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Abstract: Models intended to describe the time evolution of a gene network must somehow include
transcription, the DNA-templated synthesis of RNA, and translation, the RNA-templated synthesis
of proteins. In eukaryotes, the DNA template for transcription can be very long, often consisting
of tens of thousands of nucleotides, and lengthy pauses may punctuate this process. Accordingly,
transcription can last for many minutes, in some cases hours. There is a long history of introducing
delays in gene expression models to take the transcription and translation times into account. Here
we study a family of detailed transcription models that includes initiation, elongation, and termination
reactions. We establish a framework for computing the distribution of transcription times, and work
out these distributions for some typical cases. For elongation, a fixed delay is a good model provided
elongation is fast compared to initiation and termination, and there are no sites where long pauses
occur. The initiation and termination phases of the model then generate a nontrivial delay distribution,
and elongation shifts this distribution by an amount corresponding to the elongation delay. When
initiation and termination are relatively fast, the distribution of elongation times can be approximated
by a Gaussian. A convolution of this Gaussian with the initiation and termination time distributions
gives another analytic approximation to the transcription time distribution. If there are long pauses
during elongation, because of the modularity of the family of models considered, the elongation phase
can be partitioned into reactions generating a simple delay (elongation through regions where there
are no long pauses), and reactions whose distribution of waiting times must be considered explicitly
(initiation, termination, and motion through regions where long pauses are likely). In these cases, the
distribution of transcription times again involves a nontrivial part and a shift due to fast elongation
processes.
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1. Introduction

Transcription is a complex process for the biosynthesis of RNA from a DNA template. Roughly, this
process can be divided into three phases: initiation, elongation and termination [1]. During initiation,
a set of protein factors bind the DNA template upstream of the start site and facilitate the binding and
positioning of RNA polymerase [2,3]. The first few nucleotides are added to the nascent RNA, and the
polymerase transitions into productive elongation thereafter. Elongation consists of a sequence of rapid
nucleotide addition steps [4]. While each individual step is fast (over 70 nt s−1 [4]; nt = nucleotide),
genes can be very long. The average human gene, which contains many introns that must be spliced
out to form the final transcript, has a length of 28 000 nt [5], and much longer genes are known [6],
so the elongation time can be significant. Finally, transcription must be terminated. In eukaryotes,
redundant mechanisms cooperate to ensure termination [7].

Transcription is only the first step in gene expression. In eukaryotes, the primary transcript is sub-
jected to processing [8], which includes splicing, 5’ capping, and 3’ polyadenylation; the completed
messenger RNA (mRNA) is packaged with proteins into a messenger ribonucleoprotein (mRNP) com-
plex that is required for export from the nucleus [9]; it must make its way to the nuclear pore and be
exported to the cytoplasm [10]; it may need to be shuttled to a specific part of the cell [11]; and finally
it is translated to a protein. Since splicing [12], 5’ capping [13] and mRNP assembly [14] are generally
co-transcriptional, a minimal model of gene expression in eukaryotes might consider just transcription,
nuclear export, and translation. All three of these major processes may be separately regulated, so it is
not, in general, possible to collapse them into a single protein-synthesis step as is often done in gene
expression models. If we want to model a gene network however, we almost certainly do not want to
model transcription, nuclear export and translation in detail. Rather, we would prefer to treat each of
these processes as effective reactions; one reaction for transcription, one for export, and one for transla-
tion. If we intend to model the temporal evolution of a gene network, it will be necessary to consider the
time required for each of these processes. Human genes are very large with, as noted above, an average
size of 28 kb (kilobases) [5].* In the absence of complicating factors (pauses, co-transcriptional splic-
ing), elongation proceeds at 4.3 kb min−1 (approximately 70 nt s−1) [4], so the transcription elongation
phase for a typical human gene would take approximately 6.5 min. Some genes are larger, and pausing
for splicing can add substantially to the transcription time [6]. Moreover, some events in transcription
initiation can be similarly slow [15, 16]. Nuclear export can take 10 to 20 minutes [17]. Because the
coding sequence is much shorter than the original gene—in humans, the coding sequence is only about
4% of the gene, the rest being intronic sequences removed by splicing [5]—translation will usually be
much faster. Accordingly, transcription, including pauses associated with splicing, and nuclear export
will tend to dominate the gene expression time. One way to avoid detailed models of these processes
while still considering the expression time of a gene is to incorporate delays [18–22], which may be
fixed or distributed [23–25], into a model containing effective reactions. But this of course means that
we need to know something about the distributions of these delays.

*For practical purposes, nucleotides and bases are interchangeable in the discussion of rates of templated polynucleotide synthesis
(transcription, DNA replication, etc.) and related statistics. Typically, nucleotides are used to count the units being added to the polynu-
cleotide (RNA, DNA), while bases (usually kb) are used to measure the template. Since one nucleotide is added for each complementary
base in the template, the rate of synthesis can equivalently be expressed in nt or in bases per unit time. However, ‘knt’ is, to our knowl-
edge, never used, so when SI prefixes are to be used, distances along the template are always measured in bases, hence rates measured
in nt s−1 or kb min−1.
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In this paper, we will compute the transcriptional delay distribution, the transcriptional delay being
defined here as the delay before the appearance of the product RNA given that the gene is active at
time zero, in a class of models of varying degrees of complexity. Although the transcription model
studied here is similar to prokaryotic models presented elsewhere [26, 27], we focus on a model and
on parameters appropriate to eukaryotes [28]. We further narrow the focus to protein-coding genes
transcribed by RNA polymerase II (RNAPII). In eukaryotes, most protein-coding genes are rarely
transcribed so that it will be rare for two polymerases to interact [29]. Even if we take into account
that RNAs are often produced in bursts [30–32], polymerases tend to accelerate as they travel down the
gene [33,34], which should minimize polymerase-polymerase interactions, at least for polymerases that
have translocated sufficiently far along the gene. Accordingly, we study a single-polymerase model.

There have been a number of models of the kinetics of transcription. Several models have focused
on the mechanics and statistical thermodynamics of elongation [35–39], and some of these models
have yielded insights into the factors responsible for the transcriptional delay. In prior work, we pro-
posed a single-gene prokaryotic transcription model from which we obtained analytical and numerical
results for the distribution of the transcriptional delay [27]. We also studied the case where many
polymerases transcribe the same gene and obtained stochastic simulation results [26–28]. A similar
approach was followed by von Hippel’s group, obtaining time-dependent solutions from which a delay
distribution could be inferred [40]. Filatova and coworkers have obtained distributions of elongation
times as well as means and variances of various stages of transcription for a somewhat simpler tran-
scription model than is considered here, but also considering random activation and deactivation of the
gene [41]. Boettiger and coworkers also obtained distributions of transcription times focusing on initi-
ation and treating elongation and termination as a single Poisson process [42]. Xu and colleagues have
examined the dwell time in paused states [43]. There have been a number of other modeling studies
of transcription of varying complexity and with a variety of objectives [44–47] (e.g.). Of course, there
is a formal similarity between transcription and translation, which are both templated processes, so we
find similar work also in translation modeling. Garai and coworkers have computed both dwell times
at a codon, and distributions of translation times [48, 49]. Perhaps most closely related to the present
contribution is the work of Mier-y-Terán-Romero and coworkers, who showed that for a long mRNA,
an advection equation is obtained in the continuum limit such that a fixed elongation delay emerges for
the process of translation [50].

Single-molecule optical trapping experiments show that the movement of RNA polymerase along
the DNA strand is not continuous and is punctuated many times by pauses [51, 52]. Mechanistically,
there are two main classes of pauses: (1) backtracking pauses, in which RNAPII slides backward re-
versibly along both the DNA and the RNA, and (2) non-backtracking pauses, in which conformational
changes in the RNA polymerase active site stop the nucleotide addition cycle [52, 53]. Backtracking
pauses can be affected by the presence of a trailing RNA polymerase that can restrict how far an RNA
polymerase can backtrack [54], leading to density dependence of the transcription rate [55]. Voliotis et
al. [56] studied a model of backtracking transcriptional pauses, for which they obtained a distribution
of transcription times. They found that backtracking leads to a heavy-tailed distribution, a conclusion
also reached by Klumpp [55].

Pauses can occur in many parts of a gene, and for many different reasons. In eukaryotes, the poly-
merase almost always pauses just downstream of the start site in an event known as promoter-proximal
pausing [57–59]. These pauses are thought to have a regulatory role. Pausing can be associated with
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features of the sequence [36, 60, 61]. Splicing can also cause pausing [62]. Moreover, pausing facili-
tates termination of transcription [63].

