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Abstract: Hyperparameter optimization (HPO) has been well-developed and evolved into a well-
established research topic over the decades. With the success and wide application of deep learning, HPO
has garnered increased attention, particularly within the realm of machine learning model training and
inference. The primary objective is to mitigate the challenges associated with manual hyperparameter
tuning, which can be ad-hoc, reliant on human expertise, and consequently hinders reproducibility while
inflating deployment costs. Recognizing the growing significance of HPO, this paper surveyed classical
HPO methods, approaches for accelerating the optimization process, HPO in an online setting (dynamic
algorithm configuration, DAC), and when there is more than one objective to optimize (multi-objective
HPO). Acceleration strategies were categorized into multi-fidelity, bandit-based, and early stopping;
DAC algorithms encompassed gradient-based, population-based, and reinforcement learning-based
methods; multi-objective HPO can be approached via scalarization, metaheuristics, and model-based
algorithms tailored for multi-objective situation. A tabulated overview of popular frameworks and tools
for HPO was provided, catering to the interests of practitioners.

Keywords: hyperparameter optimization; machine learning; deep neural networks; bayesian
optimization; survey

1. Introduction

Machine learning (ML) is a discipline of artificial intelligence (AI) that uses the theory of statistics
in building mathematical models to program computers to “learn” or “discover” algorithms, where an
algorithm is a sequence of instructions for solving a problem or performing a computation, to optimize
the performance criteria for given tasks using example data or past experiences [1]. ML has found
applications across various domains, such as image recognition [2], healthcare [3], natural language
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processing [4], games and strategy [5], etc. In ML models, parameters fall into two categories: model
parameters (e.g., weights and biases of the connections between neurons of a neural network, centroids
in k-means clustering) and hyperparameters (e.g., learning rate, number of hidden layers of a neural
network, number of clusters in k-means clustering). While model parameters can be learned and adapted
during the training process based on the training dataset, hyperparameters serve as external configuration
variables that are to be determined before the training commences. The tuning of hyperparameters
has played an essential role both from the methodological perspective, e.g., deep neural networks and
shallow models, as well as from the application aspect, with models derived from computer vision,
natural language models, speech, etc. Though it seems trivial at first glance that hyperparameters can be
tuned by humans, in modern systems, manual tuning can be ineffective and is nearly impossible when
dealing with large-scale hyperparameters.

Differing from the human tuning process, which can be tedious and heavily dependent on human
expertise and experience, hyperparameter optimization (HPO) aims to automatically tune the relevant
hyperparameters for the system, where the performance is measured by certain metrics, e.g.,
classification accuracy for a classifier model could be tuned to a better point. Apart from saving human
labor and boosting model performance to its fullest potential, another advantage lies in enhancing the
evaluation of different models. This can be achieved by diligently fine-tuning their respective
hyperparameters, even when the models differ from one another. In contrast, the traditional
trial-and-error procedure by humans can be ad-hoc and less reproducible, posing challenges in the
evaluation process.

In recent years, deep learning (DL) techniques have reached remarkable achievements on various AI
tasks, including image classification [6], language modeling [4], and speech recognition [7]. However,
these models are sensitive to diverse task-specific configurations, costing substantial expert efforts to
redesign them through a trial-and-error process. Automated machine learning (AutoML) [8] has been
proposed to tackle this problem in areas such as data preparation, feature engineering, model generation,
and model evaluation.

Given the search space, optimization methods in model generation can be classified into two
categories: HPO and architecture optimization. In this paper, we mainly focus on HPO algorithms. A
generic HPO algorithm for an unknown objective function f : X −→ R, where X ∈ Rd and d is the size of
design space of interest, is to find the x, a hyperparameter configuration, e.g., learning rate and batch
size that globally minimizes f :

x∗ = arg min
x ∈X

f (x). (1.1)

Although gradient descent [9] is popular in DL, which is capable of tuning the learning rate, the cases
where it is possible to obtain the training gradient of hyperparameters are rare. Therefore, traditional
HPO frameworks treat f as a non-convex black-box function and search for optimum without leveraging
derivatives. As shown in Figure 1, classical HPO algorithms cover grid search and random search [10],
metaheuristic search [11, 12], Bayesian optimization [13], etc.

Unfortunately, despite the success of liberating humans from the loop [14], most conventional HPO
algorithms follow a sequential querying approach and therefore suffer delays of the convergence of
neural network training, which is always computationally resource-intensive. For instance, the whole
training process for the once-for-all (OFA) network [15] took 1200 GPU hours with V100 GPUs. The
community has thus proposed many acceleration methods to shorten the optimization process and avoid
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unnecessary repetition. Another drawback of classical HPOs is that they often yield fixed configurations
throughout the entire run of AI models, even though the optimum may change at different phases.
To tackle this, some dynamic algorithm configuration (DAC) methods [16–19] emerge to optimize
on-the-fly, i.e., dynamically tune both parameters and hyperparameter schedules during the training
procedure. In practical settings, there can be more than one metric to optimize beyond the conventional
prediction accuracy (cf. Eqs (1.1) and (5.1)). Additional considerations such as space/time overheads
and adherence to specific business constraints can play pivotal roles. The field has thus recently
witnessed a growing interest in multi-objective HPO (MOHPO), the HPO counterpart to multi-objective
optimization (MOO) [20, 21].

Figure 1. An overview of the lines of research around the topic of HPO surveyed in this paper:
classical optimization methods in Section 2, acceleration techniques in Section 3, DAC in
Section 4, and MOHPO in Section 5.

As a well-established field, HPO has attracted wide and growing attention over the decades from both
academia and industry. There exist numerous surveys covering a range of related topics, including the
specific topic of HPO itself [22–27], some closely related topics, e.g., Bayesian optimization [14, 28–30],
as well as topics of broader scopes such as AutoML [8, 31, 32].

Existing surveys on general HPO [22–24, 26, 27] introduce HPO algorithms by categorizing them
into several major classes: grid search (GS), random search (RS), Bayesian optimization (BO) and
variants, multi-fidelity or Hyperband, population- or evolutionary-based, and gradient-based. This
work takes a distinctive approach (Figure 1) and considers these algorithms as (i) classical methods
for HPO, i.e., simple searches, BOs, and metaheuristics, (ii) techniques for acceleration, i.e., multi-
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fidelity, bandit-based, and early stopping, (iii) DAC optimizers that are either gradient-, population-, or
reinforcement learning-based, and (iv) strategies for MOHPO. Notably, DAC and MOHPO algorithms
in particular have been either minimally explored or entirely overlooked in [22–24, 26, 27]. A list
of popular frameworks and tools for HPO is compiled and tabulated, serving as an accessible guide
for individuals new to the field, students, researchers, or practitioners in search of diverse options or
alternatives for their HPO tasks or workflow integration.

This survey is structured as follows. In Section 2, we provide the basics of the primary classical
algorithms in HPO. Section 3 then delves into strategies for accelerating these conventional algorithms
from different perspectives. This is followed by Sections 4 and 5, where we explore the increasingly
recognized DAC and MOHPO algorithms, respectively. After presenting popular tools and frameworks
for HPO in Section 6.1, exploring applications in Section 6.2, and providing further discussions in
Section 6.3, the paper is concluded in Section 7.

2. Classical optimization methods

In this section, we introduce three kinds of optimization methods that are commonly applied in HPO.
These methods have to handle two key considerations: (i) the exploration vs. exploitation trade-off,
which refers to the budget spent on exploring unknown search space or on exploiting known search space,
and (ii) the inference vs. search trade-off, referring to the overhead used to analyze existing information
to guide the search process versus the budget allocated for the search itself. Table 1 summarizes the
classical optimization methods.

Table 1. A concise overview of primary classical optimization methods. The column
definitions are as follows: Variable: the types of hyperparameters the method can address.
Hierarchy: whether the method can handle complex hierarchy search spaces. Parallelizability:
whether the method can propose more than one candidate at the same time. Certain methods,
such as sequential model-based algorithm configuration (SMAC), can build the model in
parallel but propose only one candidate at a time. Exploration and Exploitation: how the
method explores unknown areas, exploits known areas, and manages the trade-off between
them. We assume that there are d hyperparameters with each of them having n distinct values.
Note that this table covers only standard algorithms, which can easily be extended. See
Section 2 for more details.

Method Variable
Hier-
archy

Parallel-
izability

Time
complexity

Exploration Exploitation

GradS Continuous × × O(nd) × Gradient descent
GS Continuous, Discrete, Categorical ✓ ✓ O(nd) Grid ×

RS Continuous, Discrete, Categorical ✓ ✓ O(n) Random ×

BO-GP Continuous × × O(n3) Balanced by acquisition function
SMAC Continuous, Discrete, Categorical ✓ × O(n log n) Balanced by acquisition function

BO-TPE Continuous, Discrete, Categorical ✓ × O(n log n) Balanced by acquisition function
GA Continuous, Discrete, Categorical × ✓ O(n2) Crossover/Mutation Selection
ES Continuous × ✓ O(n2) Recombination/Mutation Selection
ω-PSO Continuous × ✓ O(n log n) Balanced by parameter ω
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2.1. Simple search scheme

2.1.1. Gradient-based search (GradS)

Gradient descent-based methods are extensively used for optimization problems including the
HPO task, which often involves non-convex optimization, and a local optimum is acceptable.
Hypergradients (HGs) refer to the gradients of the model selection criterion such as cross-validation
performance and validation error with respect to hyperparameters. With hypergradients, gradient descent
can be employed to handle a large number of hyperparameters efficiently.

