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Abstract: This paper studies a stochastic HIV/AIDS model with nonlinear incidence rate. In the
model, the infection rate coefficient and the natural death rates are affected by white noise, and infected
people are affected by an intervention strategy. We derive the conditions of extinction and permanence
for the stochastic HIV/AIDS model, that is, if Rs

0 < 1, HIV/AIDS will die out with probability one and
the distribution of the susceptible converges weakly to a boundary distribution; if Rs

0 > 1, HIV/AIDS
will be persistent almost surely and there exists a unique stationary distribution. The conclusions are
verified by numerical simulation.

Keywords: stochastic HIV/AIDS model; nonlinear incidence rate; ergodicity; extinction; stationary
distribution

1. Introduction

HIV/AIDS is not only a medical problem, but also a serious social problem. Once there is a
large-scale epidemic of HIV/AIDS, it seriously affects economic development and social stability.
Therefore, it is of theoretical and practical significance to establish a reasonable mathematical model
to analyze the epidemic trend of HIV/AIDS. Research has shown that epidemic systems are always
affected by environmental variations, which brings some randomness to the birth rates, death rates,
and transmission coefficient. Therefore, epidemic systems with stochastic perturbations can provide
an additional degree of realism compared to their corresponding deterministic systems [1–4]. From a
biological and mathematical perspective, there are different methods for adding white noise
disturbances to epidemic models [5–10]. In addition, intervention strategies including the impact of
media coverage has a critical influence on the spread of HIV/AIDS, such as the public health
department taking some necessary disease prevention measures which can change people’s behavior
and reduce the effective contact rate between the susceptible and the infected, so as to more
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effectively prevent and control the spread of diseases. In recent years, a number of mathematical
models have been formulated to describe the impact of intervention strategies on the dynamics of
infectious diseases [11–20].

Many scholars have already studied HIV/AIDS infection models with nonlinear stochastic
perturbations [21–25]. In [21], Zhou et al. considered the complexity of environmental variations in
the real world, and also studied a stochastic staged progression HIV/AIDS infection model with
third-order perturbations. [22] took second-order perturbation into consideration for realism, and
obtained some sufficient conditions about the extinction of stochastic systems. In this paper, we
consider that the death rates and the incidence rate are perturbed by white noise [2,6,9], and the
incidence rate is a nonlinear functional response, which describes the intervention strategy. The rest
of the paper is arranged as follows: Section 2 provides some preliminary results about the system. In
Section 3, we derive the condition for the extinction of the system (2.1), which is equivalent to the
case Rs

0 < 1 . Section 4 focuses on the condition for permanence, corresponding to the case Rs
0 > 1.

The last section is devoted to some numerical examples as well as discussing the obtained results in
this paper.

The HIV/AIDS model is designed by dividing the population into three compartments containing
susceptible, infected, and symptomatic individuals. Let S (t), I(t), and A(t) be the number of
susceptible, infected, and symptomatic individuals at time t, respectively. During the spread of
HIV/AIDS, we assume that the symptomatic individuals (AIDS) have received antiretroviral
treatment, and they are less likely to transmit the virus to others. This assumption is based on the
following facts: people living with HIV are less likely to transmit the virus to others if they know they
have been infected; antiretroviral therapy lowers infectivity, and treatment may be coupled to safer
sex education. Additionally, assuming that HIV/AIDS is intervened in the process of transmission, we
obtain the following HIV/AIDS model:

dS (t)
dt = Λ − µS (t) − βS (t)I(t)

a+Iα(t) ,
dI(t)

dt =
βS (t)I(t)
a+Iα(t) − (µ + ν + γ1)I(t),

dA(t)
dt = νI(t) − (µ + γ2)A(t)

(1.1)

where Λ is the recruitment rate of susceptible individuals, µ the natural death rate of the population, β
the effective contact rate, ν the rate of transition from infective class to AIDS class, γ1 the
extra-mortality due to infection for infected individuals, γ2 the extra-mortality due to infection for
symptomatic individuals, βS (t)I(t)

a+Iα(t) the nonlinear incidence rate, α > 1, a > 0 are positive constant, and
similar incidence rates can be found in [9,10,14].