We treat transcription both with and without pauses, and we consider both short ubiquitous pauses
and specific pause sites where lengthy pauses occur. In Section 2, we present a simplified version of
Vashishtha’s model of eukaryotic transcription [28] that includes assembly of the pre-initiation com-
plex, initiation, elongation and termination. Vashishtha additionally considered abortive initiation, and
distinguished early elongation (a promoter escape phase with the possibility of promoter-proximal
pausing) from productive elongation. With the exception of abortive initiation, the neglected kinetic
processes are captured in later sections of this work, albeit in somewhat different form. In Section 3, we
write the chemical master equations corresponding to each phase of transcription. For both initiation
and termination phases, since there are few ordinary differential equations (ODEs), the time-dependent
probability for being in each state of the model can easily be obtained. For the elongation phase, we
again write down the chemical master equation. We find that there are two distinct cases. When the
elongation phase is short in duration compared to initiation or termination, which will be the case for
many genes for which initiation is slow, the polymerase’s motion can be treated as advective, and the
elongation phase can then be treated as introducing a fixed delay between initiation and termination.
As noted earlier, the advective treatment developed here is similar in spirit, if not in detail, to the work
of Mier-y-Terán-Romero and coworkers on translation [50]. On the other hand, when the duration of
the elongation phase becomes significant compared to the slower of initiation or termination, given
that most genes are relatively long, an application of the central-limit theorem predicts a Gaussian
distribution of elongation times. In both cases, it is possible to obtain an analytic expression for the
distribution of the total transcription time. Because of the modularity of the class of models consid-
ered [40] such that the total delay is just a sum of delays at each nucleotide, we can treat long pause
sites separately, which we do in Section 4. For simplicity, we go back to the case where elongation is
fast, and we consider a single strong pause site, obtaining the distribution of the total transcriptional
delay in this case. In all our calculations to this point, we assume that binding of the RNA polymerase
to the promoter is irreversible. In Section 5, we relax this assumption and discover that the distribu-
tion of transcription times can be sensitive to the reversibility of RNAP binding when the transition to
elongation is slow. Finally, in Section 6, we discuss a number of possible extensions and refinements,
notably the treatment of pause exit due to the action of a release factor, and the possibility of using our
results as a basis for simulating genes expressed in bursts.

This work is situated in a larger literature on the use of delays in chemical and biochemical models.
We can think of the states appearing between initiation and the completion of transcription as inter-
mediates in a synthesis pathway. The problem of replacing repeated steps generating a sequence of
intermediates by distributed delays has been intensely studied, notably by MacDonald [64–66], and
by Barrio and coworkers [67, 68]. Epstein has additionally considered the issue of “bottleneck inter-
mediates” [69], of which strong pause sites would be an example. We have already mentioned the
contribution of Mier-y-Terán-Romero and coworkers [50], which provided a justification for the use of
delays in modeling translation. The distinction made in this paper between cases where elongation is
fast and those where elongation is relatively slow adds to our understanding of the proper use of fixed
and distributed delays in gene expression models. Moreover, the availability of analytic expressions
for the distribution of transcription times in a variety of scenarios will be useful for delay-stochastic
simulations of gene expression networks [70, 71].
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2. Eukaryotic transcription model

We start with a simplified version of Vashishtha’s kinetic model for the eukaryotic transcription
process [28], removing abortive initiation, early elongation/promoter escape and promoter-proximal
pausing. Promoter-proximal pausing [72, 73] can, at least to a first approximation, be modeled as a
distinct, long pause, as we will do in section 4. Similarly, the early elongation phase, during which
the polymerase adds nucleotides more slowly than it does in the productive elongations phase [74,75],
could be treated analogously to productive elongation, but with different kinetic parameters. Abortive
initiation [76] represents an alternative pathway that can be included in a transcription model [28].
The effect of abortive initiation would be to reduce the frequency of initiation. Since we focus here
on events that lead to the production of a protein, we leave this out. We similarly leave the other
refinements mentioned in this paragraph to later work. Models of a similar degree of complexity
are sufficient to analyze some experimental datasets [77]. Moreover, note that the simplest model
considered in this contribution is similar to previously studied models of bacterial transcription [26,27].
With some reinterpretation of symbols, the results obtained here could thus be applied to bacterial
models, and perhaps also to structurally similar translation models [50, 78, 79].

Before describing the transcription model, it is useful to think about the context in which the delay
distributions derived in later sections are likely to be used. In delay-stochastic simulations [70,71], we
might model transcription as the simple delayed mass-action [80] process

pro(t) + RNAPII(t)
kini
−−−→ pro(t) + RNAPII(t + τtr) + RNA(t + τtr), (1)

where pro(t) is understood to be a promoter that is able to initiate transcription, i.e., one that is in the
‘on’ state. The activity of a gene is regulated by transcription factors acting either as repressors or as
activators. These interactions would be modeled by separate mass-action processes, e.g.,

pro + R −−−⇀↽−−− pro ·R, (2a)
R + L −−−⇀↽−−− R ·L (2b)

for a repressor R that is inactivated by binding to a ligand L. Thus, regulatory processes that turn a
gene on and off would be modeled by their own reactions and would not be involved in determining
the distribution of the delay τtr, which is the focus of this contribution. In other words, we study the
‘pure’ transcriptional process on the assumption that binding or conformational transition events that
turn a gene on or off are handled separately.

Having narrowed our focus as noted above, the transcription model is divided into the usual three
phases: initiation, elongation, and termination. This section is correspondingly organized.

2.1. Initiation

The initiation phase starts with binding of initiation factors, including the TATA-binding protein
(TBP), to the TATA box of the promoter region (pro) of a gene [reaction (3)], following which RNAPII
can bind to the promoter, forming the pre-initiation complex (PIC) [reaction (4)] [2]:

TBP + pro
k(2)

bind
−−−→ TBP · pro, (3)
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TBP · pro + RNAPII
k(2)

PIC
−−−→ PIC. (4)

The rate constants k(2)
bind and k(2)

PIC are second-order rate constants; the superscripts appear for emphasis.
The reverse of reaction (3) is neglected because TBP dissociation from DNA is extremely slow, with
a half-life of several minutes [81, 82]. TBP probably dissociates rapidly following transcription initi-
ation [83], but we need not consider the recycling of this factor given that we focus here on a single
polymerase. Dissociation of RNAPII from the promoter is, on the other hand, a frequent event [4],
so k(2)

PIC is best thought of as an effective rate constant that takes into account the repeated binding and
dissociation of the polymerase prior to forming a stable PIC, at least for now. We consider the effect
of reversible binding of the polymerase explicitly in Section 5.

After forming a stable PIC, the RNA polymerase moves to the first nucleotide of the DNA template.
Reaction (5) represents the translocation of the active site of the RNA polymerase to the first nucleotide
(nucleotide 1) if this nucleotide is unoccupied (U state), thus converting U1 into an occupied nucleotide
(O state):

PIC + U1
kinit
−−−→ O1. (5)

Since we only consider a single polymerase here, the forward site will always be unoccupied. We
maintain this notation for consistency with our earlier work [26–28]. Note that the engagement of the
polymerase represented by reaction (5) is likely a complex process. However, reaction (5) will be a
reasonable approximation if this process has a single rate-limiting step.

The minimal initiation model considered here captures the slowest steps in a single round of initia-
tion at promoters that include a TATA box. Initiation models can be much more complicated [42]. We
could, for example, allow for reinitiation by having either the promoter or TBP · pro become available
again after promoter clearance (i.e., after the polymerase has traveled sufficiently far downstream).†

This is easily done in stochastic simulations [28]. However, here we want to focus on analytic distribu-
tions obtained for a single polymerase. Some analytic progress can be made for a model with multiple
polymerases [84]. Some of these results however depend on the single-polymerase distributions, so
the work presented here is an important starting point. Moreover, not all genes display transcriptional
bursting [77], so it is worth considering initiation of a single polymerase.

From here and until we reach the termination phase, transcription consists of cycling through bind-
ing and recognition of a nucleoside triphosphate complementary to the template nucleotide, translo-
cation to the next template position, and formation of a phosphodiester bond, which adds the selected
nucleotide to the growing RNA chain. The early steps are slower than the corresponding steps in
productive elongation [74] but, for simplicity, we ignore these kinetic differences in this contribution.
Thus, the binding of the first nucleotide is treated as indistinguishable from binding of any other nu-
cleotide and is included in the elongation part of the model.