Reverse-mode differentiation (RMD) [33], known as backpropagation in DL, has been the standard
method for computing gradients with respect to parameters in ML models. It was introduced to
HPO problems to compute hypergradients [34]. While algorithms for computing hypergradients for
optimization methods, including gradient descent, were derived in Domke [35], their impracticality
for DL models due to high memory consumption for storing all intermediate variables has been
recognized. In Maclaurin et al. [36], reverse-mode differentiation of stochastic gradient descent (SGD)
with momentum has been proposed, overcoming the problem by computing intermediate variables
during the reverse pass. It is further improved in Pedregosa [37] with the adoption of approximate
gradients. In Franceschi et al. [38], reverse-mode algorithms for hypergradients are explained from
the perspective of Lagrangian formulation, and a forward-mode algorithm is introduced for situations
involving a small number of hyperparameters. Later, Lorraine et al. [39] devised a scalable gradient-based
HPO technique capable of handling millions of hyperparameters. Reverse-mode and forward-mode
hypergradient algorithms are summarized in Algorithms 1 and 2, respectively, based on the derivations
in Franceschi et al. [38]. In these two algorithms, Φ represents parameter optimization methods such as
gradient descent, w denotes parameters or weights of DL models, x signifies hyperparameters, and E is
the validation objective.

Algorithm 1: Reverse-Hypergradient (credit to Franceschi et al. [38])
Input: Initial hyperparameter x, initial parameters w0

// Train parameters

1 for t = 1 to T do
2 Update wt ←− Φt(wt−1, x)

// Compute hypergradients reversely

3 ∆x←− 0
4 αT ←− ∇E(wT )
5 for t = T − 1 downto 1 do
6 ∆x←− ∆x + αt+1

∂Φt+1
∂x

7 αt ←− αt+1
∂Φt+1
∂wt

Output: Hypergradients ∆x
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Algorithm 2: Forward-Hypergradient (credit to Franceschi et al. [38])
Input: Initial hyperparameters x, initial parameters w0

1 ∆x←− 0
2 Z0 ←− 0 // Zt =

∂wt
∂x

// Train parameters and compute hypergradients forwardly

3 for t = 1 to T do
4 wt ←− Φt(wt−1, x)
5 Zt ←−

∂Φt
∂wt−1

Zt−1 +
∂Φt
∂x

6 ∆x←− ∇E(wT )ZT

Output: Hypergradients ∆x

2.1.2. Grid search (GS)

GS is the most basic HPO method. It requires the user to select a finite subset for each hyperparameter
and then exhaustively evaluate every possible combination point to find the optimum. GS inherently
supports parallel implementation but fails in efficiency once the search space is large or objective
dimensions get high, as the number of combinations to evaluate grows exponentially. To tackle these
challenges, a multi-scale grid approach is used in Hsu et al. [40], where a coarse grid is first applied to
identify a good region, and then a finer grid is conducted on that region. Alternatively, direct search [41]
queries only the neighbors around current points to update the optimum. When neither improvement
nor degradation is observed in any parameter, the search step is reduced until convergence.

Figure 2. Comparison of GS and RS. As reported in Bergstra and Bengio [10], it is always
a few hyperparameters dominating the data. The limitations of GS stem from its inefficient
exploration of influential dimensions. Figure adapted from Bergstra and Bengio [10].

2.1.3. Random search (RS)

Contrary to GS, RS randomly and independently samples candidates from the search space until the
defined budget is exhausted. While GS is inefficient in high dimensions, RS is less affected, benefiting
from lower effective dimensionality where only a few hyperparameters have an influence on the
performance [10]. Given the same budget, RS can explore a larger area of the effective dimensions
compared to GS, leading to better performance. As shown in Figure 2, RS tends to explore a broader
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space than GS with a limited budget, avoiding lingering in less promising areas. Bergstra and Bengio [10]
have proved empirically and theoretically that RS is more practical than GS while in some cases
sophisticated methods may bring little advantage over RS. Additionally, RS is readily resource-allocated
since it can be extended by further samples, and the probability of sampling in different regions can be
adjusted manually so exploration of valuable regions can be prioritized. While RS may lead to suboptimal
solutions, its performance can be arbitrarily close to the optimum in expectation when provided with
enough budgets.

2.2. Bayesian optimization (BO) with surrogates and acquisitions

BO [13] is an efficient global black-box optimization framework for expensive functions. Recently, it
has gained widespread application in HPO problems and achieved state of the art results across various
ML domains like image classification [13] and speech recognition [42].

BO is the most popular sequential model-based optimization (SMBO) algorithm, which has proven
its superiority in optimizing expensive black-box functions [14] and exhibits impressive performance
on even hard-to-tune hyperparameters [43]. Figure 3 illustrates a general sequential optimization
framework that utilizes a model learned from observations to recommend promising candidates, which
then gets queried to generate feedback for updating the model.

Figure 3. A general pipeline of SMBO. When t ≤ N, it is the initialization stage where the
observation datasetD = {(xt, yt)} is populated by points xt sampled randomly from the search
space X. When t > N, candidate points xt ∈ X are selected using the acquisition function,
which is guided by the posterior distribution derived from the surrogate model.

A classic BO framework comprises a probabilistic surrogate model and an acquisition function.
The surrogate model approximates the unknown objective function f based on the observation dataset
D = {(xt, yt)}Nt=1, where xt ∈ X and yt ∈ R are the input and the observation value of f , respectively.
The prior distribution of the surrogate model captures our knowledge about f and is updated with
D to generate a posterior distribution, which provides predictions and uncertainties over the search
space X. The acquisition function α utilizes the posterior distribution to guide the sequential search.
Instead of observing the expensive objective function, BO optimizes the cheap acquisition function
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globally to generate candidates. The main property of the acquisition function is the trade-off between
the exploration of areas with high uncertainty and the exploitation of areas with low predictions (for
minimization task).

One common choice for the surrogate model is Gaussian process (GP) [44], and for the acquisition
function, it is the expected improvement (EI) [45]. We summarize the BO algorithm with GP and EI
in Algorithm 3, where ϕ and Φ denote the standard normal probability density function (p.d.f.) and
cumulative distribution function (c.d.f.), respectively, and f ∗ is the best-known value.

Algorithm 3: Bayesian-Optimization (credit to Shahriari et al. [14])
Input: Initial number N, total number T , noise δn

1 InitializeD = {(xt, yt)}Nt=1 randomly
2 for t = N + 1 to T do

// Recommend candidates by EI

3 Acquire αt = σtϕ(γt) + ( f ∗ − µt)Φ(γt)
4 Sample xt = arg maxx∈X αt

5 Evaluate yt ←− f (xt) + δn // Expensive

6 UpdateDt+1 = Dt ∪ {(xt, yt)}
7 Update f ∗ = min1≤i≤t yi

// Estimate posterior by GP(m,K)

8 µt+1 ←− µ0 + k⊤∗
[
K + σ2

yI
]−1

y

9 σ2
t+1 ←− k∗∗ − k⊤∗

[
K + σ2

yI
]−1

k∗
10 γt+1 ←− ( f ∗ − µt+1)/σt+1

Output: Optimal hyperparameters xT

2.2.1. Surrogate models

The performance of BO significantly hinges on the choice of surrogate model. GP, random forest (RF),
tree-structured Parzen estimator (TPE), and Bayesian neural network (BNN) are the commonly employed
surrogate models for BO. A concise comparison of surrogates is presented in Table 2. A detailed
discussion of these surrogate models follows.

Table 2. Comparison of four common BO surrogate models.

Surrogates Time complexity Fit type

GP O(n3) Regression
RF O(n log n) Regression

TPE O(n log n) KDE and Classification
BNN O(n) Regression

• GP is a nonparametric model that is fully specified by a prior mean function µ0 : X −→ R, which is
usually set to a constant, and a covariance function k : X × X −→ R. Any finite collection of GP induces
a multivariate normal distribution. The marginalization properties of GP enable them to compute
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marginals and conditionals in closed form simply and flexibly. Given the observation datasetDt at step
t, the posterior mean and variance functions are:

µt(x) = µ0(x) + k⊤∗
[
K + σ2

yI
]−1

y (2.1)

σ2
t (x) = k∗∗ − k⊤∗

[
K + σ2

yI
]−1

k∗ (2.2)

where k∗ denotes a vector of covariances between x and all points in Dt, k∗∗ = k(x, x) denotes the
variance of x, and K is the covariance matrix of all points inDt. The property of GP is determined by
the covariance function k, with Mátern 5/2 kernel being the most commonly used.

While BO with GP performs well on real-valued hyperparameters, it has difficulty with discrete, non-
numeric, or conditional hyperparameters. Special kernels are required to address these situations [46].
In addition, GP scales poorly (cubically) with increasing data due to the necessity of the inversion of a
dense covariance matrix. To mitigate this, some sparsification techniques have been proposed. Among
them are sparse pseudo-input GPs (SPGPs) [47], which select a subset of the original dataset as inducing
pseudoinputs to reduce the rank of the covariance matrix and compute the approximate posterior quickly.
Another drawback of the standard GP is its poor scalability with dimensions, limiting the number of
hyperparameters it can tune. The properties of hyperparameter space have been leveraged to design new
kernels, such as cylindrical kernels [48] and additive kernels [49].
•RF, which is used in sequential model-based algorithm configuration (SMAC), models the objective

function using an ensemble of regression trees [50]. The algorithm works as follows: B regression trees
are constructed with n data points randomly sampled with replacement from the dataset of size n. For
each split point of a tree, the split criterion is chosen from a subset of size pd that is randomly selected
from d hyperparameters, where p is a split ratio that defaults to 5/6. When the number of data points on
a node falls below a threshold nmin, the node is set to a leaf and the leaf’s prediction is set to the mean or
median of the data points on it. Given a new hyperparameter configuration, these trees can produce B
predictions for which the mean and variance can be computed.