In the following, we analyze the characteristics of the infectious rate βI(t)
a+Iα(t) . The model (1.1)

includes an intervention strategy in the transmission of HIV/AIDS. In the early stages of infection, due
to the small scale of infection and insufficient understanding of the disease infection, the infectious rate
is increasing. As the scale of infection increases, it attracts people’s attention, and some intervention
strategies are implemented. People might reduce their number of contacts per unit of time, and the
infectious rate decreases. For the infectious rate βI(t)

a+Iα(t) , since ( I
a+Iα )′ = a−(α−1)Iα

(a+Iα)2 , then ( I
a+Iα )′ > 0 for

I ≤ α
√ a
α−1 , and ( I

a+Iα )′ < 0 for I ≥ α
√ a
α−1 , and we can find that the above intervention characteristics are

consistent with the properties of the function βI(t)
a+Iα(t) , where βI(t)

a+Iα(t) is monotone increasing if I(t) is
less than α

√ a
α−1 , and βI(t)

a+Iα(t) monotonically decreases if I(t) is greater than α
√ a
α−1 . The parameter a

characterizes the size of the infected population at which intervention strategies are implemented.
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The basic reproduction number of model (1.1) is

R0 =
Λβ

aµ(µ + ν + γ1)
.

There are two equilibrium points in model (1.1): the disease-free equilibrium E0 = (Λ
µ
, 0, 0) and the

endemic equilibrium E∗0 = (S ∗0, I
∗
0, A

∗
0), where

S ∗0 =
(µ + ν + γ1)

(
a + (I∗0)α

)
β

, A∗0 =
νI∗0
µ + γ2

and I∗0 satisfies

Λ − µ
(µ + ν + γ1)

(
a + (I∗0)α

)
β

− (ν + µ + γ1)I∗0 = 0.

Let

ρ(I∗) = Λ − µ
(µ + ν + γ1)

(
a + (I∗0)α

)
β

− (ν + µ + γ1)I∗0.

We have ρ′(I∗) ≤ −(µ + ν + γ1), where ρ(I∗) is monotonic decreasing. If a < βΛ

µ(µ+ν+γ1) , then

ρ(0) = Λ − aµ
(µ + ν + γ1)

β
=

aµ(µ + ν + γ1)
β

(R0 − 1) > 0.

So, for ρ(I∗) there exists a unique positive solution I∗0 if a < βΛ

µ(µ+ν+γ1) , i.e., R0 > 1.
For model (1.1), if R0 ≤ 1, the disease-free equilibrium E0 is globally asymptotically stable, while

if R0 > 1 , there is a unique endemic equilibrium E∗0 which is globally asymptotically stable.
The deterministic model (1.1) describes that HIV/AIDS is intervened in the process of transmission.

However, environmental variations bring some randomness to the spread and development process of
HIV/AIDS. Based on this situation, we consider that the natural death rates are affected by white
noises, i.e.,

µ ↪→ µ − σ1Ḃ1(t),
µ + ν + γ1 ↪→ µ + ν + γ1 − σ3Ḃ3(t),
µ + γ2 ↪→ µ + γ2 − σ4Ḃ4(t)

and the deterministic model (1.1) by perturbing dimensionless valid contact coefficient β by β+σ2Ḃ2(t)
to obtain the following stochastic differential equations.

dS (t) =
[
Λ − µS (t) −

βS (t)I(t)
a + Iα(t)

]
dt + σ1S (t)dB1(t) − σ2

S (t)I(t)
a + Iα(t)

dB2(t),

dI(t) =

[
βS (t)I(t)
a + Iα(t)

− (µ + ν + γ1)I(t)
]

dt + σ3I(t)dB3(t) + σ2
S (t)I(t)
a + Iα(t)

dB2(t),

dA(t) =
[
νI(t) − (µ + γ2)A(t)

]
dt + σ4A(t)dB4(t).