2.2. Elongation

Although conceptually there are at least three distinct processes in elongation (binding of a com-
plementary nucleoside triphosphate, translocation, catalysis of phosphodiester bond formation), the
simplest models of transcription describe the process in terms of two states [27, 85], roughly corre-
sponding to the pre- and post-translocated states. More [35, 36, 86] or fewer [40] states can be used to

†In vivo, TBP · pro is rapidly removed after initiation by Mot1 [83]. Including a reaction to represent the action of Mot1 following
clearance of the promoter would likely lead to transcriptional bursts, a topic to which we will return in the discussion.
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model elongation. In our models [26–28], the two states involved in productive elongation are called
occupied (O) and activated (A) (Figure 1), corresponding respectively to the pre- and post-translocated
states.

O

A

O

A

P

i − 1 i + 1i

......

P

O

A

P

Figure 1. Schematic of the elongation phase showing the occupied (O), activated (A) and
paused (P) states at three consecutive nucleotides.

The process of activation and translocation of RNA polymerase repeats itself as RNAPII translo-
cates nucleotide by nucleotide along the gene. These repeated reactions are responsible for productive
elongation [reactions (6) and (7)].

Oi
kae
−−−→ Ai, i = 1, 2, . . . ,N; (6)

Ai + Ui+1
kadd
−−−→ Oi+1 + Ui, i = 1, 2, . . . ,N − 1. (7)

Here, N is the length of the template, i.e., the transcribed sequence.
During elongation, the polymerase may pause for any of a number of reasons: There are so-called

“ubiquitous” pauses that may occur in any part of the gene [51], promoter-proximal pauses associated
with a change in state of the polymerase as it transitions from initiation to elongation [87], pauses
associated with splicing [88], and pauses associated with termination [63]. Pausing models can be
more or less complex and incorporate backtracking [56] or arrest [89]. Here we opt for a simple
model of a reversible pause. We neglect backtracking, which is likely appropriate for short, ubiquitous
pauses, but may be less so for long pauses. It appears that pausing proceeds from the pre-translocated
(O) state [89, 90], so we write

Oi

kp,i
−−−⇀↽−−−

kr,i
Pi, i = 1, 2, . . . ,N. (8)

We allow here for the possibility that the rate constants for pausing, kp,i, and for the release from the
pause, kr,i, might be template-dependent. On the other hand, we need make no such allowance for the
rate constants associated with productive elongation, kae and kadd, which are believed to be constant
over the length of a gene and across genes within a particular organism [91]. Figure 1 shows the
off-pathway P state along with the O and A states.

2.3. Termination

According to the allosteric model of termination, transcription of the poly(A) signal at the end of the
gene can cause a termination-inducing conformational change in the elongation complex [92]. After
the last reaction of elongation [activation at nucleotide N, reaction (6)], the elongation complex is
converted into a termination complex (TC) [reaction (9)]. Finally, the termination complex dissociates
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and releases the RNA [reaction (10)].

AN
kTC
−−−→ TC, (9)

TC
kterm
−−−→ RNA + RNAPII + UN . (10)

The above reactions assume 100% efficiency of allosteric termination. In reality, there is at least
one, and possibly two failsafe mechanisms backing up allosteric termination [7]. We assume a single
mechanism here for simplicity. In terms of the completion of the transcript, the torpedo model will
behave similarly to allosteric termination since its first step is to cleave the transcript at the poly(A)
signaling sequence, releasing the former from the transcriptional machinery [7].

3. Time-dependent probability distribution for transcription by RNAPII

3.1. Initiation

Figure 2 shows a schematic of the model. RNA polymerases move one nucleotide at a time along
the template strand [93], so each of the numbered sites in the diagram represents one nucleotide.
The polymerase initiates at the promoter, represented by a single site labeled ‘0’ in the diagram, and
terminates at the end of the transcribed sequence, represented here as the N’th nucleotide. By solving
the chemical master equation (CME) for each state in the three phases of transcription, we can obtain
time-dependent probability distributions for the progress of transcription, from which we can recover
the transcriptional delay distribution.

Figure 2. A schematic representation of RNA polymerase on the DNA template strand.

In principle, the propensities of reactions (3) and (4) depend on the populations of available TBP
and RNAPII, respectively. Here, we assume that there are constant pools of these two species in the
nucleus so that we can treat reactions (3) and (4) as pseudo-first order reactions, with rate constants
kbind = k(2)

bind[TBP], and kPIC = k(2)
PIC[RNAPII], respectively. The governing master equations are

dPpro(t)
dt

= −kbindPpro(t), (11a)

dPTBP·pro(t)
dt

= kbindPpro(t) − kPICPTBP·pro(t), (11b)

Mathematical Biosciences and Engineering Volume 21, Issue 6, 6225–6262.



6233

dPPIC(t)
dt

= kPICPTBP·pro(t) − kinitPPIC(t), (11c)

with initial condition Ppro(0) = 1, PTBP·pro(0) = PPIC(0) = 0. In these equations, Ppro(t) is the probability
that the promoter has never been bound up to time t, i.e., it is the survival probability of the empty pro-
moter. Since we treat the single-polymerase case, we do not need to consider promoter clearance [94].
PTBP·pro(t) is the probability that, at time t, TBP is bound to the promoter. Similarly, PPIC(t) is the prob-
ability that a complete PIC is assembled at the promoter at time t. The initial condition corresponds
to a gene that has been turned on at t = 0, prior to which TBP would not have been able to bind the
promoter. It is possible to consider other initial conditions. For example, for some modes of regulation,
it might be possible for TBP to bind the promoter while the polymerase is unable to bind until the gene
is turned on. In this case, we would choose an initial condition such that Ppro(0) + PTBP·pro(0) = 1 and
Ppro(0)/PTBP·pro(0) = K(eff)

d , where K(eff)
d is the effective dissociation constant for the TBP · pro complex

at cellular TBP concentrations.
The time-dependent rate at which probability exits initiation and enters elongation is, from reac-

tion (5),
vinit(t) ≡ ρinit(t) = kinitPPIC(t), (12)

where ρinit(t) is the distribution of initiation times. The equality of vinit and ρinit follows because the
integral of the rate at which initiation is completed is the cumulative distribution of initiation times.

The linear ordinary differential equations (11a) to (11c) can be solved to find the probability dis-
tribution of being in each state. Equation (12) can then be used to obtain the distribution of initiation
times. The latter is (assuming all of the rate constants are distinct)

ρinit(t) =
kbind kPIC kinit

(kPIC − kbind)(kbind − kinit)(kinit − kPIC)

[
(kPIC − kinit)e−kbindt + (kinit − kbind)e−kPICt + (kbind − kPIC)e−kinitt

]
. (13)

Figure 3 shows ρinit(t). The parameters used in this study were estimated by Vashishtha [28] and are
given in Table 1. They are likely representative of genes expressed at lower rates, although Vashishtha
showed that they were consistent with the average behavior of transcription in mammalian cells [95].
Briefly, the rate of TBP binding to the TATA box is assumed not to be limited by reaction (3), but
by dissociation of TBP dimers, so the effective rate constant for this non-elementary step is the rate
constant for dimer dissociation, kbind = 0.0016 s−1 [15]. The rate constant for PIC assembly, kPIC =

0.0029 s−1, was taken from an in vitro study [96]. Finally, based on experimental data for the progress
of the polymerase through the first few nucleotides [96], Vashishtha inferred a lower bound for kinit of
0.3 s−1 [28]. The value of kinit eventually adopted is somewhat arbitrary, but in any event, it is clear that
binding of TBP and PIC assembly are the rate limiting steps. Although the parameters chosen for this
study may represent a gene at which initiation is particularly inefficient, typical eukaryotic initiation
times are relatively long [1, 76, 96], resulting in well-spaced polymerases [97], which supports our
decision to focus on a single-polymerase model.

3.2. Elongation

3.2.1. Continuum approximation

The distribution of transcription times is an N-fold convolution of passage times through each nu-
cleotide. For very simple models, this convolution is tractable, and is the basis of the well-known
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Table 1. Default values of the rate constants used in this study.

Rate constant Value/s−1

kbind 0.0016
kPIC 0.0029
kinit 0.6
kae 144
kadd 144
kp,i 100
kr,i 3.6
kTC 0.0032
kterm 0.003

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0  1000  2000  3000  4000  5000

ρ
in
it
(t
)

t (s)

Figure 3. ρinit(t) from Eq (13) with the parameters of Table 1.
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“linear chain trick” [64–66, 98]. This problem is less straightforward if we take into account devia-
tions from the sequential addition of nucleotides such as pausing. For typical protein-coding genes in
eukaryotes, N might range from several hundred nucleotides to tens of thousands [5]. The large value
of N for typical genes and the high rates of elongation [4] afford an opportunity to make a continuum
approximation. The methods applied here are somewhat analogous to those used to obtain a wave equa-
tion in a chain of coupled oscillators [99] and have a long history in mathematical biology [100, 101].
Note also the close analogy to the derivation of delays in age-structured models of populations [102].