SMAC can handle continuous, discrete, categorical, and conditional hyperparameters naturally. The
time complexities for fitting and predicting are O(n log n) and O(log n), respectively. The limitation
of data points on leaves and parallel training of trees can further reduce budgets, making RF suitable
for larger datasets compared to GP. The subsampling of hyperparameters also helps it work on high-
dimensional search spaces. However, despite RF’s good predictive performance in the vicinity of
training data, it exhibits poor performance far from the data. In areas with missing data, the variance
can be highly erratic, ranging from very large to very small.
• TPE [51] uses kernel density estimation and classifies observations instead of regression. In

contrast to most approaches modeling P(y | x) directly, TPE considers Bayes’ rule P(y | x) = P(x|y)P(y)
P(x)

and models P(x | y) and P(y). Two densities, l(x) and g(x), are built over the search space X as follows:

P(x | y) =

 l(x), y < y∗

g(x), y ≥ y∗
(2.3)

where y∗ is a predefined percentile determined by a threshold γ such that P(y < y∗) = γ. The
time complexity is O(n log n). The EI acquisition function is then optimized. By construction and
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simplification, we have the result:

αEI(x) ∝
(
γ +

g(x)
l(x)

(1 − γ)
)−1

(2.4)

Based on this expression, when optimizing EIy∗(x), finding the optimum point of g(x)
l(x) suffices and it is

not necessary to model P(y). Since the Parzen estimators are organized in a tree structure, TPE can
handle conditional hyperparameters naturally and outperform GP in structured HPO tasks [52, 53].
• BNN places a distribution over neural network parameters, amalgamating the strengths of neural

networks and probabilistic models [54]. Neural networks have strong capabilities of approximating
continuous functions, extending the applicability of BO to more complex tasks. Probabilistic models
can generate a complete posterior distribution on the predictions, suitable for Bayesian analysis. In
Deep Networks for Global Optimization (DNGO) [55], the prior distribution is put on the weights of
the output layer, while other parameters are learned via point estimation (typically stochastic training).
BOHAMIANN [56] also adopts a BNN to construct the response surface, with weights sampled using a
stochastic gradient Hamiltonian Monte-Carlo (SGHMC) method [57] to evaluate the posterior. BNN is
more scalable than GP and is faster when the dataset is large [55].

2.2.2. Acquisition functions

Leveraging the predictive posterior, acquisition functions recommend the most promising candidate
in the trade-off between the exploitation of known optima and the exploration of uncertainty.

EI is an improvement-based function [14]. It measures both the amount and the probability of
improvement:

αEI(x) = E[max{( f ∗ − f (x)), 0}] (2.5)

When f (x) is normally distributed with mean µ(x) and variance σ(x), the expectation can be computed
analytically as:

αEI(x) = ( f ∗ − µ(x))Φ
(

f ∗ − µ(x)
σ(x)

)
+ σ(x)ϕ

(
f ∗ − µ(x)
σ(x)

)
(2.6)

where ϕ and Φ denote the standard normal p.d.f. and c.d.f., respectively, and f ∗ is the best-known value.
Lower confidence bound (LCB), or upper confidence bound (UCB) for maximization problems [58],

treats uncertainty as an additive incentive. It uses the optimum point of a fixed probability surface
according to the model. In the GP case, LCB is computed as:

αLCB(x) = µ(x) − βσ(x) (2.7)

where β is a control parameter and this function is to be minimized. Some guidelines for choosing β
have been proposed to achieve optimal regret [58].

Information-based policies aim to deduce the position of optimum point x∗ by considering the
posterior distribution P(x∗ | D). Entropy search (ES) [59] selects the point that maximally reduces the
entropy of P(x∗ | D). It measures the expected information gain about the position of x∗:

αES (x) = H(x∗ | D) − Ey|D,x[H(x∗ | D ∪ {(x, y)})] (2.8)

where H(x∗ | D) is the differential entropy of P(x∗ | D), and the expectation is over the predictive
distribution of y = f (x) + δn, where δn is the observation noise. However, this function is intractable and
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is usually approximated by expensive methods such as Monte Carlo (MC) sampling, whose computation
cost is quartic.

Predictive entropy search (PES) [60] reformulates the function of ES with the symmetric property of
mutual information as:

αPES (x) = H(y | D, x) − Ex∗ |D[H(y | D, x, x∗)] (2.9)

where the expectation is over distribution P(x∗ | D). This function is approximated by expectation
propagation and Thompson sampling. The computation cost is cubic, and the performance is not worse
than ES empirically.

Max-value entropy search (MES) [61] uses the information about the optimum value y∗ = f (x∗)
instead of x∗. The expected information gain about y∗ is expressed as:

αMES (x) = H(y | D, x) − Ey∗ |D[H(y | D, x, y∗)] (2.10)

Here, y∗ is sampled via Gumbel distribution or from the posterior distribution, and the expectation is
approximated using MC estimation. The computation cost of MES is much lower since the distribution
P(x∗ | D) is d-dimensional, while P(y∗ | D) is one-dimensional. Empirically, MES performs at least as
well as ES and PES.

2.2.3. Recent BOs

Although optimizers are epoch efficient with little overheads and some parallel versions of algorithms
are now available [13], two common drawbacks still exist [62]: First, the intrinsic observation process
can be time-consuming; second, SMBO provides only fixed hyperparameters. Many methods emerge
to accelerate the vanilla BO as will be discussed in Section 3. Notably, BFO (Bayesian Functional
Optimization) [63] has been proposed to optimize hyperparameters on function spaces. 2-OPT (Two-step
optimal) [64] enables the acquisition functions to look ahead for two steps to alleviate the shortsightedness
of BO. In an attempt to scale BO to high-dimensional domains, while LineBO [65] decomposes iteratively
the global problem into a sequence of one-dimensional sub-problems, TuRBO (trust region BO) [66]
maintains a collection of local BO models and performs search across trust regions centered around the
best solutions. Nguyen and Osborne [67] transform the GP to incorporate more foregone information (e.g.,
cases where classification accuracy is less than 100%). Meanwhile, MiVaBo (mixed-variable BO) [68]
extends BO to optimize variables of mixed types. Several methods, including BOPrO (BO with a Prior
for the Optimum) [69], πBO [70], and PriorBand [71], have been proposed to incorporate expert insights
on promising configurations into BO, using this prior information to guide the search.

2.3. Metaheuristic search

A metaheuristic is a generic or high-level optimization strategy or algorithmic framework designed
to efficiently explore and exploit solution spaces to find approximate solutions to optimization
problems [11]. Metaheuristic search often draws inspiration from natural phenomena, such as evolution
and annealing. In general, metaheuristics make no assumptions about the objective function, and they
do not rely on gradient information, enabling them to tackle non-convex, noncontinuous, and
non-smooth optimization problems. According to the number of solutions they hold, metaheuristics can
be categorized into single-solution-based methods and population-based methods. Population-based
methods run a population of solutions in parallel and evaluate their quality using a fitness function,
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demanding significant computing power. Advances in computer technology and parallel architectures
have facilitated the realization of many algorithms. The distinctions among population-based methods
lie in how they initialize and update populations, with performance being greatly influenced by
parameter settings. This section introduces two types of population-based methods: evolutionary
algorithms and swarm intelligence.

2.3.1. Evolutionary algorithms (EA)

Evolutionary algorithms (EAs) [73] are inspired by Darwin’s evolutionary theory. Generally, EAs
update populations through the crossover of two ancestral individuals and mutation. Genetic
algorithm (GA) [74] is the most commonly used method. As shown in Figure 4, GA typically
represents solutions as chromosomes, often in the form of a fixed-length binary string, and implements
crossover and mutation by simple bit manipulation operations. Two critical parameters in GA are the
probabilities of crossover and mutation. The procedures of GA are as follows: A population with N
individuals is initially generated by randomly initializing chromosomes. Subsequently, a fitness
function, whose outcome often reflects the performance of a configuration, is applied to each individual.
Based on the results, selection, crossover, and mutation are performed on the population to yield a new
generation with N individuals. These two steps are repeated until convergence or some conditions are
met. A majority of innovations of GAs are the selection schemes for producing offspring, including
roulette-wheel, tournament, and ranking selection [75].

Figure 4. Workflow of GAs for HPO.
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In a certain context, evolution strategy (ES) [76] slightly differs from GA by extending the values
of GA’s chromosomes to the real number domain and introducing the heritable step to guide mutation.
Mutation for real numbers is realized by adding noise sampled from a zero-mean normal distribution.
The standard deviations for different genes significantly impact the performance of ES. They can be
kept constant or adjusted dynamically based on the number of generations and performance [77, 78].
Selection in ES involves eliminating the worst individuals to maintain a constant population size. While
ES was originally designed for real numbers, it can be easily extended to other data types, such as
integers [79]. ES prefers exploration to exploitation, so it is less prone to getting stuck in local optima.

CMA-ES (Covariance matrix adaptation evolution strategy) [80] is the most representative and
effective ES algorithm. It dynamically adapts distribution parameters and the step by modifying the
covariance matrix. Differential evolution (DE) [81] inherits from GA but drives the evolution through
mutation based on a differential vector rather than relying on crossover. In the recent decade, EAs have
enlightened optimization methods for neural architecture search (NAS) [8].

2.3.2. Swarm intelligence (SI)

SI algorithms are inspired by the collective behavior of biological groups, including ants, grey
wolves, grasshoppers, etc. [82] Within these groups, each individual has limited capability, but they can
jointly accomplish complex tasks through local interactions without any centralized control.

The particle swarm optimization (PSO) algorithm is arguably the most popular SI paradigm [83].
The vanilla PSO imitates the flocking behavior observed in bird communities to address optimization
problems [84]. In PSO, each particle represents a potential solution to the problem and is defined by a
position and a velocity. The position is initialized randomly, and the velocity starts at zero. A topology
is assigned to the swarm to describe the interconnections among particles, where particles connected to
a specific particle are considered its neighbors. At each step, a particle’s velocity is updated based on
the best positions it and its neighbors have found thus far, and the position is updated accordingly. This
enables particles to search for the optimum in parallel, sharing the current best position and fitness value
with one or more particles to determine their next movements. To prevent the swarm from being trapped
in local optima, mutations are introduced by incorporating slight randomness into the update process.

