2. Joint Optimization of offloading Decision for Computing Tasks 

After completing the allocation of computing resources on edge servers, the original problem (11) 
is transformed into a task offloading decision problem (19), and the objective model of optimal 
offloading strategy is obtained under the constraints of the highest tolerance delay for delay sensitive 
tasks and total computing resources: 
 

𝑃2: 𝑚𝑖𝑛 𝐶௧௢௧௔௟ ሺ𝑥ሻ ൌ 𝑚𝑖𝑛 ෍ሺ1 െ 𝑥௜ሻሾሺ𝛼
𝑀௜

𝑓௜
localሻ ൅ 𝛽𝑘ሺ𝑓௜

௟௢௖௔௟ሻଶሿ

௜ୀே

௜ୀଵ

 

൅𝑥௜ሾ𝛼
𝐷௜

𝑅௜
൅ 𝛼

𝑀௜

𝑓௜
௘ௗ௚௘∗ ൅ 𝛽

𝑝௜𝐷௜

𝑅௜
ሿ 

𝑠. 𝑡. 

𝐶1: 𝑥௜∈ሾ0,1ሿ, 𝑖 ∈ ሼ1,2, . . . , 𝑁ሽ 

𝐶2: ෍ 𝑓௜
௘ௗ௚௘ ൏ 𝑓௘ௗ௚௘

௠௔௫

௜∈௎

 

(19)
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The model described above represents a 0–1 programming model, Attaining the optimal 
solution for this problem becomes challenging, especially with concurrent large-scale tasks. 
Consequently, in meeting multi-objective constraints, a mixed sine-cosine optimization algorithm 
can be deployed to identify suboptimal solutions for the problem. 

4. Computing offloading decision based on SCAGA 

4.1. Sine and Cosine Optimization Algorithm (SCA) and its improvement 

The Sine and Cosine Optimization Algorithm (SCA) is a stochastic optimization method 
suitable for addressing the optimization challenges inherent in computing offloading decisions within 
MEC systems. The optimization process in SCA entails two key stages: during the exploration stage, 
the algorithm rapidly explores feasible regions within the solution space by incorporating specific 
random solutions; in the exploitation stage, the random solutions undergo gradual changes, with a 
slower rate of change compared to the exploration phase. 

In the Sine and Cosine Algorithm (SCA), the initial candidate solution is randomized. Then, the 
value of the current solution in each dimension is updated through a combination of the sine or 
cosine function along with random factors. The update equation is shown below: 

 
𝑋௜

௧ାଵ ൌ ቊ
𝑋௜

௧ ൅ 𝑟ଵ ∗ 𝑠𝑖𝑛ሺ 𝑟ଶሻ ∗ |𝑟ଷ𝑃௜
௧ െ 𝑋௜

௧|, 𝑟ସ ൏ 0.5
𝑋௜

௧ ൅ 𝑟ଵ ∗ 𝑐𝑜𝑠ሺ 𝑟ଶሻ ∗ |𝑟ଷ𝑃௜
௧ െ 𝑋௜

௧|, 𝑟ସ ൐ 0.5
 (20)

In the formula (20), 𝑋௜
௧ represents an individual with the i-th dimension and the t-th iteration; 

𝑟ଶ is a random number between 0 and 2𝜋; 𝑟ଷ is a random number between 0 and 2; 𝑟ସ is a random 
number between 0 and 1; 𝑃௜

௧ represents an optimal individual with the i-th dimension and the t-th 
iteration。𝑟ଵ can be obtained from the following equation: 
 

𝑟ଵ ൌ 𝑎 െ ሺ𝑡
𝑎
𝑇

ሻଶ (21)

In Eq (21), a smaller value of A will help enhance the local development ability of algorithm, 
while a larger value of A will help improve the global exploration ability of algorithm. In recent 
years, SCA algorithm has been widely used in various engineering fields because of its excellent 
performance in exploration ability. On the basis of formula (21), this paper rewrites 𝑟ଵ as: 

 
𝑟ଵሺ𝑡ሻ ൌ 𝑎௦௧௔௥௧ െ ሺ𝑎௦௧௔௥௧ െ 𝑎௘௡ௗሻଶ ∗ lnሺ1 ൅

ሺ𝑒 െ 1ሻ ∗ 𝑡
𝑇

ሻ (22)

𝑎௦௧௔௥௧ ൌ 1  and 𝑎௘௡ௗ ൌ 0  are the initial and final values of control parameter 𝑎 
(𝑎௦௧௔௥௧>𝑎௘௡ௗ ൒ 0). It can be seen from formula (22) that 𝑟ଵሺ𝑡ሻ changes nonlinearly with the 
increase of iterations, which can effectively balance the exploration and development capabilities of 
SCA. 