(1.2)

Model (1.2) considers both media influence and random factors, which can more accurately describe
the development and transmission process of HIV/AIDS.

Throughout this paper, let
(
Ω, F̃,P

)
be a complete probability space with a filtration {F̃t}t≥0

satisfying the usual conditions, Bi(t)(i = 1, 2, 3, 4) represent independent standard Brownian motions
defined on this probability space, and σi(i = 1, 2, 3, 4) represent the intensities of the white noises.
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2. Preliminary analyses and results

As the third equation of system (1.2) can be represented by the first two equations, system (1.2) can
be written as

dS (t) =
[
Λ − µS (t) −

βS (t)I(t)
a + Iα(t)

]
dt + σ1S (t)dB1(t) − σ2

S (t)I(t)
a + Iα(t)

dB2(t),

dI(t) =

[
βS (t)I(t)
a + Iα(t)

− (µ + ν + γ1)I(t)
]

dt + σ3I(t)dB3(t) + σ2
S (t)I(t)
a + Iα(t)

dB2(t).
(2.1)

S (t) and I(t) in system (2.1) represent the sizes of the susceptible individuals and the infected
individuals at time t, respectively. So we define the state space of system (2.1) as

R2
+ =

{
(s, i) : s ≥ 0, i ≥ 0

}
,

and denote
R2,◦
+ =

{
(s, i) : s > 0, i > 0

}
,R2,i
+ =

{
(s, i) : s ≥ 0, i > 0

}
.

Similar to the method in [26,27], one can obtain the global existence and uniqueness of the positive
solution of model (2.1), so we omit it here.

Let (S u(t), Iu(t)) be the solution of model (2.1) with initial value u = (s, i) = (S (0), I(0)) ∈ R2
+. For

further investigation, we give some assertions on (S u(t), Iu(t)).
Lemma 2.1. Assume µ > 4 max{σ2

1, σ
2
3}, then the following assertions hold:

(i) For any h > 0, there exists C = C(h) such that

E(S u(t) + Iu(t))8 ≤ C, t ≥ 0, u ∈ [0, h] × [0, h].

(ii) For any ε > 0, h > 0, we have H = H(ε, h) > 1 such that

P(0 ≤ S u(t) + Iu(t)) ≤ H) ≥ 1 − ε, t ≥ 0, u ∈ [0, h] × [0, h].

Proof. Let V(t) = N8(t),N(t) = S u(t) + Iu(t). By Itô’s formula, we have

LV(t)) = 8N7(t)(Λ − µN(t) − (ν + γ1)Iu(t)) + 28N6(t)(σ2
1S 2

u(t) + σ2
3I2

u(t))
≤ 8ΛN7(t) − 8µV(t) + 28 max{σ2

1, σ
2
3}V(t).

Applying the generalized Itô’s formula to eµtV(t), we obtain

d(eµtV(t)) = µeµtV(t)dt + eµt(LV(t)dt + σ1S u(t)dB1(t) + σ3Iu(t)dB3(t))
≤ eµt(8ΛN7(t) − 7µV(t) + 28 max{σ2

1, σ
2
3}V(t))dt + σ1S u(t)dB1(t) + σ3Iu(t)dB3(t)

= eµt[8ΛN7(t) − 7(µ − 4 max{σ2
1, σ

2
3})V(t)]dt + σ1S u(t)dB1(t) + σ3Iu(t)dB3(t).

By µ − 4 max{σ2
1, σ

2
3} > 0, we have

M := sup
x≥0
{8Λx7 − 7(µ − 4 max{σ2

1, σ
2
3})x8} < ∞.