Additionally, inertia PSO (ω-PSO) [85] introduced the inertia weight ω, a positive constant or
function, to balance the trade-off between exploration and exploitation. The process of standard
ω-PSO is summarized in Algorithm 4 for minimization problems. xi and vi are d-dimensional vectors
representing the position and velocity of particle pi, respectively. r1 and r2 are random variables sampled
from the uniform distribution in the range [0, 1]. In the algorithm, each particle is the neighbor of all
other particles, and thus the topology is a fully connected graph. For alternative topologies, x∗g in the
update formula of vi should be replaced with the best position of pi’s neighbors.
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Algorithm 4: Particle-Swarm-Optimization (credit to Houssein et al. [83])
Input: Particle number N, total steps T , learning parameters c1, c2, ω, fitness function F

1 Initialize particles P = {pi = [xi, vi]}Ni=1
// Local/global best fitness

2 Evaluate { f ∗i ←− F(xi)}Ni=1, f ∗g ←− min1≤i≤N f ∗i
// Local/global best position

3 Initialize {x∗i ←− xi}
N
i=1, x

∗
g

4 for t = 1 to T do
5 for p1 ∈ P to pN ∈ P do
6 Calculate fitness value fi = F(xi)
7 if fi ≤ f ∗i then
8 f ∗i ←− fi

9 x∗i ←− xi

10 Update f ∗g , x∗g
11 for p1 ∈ P to pN ∈ P do
12 vi ←− ωvi + c1r1(x∗i − xi) + c2r2(x∗g − xi)
13 xi ←− xi + vi

14 if error criterion is met then
15 break

Output: Optimal position x∗g

2.4. Summary

Table 1 at the beginning of this section provides a concise overview of classical HPO methods just
discussed. GradS methods are suitable only in situations where the objective functions are differentiable
and obtaining the gradients of hyperparameters is feasible (e.g., learning rate in neural networks). Since
gradient provides only local information, these approaches might converge quickly to a local optimum
instead of a global optimum [16, 27]. GS and RS are conceptually simple and are the most basic HPO
methods. They can both be readily implemented, and since each hyperparameter configuration evaluation
is independent of each other, GS and RS possess the advantage of easier parallelization. In practice, RS is
more efficient than GS for large search space and when some hyperparameters have higher importance
over others in high-dimensional hyperparameter configuration space [10].

In contrast to the simple search schemes above that are either only exploitative (GradS) or
explorative (GS and RS), BO allows the exploration of unknown search space and the exploitation of
promising regions. While BO is an efficient strategy for the global optimization of expensive black-box
functions, its performance fundamentally hinges on the surrogate model and the acquisition function
chosen [13, 86]. Specifically, the quality of BO using GP as the surrogate model, BO-GP, also depends
on the choice of the kernel function. Compared to BOs using other surrogates, e.g., RF, TPE, and BNN,
BO-GP struggles with large dataset and high dimensions and is only applicable to continuous
hyperparameters. Due to the inherently sequential nature of BO algorithms, where the acquisition
function guides the selection of subsequent hyperparameter sets based on the current model [14], it is
challenging to efficiently parallelize the entire optimization process.
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Evolutionary algorithms (EAs, includes GA and ES) and swarm intelligence (SI, includes PSO), owning
to their population-based nature and the independence of evaluation for different individuals, support
parallelization. Similar to BO, they are capable of both exploration (diversification) and exploitation
(intensification). The exploration of GA and ES is primarily driven by crossover (recombination for ES [87])
and mutation, and the exploitation by the selection mechanism; PSO explores by the stochasticity embedded
in its update rules and exploits by the convergence of individuals toward the best-known positions. These
advantages come with the cost of additional considerations. In the case of GA and ES, this entails managing
supplementary hyperparameters like the fitness function and crossover and mutation rates. For PSO, the
challenge lies in careful parameter and topology selection, along with proper population initialization to
mitigate the risk of premature convergence [83].

3. Acceleration techniques

Approaches addressing HPO can be distilled into two main methodological families: model-free
metaheuristic methods and model-based BO methods. Despite the small overheads of meta-guiders, both
conventional metaheuristics and BO methods remain computationally resource-intensive. Specifically,
metaheuristic methods need to maintain a considerably large population to prevent the collapse of the
solution space. On the other hand, BO algorithms suffer from an iterative waiting period due to the
time-consuming observation process throughout the sequential search. To overcome these challenges,
numerous methods have been proposed to accelerate the search process and optimize the allocation of
computational resources.

This section aims to categorize these methods into the following groups: multi-fidelity optimization,
bandit-based algorithm, and early stop. These represent prominent lines of research in the ongoing
efforts to enhance the efficiency of HPO.

3.1. Multi-fidelity optimization

Multi-fidelity (MF) optimization leverages auxiliary information from various sources to reduce the
total evaluation cost. In practice, conventional techniques discard intermediate information and overlook
the iterative nature of modern DL algorithms. Strategies that combine information from related tasks to
speed up the search efficiency also work. Both approaches revolve around finding a balance between the
actual objectives, which are expensive and of high-fidelity, and the auxiliary observations, which are
cheap and of low-fidelity.

3.1.1. Multi-fidelity / multi-source

MF-GP-UCB [88] pioneered the formalization of a multi-fidelity bandit algorithm by taking GP
to establish the relations between low-fidelity approximations and final performance. Impressively,
FABOLAS (fast BO on large datasets) [89] presents to take the subset size of training data as an auxiliary
variable, accelerating the search process 10 to 100 times faster than vanilla BOs for large datasets.
FABOLAS has also proposed a classical method for modeling the relation via GP using a product kernel.
Simultaneously, misoKG (multi-information source optimization with a Knowledge Gradient) [90]
describes another generative model that estimates the i-th output by summing up two GPs representing
the high-fidelity result and the corresponding discrepancy separately.
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Furthermore, methods have emerged to improve multi-fidelity approaches by reinforcing acquisition
functions. taKG [91] suggests a trace-aware knowledge-gradient algorithm that is provably convergent.
MF-MES [92] incorporates MES [61] to enable a better exploit-explore trade-off for multi-fidelity BO
without introducing extra parameters, providing an information-theoretic guarantee.

3.1.2. Multitask / warm start

MTBO (Multitask BO) [93] recommends applying a multitask GP via a Kronecker product kernel for a
warm start, avoiding unnecessary re-exploration in familiar search space. MI-SMBO (Meta-learning-based
initialization SMBO) [94] proposed a meta-learning-based initialization to warm start BO. Specifically, BO
is initialized by well-performing configurations in similar datasets, with a set of meta-features defining the
distances between datasets. ABLR (Adaptive Bayesian linear regression) [95] scales MTBO with BNN with
a sharing neural network to learn basis features and a Bayesian layer to model the posterior for each output.
Recently, WS-CMA-ES (warm starting CMA-ES) [96] has also proposed warm-starting the initialization of
CMA-ES to address the conflict between the costly adaptation phase and limited evaluation budget.

3.2. Bandit-based algorithm

Bandit-based algorithms derived from RS have been proven to be compelling in the allocation of
limited resources. The successive halving (SHA) algorithm [97] dynamically allocates budgets to
top-performing configurations by regularly discarding the least promising half.

A notable extension of SHA is the Hyperband algorithm [98], a multi-armed bandit algorithm
designed to terminate poorly performing configurations. Algorithm 5 summarizes the Hyperband
process. Compared to SHA, which refrains from allocating resources to underperforming configurations,
Hyperband takes a step further by dividing the budget into iterations. This strategy aims to strike a
balance between exploration and exploitation, enhancing the algorithm’s ability to navigate the search
space effectively. Benefiting from the elegant simplicity and flexibility, Hyperband typically outperforms
RS and vanilla BO in practice. Another adaptation made to SHA is asynchronous SHA (ASHA) [99],
leveraging asynchrony for parallelization. The main idea is to promptly promote configurations to the
next rung level, foregoing the necessity to wait for rung completion. While this decision rule may lead
to unfavorable configurations being promoted, by the law of large number the impact is expected to
diminish as the total number of configurations grows [99].

Algorithm 5: Hyperband (credit to Li et al. [98])
Input: budgets [bmin, bmax], η (default=3)

1 smax ←−
⌊
logη

bmax
bmin

⌋
2 for s ∈ {smax, smax − 1, · · · , 0} do
3 n←−

⌈
smax+1

s+1 · η
s
⌉

4 bs ←− η
s · bmax

5 Sample n configurations randomly
6 Run SHA with budget bs

Output: best configuration
However, the convergence of Hyperband is constrained by its randomly drawn strategy, leading to

underutilization of known observations. To address this, BOHB (BO and Hyperband) [53] proposed
a Hyperband and BO hybrid, replacing the random selection of each Hyperband iteration with a
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modified TPE surrogate to guide the search. Notably, BOHB employs a multi-dimensional kernel
density estimation (KDE) instead of the hierarchy of one-dimensional KDEs in TPE. BOHB is often
regarded as the best previous off-the-shelf optimizer.

Recent developments have seen the emergence of methods building upon Hyperband and BOHB.
HyperSTAR [100] adapts the surrogate model to specific tasks and ranks the hyperparameters by
estimation in a joint dataset-hyperparameter space. DEHB (DE and Hyperband) [101] combines DE
and Hyperband, achieving more robust performance for high-dimensional and combinatorial data than
BOHB. The overheads of model-free DE operations remain constant and precede BOHB by up to
one order of magnitude. In addition to Hyperband’s random sampling, PriorBand [71] includes also
prior-based and incumbent-based sampling strategies.

3.3. Early stop

Besides model-free Hyperband, many other stopping criteria are exploited to early terminate poor
configurations.