Denote by Pi,σ the probability that the polymerase has its active site at nucleotide i and that it is in
state σ, where σ can take on the values O, P or A. The master equations governing the time evolution
of the elongation phase are

dPi,O(t)
dt

= kaddPi−1,A(t) − kaePi,O(t) − kp,iPi,O(t) + kr,iPi,P(t), (14a)

dPi,A(t)
dt

= kaePi,O(t) − kaddPi,A(t), (14b)

dPi,P(t)
dt

= kp,iPi,O(t) − kr,iPi,P(t), (14c)

where i = 2, 3, ...,N −1. (Equation (14a) is slightly modified for i = 1 since the O state is reached from
the PIC state according to reaction (5). This does not alter the argument below in any substantial way.)

Because the states are mutually exclusive, the probability that the polymerase is at nucleotide i in
any state, Pi, is the sum of the probabilities Pi,σ, that is

Pi(t) = Pi,O(t) + Pi,A(t) + Pi,P(t). (15)

Using Eqs (14)–(15), we obtain
dPi

dt
= kadd

(
Pi−1,A − Pi,A

)
. (16)

We want to treat the motion on the time scale of elongation. We therefore introduce the rescaled
time

θ = t/τe, (17)

where τe is the mean total elongation time. This quantity will be computed below. Introducing this
scaling in Eq (16), we get

dPi

dθ
= kaddτe

(
Pi−1,A − Pi,A

)
. (18)

For long genes, an increment of one nucleotide is a small change in position measured relative to
the length of the gene. Therefore define

x = i/N, (19)
δ = 1/N. (20)

In a continuous representation, the Pi,A(θ), which are supported on the natural numbers, will become
continuous functions of x, ρA(x, θ), with the correspondence Pi,A(θ) = δρA(iδ, θ). Similarly, we define
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the probability density for all states combined by Pi(θ) = δρe(iδ, θ). Because δ is small, from the
definition of the derivative, we have

Pi−1,A(θ) − Pi,A(θ) = δ (ρA(x − δ, θ) − ρA(x, θ))

≈ −δ2∂ρA(x, θ)
∂x

.
(21)

This will hold provided the Pi,A vary sufficiently slowly. Otherwise, the estimate of the derivative
on which Eq (21) is based is meaningless. This approach will therefore fail if the gene contains a
specific site at which probability accumulates for a time during elongation due to significant slowing
of elongation over a short stretch of the sequence. Take the extreme case where the residence time
at one particular nucleotide, i, is several orders of magnitude larger than at adjacent nucleotides: then
there will be a period of time of O(τi) over which Pi(t) ∼ O(1) with P j(t) ≈ 0 at adjacent nucleotides
and where the derivative estimate of Eq (21) is therefore invalid. Slowing could be due to any of the
elongation parameters, but will most commonly occur because of a strong pause site. We treat the
latter in Section 4. On the other hand, slowly varying parameters, including those associated with
pausing, do not in principle pose any particular difficulty for this approach. We note in passing that
the treatment of translation by Mier-y-Terán-Romero and coworkers also required sufficiently slowly
varying parameters.

Substituting (21) and the definitions of the densities into (18), we get the PDE

∂ρe

∂θ
= −kaddτeδ

∂ρA

∂x
. (22)

Equation (22) is not closed as it relates the time derivative of ρe to the gradient of ρA. If we examine the
state of a specified nucleotide from an ensemble of similarly prepared systems at an arbitrary moment
in time,‡ the conditional probability of catching it in a particular state given that the polymerase has
reached this nucleotide is proportional to its mean dwell time in that state. In particular,

Pi,A = PiP (A|i) = Pi
τi,A

τi
, (23)

where τi,A = k−1
add is the mean dwell time in the A state at nucleotide i, and τi is the total dwell time at

nucleotide i. Converting to densities, Eq (22) becomes

∂ρe

∂θ
= −δτe

∂

∂x

(
ρe

τ(x)

)
, (24)

where τ(iδ) = τi, and τ(x) interpolates between these values for x , iδ. A similar equation has been
obtained by Mier-y-Terán-Romero and coworkers for translation by the ribosome [50]. Following
these authors, provided the velocity is sufficiently slowly varying, we obtain a mean elongation delay
of, converting time back to dimensional units,

τe = N
∫ 1

0
τ(x) dx. (25)

‡Because the τi are short, Eq (23) should hold true provided observations are not made at the earliest time that some molecules in the
ensemble reach nucleotide i. In other words, (23) should hold except in a brief window of duration O(τi) when Pi(t) is beginning to rise.
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We see from this equation that τ(x) has the interpretation of the time required for the polymerase to
move the distance of one nucleotide (δ in the x scaling), which is consistent with the original description
of τ(x) as interpolating the τi.

We will focus for now on the case in which the kinetic parameters are identical at every nucleotide.
Then, τ(x) = τi is a constant, and

τe = (N − 1)τi + k−1
ae ≈ Nτi (26)

for large N. Taking into account (20), (24) reduces to
∂ρe

∂θ
= −
∂ρe

∂x
, (27)

i.e., a simple advective equation with unit velocity. (An alternative derivation of this equation is to be
found in [84].) At the left boundary (x = 0), probability flows in at a rate kinitPPIC(t) [reaction (5)] or,
in the scaling (17), τekinitPPIC(τeθ). The appropriate boundary condition for (27) is therefore

ρe(0, θ) = τekinitPPIC(τeθ). (28)

(Technically, since the nucleotides are numbered from 1, the boundary condition should be applied at
x = δ rather than x = 0. However, since δ is assumed small, there is no significant error in the boundary
condition given above.) Since we deal with just one polymerase, and since this polymerase cannot start
transcription before t = 0, we also have the initial condition ρe(x, 0) = 0.

The PDE (27) with the boundary condition (28) simply transports probability through the elongation
compartment at unit velocity. Accordingly, the solution is

ρe(x, θ) = τekinitPPIC (τe(θ − x)) H(θ − x), (29)

where H(·) is the Heaviside function. The flux exiting elongation, at x = 1, transformed back to the
original time scale, is therefore

Je(t) = kinitPPIC(t − τe)H(t − τe). (30)

This solution holds for any fixed kinetic parameters, with or without pausing. We conclude that for
transcription, as was the case for translation [50], elongation normally acts as a simple delay. A similar
result was obtained elsewhere using a Laplace transform technique [26].

Figure 4 shows the position of the polymerase against time obtained from a stochastic simulation for
a single polymerase in the absence of pausing, while Figure 5 shows representative trajectories from
similar simulations with frequent short pauses. These simulations confirm that for long genes without
long pause sites, the elongation process is essentially advective, with RNAPII moving at a roughly
constant velocity. From an ensemble of 40 000 realizations, we found a mean and standard deviation
of the elongation rate of 72.0 ± 1.8 nt s−1. The situation with frequent short pauses is not so different.
Over 40 000 realizations, we found that the velocities during the elongation phase varied from 3.7 to
6.5 nt s−1, with a mean of 4.8 nt s−1. While the observed range of elongation rates is relatively large, the
variability in the elongation times is tiny compared to the variability in the initiation and termination
times, as is evident from Figure 5. Interestingly, the relatively constant time required to get through
elongation has been observed experimentally [1]. Bel and coworkers have also provided theoretical
arguments demonstrating that the distribution of a process consisting of sequential steps, even if the
individual steps have some complexity, would be expected to converge to a narrow distribution when
the number of steps is large [103].
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Figure 4. Position of the RNA polymerase vs. time obtained from the stochastic simulation
of a single polymerase in the absence of pausing. Parameter values are as in Table 1 except
kp,i = kr,i = 0 with N = 1000.