In order to increase SCA’s global collection and search ability and escape local optimal ability, 
Levy flight strategy is introduced in this paper, which makes the algorithm more randomness in the 
optimization process and avoids the algorithm falling into local optimal. 
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𝛿௨ ൌ ሾ
୻ሺଵାఛሻ ୱ୧୬ቀ

ഏഓ
మ

ቁ

୻ቀ
భశഓ

మ
ቁఛ∗ଶ

ഓషభ
మ

ሿ
భ
ഓ,𝛿௩ ൌ 1 (23)

 𝑙𝑒𝑣𝑦ሺ𝜏ሻ ൌ
𝑢

|𝑣|ିఛ (24)

In formula (24), 𝑢 ∼ 𝑁ሺ0, 𝛿௨ሻ,𝑣 ∼ 𝑁ሺ0, 𝛿௩ሻ, take τ = 1.5. 
In this paper, Levy flight strategy is added on the basis of formula (20), so formula (20) is 

rewritten as: 

 
𝑋௜

௧ାଵ ൌ ቊ
𝑋௜

௧ ൅ 𝑟ଵሺtሻ ∗ 𝑠𝑖𝑛ሺ 𝑟ଶሻ ∗ |𝑟ଷ𝑃௜
௧ െ 𝑋௜

௧| ൅ 0.1 ∗ 𝑙𝑒𝑣𝑦ሺ𝜏ሻ, 𝑟ସ ൏ 0.5
𝑋௜

௧ ൅ 𝑟ଵሺtሻ ∗ 𝑐𝑜𝑠ሺ 𝑟ଶሻ ∗ |𝑟ଷ𝑃௜
௧ െ 𝑋௜

௧| ൅ 0.1 ∗ 𝑙𝑒𝑣𝑦ሺ𝜏ሻ, 𝑟ସ ൐ 0.5
 (25)

4.2. SCAGA algorithm 

The solution of the computing offloading model proposed in this article consists of a binary 
structure composed of {0, 1} elements. Due to its alignment with the genetic algorithms’ gene 
concept, this enables genetic algorithms to bolster local development capabilities and enhance 
algorithm accuracy. Following the acquisition of an excellent suboptimal solution group in SCA, 
diverse solutions are chosen as the genetic algorithm’s genome, and various operations, including 
selection and mutation, are employed to ultimately yield an outstanding binary solution. 

Since the decision structure for computing offloading is: 𝐴 ൌ ሼ0, . . . . . . ,1ሽ, which is highly 
similar to the structure of genes in genetic algorithms. In the mutation step of the genetic algorithm, 
each decision element undergoes a certain probability of mutation (mutation probability 𝜍 ൌ 0.05). 
Since the coupling relationship between each decision variable, the mutation of each gene locus will 
have a certain impact on the offloading utility. The specific steps of genetic mutation are shown in 
the following Figure 2. 

1 0 0 1 0 1 0 0 0 1

1 0 0 0 0 1 0 1 0 1

Genetic 
variation

Genetic 
variation

SCA sub-optimal 
solution

Latest solution 
of SCAGA

Offload to the edge 
server

Local execution

 

Figure 2. Genetic variation diagram. 
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4.3. SCAGA architecture 

The SCAGA algorithm integrates the gene mutation of the genetic algorithm and roulette wheel 
selection method on the basis of the SCA optimization algorithm, and structurally optimizes the 
offloading decision based on the SCA optimization algorithm. The specific process is shown in 
Figure 3. 

0 1 0 1 1 0 0 1

0 1 0 1 1 0 0 1

0 1 0 1 1 0 0 1

Duplicate 
multiple

…
…

Optimal individual of 
SCA algorithm with 
Levy flight strategy

Bit-by-bit variation
Variation probability =0.05

The calculation cost of each 
individual is recalculated 
according to formula (19)

Find the individual with the 
lowest fitness value

Using meritocracy,
Elite ratio 100%

Whether it is
 better than the original 

optimal solution

No

Yes

The optimal solution information is 
stored in the optimal solution group

Is the number of 
iterations reached?