3.3.1. Curve estimation

Modeling the learning curve to allocate resources and stop running individuals dynamically is in
vogue. Freeze-thaw BO [102] extends the BO framework with a strong assumption that the training loss
curve follows an exponential decay toward some value. A well-designed time kernel gets developed to
support this nonstationary prior. However, freeze-thaw BO has been proven ineffective in describing
learning curves of deep networks in practice [103].

To enhance representational capacity, learning curve extrapolation (LCE) [103] suggests modeling the
curves with a set of parametric model families. Various increasing and saturating functions, each of which
may capture certain aspects of curves, are ensembled to describe the entire learning process. To further
get rid of manually designed functions, which may introduce undue strong assumptions, Klein et al. [104]
recommends using BNN with basis function layers for prediction. Baker et al. [105] incorporates sequential
regression models to estimate curves, achieving notable advancements in both NAS and HPO.

3.3.2. Other criteria

Lately, BO-BOS [106] has been proposed to unify the BO and Bayesian optimal stop (BOS) mechanism to
eliminate unnecessary queries. A significant difference between BO-BOS and multi-fidelity methods is that
BO-BOS determines whether to stop in the training process. BOIL (BO for iterative learning) [107] inherits
the advantages of both multi-fidelity BOs and curve estimation techniques by optimizing the numeric score
of curves compression instead of averaged final performance. Makarova et al. [108] suggests an automatic
termination criterion based on the discrepancy between the actual HPO objective and the BO-optimized
target function.

3.4. Summary

This section has introduced three main strategies for speeding up the hyperparameter optimizing
process: Multi-fidelity, bandit-based algorithms, and early stopping. Multi-fidelity optimization methods
operate by leveraging auxiliary information and exploiting more cost-effective approximations of the
expensive objective function. In navigating the trade-off between optimization performance and runtime,
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practical implementations often witness the speed improvements outweighing the errors introduced by
the approximations [27]. These methods can either actively or adaptively determine the appropriate
fidelity (or fidelities), or transfer knowledge from previous experiments or similar tasks. Some literature,
e.g., Yang and Shami [24] and Shawi et al. [31], consider also bandit-based algorithms such as SHA [97]
and Hyperband [98] introduced in Section 3.2 as a subset of multi-fidelity approaches. While most
methods that enhance the efficiency of HPO have been predominantly proposed within the context of BO
frameworks, learning curve-based prediction for early termination proposed by Domhan et al. [103] and
Baker et al. [105] work on deep neural networks and are agnostic to the hyperparameter optimizer used.

4. Dynamic algorithm configuration

The above strategies have demonstrated their superiority through various acceleration tricks. However,
most HPO algorithms only search for fixed configurations, while dynamic or scheduling hyperparameters
can be more welcomed in practice. In this section, we broadly convey recent trends of the emerging DAC
algorithms covering the following aspects: gradient-based optimizers, population-based algorithms, and
reinforcement learning methods. We also explore a few miscellaneous approaches. A succinct summary
of these algorithms is presented in Table 3. They are compared from several aspects, including the types
of hyperparameters they can handle and their approach to managing hyperparameters and parameters
during the training process.

Table 3. A concise overview of representative methods that optimize hyperparameters
on the fly, i.e., dynamically tune configurations (schedule) in the training process. Column
Coverage shows the types of hyperparameters suitable for each algorithm. Some algorithms are
designed for specific hyperparameters like learning rate (LR), while others can accommodate
most continuous hyperparameters. Exploration and Exploitation columns show how
hyperparameters and parameters are treated separately. In the last column, “Keep” means the
parameters remain unaltered, and “Overwrite” means former bad parameters are replaced with
parameters copied from other well-performing models.

Method Coverage Base Exploration Exploitation

HD [109] LR Hypergradient Hypergradient descent Keep
RTHO [38] Continuous Hypergradient Hypergradient descent Keep

MARTHE [17] LR Hypergradient Hypergradient descent Keep
FSLA [111] Continuous Hypergradient Hypergradient descent Keep

PBT [62] Continuous PBT Mutation / Re-sample Overwrite
PB2 [18] Continuous PBT Time-varying GP-bandit Overwrite

HPM [112] Continuous PBT Teacher+Hypergradient Overwrite
PB2-Mix [113] Mixed PBT Mixed GP-bandit Overwrite
BG-PBT [114] Mixed PBT TR-GP-BO Overwrite
HOOF [117] RL parameters Reinforcement Off-policy Estimate Keep

Biedenkapp et al. [19] Mixed Reinforcement Dynamic movement primitives Keep
AutoLRS [126] LR Curve Estimation Forecasting+GP-bandit Keep

Multistage QHM [127] BS+SGD parameters Momentum Quasi-hyperbolic momentum Keep
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4.1. Gradient-based optimizers

In Section 2, we have discussed gradient-based search and introduced both reverse-mode and
forward-mode algorithms. While reverse-mode is less computationally demanding with a large number
of hyperparameters, forward-mode exhibits greater memory efficiency and is suitable for real-time
hyperparameter updates.

Baydin et al. [109] derived the hypergradient with respect to the learning rate and updated the learning
rate at each iteration. The hypergradient is based on the partial derivative of one-step parameter training,
and parameters from the previous time step are irrelevant to the current learning rate. SGD, SGD with
Nesterov, and Adam are generalized to online update forms, termed hypergradient descent (HD) variants.
HD is considered shortsighted [110]. RTHO (Real-time hyperparameter optimization) [38] modifies the
forward-mode hypergradient algorithm in Algorithm 1 to a real-time update form, which is longsighted
but too slow to adapt to abrupt changes in the loss surface. MARTHE (Moving Average Real-Time
Hyperparameter Estimation) [17] (Algorithm 6) tries to find the balance between HD and RTHO by
introducing a discount factor µ, providing globally useful update directions while formal methods fail
to cope with loss surface that varies too fast or too slow. Both RTHO and HD can be interpreted as
special cases of MARTHE when µ = 1 and µ = 0, respectively. Li et al. [111] unified hypergradient
approximation methods including back propagation through time, Neumann series, and conjugate gradient
descent under the same framework, and has proposed a fully single loop algorithm (FSLA) [111] for
bi-level optimization based on this framework.

Algorithm 6: MARTHE (credit to Donini et al. [17])
Input: Initial hyperparameters x, initial parameters w0, hyper-learning rate β, discount factor µ,

objective function E : Rd −→ R+, weight update dynamics Φt : Rd × R+ −→ Rd

1 ∆x←− 0
2 Z0 ←− 0 // Zt =

∂wt
∂x

3 for t = 1 to T do
4 x←− max{x − β∆x, 0}
5 wt ←− Φt(wt−1, x)
6 Zt ←− µ

∂Φt
∂wt−1

Zt−1 +
∂Φt
∂x

7 ∆x←− ∇E(wt)Zt

4.2. Population-based algorithms

Population-based training (PBT) [62] derives from evolution search but updates both weights
and hyperparameters of the population of agents in a single training process instead. Proportional
agents with poor performances get eliminated regularly to generate new individuals exploited from
the best-performing ones. Typically, neural network weights are copied from one of the tops while
hyperparameters are randomly resampled from the whole space or slightly mutated from best values.

However, the reliance on metaheuristics for exploration leads to space collapse when the population is small.
PB2 [18] proposed to guide the exploration by a time-varying GP with sublinear regret guarantees, which
enable it to search with a small computational budget. A novel trick of batch sampling for the acquisition
function helps maintain the diversification of the population. HPM (Hyperparameter mutation) [112] regards
the agents as students that update their hyperparameters with hypergradient. Meanwhile, an attention-based
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teacher model is leveraged to learn a mutation schedule. While PB2-Mix [113] uses a hierarchical approach
to allow PB2 to tackle hyperparameters of continuous and categorical types, BG-PBT (Bayesian
generational PBT) [114] extends PBT-style methods to consider also ordinal (in addition to continuous
and categorical) variables by employing trust-region (TR), GP-based BO.

4.3. Reinforcement learning methods

Reinforcement learning (RL) [115] has gained widespread application in optimizing algorithm
configurations [116]. Typically, a controller is used to sample new candidates to get a return from the
environment, where an evaluator scores the return to generate a reward. The controller then gets updated
based on the received reward and current network states.

HOOF (Hyperparameter Optimization on the Fly) [117] proposed an off-policy method to adapt
sensitive RL hyperparameters to changing environments. In HOOF, candidates are regularly generated
and estimated by trajectories sampled from the current policy. The policy then gets updated greedily
using the values of candidates. A novel generation strategy with importance sampling and a Kullback-
Leibler (KL) constraint reduces the computation cost further.

While HOOF is tailored for RL tasks, Biedenkapp et al. [19] formalized learning DAC as a contextual
Markov decision process (MDP) where multiple agents sample sequences of parameters across different
stages. A global policy is generated according to the distribution of stages, and self-paced learning (SPL)
is adopted to evaluate this policy to maximize its reward.

4.4. Remarks

DAC facilitates the real-time application of HPO while training of the model parameters makes
progress. The capability of automatically determining algorithm configuration (or schedule) adaptively
in an online fashion is particularly advantageous in scenarios where learning dynamics exhibit high non-
stationarity, and a fixed configuration (or schedule) for the entire training duration could potentially be
suboptimal [62, 118]. Successful DAC, however, may require more computational resources compared
to static methods [16].

Given the iterative nature of many AI algorithms [19], especially in the context of RL recognized as
a universal modeling framework for sequential decision problems [119], dynamically learning optimal
hyperparameter configurations that may vary over time during the training process becomes a natural
proposition. AutoRL (Automated RL) [120, 121], a recent area of research, has arisen to address RL
algorithms’ sensitivity to design choices [122–124] that often leads to laborious and costly manual tuning.
AutoRL aims to automate different components of the RL framework, including (PO)MDP modeling,
algorithm selection, HPO, and, when DL is used, the architecture search. Considering the nonstationary
nature of RL, which adds to the vulnerability of RL algorithms [125], integrating dynamic HPO in the
AutoRL pipeline can be beneficial [120, 124].