Figure 5. Several realizations of the RNA polymerase position vs. time obtained from
stochastic simulations of single polymerases with ubiquitous pausing. The parameter values
are as in Table 1 with N = 1000.
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3.2.2. The elongation delay

Equation (30) shows that, subject to the underlying assumption that elongation is a fast process,
elongation only contributes a delay. Mier-y-Terán-Romero and coworkers have shown that the same
holds true for slowly varying delays [50]. In this model, which leaves out backtracking that would
require hydrolysis of the 3’ end of the transcript, addition of nucleotides is strictly sequential. Accord-
ingly,

τe =

N−1∑
i=1

τi + k−1
ae . (31)

(Note that reaction (6) includes N steps, but reaction (7) only includes N − 1 steps, where N is the
length of the transcribed sequence.) Similarly, the transition from the pre- to the post-translocated state
is irreversible, so

τi = τi,O∨P + τi,A, (32)

where τi,O∨P is the mean dwell time in the aggregated pre-translocation O and P states. As noted
previously, τi,A = k−1

add. We now turn to the calculation of τi,O∨P.
We focus on the steps

Pi

kr,i
−−−⇀↽−−−

kp,i
Oi

kae
−−−→ (33)

which define the escape process from the O ∨ P aggregated state. The master equation for this escape
process is

dPi,P

dt
= kp,iPi,O − kr,iPi,P, (34a)

dPi,O

dt
= −kp,iPi,O + kr,iPi,P − kaePi,O, (34b)

with initial conditions Pi,O(0) = 1, Pi,P(0) = 0. The probability density for the dwell time in the
aggregated O and P states at nucleotide i, i.e., for making a transition from state O to state A, is
ρOA,i = kaePi,O(t). After some tedious algebra, we find

ρOA,i(t) =
kae

2
√

Di

[
e−(S i+

√
Di)t/2

( √
Di + kae + kp,i − kr,i

)
+ e−(S i−

√
Di)t/2

( √
Di − kae − kp,i + kr,i

)]
, (35a)

where

S i = kae + kp,i + kr,i, (35b)
Di = S 2

i − 4kaekr,i. (35c)

As usual, we compute the mean time spent in the O and P states by

τi,O∨P =

∫ ∞

0
tρOA,idt =

kp,i + kr,i

kae kr,i
. (36)

Equation (32) now implies the dwell time at a particular nucleotide:

τi =
kp,i + kr,i

kaekr,i
+

1
kadd
=

1
kae

(
1 +

kp,i

kr,i

)
+

1
kadd
. (37)
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Note that Eqs (35a) and (37) were derived without any approximations. Thus, they apply to any
nucleotide, including those where long pauses occur, discussed in Section 4.

It is instructive to consider a few special limits of Eq (37). First, if there is no pausing, kp,i = 0, and
we get

τi|kp,i=0 =
1

kae
+

1
kadd

(38)

which is, as expected, the sum of the mean dwell times in the O and A states. On the other hand, for
very strong pause sites with kp,i/kr,i ≫ max (1, kae/kadd), we get

τi ≈
kp,i

kr,i

1
kae
. (39)

In this case, the dwell time in the O and P states dominates, and is computed from the pause-free
O-state dwell time stretched by the proportion of the time spent in the paused state.
τi is the mean time required to get from nucleotide i to nucleotide i + 1. If the kinetic parameters

are identical at each nucleotide, then τ−1
i is the mean velocity of the polymerase. For the parameters of

Figure 4, we can calculate a velocity v = 72 nt s−1, which is in perfect agreement with the mean velocity
obtained from the numerical experiments mentioned earlier. For the case with pausing (Figure 5),
Eq (37) leads to a velocity of v = 4.8 nt s−1, which again agrees with the mean over many realizations
of the stochastic simulations.

It will also be useful to consider the variance in the total elongation time τe. According to the central
limit theorem [104], assuming N is large, the distribution of τe approaches a Gaussian with variance

var(τe) =
N∑

i=1

var(τi), (40)

making the obvious large-N approximations. The τi need not be identically distributed, but there should
not be a small number of nucleotides where passage is particularly slow. This case will be considered
in Section 4. The variance of τi is easily calculated:

var(τi) = var(τi,O∨P) + var(τi,A) (41)

and var(τi,A) = k−2
add. To calculate var(τi,O∨P), we first compute E(τ2

i,O∨P), where E(·) denotes the expec-
tation value:

E(τ2
i,O∨P) =

∫ ∞

0
t2ρOA,idt =

2(kp,i + kr,i)2 + 2kaekp,i

k2
aek

2
r,i

. (42)

Then,

var(τi,O∨P) = E(τ2
i,O∨P) − τ2

i,O∨P =
(kp,i + kr,i)2 + 2kaekp,i

k2
aek

2
r,i

(43)

so that

var(τi) =
(kp,i + kr,i)2 + 2kaekp,i

k2
aek

2
r,i

+
1

k2
add

. (44)
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In the special case where all sites are identical, the distribution of τe therefore converges to a Gaus-
sian with mean given by Eqs (31) and (37) and variance

var(τe) = N var(τi) = N
 (kp,i + kr,i)2 + 2kaekp,i

k2
aek

2
r,i

+
1

k2
add

 . (45)

If we let σ2
e ≡ var(τe), then the distribution of elongation times can be written

ρe(t) =
e−(t−τe)2/2σ2

e√
2πσ2

e

. (46)

Several comments about this equation are in order:

1. Provided we compute τe from Eq (31) and σ2
e from Eq (40), this equation is applicable to any

situation where there are no sites where transit is unusually slow, i.e., no long pausing sites. It is
not necessary for the distributions of the dwell sites to be identical at each nucleotide.

2. In cases like those of Figures 4 and 5 where the distribution of elongation times is narrow relative
to the distribution of at least one of elongation or termination, ρe(t) can be replaced by a Dirac
δ distribution. Then elongation contributes a simple fixed delay to the overall distribution of
transcription times. This is the situation to which Eq (30) applies.

3. Technically, the expression for ρe(t) is supported on t ∈ (−∞,∞). Clearly, the negative values
of t are meaningless. Thus, Eq (46) will only apply when τe ≫ σe such that ρe(0) is extremely
small and the t < 0 tail of the distribution contributes negligibly to the total probability. In these
cases, we can treat ρe(t) as if it is supported on the physically meaningful interval t ∈ [0,∞)
with negligible error. Since σe grows as

√
N and τe grows as N, this will always be the case for

sufficiently large N.

3.3. Termination

Assume that we are in the normal situation where the flux out of elongation and into termination is
given by Eq (30). Thus, the following ODEs govern the evolution during termination:

dPN,A(t)
dt

= Je(t) − kTCPN,A(t), (47a)

dPTC(t)
dt

= kTCPN,A(t) − ktermPTC(t), (47b)

dPT(t)
dt

= ktermPTC(t), (47c)

where PTC(t) is the probability that there is a termination complex (TC) at time t, and PT(t) represents
the probability that the transcript (T) has been released, with Je(t) given by Eq (30).
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Figure 6. A comparison between stochastic simulation (circles) and analytical (red line)
solutions for ρtr(t) in the absence of pausing. Parameter values are as in Table 1 except
kp,i = kr,i = 0 with N = 1000. The numerical distribution was computed from 40 000
realizations of the transcription process.

3.4. Distributions of transcription times

We can solve the ODEs (47) with the initial conditions of PN,A(0) = PTC(0) = PT(0) = 0 to derive an
expression for probability density of the entire transcription process, ρtr(t) (= dPT/dt = ktermPTC(t)):§

ρtr(t) = H(t − τe) kbind kPIC kinit kTC kterm

×
{[

(kbind − kPIC) (kbind − kinit) (kbind − kTC) (kbind − kterm)
]−1 e−kbind (t−τe)

+
[
(kPIC − kbind) (kPIC − kinit) (kPIC − kTC) (kPIC − kterm)

]−1 e−kPIC (t−τe)

+
[
(kinit − kbind) (kinit − kPIC) (kinit − kTC) (kinit − kterm)

]−1 e−kinit (t−τe)

+
[
(kTC − kbind) (kTC − kPIC) (kTC − kinit) (kTC − kterm)

]−1 e−kTC (t−τe)

+
[
(kterm − kbind) (kterm − kPIC) (kterm − kinit) (kterm − kTC)

]−1 e−kterm (t−τe)
}
.

(48)

Figures 6 and 7 show comparisons between the analytical solution and stochastic simulations of
ρtr(t), showing excellent agreement. Note the effect of ubiquitous pausing in Figure 7: the shape
of the distribution is not changed, but the distribution is shifted to the right with increasing pausing
probability. In other words, ubiquitous pauses only contribute to the constant elongation delay under
normal conditions.

An alternative approach to termination, which will shortly prove useful, is to solve directly for the
distribution of termination times. We do this by solving the equations

dPN,A(t)
dt

= −kTCPN,A(t), (49a)

dPTC(t)
dt

= kTCPN,A(t) − ktermPTC(t), (49b)

§There is at least one other way to arrive at Eq (48): Below, we will derive the distribution of termination times, Eq (50). We
can compute the convolution of the distributions of initiation times, Eq (13), with the distributions of termination times and with a
δ distribution representing the distribution of elongation times.
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Figure 7. Probability density for transcription time with ubiquitous pausing. We compare
stochastic simulation results with analytical results. Parameter values are as in Table 1 with
N = 1000 except for the kp,i values. The pausing rate constant, kp,i, is 7.6 s−1 (red curve
with triangles), 100 s−1 (blue curve with circles) and 500 s−1 (black curve with squares). The
numerical distribution was computed from 40 000 realizations of the transcription process.

subject to the initial conditions PN,A(0) = 1, PTC(0) = 0. Some elementary mathematics shows the
distribution of termination times to be

ρT(t) = ktermPTC =
kterm kTC

kTC − kterm

(
e−ktermt − e−kTCt

)
. (50)

Equation (48) will provide an accurate approximation to the distribution of transcription times pro-
vided elongation is must faster than initiation and termination combined. Otherwise, we must consider
the Gaussian distribution of elongation times. There are various ways in which we can imagine globally
slowing elongation. Numerical experiments reveal that they all have the same effect since the distribu-
tion of elongation times is Gaussian, regardless of the details of the kinetics at any particular nucleotide,
again with the proviso that there there are not narrow regions of a few nucleotides where transit is un-
usually slow. Consider in particular a situation in which the supply of nucleotides is strongly limited.
In this model, this corresponds to decreasing the value of kae. Because of the role of nucleotides in the
Brownian ratchet mechanism of RNA polymerases [86,105], low occupancy of the nucleotide addition
site would be expected to cause increased backtracking and pausing as well [89,106], further reducing
the polymerase’s average elongation rate.