The optimal individual of this 
iteration replaces the original 

solution individual

No

Output the optimal solution 
of the optimal solution set

Replace the 
original solution 
with the optimal 

one from the 
previous iteration

Yes

 

Figure 3. Genetic variation diagram. 

The specific algorithm flowchart is as follows: 
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Input algorithm 
parameters

Random strategies generate 
initial populations

The calculation cost of the individual is 
calculated and sorted according to 

formula (19)

The individual positions are updated 
according to the sine-cosine update equation 

combining nonlinear strategy and Levy 
flight strategy

The calculation cost of the individual is 
calculated and sorted according to formula 

(19)

New individuals are selected to 
form the initial population

Is the number of 
iterations reached?

Output the optimal 
individual

Using the elite strategy, the 
sub-optimal solution group is 

reconstructed

All individual positions are 
updated using a dimensional-by-

dimension variation strategy

The optimal solution 
group is stored

Is the number of 
iterations reached?

Output the optimal 
individual of the optimal 

solution set

Select the best 
individual

No NoYes

Yes

 

Figure 4. Flow chart of SCAGA algorithm. 

5. Experiment and analysis 

In order to verify the performance of SCAGA, local computation offloading algorithm (LA), 
random offloading algorithm (RA), computation offloading algorithm based on sine and cosine 
optimization algorithm (SCA), computation offloading algorithm based on genetic algorithm (GA), 
computation offloading algorithm based on COSCA [21], and complete offloading algorithm (AA) 
were selected. Under the same experimental conditions and environment, comparisons were made on 
indicators such as system latency, user energy consumption, and computational costs. 

All experiments were implemented using Python programming. The operating system of 
experimental environment is Windows 10 64 bit, and the hardware configuration is AMD Ryzen R5 
5600 CPU with 16GB of memory.  

5.1. Experimental parameter settings 

The simulation scenario for SCAGA is depicted in Figure 1, and all simulation parameters are 
randomly generated within the specified range, as illustrated in Table 2. Each decision-making 



6349 

Mathematical Biosciences and Engineering  Volume 21, Issue 6, 6336–6358. 

method underwent 10 simulations, and the results were then averaged across these 10 experiments. 
The communication parameters adhere to the specifications of the third-generation partnership 
project [22]. 

Table1. Experimental parameter settings. 

Parameters Values 

Computing power of mobile device (GHz) 1–1.2 

Computing power of edge server (GHz) 40 

Data volume of task (Mb) 0.1–1.2 

Computing intensity of task (Hz) 600–1200 

Transmission power of mobile device (W) 0.5 

Transmission channel gain (dB) 137 + 30*𝑙𝑜𝑔ଵ଴ 𝑑 ሾ22ሿ 

Transmission distance (m) 0–1000 

Population size 20 

Number of iterations 60 

Gaussian channel noise (W) 2 ൈ 10ିଵଷ 

5.2. Impact of IMTE quantity on Calculated cost 

The purpose of this experiment is to compare the offloading efficiency of various algorithms 
under different task quantities, including the system latency and the energy consumption of mobile 
user. 

This experiment sets the computing power of MEC to 40GHz, 𝛼 ൌ 0.8，𝛽 ൌ 0.2. Test the 

Calculated cost generated when the number of mobile users is 20, 25, 30, 35, 40, 45, and 50. The 
experimental results are shown in Figure 5 and Table 2. 

 

Figure 5. IMTE quantity - Calculated cost of different algorithms. 
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Table2. IMTE quantity - Calculated cost relationship table. 

In mobile edge computing, the decision-making performance of the full offload algorithm (AA) 
gradually declines as the number of mobile users increases. Initially, the local offload algorithm (LA) 
demonstrates the poorest performance with a small number of mobile users; however, as the user 
count grows, its calculated cost gradually improves. This shift occurs due to the finite nature of 
resources available on edge servers—a scenario in which, if all users opt for offloading their 
computing tasks, the edge servers allocate fewer computing resources compared to local computing 
resources. 