As DAC is an emerging field, there are approaches optimizing hyperparameter schedules beyond
the major classes discussed earlier. AutoLRS (Automatic learning rate scheduler) [126] trains a time-
series forecasting model to estimate performance based on observations from the initial steps at each
training stage and utilize a GP to explore the search spaces further. Multistage QHM (quasi-hyperbolic
momentum) [127] provides a quasi-hyperbolic momentum modification for almost all momentum
variants to dynamically tune hyperparameters, including SGD parameters and batch size.
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5. Multi-objective hyperparameter optimization

Methods presented in earlier sections consider HPO problems with a single objective, e.g., prediction
accuracy or error-based measure. Many real-world challenges, however, demand the simultaneous
optimization of multiple, sometimes conflicting, objectives (or criteria). These objectives or criteria may
encompass, for instance, training accuracy/error, generalization capability, model complexity, sensitivity,
specificity, energy consumption, and inference time [128].

Karl et al. [20] gave the definition of the general MOHPO problem, representing the generalized HPO
problem taking into account m ∈ N objectives or criteria,

x∗ = arg min
x ∈X

f (x) = arg min
x ∈X

( f1(x), f2(x), . . . , fm(x)), (5.1)

where f1 : X −→ R, . . . , fm : X −→ R and f : X −→ Rm. A hyperparameter configuration x ∈ X (Pareto)
dominates another configuration x′ ∈ X, if and only if f (x) ≺ f (x′), i.e.,

∀ i ∈ {1, . . . ,m} : fi(x) ≤ fi(x′)∧
∃ j ∈ {1, . . . ,m} : f j(x) ≤ f j(x′).

(5.2)

A configuration x∗ is non-dominated, Pareto optimal, or Pareto efficient if and only if there exists
no other configuration x ∈ X that dominates x∗. From Figure 5 illustrating a simple MOO example
with two minimizing objectives, it can be seen that in contrast to single-objective optimization, MOO
problems lack a single universally optimal solution that satisfies all objectives simultaneously. The set
of Pareto optimal solutions is referred to as the Pareto set P [20],

P B {x ∈ X | ∄ x′ ∈ X s.t. x′ ≺ x}, (5.3)

and f (P) is the Pareto front. The Pareto set represents solutions that achieve the best trade-off between
objectives, where no objective can be made better without making another worse off. The ideal goals of
MOO, and thus MOHPO, algorithms are to [129]: (i) find a set of solutions that lies on the Pareto front, and
(ii) ensure the solution set found in (i) is diverse enough to represent the entire range of the Pareto front.

Perhaps the simplest approaches to MOHPO are GS (Section 2.1.2) and RS (Section 2.1.3). To
adapt single-objective GS and RS to MOHPO problems, given that each point represents a combination
of hyperparameters in the hyperparameter space, one can simply evaluate the performance based on
multiple objectives at each chosen point and return all non-dominated solutions as the Pareto set. When
dealing with high- or large-dimensional search space, GS and RS can be computationally inefficient
and lack the ability to exploit the structure of the search space efficiently. They can, however, serve as
simple baselines for specialized MOHPO algorithms, e.g., [130, 131].

Below we introduce the canonical approaches tailored for MO(HP)O problems, distinguishing them
into three main categories: scalarization, metaheuristic-based, and model-based. For detailed discussions
on MOHPO, interested readers are referred to Karl et al. [20] and Morales-Hernández et al. [21].
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Figure 5. An example of the objective space of a multi-objective optimization problem with
two minimizing objectives.

5.1. Scalarization

Scalarization is a straightforward technique to MOHPO. This approach works by transforming
multiple objectives into a single objective function, which then single-objective optimizers can be
used [132–134]. Two of the most popular scalarization methods are the (i) weighted sum, which
combines the objectives linearly with each objective fi(x) multiplied by a user-specified weight λi,

min
x ∈X

f (x) = min
x ∈X

m∑
i=1

λi fi(x), (5.4)

and the (ii) ϵ-constraint [135], which retains only one objective fi and turns the rest of the objectives
f j,∀ j = 1, . . . ,m, j , i, into constraints, i.e., restrict them to be within user-specified values ϵ j,

min
x ∈X

fi(x) subject to f j(x) ≤ ϵ j,∀ j = 1, . . . ,m, j , i. (5.5)

Another scalarization function or its variants that has been used in other MOO approaches (such as those
introduced in the following sections) is the (weighted) Chebyshev or Tchebycheff function (TCH) [132],

min
x ∈X

f (x) = min
x ∈X

max
i=1,...,m

[λi | fi(x − z∗i )], (5.6)

where (z∗i ) is usually set to the ideal reference point, i.e. z∗i = minx∈X fi(x) for i = 1, . . . ,m.

5.2. Multi-objective metaheuristics

NSGA-II (Non-dominated sorting GA II) [136], building on the primitive NSGA algorithm [137],
is a widely adopted algorithm for MOO problems. It employs a GA framework and introduces non-
dominated sorting to categorize solutions based on their dominance relationships, and crowding distance
to sustain a diverse set of solutions on the Pareto front. NSGA-III [138, 139] extends NSGA-II to MOO
problems with a larger number of objectives by involving predefined reference points to aid in diversity
preservation.
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SPEA2 (Strength Pareto EA 2) [140] employs a strength-based approach within its EA framework,
using Pareto dominance to guide the selection, favoring individuals that dominate more other individuals.
Diversity is achieved through an external, fully-filled archive. SPEA2 and NSGA-II both incorporate
elitism in which the best individuals are preserved in each generation.

MOEA/D (Multi-objective EA based on decomposition) [141] takes a decomposition approach,
explicitly using scalarization to transform the multi-objective problem into a set of single-objective
subproblems. These subproblems are simultaneously optimized, achieving diverse and evenly
distributed solutions along the Pareto front through properly selected decomposition methods and
weight vectors [141].

To maximize the hypervolume indicator, where the hypervolume (or the S-metric) can be considered as
the size covered in the objective space by a set of non-dominated solutions with respect to a user-defined
reference point [142], SMS-EMOA (S-metric selection evolutionary MOO algorithm) [143] proposes a
steady-state EA with constant population size. SMS-EMOA applies non-dominated sorting from NSGA-
II [136] as first ranking criterion and discards individuals with low marginal hypervolume contribution.

Analogous to EAs, PSO has also been used for MOO. NSPSO (Non-dominated sorting PSO) [144]
extends single-objective PSO to MOO through information sharing, motivating the entire swarm
population progress toward the Pareto front. Non-dominated sorting and crowding distance from
NSGA-II [136] are used in NSPSO. Inspired by multi-objective EAs, Coello et al. [145] incorporated
the concept of Pareto dominance and a secondary (external) population in its MOO approach via PSO.
An adaptive mutation operator facilitates throughout exploration, while a historical record of previously
non-dominated solutions promotes convergence toward the Pareto front.

5.3. Multi-objective model-based optimization

Approaches for multi-objective BO can broadly be categorized into scalarization, leveraging Pareto
hypervolume (PHV) indicator [142], and information-theoretic methods.

ParEGO (Pareto efficient global optimization) [146] using GP as the surrogate based on the EGO
approach [45], approximates the Pareto front with a single objective scalarized via the augmented
Tchebycheff function [146], where the parameterization of the weight vector is sampled uniformly
per iteration.

SMS-EGO [147] is another approach based on EGO [45]. Instead of using scalarization, SMS-EGO models
each objective with a separate surrogate model, with the optimization and selection based on the hypervolume
indicator [142]. SMS-EGO enhances the expected hypervolume improvement (EHI/EHVI) [148] acquisition
function, initially proposed for surrogate-assisted evolutionary multi-objective search [149], by introducing
adaptive search space reduction for improved scalability. As EHVI demands high computational
complexity, Daulton et al. [150] proposed qEHVI, a differentiable hypervolume improvement acquisition
function. qEHVI allows gradient-based parallel and sequential greedy optimization via the inclusion-
exclusion principle.

PESMO (Predictive entropy search) [151] and MESMO (multi-objective maximum entropy
search) [152] are information-theoretic methods rooted in information theory. Both PESMO and MESMO
build an individual surrogate model for each objective. PESMO’s acquisition function utilizes input space
entropy, selecting the next evaluation that maximizes information gain about the optimal Pareto set. In
contrast, MESMO proposes an output-space-entropy-based acquisition function for candidate selection,
evaluating the input that maximizes information gain about the optimal Pareto front.
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5.4. Remarks

Evolutionary-based methods, particularly exemplified by tools like NSGA-II [136] (refer to Table 4),
have been predominant in MOO, owing to their derivative information-free nature, simplicity for
implementation, and flexibility with widespread applicability [129]. As we have seen in Section 5,
MOO aims to find a set of solutions, the Pareto set, making EAs a natural choice as they inherently rely
on population for optimization.

Apart from the prominent approaches introduced earlier, recently there has been growing interest in
encompassing additional considerations when working with MOO problems. For instance, observing that
observations are often subject to noise while optimization formulations assume noiseless observations,
Daulton et al. [153] proposed NEHVI (noisy expected hypervolume improvement) for noisy multi-
objective BOs. Lin et al. [154] and Misitano et al. [155] advocated incorporating decision-maker
preferences. Instead of searching for the Pareto front, Malkomes et al. [156] proposed the constraint active
search (CAS) formulation to search for diverse solutions satisfying objectives-turned-constraints.