We can derive an equation for the distribution of transcription times of a slow polymerase by taking
a convolution of the initiation, termination and elongation time distributions under the assumption
that Eq (46) accurately describes the distribution of elongation times. This is most conveniently done
by first taking the convolution of the initiation and termination time distributions, which gives an
equation similar to Eq (48) but with τe = 0. We then take the convolution of this initiation-termination
distribution, ρIT, with the elongation time distribution as follows:

ρtr(t) =
∫ t

τ=0
ρIT(t − τ)ρe(τ) dτ. (51)
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The result of this calculation is

ρtr(t) =
1
2

kbind kPIC kinit kTC kterm

×


e−kbind(t−τe−kbindσ

2
e/2)

[
erf

(
kbindσ

2
e+τe√

2σ2
e

)
− erf

(
kbindσ

2
e−t+τe√
2σ2

e

)]
(kbind − kPIC)(kbind − kinit)(kbind − kTC)(kbind − kterm)

+

e−kPIC(t−τe−kPICσ
2
e/2)

[
erf

(
kPICσ

2
e+τe√

2σ2
e

)
− erf

(
kPICσ

2
e−t+τe√
2σ2

e

)]
(kPIC − kbind)(kPIC − kinit)(kPIC − kTC)(kPIC − kterm)

+

e−kinit(t−τe−kinitσ
2
e/2)

[
erf

(
kinitσ

2
e+τe√

2σ2
e

)
− erf

(
kinitσ

2
e−t+τe√
2σ2

e

)]
(kinit − kbind)(kinit − kPIC)(kinit − kTC)(kinit − kterm)

+

e−kTC(t−τe−kTCσ
2
e/2)

[
erf

(
kTCσ

2
e+τe√

2σ2
e

)
− erf

(
kTCσ

2
e−t+τe√
2σ2

e

)]
(kTC − kbind)(kTC − kPIC)(kTC − kinit)(kTC − kterm)

+
e−kterm(t−τe−ktermσ

2
e/2)

[
erf

(
ktermσ

2
e+τe√

2σ2
e

)
− erf

(
ktermσ

2
e−t+τe√
2σ2

e

)]
(kterm − kbind)(kterm − kPIC)(kterm − kinit)(kterm − kTC)



(52)

We now consider a polymerase whose rate constant for the O to A transition (i.e., binding of the
appropriate nucleotide) has been reduced by a factor of 100 while the pausing rate constant has been set
to 10 s−1. The results of stochastic simulations are plotted along with Eqs (48) and (52) in Figure 8(a).
Because, at these high relative rates of pausing, much of the elongation time is spent in pauses, this
reduction in kae and kp,i from the default values has the effect of increasing τi by a factor of more
than 10, from 0.21 to 2.63 s. Even at this extremely slow rate of translation (about 0.4 nt s−1), the
advective approximation to elongation still holds and either expression for the distribution of elongation
times fits the simulation data equally well. It is only at even lower elongation rates that the more
complex Eq (52) is necessary. For example, Figure 8(b) shows the distribution at kp,i = 200 s−1 with
the same value of kae as in panel (a). At these parameters, τi has increased to 39 s, corresponding to
a glacial rate of transcription. The distribution of transcription times is now strongly affected by the
Gaussian distribution of elongation times. Equation (48) no longer applies, and Eq (52) now gives the
correct distribution.

While Figure 8 was produced at parameters that generate unrealistically slow elongation rates, the
same issue would arise if both initiation and termination were fast processes, as they will sometimes
be. Figure 9 shows the simulated distribution along with the approximations (48) and (52) for such a
case. We see again that the advective approximation is a poor fit while Eq (52) provides an excellent
approximation to the distribution of transcription times. The reason is exactly the same as it was for
the parameters of Figure 8(b): when initiation or termination are slow compared to the duration of the
elongation process, then Eq (48) applies; otherwise, we must consider the distribution of elongation
times as well as the distributions of initiation and termination times, and Eq (52) must be used, as is
the case in Figures 8(b) and 9.
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Figure 8. Transcription time distributions for polymerases that are transcribing slowly. In
both panels, kae = 1.44 s−1 and N = 1000. In panel (a), kp,i = 10 s−1 while in panel (b),
kp,i = 200 s−1. All other parameters are as in Table 1. Circles show simulation results, the
dotted blue lines show the transcription time distribution in the advective approximation,
Eq (48), while the solid red line is the quasi-exact Eq (52).
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Figure 9. Transcription time distributions for the case where both initiation and termination
are fast processes, with parameters kbind = 1, kPIC = 0.2, kinit = 0.6, kae = 144, kadd = 144,
kp,i = 20, kr,i = 3.6, kTC = 0.3 and kterm = 0.4 s−1 for a 10 000 nt gene. Circles show the
distribution computed from 40 000 stochastic simulations, the dotted blue line is Eq (48),
and the solid red line is Eq (52).
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}

......

long pauses

Figure 10. Schematic illustration of a long pause region, here consisting of two nucleotides.
Outside the region where long pauses may occur, elongation is treated as contributing a delay.
In the region of the long pause, the dwell time distribution is explicitly computed.

We emphasize that the simulation data are always well fit by Eq (52), while Eq (48) is only valid
if elongation is fast compared to initiation and termination. Thus, Eq (52) is more general. The only
difficulty with using Eq (52) is that its evaluation generally requires higher precision than standard
double-precision floating-point arithmetic. We used Maple to evaluate this expression, setting the
number of digits of precision to values up to 35 (adjusted upward when anomalies were noted), roughly
corresponding to quadruple-precision floating-point numbers.

4. Effect of a long pause along a gene

The case of a site at which a lengthy pause may occur has to be treated separately, for the reasons
outlined in Section 3.2.1. We take advantage here of the modular nature [40] of our model. Specifically,
we can break up the elongation region into segments where only short ubiquitous pauses occur, dealt
with using the theory of Section 3.2, and segments where long pause sites are found, as illustrated in
Figure 10. At any given long pause site, the distribution of the dwell time in the combined O and P
states is given by Eq (35a). We can take a convolution of this dwell time distribution with the other
relevant distributions to obtain the overall transcriptional delay distribution. For simplicity, we will
focus in this section on the case where elongation is advective, although it should equally be possible
to carry out these calculations for the case of elongation times with a Gaussian distribution.

The convolution of probability densities for initiation and termination times (ρI,T) is calculated by

ρI,T(τ) =
∫ τ

0
ρPIC(τ − t) ρT(t) dt. (53)

This equation gives us an alternative path to Eq (48), by simply shifting the distribution ρI,T(t) by the
elongation delay, τe.

For a long pause at a single nucleotide at i = ip, the case on which we focus here, we can obtain the
convolution of ρI,T(t) and ρOA,ip(t), Eqs (53) and (35a), respectively:

ρI,T,P(τ) =
∫ τ

0
ρOA,ip(τ − t) ρI,T(t) dt. (54)

In the event that long pauses can occur at multiple nucleotides, this last step is iterated, i.e., we take the
q-fold convolution with ρOA,ip , where q is the number of nucleotides at which long pauses may occur
and ip represents each of the positions where a long pause occurs, potentially with different kinetic
parameters at each of these sites. Once the convolution has been calculated, the final result can be
obtained by shifting the distribution by τ′e, the delay due to all processes in elongation not involving
the O∨P aggregated state at the long pause site. The distribution for the transcription time is therefore

ρtr(t) = H(t − τ′e) ρI,T,P(t − τ′e). (55)
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Figure 11. Effect of a strong pause in the gene on the probability density of transcription
comparing stochastic simulation results (symbols) and the analytical solution (lines). Param-
eter values are as in Table 1 with N = 1000 except that kp,i = kr,i = 0 everywhere except
at nucleotide ip. At this nucleotide, kr,ip = 0.002 s−1 with each curve representing a different
value of kp,ip: kp,ip = 1000 s−1 for the black line and squares, 500 s−1 for the blue line and
circles, and 200 s−1 for the red line and triangles. Each numerical distribution was computed
from 105 realizations of the transcription process.