Other optimization algorithms such as random offloading algorithm (RA), GA algorithm, 
COSCA algorithm, and SCA algorithm are also superior to AA algorithm and LA algorithms. The 
offloading scheme based on SCAGA algorithm has the best performance, compared to the offloading 
schemes of AA algorithm, LA algorithm, RA algorithm, GA algorithm, COSCA algorithm, and SCA 
algorithm. When the number of IMTEs is 35, their Calculated cost decreases by 32.76, 33.51, 15.95, 
13.87, 3.24 and 5.71%, respectively. Therefore, in the unloading problem of edge computing 
environment, the unloading scheme based on SCAGA algorithm has a great advantage. And during 
the process of increasing the number of IMTEs from 20 to 50, the SCAGA based offloading scheme 
still outperforms the comparison algorithms listed in the article. As the number of IMTEs continues 
to increase, the benefits of SCAGA based offloading schemes become more apparent compared to 
other comparative algorithms. 

5.3. Impact of IMTE quantity on system latency 

Table 3 and Figure 6 show the influence of the number of IMTE on the calculation delay. 
Choosing midpoint 35 [20, 50] as the value of IMTE helps to observe the sensitivity of the system to 
this variable and to some extent represents the entire range. The experimental results show that in 
terms of handling system latency, the offloading scheme based on SCAGA algorithm reduces system 
latency by 33.69, 34.55, 10.39, 8.86, 3.17 and 3.83% respectively compared to AA, LA, RA, GA, 
COSCA and SCA, demonstrating certain advantages. 

Regarding the impact of the increase in the number of IMTEs on computation latency, it can be 
observed that as the number of IMTEs increases, the computation latency of each algorithm also 
shows a corresponding increasing trend. However, with an increase in the number of IMTEs, the 
offloading scheme based on the SCAGA still maintains a competitive advantage over other 
algorithms. This can be attributed to the fact that the SCAGA is more effectively adapted to the 

 Calculated cost 
IMTE quantity 20 25 30 35 40 45 50 
AA 3.14 4.63 6.73 8.76 11.56 14.72 17.51 
LA 5.76 6.81 8.36 9.43 10.90 12.37 13.29 
RA 3.88 4.72 5.94 7.46 8.49 10.87 11.50 
GA 3.31 4.63 5.68 7.28 8.59 10.73 11.27 
COSCA 3.00 3.99 5.34 6.48 7.97 9.43 10.43 
SCA 3.34 4.30 5.51 6.65 8.09 9.49 10.46 
SCAGA 2.91 3.90 5.16 6.27 7.77 9.20 10.18 
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characteristics of large-scale tasks, thus exhibiting better robustness and effectiveness in handling 
system delays. Therefore, the unloading scheme based on SCAGA shows obvious potential 
advantages in edge computing environment, especially in processing system delay. These results 
provide important research reference value for task scheduling and optimization of SCAGA in edge 
computing environment. 

The relevant experimental results are shown in Figure 6 and Table 3. 

Table 3. Calculated delay-IMTE quantity relationship table. 

 

Figure 6. Calculated delay-IMTE quantity relationship diagram. 

5.4. Impact of computing resources in edge server on Offload effect 

As shown in Table 4 and Figure 7 (The experimental parameters are set to  𝛼 ൌ 0.8，𝛽 ൌ 0.2), 

overall, with the increase of MEC computing resources, the computational cost based on AA 
continues to decrease and gradually surpasses that of LA. This experiment proves that with the 
increase of computing resources, mobile users will obtain less computing latency and energy 

 Calculated delay /s 
IMTE quantity 20 25 30 35 40 45 50 
AA 4.03 6.94 8.98 12.88 15.39 19.34 24.66 
LA 6.44 9.02 9.81 12.03 12.72 14.22 16.36 
RA 4.25 6.36 7.88 9.53 10.24 11.87 14.61 
GA 5.47 7.36 7.62 9.37 10.68 11.65 14.12 
COSCA 3.61 5.73 6.69 8.82 9.69 11.25 13.38 
SCA 3.71 5.9 6.79 8.88 9.67 11.18 13.35 
SCAGA 3.43 5.6 6.51 8.54 9.71 10.83 12.97 
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consumption when offloading computing tasks to MEC. With the increase of MEC computing 
resources, the computing costs of offloading schemes based on AA, LA, RA, GA, COSCA, SCA, 
and SCAGA are gradually decreasing. In the process of linear increase of MEC computing resources, 
the computing costs of offloading schemes based on SCAGA algorithm are always lower than those 
based on AA, LA, RA, GA, COSCA, and SCA. Compared to GA based offloading solutions, the 
computational cost of SCA based offloading solutions will continue to increase. The computational 
cost of COSCA based offloading schemes is much lower when MEC resources are limited compared 
to SCAGA based offloading schemes. As MEC resources continue to increase, the computational 
cost of COSCA based offloading schemes gradually approaches that of SCAGA based offloading 
schemes. This indicates that the offloading scheme based on SCAGA has strong robustness and 
optimization in the process of constantly changing MEC resources. 