In MOHPO, efforts have also been put toward adapting advanced single-objective HPO techniques
to the multi-objective counterpart. For instance, a multi-fidelity method for MOHPO building upon
the Hyperband algorithm [98] and scalarization was proposed by Schmucker et al. [131]. Similarly,
Chen et al. [157] adapted BOHB [53] to MOHPO, leveraging the integrated information from a multi-
fidelity ensemble model effectively in an online fashion. Dushatskiy et al. [158] introduced MO-PBT,
the multi-objective version of PBT [62], demonstrating superior performance over MO-ASHA [159],
the multi-objective version of ASHA [99].

6. Tools, applications, and further discussion

6.1. Public frameworks and tools

In the past, hyperparameters were usually tuned manually, which is time-consuming. To reduce
the bar of using HPO algorithms and enhance their widespread applicability, various libraries and
frameworks have been developed. We tabulate the popular frameworks used for HPO, referencing
notable works such as [22–24, 31, 32, 160].

Existing HPO frameworks can be categorized in several ways. Based on the distribution of computing
resources, they fall into three main categories: centralized, distributed, and cloud-based [31]. When
considering optimization methods, they can be distinguished as RS-based, BO-based, metaheuristic-
based, and so on. They can also be classified based on the type of problems they address, including
HPO, NAS, and AutoML. HPO tools are primarily designed for tuning given hyperparameters; NAS
tools are used to automatically discover the optimal architecture or structure of a neural network for a
given task; AutoML considers all or most tasks in building ML models, including feature engineering,
model construction, and HPO. Overview of existing HPO frameworks and tools is provided in Table 4.
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Table 4. Overview of frameworks/tools for HPO. In Language column, cpp: C++, go: Golang,
jv: Java, jl: Julia, py: Python, R: R language. MO: multi-objective. MF: multi-fidelity. In
Mode column, cent.: centralized, dist.: distributed. UI denotes user interface. In column
MF, ✓ is provided for tools that offer either their own multi-fidelity option or the original
SHA/Hyperband algorithm. Citations are provided for frameworks/tools with publications.
Note that the column Problem is relatively loosely specified due to challenges in attributing
work to a single problem setting. Frameworks/tools that are not open source are marked with
an asterisk (*).

Framework/Tool Year Problem Optimization
Lang-
uage

M
O

M
F

Mode UI URL

Optuna [161] 2019 HPO
GS, RS, TPE, CMA-ES,

NSGA-II, etc.
py ✓ × dist. ✓ https://github.com/optuna/optuna

Ray Tune [162] 2018 HPO
GS, RS, BO, EA, Optuna,

Nevergrad, etc.
py ✓ ✓

cent.,
dist.,
cloud

✓ https://docs.ray.io/en/latest/tune/index.html

BoTorch [163] 2019 HPO GP, qEHVI, etc. py ✓ ✓ cent. × https://github.com/pytorch/botorch

Bayesian Optimization 2014 HPO GP py × × cent. ×
https://github.com/bayesian-optimization/

BayesianOptimization
Hyperopt [164] 2015 HPO RS, TPE, Adaptive TPE py × × dist. × https://hyperopt.github.io/hyperopt/
SMAC3 [50, 165] 2011 HPO SMAC, ParEGO, mean aggr. py ✓ ✓ cent. × https://github.com/automl/SMAC3

DEAP [166] 2012 HPO
GA, PSO, CMA-ES,
NSGA-II, NSGA-III,

SPEA2, MO-CMA-ES
py ✓ × dist. × https://github.com/DEAP/deap

Nevergrad 2018 HPO RS, GA, PSO, BO py × × cent. × https://github.com/facebookresearch/nevergrad

AgileRL 2023 HPO evolutionary py × ×
cent.,
dist.

× https://github.com/AgileRL/AgileRL

TuRBO [66] 2019 HPO GP py × × cent. × https://github.com/uber-research/TuRBO
BayesOpt [167] 2014 HPO GP cpp × × cent. × https://github.com/rmcantin/bayesopt
HyperMapper [168] 2019 HPO BO, TCH, etc. cpp, py ✓ × cent. × https://github.com/luinardi/hypermapper

mlr3 [22, 169, 170] 2019 HPO
GS, RS, BO, SHA,

Hyperband, CMA-ES, etc.
R ✓ ✓ cent. × https://github.com/mlr-org/mlr3

jMetal(Py) [171] 2018 HPO
ES, GA, MOEA/D,

NSGA-II, OMOPSO, etc.
jv, py ✓ × cent. × https://github.com/jMetal/jMetalPy

Goptuna 2019 HPO
RS, TPE, CMA-ES,

ASHA, etc.
go × × cent. ✓ https://github.com/c-bata/goptuna

EvoTorch [172] 2022 HPO evolutionary py ✓ ×
cent.,
dist.

× https://github.com/nnaisense/evotorch

OpenBox [173] 2021 HPO
BO, Hyperband, EHVI,

MESMO, etc.
py ✓ ✓

cent.,
dist.,
cloud

✓ https://github.com/PKU-DAIR/open-box

Dragonfly [174] 2020 HPO GP py ✓ ✓ cent. × https://github.com/dragonfly/dragonfly
DEHB [101] 2021 HPO DE, Hyperband py × ✓ cent. × https://github.com/automl/DEHB

Orion 2022 HPO
RS, GS, Hyperband, PBT,

BO, EA, etc.
py × ✓ dist. × https://github.com/Epistimio/orion

KerasTuner 2019 HPO RS, BO, Hyperband py × ✓
cent.,
dist.

× https://github.com/keras-team/keras-tuner

Syne Tune [175] 2022 HPO
GS, RS, BO, PBT, DEHB,

ASHA, NSGA-II,
MO-ASHA, etc.

py ✓ ✓
cent.,
dist.,
cloud

× https://github.com/awslabs/syne-tune

Katib [176] 2020
HPO,
NAS

BO, CMA-ES, Hyperband,
PBT, Optuna, Hyperopt, etc.

py × ✓
cent.,
dist.,
cloud

✓ https://github.com/kubeflow/katib

Propulate [177] 2023 HPO EA py × × dist. × https://github.com/Helmholtz-AI-Energy/propulate

Determined AI 2020 HPO GS, RS, ASHA, etc. py × ×

cent.,
dist.,
cloud

✓ https://github.com/determined-ai/determined

Facebook Ax 2019 HPO GP, BoTorch py ✓ ✓ cent. × https://github.com/facebook/Ax

Continued on next page
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Framework/Tool Year Problem Optimization
Lang-
uage

M
O

M
F

Mode UI URL

pymoo [178] 2018 HPO
GA, DE, CMA-ES, NSGA-II,

NSGA-III, MOEA/D,
SMS-EMOA, etc.

py ✓ × cent. × https://github.com/anyoptimization/pymoo

Hypernets 2022
HPO,
NAS

MCTS, EA, NSGA-II,
NSGA-III, MOEA/D, etc.

py ✓ × cent. × https://github.com/DataCanvasIO/Hypernets

Hyperopt.jl 2018 HPO BO, Hyperband, BOHB, etc. jl × ✓ cent. × https://github.com/baggepinnen/Hyperopt.jl

MLJTuning 2020 HPO GS, RS, TPE, PSO, etc. jl × ×
cent.,
dist.

× https://github.com/JuliaAI/MLJTuning.jl

DeepHyper 2019
HPO,
NAS

BO, scalarization py ✓ ✓
cent.,
dist.

× https://github.com/deephyper/deephyper

Weights & Biases 2018 HPO GS, RS, BO, Hyperband py × ✓
cent.,
dist.,
cloud

✓ https://github.com/wandb/wandb

Polyaxon (HyperTune) 2018 HPO
GS, RS, BO, Hyperband,

Hyperopt
py × ✓

cent.,
dist.,
cloud

✓ https://github.com/polyaxon/polyaxon

Mango [179] 2020 HPO BO py × ×
cent.,
dist.

× https://github.com/ARM-software/mango

Gradient-Free-
Optimizers
(Hyperactive)

2020 HPO GS, RS, PSO, BO, etc. py × × cent. ×
https://github.com/SimonBlanke/

Gradient-Free-Optimizers

shap-hypetune 2021 HPO GS, RS, BO py × × cent. × https://github.com/cerlymarco/shap-hypetune

NePS [71] 2023
HPO,
NAS

BO, Hyperband, πBO,
PriorBand

py × ✓
cent.,
dist.

× https://github.com/automl/neps

Scikit-Optimize 2016 HPO GS, RS, GP py × × cent. × https://github.com/scikit-optimize/scikit-optimize
Talos 2019 HPO GS,RS, etc. py × × cent. × https://github.com/autonomio/talos

SHERPA [180] 2018 HPO
GS, RS, BO-GP, Hyperband,

ASHA, PBT
py × ✓ cent. × https://github.com/sherpa-ai/sherpa

FAR-HO [38] 2017 HPO
ReverseHG, RTHO,

ForwardHG
py × × cent. × https://github.com/lucfra/FAR-HO

FEDOT [181, 182] 2021 AutoML Hyperopt, Optuna, etc. py ✓ × cent. × https://github.com/aimclub/FEDOT
TPOT [183] 2016 AutoML GA py × × dist. × https://github.com/EpistasisLab/tpot

AutoGL [184] 2021 AutoML
GS, BO, CMA-ES,
MO-CMA-ES, etc.

py ✓ × cent. × https://github.com/THUMNLab/AutoGL

Auto-Sklearn [185, 186] 2015 AutoML SMAC py \ × dist. × https://github.com/automl/auto-sklearn
Auto-PyTorch [187] 2020 AutoML SMAC, Hyperband py × ✓ cent. × https://github.com/automl/Auto-PyTorch

AutoKeras [188, 189] 2019 AutoML GP py × ×
cent.,
cloud

× https://github.com/keras-team/autokeras

AutoGluon [190] 2020 AutoML RS, BO py × × cent. × https://github.com/autogluon/autogluon
TransmogrifAI 2018 AutoML GS, RS, BO Scala × × cent. × https://github.com/salesforce/TransmogrifAI
EvalML 2019 AutoML GS, RS, BO py × × cent. × https://github.com/alteryx/evalml
MLJAR AutoML 2021 AutoML RS, TPE (Optuna) py × × cent. ✓ https://github.com/mljar/mljar-supervised