The expression that results from this calculation is awkward and is not reproduced here, but is available
in a Maple worksheet provided in the Supplemental Materials.

Let P be the set of nucleotides at which a long pause may occur, and R be the set of nucleotides
where “regular” elongation occurs. R ∪ P is the entire transcribed sequence, i.e., R is the complement
of P in the transcribed sequence. The set P consists of q nucleotides. τ′e includes N −1 extension steps
[reaction (7)], and N − q steps with short pauses for which (36) applies. Thus, τ′e is, in general,

τ′e =
N − 1
kadd

+
∑
i∈R

kp,i + kr,i

kae kr,i
. (56)

For the specific case where long pauses only occur at one nucleotide, this reduces to τ′e = (N − 1)τi,
with τi given by Eq (37).

Figure 11 shows the probability density of the transcription time for three different values of pausing
rate constant in a case with a very long pause (mean pause time of 500 s). Pauses of this duration might
be associated with splicing, which is quite a slow process [91].

5. Reversible RNAPII binding

It is possible to imagine many variations on the model presented in section 2. Because RNA poly-
merase binding is likely reversible on time scales relevant to transcription initiation [4], we consider a
model in which reaction (4) is replaced by

TBP · pro + RNAPII
k(2)

PIC
−−−⇀↽−−−−
k−PIC

PIC. (57)
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The master equation for initiation becomes

dPpro

dt
= −kbindPpro, (58a)

dPTBP·pro

dt
= kbindPpro − kPICPTBP·pro + k−PICPPIC, (58b)

dPPIC

dt
= kPICPTBP·pro − k−PICPPIC − kinitPPIC (58c)

in the same pseudo-first-order regime as was previously assumed to treat RNAPII binding to the pro-
moter. Also as before, we use the initial condition Ppro(0) = 1, PTBP·pro(0) = PPIC(0) = 0. Define

s =
√

k2
init + 2kinit (k−PIC − kPIC) + (kPIC + k−PIC)2, (59a)

λ1 =
1
2

(kPIC + k−PIC + kinit + s) , (59b)

λ2 =
1
2

(kPIC + k−PIC + kinit − s) . (59c)

The resulting distribution of initiation times can then be written

ρinit(t) =
kbind kPIC kinit

s(λ1 − kbind)(λ2 − kbind)

[
e−λ2t(kbind − λ1) − e−λ1t(kbind − λ2) + se−kbindt

]
. (60)

It is easy to verify that (60) reduces to (13) when k−PIC = 0.
For the parameters used in our previous figures, the distribution of initiation times is not very sensi-

tive to the value of k−PIC. Figure 12 shows the distribution of initiation times at different values of k−PIC

for a set of parameters inspired by the data of Darzacq and coworkers [4]. The value of kinit suggested
by their data is much smaller than the one used by Vashishtha [28]. As a result, dissociation of the
polymerase and entry into the elongation phase compete directly, which explains why ρinit is much
more sensitive to k−PIC in this regime.

In Section 2.1, we suggested that we could treat binding of RNA polymerase as an irreversible
process with an effective rate constant kPIC, i.e., that we could use a reduced value of this rate constant
instead of taking reversible binding into account. To test this idea, we calculated the average initiation
time in the model with reversible RNAPII binding, and then chose kPIC in the irreversible model to
match the average initiation time. We carried out this calculation for the parameters of Figure 12
where the distribution is more sensitive to the value of k−PIC. The result of this calculation is shown
in Figure 13. Differences in the shapes of the two distributions can clearly be seen. These differences
persist to surprisingly small values of k−PIC, but eventually vanish (results not shown), as they must.
Thus, there appears to be a wide range of parameters where reversibility has a noted effect on the
distribution of initiation times. Whether these differences are sufficient to be distinguishable based on
noisy experimental data is an open question.

6. Conclusions

In this work, a simplified version of the transcription model proposed by Vashishtha [28] for eu-
karyotic cells was utilized to describe the kinetics of a single RNAPII during transcription. The master
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Figure 12. Distribution of initiation times for kbind = 1.6 × 10−3 s−1, kPIC = 0.022 s−1, kinit =

1.59×10−3 s−1, and k−PIC = 0 (red solid line), 0.03 (blue dotted line) or 0.15 s−1 (black dashed
line).

Figure 13. Distribution of initiation times for the model with reversible RNAPII binding
(dashed black curve) and for the model with irreversible RNAPII binding (solid red curve).
The value of kPIC was adjusted in the latter model to match the average initiation time of the
former. For the model with reversible binding (dashed black curve), kPIC = 0.022 s−1 and
k−PIC = 0.15 s−1. For the model with irreversible binding (solid red curve), kPIC = 2.31 ×
10−4 s−1. Common parameters: kbind = 1.6 × 10−3 s−1, kinit = 1.59 × 10−3 s−1.
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equations for initiation and termination were solved exactly. As in the work of Mier-y-Terán-Romero
et al. [50], for the case where elongation is fast, the motion during elongation led to an advection equa-
tion so that the elongation phase has the effect of a simple delay connecting initiation and termination.
There are other ways of showing that simple elongation will often be adequately modeled by a fixed
delay [26]. Ultimately, all of these methods depend, directly or indirectly, on the linear growth of both
the mean elongation time and the variance with the number of nucleotides such that the width of the
distribution becomes relatively narrower as N grows [103]. Contrastingly, in the case where elongation
is relatively slow, we found that the distribution of transcription times was poorly reproduced unless
we took into account the Gaussian distribution of elongation times. It then becomes an interesting
question whether the resulting distribution of transcription times is dynamically important or if, given
the relatively narrow and roughly symmetric distribution typically obtained in these cases, a simple
fixed delay would yield the same phenomenology in most gene expression models. These questions
can be explored using delay-stochastic simulations [70, 107], where it is easy to vary the delay distri-
bution [71] and thus to determine the sensitivity of the dynamics to these distributions. The few studies
available so far suggest that the delay distribution is sometimes important whether the dynamics are
treated stochastically [108] or deterministically [24, 25], but sometimes not [109].

In addition to delay distributions for homogeneous or near-homogeneous elongation processes, we
considered the possibility of long pause sites, which are extreme cases of systems with variable tran-
scription rate. Elsewhere, one of us (SHH) found that variable velocity along the template can lead
to some non-trivial phenomenology [84]. Interestingly, elongation in regions without long pauses just
contributes a fixed delay according to Eq (56), regardless of where the pause occurs relative to the
rapid-elongation regions. This result is reminiscent of Epstein’s identification of “bottleneck interme-
diates” in his treatment of delays arising from consecutive first-order reactions [69].

The delay distributions presented here are likely to be particularly useful for delay-stochastic sim-
ulations [70, 71, 110–112]. The delay-stochastic simulation algorithm (DSSA) is an extension of the
Gillespie algorithm [113] that allows for delayed product formation. Thus, transcription can, in the
simplest case, be written as the single delayed reaction (1). The transcriptional delay may be fixed or
distributed. In the latter case, a new value of the delay is generated from the appropriate distribution
each time this reaction “fires” [71]. Using the DSSA therefore requires that we know the distribution
of transcription times, ρtr(t), if only to determine whether or not a fixed delay is appropriate. The dis-
tributions derived here can be compared to facilitate these decisions once the parameters of a model
have been selected. When Eqs (48) and (52) agree, elongation contributes a fixed delay; otherwise, it
will likely be necessary to consider a distribution of elongation delays.

While we have focused on the total transcription time, including the events of initiation, there
are a few other ways our results could be used. We could explicitly model the initiation steps, and
use a (distributed) delay to represent only elongation and termination. This would be the simplest
approach to modeling the expression of a gene whose transcription is regulated at initiation, and again,
modularity plays a role in allowing us to use parts of the calculations presented here in more complex
situations. For a gene regulated at a pause site [114], elongation could be broken up into pieces, very
much as we did to obtain the distributions shown in Figure 11, treating regulation at the pause site
explicitly. For example, if a release factor (RF) such as P-TEFb [72] is required to release a paused
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complex (PC) from an obligatory pause, we could write, neglecting promoter clearance,¶

pro(t) + RNAPII(t)
kini
−−−→ pro(t) + PC(t + τp), (61a)

PC(t) + RF(t)
krel
−−−→ RNAPII(t + τ f ) + RNA(t + τ f ) + RF(t + τRFC) (61b)

where τp is the time required to reach the pause site, τ f is the time required to finish transcription after
release from the pause and τRFC is the lifetime of the polymerase–release-factor complex. If there are
no other sites in the gene where long pauses occur and if the sequences preceding and following the
pause site are sufficiently long, τp and τ f could be treated as fixed delays as seen in Section 3.2. The
interesting dynamics would then lie in the production and/or destruction of RF, which would itself be
described by appropriate reactions, including possibly delayed reactions representing its transcription
and translation.