For each n ∈ N+, define the stopping time

τn = inf{t ≥ 0,N(t) ≥ n}.
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From the above inequality, we have

E(eµ(t∧τn)V(t ∧ τn)) ≤ V(0) + E(
∫ t∧τn

0
Meµτdτ)

≤ V(0) + M
µ

(eµt − 1).

By letting n→ +∞, we have

eµtE(V(t)) ≤ V(0) +
M
µ

(eµt − 1).

This implies that

E(V(t)) ≤ (V(0) − M
µ

)e−µt + M
µ

< V(0)e−µt + M
µ
= C(h).

Then we complete the proof of item (i).
For any u ∈ [0, h] × [0, h], applying Chebyshev’s inequality, we have

P((N(t) ≥ H) ≤
E(V(t))

H8 ≤
C
H8 .

Setting H > (C
ε
)

1
8 , we obtain the result of item (ii). We complete the proof of the lemma.

Remark 2.1. In Lemma 2.1, C = C(h) depends on h, which depicts the initial value of susceptible
S u(t) and infectious Iu(t). From a biological perspective, the initial value of the population is bounded.
So, we may assume that C(h) is bounded, that is to say, C(h) is a constant. It is also based on this
viewpoint that, throughout this paper, we restrict that initial value u = (s, i) of the system (2.1) to the
region [0, h∗] × [0, h∗], h∗ to be a positive constant.

3. Extinction

In this section, we establish a condition for the extinction of HIV/ADS. If Iu(t) ≡ 0, from
system (2.1) , we have the following one-dimensional homogeneous Markov process

dφ(t) = (Λ − µφ(t))dt + σ1φ(t)dB1(t), φ(0) = s ≥ 0, t ≥ 0. (3.1)

Applying [28], we can obtain that the process (3.1) has ergodic properties with the invariant density
given by

f (φ) =
(
2Λ
σ2

1

) 2µ
σ2

1
+1

Γ−1
(
2µ
σ2

1

+ 1
)
φ
−( 2µ
σ2

1
+2)

e
− 2Λ
σ2

1

1
φ
, (3.2)

and

lim
t→+∞

1
t

∫ t

0
φ(τ)dτ =

∫ +∞

0
φ f (φ)dφ

where Γ(τ) is the Gamma function.
In the following, we apply the Lyapunov exponent lim supt→+∞

ln Iu(t)
t to show that Iu(t) converges

to 0. By the definition of the almost surely exponential stability [29, 30], if lim supt→+∞
ln Iu(t)

t < c1(c1 <

0) holds, then Iu(t) is almost surely exponentially stability, which implies that Iu(t) trends to zero
exponentially fast, i.e., limt→+∞ Iu(t) = 0.
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From the second equation of system (2.1), using Itô,s formula, we have

ln Iu(t)
t =

ln Iu(0)
t − (µ + ν + γ1 +

1
2σ

2
3) + σ3B3(t)

t + 1
t

∫ t

0
σ2

S u(τ)
a+Iαu (τ)dB2(τ)

+1
t

∫ t

0

(
β S u(τ)

a+Iαu (τ) −
1
2σ

2
2

S 2
u(τ)

(a+Iαu (τ))2

)
dτ.

(3.3)

If t is sufficiently large, Iu(t) is sufficiently small, and S u(t) is close to φ(t), we have

1
t

∫ t

0

(
β

S u(τ)
a + Iαu (τ)

−
1
2
σ2

2
S 2

u(τ)
(a + Iαu (τ))2

)
dτ ≈

1
t

∫ t

0
(
β

a
φ(τ) −

1
2
σ2

2

a2 φ
2(τ))dτ. (3.4)

From (3.3) and (3.4), by the ergodicity property of φ we have

lim supt→+∞
ln Iu(t)

t ≤ lim supt→+∞
1
t

∫ t

0

(
β S u(τ)

a+Iαu (τ) −
1
2σ

2
2

S 2
u(τ)

(a+Iαu (τ))2

)
dτ − (µ + ν + γ1 +

1
2σ

2
3)