Microsoft NNI 2021 AutoML
GS, RS, EA, Hyperband,

PBT, BO, etc.
py × ✓

cent.,
dist.,
cloud

✓ https://github.com/microsoft/nni

Microsoft FLAML
[191]

2021 AutoML GS, RS, Optuna
py,

.NET
✓ ×

cent.,
dist,

cloud
× https://github.com/microsoft/FLAML

Microsoft Archai 2020 NAS RS, SHA, evolution, etc. py ✓ ×

cent.,
dist.,
cloud

× https://github.com/microsoft/archai

*Microsoft AzureML
AutoML [192]

2018 AutoML GS, RS, BO py × ×
cent.,
cloud

✓
https://azure.microsoft.com/en-us/products/

machine-learning/automatedml/

*Oracle AutoML [193] 2020 AutoML gradient-based py × ×
cent.,
cloud

✓
https://docs.oracle.com/en/database/oracle/

machine-learning/

*Google Vizier [194] 2017 HPO RS, GS, BO
cpp, go,

py
× × cloud ✓ https://cloud.google.com/vertex-ai

*Amazon SageMaker
[195]

2017 AutoML
GS, Hyperband,

RS, BO
py, R ✓ ✓ cloud ✓ https://aws.amazon.com/machine-learning
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6.2. HPO applications

HPO has emerged as a pivotal component of AutoML, finding extensive applications across diverse
domains and tasks. For instance, it is applied for software sensor design [196], electroencephalography (EEG)
data decoding [197], smart grid [198], P systems optimization [199], and healthcare [200].

Data-driven models have become integral in the realm of software sensor design for vehicles, where
the performance is notably influenced by hyperparameters. A specific study [196] focused on designing
a roll angle estimator based on an artificial neural network (ANN), employing techniques including
GS, Hyperband, BO, and GA. The results emphasized the significant impact of search space size on
performance, with knowledge-based methods outperforming their counterparts.

In the domain of EEG data decoding for brain-computer interfaces (BCIs), HPO methods play a
crucial role in optimizing DL models for the classification of EEG recordings. In Stober et al. [201],
hyperparameters associated with the convolutional neural networks (CNN) used to classify EEG recordings
of rhythm perception were optimized with BO. In another work by Drouin-Picaro and Falk [202], GS
for HPO was used in the classification of EEG signals corresponding to natural saccade with CNN and
multilayer perceptron (MLP). Coonet et al. [197] suggested that more experiments should be conducted
to investigate whether the generalization of HPOs across subjects is feasible.

In a smart grid, the consumption of electricity varies from time to time, which burdens the electricity
systems. Prediction with the ML models can help achieve the balance between demand and supply,
and manage the energy efficiently [198]. ML models such as support vector machine (SVM), ANN,
and BNN are commonly used for this problem. To achieve a good predictive performance, tuning the
hyperparameters is of vital importance. For example, Zhou et al. [203] proposed a system based on
autoencoders and tuned the hyperparameters using GA. Additionally, AutoML frameworks are likely to
be applied to this field in the future search.

In recent attempts to create bridges between adaptive P systems and ML paradigms, the optimization
of one of the hyperparameters, which is the type of the spiking neuron used in spiking neural (SN) P
systems, prior to the training of P systems, can potentially benefit from HPO [199].

Biomedical applications, encompassing healthcare, biomedical research, and big biomedical data, have
also witnessed the advantages of integrating HPO methods in the ML pipelines [200]. Hospitals can
deploy ML models for health outcome improvement, healthcare cost reduction, and clinical research
advancement [204]. In fact, certain frameworks are developed exclusively for healthcare. One example is
AutoPrognosis [205], which uses BO to optimize models and hyperparameters for clinical prognosis.
HPO also has non-negligible impact when working with medical images using AI techniques [206]. For
instance, BO was used to optimize the network architecture of Nishio et al. [207] for lung segmentation
using chest X-ray (CXR) images with severe abnormalities. BO with TPE as the surrogate was also used
in Abdellatif et al. [208] on the Improved Weighted RF for predicting the presence of cardiovascular
disease and patient survival. Experiments by Belete and Huchaiah [209] employing GS-based HPO on
eight ML models have shown improvement over statistical way of optimization in predicting HIV/AIDS
test results. Similarly, Nematzadeh et al. [210] demonstrated that by employing dedicated HPO
algorithms for ML models in the classification and regression of biomedical datasets, training process
and model performance improved when compared to using blindly chosen hyperparameters. Despite
these advancements, challenges persist. This includes the limited interpretability of ML models
contributing to user skepticism regarding predictions, efficiency concerns as current methods struggle to
swiftly identify a near-optimal hyperparameter configuration, and the protracted trial-and-error
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processes presenting an impracticality given the demand for approaching thousands of predictive
modeling problems in personalized medicine. In light of these challenges, DAC algorithms emerge as a
promising avenue.

6.3. Further discussion

In this paper, we have discussed four kinds of HPO methods that are closely connected. Classical
techniques, with their foundational concepts proposed over a decade ago, have evolved alongside
advancements in ML models. On one hand, these techniques are employed to tune hyperparameters,
enhancing the performance of ML models. On the other hand, ML models contribute to the expansion
and evolution of these techniques. ML models such as RF and BNNs can serve as surrogate models of
BO. As ML models experience longer training times, there is a growing demand for more efficient HPO
techniques. Researchers have responded by designing various frameworks to carefully manage
computing resources, while retaining the core ideas. DAC algorithms, for instance, aim to utilize
resources efficiently within a single training cycle to achieve near-optimal performance. These
algorithms often involve structural modifications to classical techniques, such as gradient-based and
population-based methods, allowing for on-the-fly updates to hyperparameters. However, a common
challenge faced by these methods is the inherent trade-off between performance and efficiency. Driven
by real-world situations where practical considerations involve additional metrics or criteria, framing
the HPO problem as an MOHPO problem is a more pragmatic approach. MOHPO, being an extension
of the broader MOO, leverages existing MOO methodologies, with recent endeavors adapting
single-objective HPO algorithms for multi-objective cases.

HPO algorithms encounter several challenges and issues. First, the diversity of hyperparameter
types and complex search spaces can impact the usability of algorithms, often requiring disharmonious
extensions that may affect performance and theoretical properties. Second, the high-dimensionality of
hyperparameters makes convergence challenging due to the vast number of samples required to explore
the search space. Identifying the few influential hyperparameters is a daunting task. Third, handling
the intricate relationships among hyperparameters poses difficulty, as the value of one hyperparameter
may significantly affect another, while others remain independent. Capturing these relations can reduce
the complexity of the search space. Additionally, scalability is a concern, with standard BO-GP having
a complexity of O(n3), which becomes impractical with a large number of samples. Furthermore, the
issue of transferring hyperparameters from task to task or leveraging knowledge from previous search
results remains a challenge. Most algorithms treat different tasks independently, even when sharing the
same datasets or models, leading to inefficiencies. Lastly, the optimal hyperparameters may change as
datasets grow in size. Many existing algorithms require a search from scratch, which is not conducive to
the dynamic nature of big data.

In this paper, we have only reviewed approaches to general HPO, acceleration techniques, and
algorithms for the emerging DAC and MOHPO. It is noteworthy that various efforts explore HPO from
distinct perspectives, warranting attention. For instance, work looking at constrained HPO [211–214] or
constrained BO [215–217] and investigations on robustness [53, 180, 218–220]. Explorations of HPO
with meta-learning and AutoML [221–224] also offer valuable insights into related areas.
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7. Conclusion and outlook

Complex computing systems, exemplified by modern ML pipelines, have found diverse applications
across various domains. In the pursuit of more effective and efficient deployment of these pipelines,
researchers have increasingly focused on the performance and efficiency of HPO algorithms – a focal point
of this paper. We begin by providing a broad overview of HPO, delving notably into strategies tailored
for DL algorithms. Subsequently, we explore methods to accelerate optimization procedures. This is
followed by comprehensive and systematic reviews of the emerging DAC and MOHPO, offering insights
for future research. We also present a comparative analysis of existing HPO tools and their applications
across different domains, laying the groundwork for potential future research endeavors.

The potential applications of HPO span diverse areas, presenting a promising landscape for
exploration and advancement. From the ML application perspective, here we discuss important areas
that underscore the impact of HPO. One key domain is NAS, wherein HPO manifests as a task within a
discrete search space. First, NAS can be regarded as an HPO task on discrete search space, and recent
works have explored various search methods, including RL [225], EA [226], BO [227], and
gradient-based methods [228–230]. Noteworthy applications of NAS extend to complex vision tasks
such as object detection [231, 232] and segmentation [233, 234]. Recent work by Wang et al. [235]
introduces a NAS framework based on the “mergeNAS” technique [229], allowing for searches within
any custom search spaces across a spectrum of vision tasks.

In addition to ML, the fusion of combinatorial optimization [236, 237] with HPO within the realm
of applied mathematics offers a platform for further exploration. This includes but is not limited to,
tackling challenges like the traveling salesman problem [238], vehicle routing problem [239], mix-
integer programming [240], boolean satisfiability [241], portfolio optimization [242], graph matching,
either through ML approaches [243] or conventional methods [244], graph clustering [245], and graph
edit distance computing [246].

Despite HPO’s long history spanning over half a century, numerous promising areas warrant continued
efforts. We envision that this comprehensive survey will not only equip researchers with diverse
backgrounds to understand the current state and evolution of HPO, facilitating its seamless integration into
future work, but also provide practical insights for practitioners in ML and HPO-related domains.
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