Table 4. Table of the impact of computing resources on Calculated cost. 

 

Figure 7. Diagram of the impact of computing resources on Calculated cost. 

  

 Calculated cost 

computing resource/GHz 10 20 30 40 50 60 70 

AA 34.15 17.19 11.94 8.84 7.20 6.44 5.34 

LA 9.56 9.58 9.52 9.57 9.59 9.51 9.59 

RA 12.84 9.67 8.82 6.97 6.97 6.59 6.34 

GA 10.62 8.31 7.71 7.15 6.81 6.55 6.83 

COSCA 9.99 8.37 7.66 6.59 6.14 5.75 5.11 

SCA 8.74 7.90 7.48 6.73 6.32 6.02 5.81 

SCAGA 8.66 7.81 7.30 6.37 5.94 5.59 5.00 
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5.5. Impact of different computational intensities on offloading utility Sub-subheading 

As shown in Table 5 and Figure 8, when the number of IMTEs is 35, α = 0.8, β = 0.2 Under 
experimental conditions with MEC computing resources of 40GHz, simulation results show that with 
the increase of computing task intensity (computing cycle required for computing tasks), the 
computing cost of GA, COSCA, SCA based offloading schemes will not change dramatically with 
changes in computing tasks. This indicates that offloading schemes based on GA, COSCA, and SCA 
have certain robustness. At the same time, it can be seen that the computational cost of the SCAGA 
based uninstallation scheme is lower than that of the AA, LA, RA, GA, COSCA, and SCA 
uninstallation programs. Compared with the offloading schemes based on AA, LA, RA, GA, COSCA, 
and SCA, the computational cost of the proposed offloading scheme in this paper is roughly reduced 
by 27.3, 32.2, 12.2, 10.5, 4.1 and 4.6%, respectively. 

Table 5. Table of the impact of computing intensity on Calculated. 

 

Figure 8. Computing intensity-offloading utility diagram. 

  

 Calculated cost 
computing intensity/GHz 0.2 0.4 0.6 0.8 1.0 1.2 
AA 8.82 8.76 8.64 9.10 8.54 9.22 
LA 9.51 9.41 9.20 9.75 9.13 9.92 
RA 7.34 7.00 7.15 7.54 7.59 7.34 
GA 7.21 6.89 7.05 7.42 7.12 7.38 
COSCA 6.58 6.56 6.37 6.78 6.38 7.03 
SCA 6.71 6.62 6.47 6.88 6.58 7.21 
SCAGA 6.57 6.35 6.17 6.52 6.18 6.82 
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5.6. The impact of delay parameter (𝛼) and energy consumption parameter (𝛽) on the Calculated 
cost 

This section of the experiment is a simulation experiment conducted in an environment with 
MEC computing resources of 40GHz and 35 tasks. In order to explore the effects of latency and 
energy consumption parameters on computational costs in the offloading scheme based on the 

SCAGA algorithm, this section set up three sets of experiments (Experiment 1: 𝛼 ൌ 0.8，𝛽 ൌ 0.2, 

Experiment 2: 𝛼 ൌ 0.5，𝛽 ൌ 0.5, Experiment 3:𝛼 ൌ 0.2，𝛽 ൌ 0.8). The specific experimental 

results are shown in Figure 9. From Figure 9, it can be concluded that under the same experimental 
environment, the larger the delay parameter, the higher its corresponding computational cost. 
Conversely, the smaller the delay parameter, the lower its corresponding computational cost. 
Experimental parameters and energy consumption parameters do not require optimization algorithms 
for optimization. The delay parameters and energy consumption parameters are considered by mobile 
users based on the network environment and their own battery level. If the delay sensitivity of the 
task is strong, the delay parameters can be adjusted higher. If the battery level of the task is low or 
the IMTE needs to work for a long time and consumes more power, the high energy consumption 
parameters can be adjusted. 