In the case of a gene expressed in bursts, the results obtained here could be used to describe the
transcription time distribution of the first polymerase in a burst, on the assumption that interactions
between polymerases do not affect the behavior of the pioneer polymerase.∥ We could write a delayed
mass-action reaction for a burst as follows:

pro(t)
kini
−−→ proi(t + τb) + RNA(t + τtr) +

b∑
i=2

RNA(t + τi), (62)

where proi is an inactive form of the promoter. This reaction assumes that the nuclear concentration of
RNAPII is roughly constant in time so that this concentration can be included in the pseudo-first-order
rate constant kini. The delay τb is the duration of a burst generating b RNA molecules. This delay is
required to ensure that a burst does not start at a particular copy of a gene before the previous burst has
ended. The delay τtr is the transcription time of the pioneer polymerase which, as we argued above,
could be randomly generated according to a distribution from a single-polymerase model. The τi are
the completion times of the subsequent transcripts measured from the beginning of the burst. These
completion times could be computed sequentially as follows:

τi = τtr +

i−1∑
j=1

∆τi, (63)

where ∆τi = τi+1 − τi (identifying τ1 ≡ τtr) is the time between completions of subsequent transcripts.
Although we have not tried this, the distribution of this quantity should be derivable from our model in
the low-traffic limit by considering the time required for promoter clearance, initiation of a subsequent
transcript (possibly considering retention of TBP for a time after the pioneer polymerase has initiated
transcription) and differences in termination times between consecutive polymerases. Alternatively,

¶If we wanted to deal with promoter clearance, we would replace pro(t) on the right-hand side of Eq (61a) by pro(t+τc), where τc is the
time required for RNAPII to clear the promoter and therefore make the latter available for binding another molecule of polymerase [115].

∥It is likely that polymerases do affect each other’s motions [33, 54, 116]. However, the nature of these interactions is, to our
knowledge, not well characterized at this time, which makes them difficult to incorporate into models. Treating the first polymerase in a
burst as traveling freely along the gene may be the best we can do right now, give or take the possibility of considering the prevention
of backtracking by trailing polymerases. Moreover, the approximation that the pioneer polymerase travels freely is likely to run into
trouble in the “Kurtz” limit [117] where frequent bursts mean that the leading polymerase in a burst may well interact with the trailing
polymerase of the previous burst. Thus, Eq (62) is likely more appropriate in Jia et al.’s “Lévy” limit where bursts are well separated in
time.
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Szavits-Nossan and Grima have recently obtained some results on the distribution of ∆τi [118]. Both
the distributions of burst duration τb and of burst size b could be generated from a model [119,120], or
experimental distributions could be used [32,121–123].** The model would be completed by including
one or more reactions that return the promoter to the active state. For telegrapher’s noise, this would
be the simple Poisson process proi → pro. More complicated reactivation mechanisms can of course
be contemplated [124]. Given the distributions described above, genes displaying bursting could be
studied using delay-stochastic simulations, with the single-polymerase transcription time distribution
as a key element.

As we have emphasized, the construction of the delay-stochastic models described above is facili-
tated by the modularity of the transcription model studied here. As noted by Greive and coworkers for
a related model [40], modularity means that we can mix and match different descriptions of initiation,
elongation, pausing and termination to suit any given gene. The mathematical analysis of these models
is similarly modular: we can take the pieces derived here and combine them as needed by convolution.

As explained in Section 2, we have substantially simplified Vashishtha’s model. Studying the effects
of various omitted details on transcription dynamics is of course a potential avenue for extending this
work. The experimental observation of, as Larson and coworkers put it, “deterministic” kinetics during
the elongation phase of transcription [1] suggests that a more refined model of productive elongation
would not behave differently than the simple model studied here. This is a consequence of the law
of large numbers (LLN) [125] and of the large sizes of many eukaryotic genes: If the kinetics are
identical at every nucleotide, then τe =

∑
i τi = Nτ̄i, where τ̄i is the sample mean of the residence

times at each nucleotide. The LLN says that τ̄i converges to the mean of the underlying distribution.
Thus, τe converges to a fixed value for long genes. If the residence times are not identically distributed,
then there are generalizations of the law of large numbers leading to the same conclusion provided
the τi satisfy some additional (physically reasonable) conditions [126]: τe converges to a constant
for sufficiently large N. Pausing is a different matter, as Voliotis and coworkers have shown [56]:
backtracked pausing can contribute a heavy tail to the distribution of transcription times. To model
genes that are prone to backtracking pauses in specific regions of the sequence, it would be possible to
combine the Voliotis et al. pausing module with our model to obtain the corresponding distribution of
elongation times.

Shortly after initiation, RNAPII tends to pause 20–40 nt downstream of the start site in an event
known as promoter-proximal pausing [127]. A promoter-proximal pause that is not subject to specific
regulation is relatively easy to model since it can be dealt with using the splitting trick illustrated
in Figure 10. The modularity of the model in this case means that the exact location of the pause
site is irrelevant. The situation is different if the polymerase is released from its promoter-proximal
pause by a specific release factor with its own dynamics. Consider again model (61) assuming that
the concentration of the release factor cannot be treated as being constant in time. This will be the
case if (e.g.) a signaling cascade modulates the activity of the release factor. In a dynamic model
of such a system, we would have to explicitly include reaction (61b) so that the time dependence of
the release from the pause could be properly captured. Thus, we would need to know the distribution
of τp since this interval of time necessarily precedes the action of the release factor. In particular,
note that the concentration of the release factor could change during the time interval τp. However,

**Note however that the value of τb is implied by the values of the random variables b and ∆τi, so experimental distributions of the
burst time could be used to validate the models for the distributions of b and/or ∆τi.
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we probably cannot treat the initial elongation leading to the pause using the theory of Section 3.2
because only a short run of nucleotides precedes promoter-proximal pausing, thus violating the central
assumption in the development of the advection equation, namely that N is large. We could solve
the first-passage time for reaching the pause site, but even for the moderate number of nucleotides
separating the start and promoter-proximal pause sites, this is cumbersome unless the kinetics are
particularly simple. An additional difficulty is that the promoter-proximal pause probably occurs in a
region covering several nucleotides, and not at a specific nucleotide in any given gene. Fortunately,
compared to typical initiation times (Figure 3), the contribution of the elongation time to τp may well
be negligible despite the slower elongation rate in this region of a gene [96]. Even if the time required
to reach the promoter-proximal pausing site is not negligible, it is likely possible to develop useful
approximations to the distribution of τp.

Termination is another area ripe for investigation in terms of its effect on transcription dynamics as it
is quite slow in eukaryotes [4]. Indeed, we have initiated such studies in our laboratory [128]. It is also
interesting in that multiple independent mechanisms cooperate to ensure termination [7], introducing
an additional element of stochasticity right at the end of the process of transcription.

Even within the context of the model studied here, we have not exhausted the possibilities for further
study. In particular, while we have developed the relevant equation of motion, we have not studied in
much detail the effects of variable kinetic parameters on the density of polymerases. At higher initiation
rates, this could have an effect on polymerase-polymerase interactions. Some preliminary calculations
on a system in which the polymerase slows down dramatically in one region of the gene have been
carried out [84], but this hardly scratches the surface of what could be done.

The delays that appear in models of gene expression are measurable quantities. There has been
recent progress towards inferring these delays from experimental data [129, 130], with some caveats:
depending on what is measured, not all kinetic parameters, indeed not all delays, are identifiable.
This creates an opportunity for a two-way discussion with experiment: Clearly, these experimental
measurements can provide data to be used in modeling. In addition, the current contribution and
similar efforts in other groups can provide parameterizable forms for the delay distributions that can
be used to fit experimental results, and thereby to obtain estimates of some kinetic parameters that
determine these distributions.

As noted in the introduction, the eventual goal of this research is to provide delay distributions
that can be used in models of gene expression. In addition to the distribution of transcription times
which is the topic of this contribution, we will also need distributions for the nuclear export time, on
which some progress has been made [131–133] but which remains very much an open problem, and
for translation [48–50]. We can look forward to soon having all the pieces necessary either for the
direct inclusion in a model of these three major steps in eukaryotic gene expression, or at the very least
to enable rational decisions about whether they need to be explicitly included in a given model.
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