 

Figure 9. The impact of weight changes on computational costs. 

5.7. Comparison of convergence of various algorithms 

This section provides a thorough analysis of the convergence and accuracy of the proposed 
SCAGA algorithm. In this section of the simulation experiment, the experimental parameters are set 
to a. In this section, we will analyze the convergence of the algorithm in detail through two 
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simulation experiments, 𝛼 ൌ 0.8，𝛽 ൌ 0.2 and The number of IMTEs is set to 35. Through 

in-depth comparison of the iterative graphs of the algorithms, it was found that the SCAGA 
algorithm exhibited good convergence. Specifically, the convergence of the SCAGA algorithm far 
exceeds that of traditional genetic algorithms (GA) and is slightly better than the COSCA algorithm. 
This indicates the improvement of our proposed algorithm compared to traditional algorithms, and it 
has a faster convergence speed when solving problems. 

In addition, SCAGA also demonstrates outstanding performance in terms of accuracy. The 
experimental results show that the accuracy of SCAGA algorithm is much higher than SCA and GA 
algorithms, and slightly better than COSCA algorithm. This means that our algorithm can more 
reliably find the optimal solution or approach the optimal solution, providing more reliable and 
effective support for solving practical problems. 

These findings not only emphasize the potential of the SCAGA algorithm in solving 
optimization problems, but also demonstrate that our method has achieved better performance in the 
optimization process compared to traditional methods and other improved algorithms. The algorithm 
iteration diagrams of each comparative algorithm are shown in Figures 10, respectively 

 

Figure 10. Algorithm iteration diagram. 

5.8. The effect of the number of tasks per minute on the computational cost 

All of the above experiments were conducted with one computing task per IMTE at a certain 
point in time. The experimental conditions in this section were set as IMTE would produce multiple 
tasks within one minute. In this experiment, 5, 10, 15, 20, 25 and 30 computing tasks were set within 
one minute, and the number of IMTE was set to 35. α = 0.8, β = 0.2, the total computing resources of 
the edge server is 40 GHz, and other simulation parameters are set according to Table 1. The 
following figure shows the computational cost reduction of SCAGA’s unloading scheme compared to 
the unloading scheme of other comparison algorithms. That is, the calculation cost of SCAGA 
scheme minus the calculation cost of other schemes. 
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(a)Comparison of SCAGA with baseline 
algorithms 

(b)Comparison of SCAGA and swarm 
intelligence algorithm 

Figure 11. Comparison of SCAGA and other algorithms under multi-task conditions. 

The experiment in this section assumes that each IMTE will generate 5–30 computing tasks per 
minute. According to the above simulation data, the more computing tasks generated per minute, the 
more the unloading scheme of SCAGA will reduce the computing cost of unloading schemes of 
other algorithms, especially those based on AA, LA, RA and GA. SCAGA’s offloading solution will 
get better as the number of computing tasks increases. When the number of computing tasks per 
minute increases, the gap between the computing cost and that of SCAGA is also increasing. When 
the number of tasks per minute is 30, the gap between the computing cost of SCa-based unloading 
scheme and that of SCAGA is 12, which indicates that the more computing tasks per minute, the 
greater the number of computing tasks per minute. The computational cost of SCAGA compared to 
the computational cost of SCA will become more and more obvious. 

6. Conclusions 

For the challenge of computing offloading in a Multi-access Edge Computing (MEC) system 
involving concurrent multitasking, the allocation of computing resources in an edge server is 
considered. This paper introduces a Computing Offloading Strategy based on the SCAGA algorithm. 
The SCAGA algorithm initially employs the cosine optimization algorithm to identify suboptimal 
solutions, and subsequently utilizes the roulette wheel selection method and genetic algorithm’s gene 
mutation approach for continuous iteration and calculation to arrive at the optimal solution. Through 
addressing the task offloading problem in MEC systems, a superior computing offloading decision is 
ultimately achieved. 

Simulation experiments have verified the feasibility of the SCAGA algorithm in computing 
offloading decisions. Compared with other offloading algorithms, the SCAGA can effectively reduce 
system latency, energy consumption of mobile user, and optimize Calculated cost. 
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