≈ 1
t

∫ t

0

(
β

aφ(τ) − 1
2
σ2

2
a2 φ

2(τ)
)

dτ − (µ + ν + γ1 +
1
2σ

2
3)

=
β

a

∫ ∞
0
φ f (φ)dφ − 1

2
σ2

2
a2

∫ ∞
0
φ2 f (φ)dφ − (µ + ν + γ1 +

1
2σ

2
3)

= (c2 +
1
2
σ2

2
a2

∫ ∞
0
φ2 f (φ)dφ)(Rs

0 − 1)

(3.5)

where Rs
0 =

β
a

∫ ∞
0 φ f (φ)dφ

c2+
1
2
σ2

2
a2

∫ ∞
0 φ

2 f (φ)dφ
, c2 = µ + ν + γ1 +

1
2σ

2
3.

If Rs
0 < 1, then lim supt→+∞

ln Iu(t)
t < c1 < 0, and it follows that limt→+∞ Iu(t) = 0.

From the above arguments, we need to show that, when Iu(t) is small, S u(t) is close to φ(t), and (3.5)
holds. To prove this assertion, we first use the methods mentioned in [2,19,29] to give the following
lemmas.
Lemma 3.1. Assume that µ > 4 max{σ2

1, σ
2
3} holds. For any T, h > 1, ε, σ > 0, there is a δ =

δ(T, h, ε, σ) > 0, such that
P(τσ ≥ T ) ≥ 1 − ε, u ∈ [0, h] × (0, δ],

where τσ is the stopping time
τσ = inf{t ≥ 0, Iu(t) ≥ σ}.

Proof. By the exponential martingale inequality [29], we have P(Ω1) ≥ 1 − ε2 , where

Ω1 = {σ3B3(t) +
∫ t

0
σ2

S u(τ)
a + Iαu (τ)

dB2(τ) ≤
1
2
σ2

3t +
1
2

∫ t

0
σ2

2
S 2

u(τ)
(a + Iαu (τ))2 dτ + 2 ln

4
ε
, t ≥ 0}.

In view of Lemma 2.1, there exists H = H(h, ε) such that P(Ω2) ≥ 1 − ε2 , where

Ω2 = {S u(t) ≤ H, t ∈ [0,T ], u ∈ [0, h] × [0, h]}.

For ω ∈ Ω1
⋂
Ω2, we obtain

ln Iu(t) = ln i − c2t +
∫ t

0
σ2

S u(τ)
a+Iαu (τ)dB2(τ) +

∫ t

0
σ3dB3(τ) +

∫ t

0
(β S u(τ)

a+Iαu (τ)

−1
2σ

2
2

S 2
u(τ)

(a+Iαu (τ))2 )dτ
≤ ln i + βH

a t + 2 ln 4
ε

= ln 16ieM̃t

ε2

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1650–1671.



1656

where M̃ = βH
a .

Let δ = ε
2σ
16 e−M̃T < h. For all u ∈ [0, h] × (0, δ], then Iu(t) < σ, t ∈ [0,T ]. The proof is complete.

Lemma 3.2. Assume that µ > 4 max{σ2
1, σ

2
3} holds. For any T, h > 1, ε, η > 0, there is σ > 0 such that,

for u ∈ [0, h] × (0, σ],
P(|φ(t) − S u(t)| < η, t ∈ [0,T ∧ τσ]) ≥ 1 − ε.

Proof. Let φ(t) be the solution of Eq (3.1). An argument similar to Lemma 2.1, for any ε, h̄ > 1, shows
that there is H > 1, such that

P(0 ≤ φ(t) ≤ H) ≥ 1 −
ε

4
, s ∈ [0, h̄]. (3.6)

From Lemma 2.1 and (3.6), for any ε we have that there exist H and 1 < h ≤ h̄, such that

P(φ(t) ∨ S u(t) ≤ H) ≥ 1 −
ε

4
, t ∈ [0,T ], u ∈ [0, h] × (0, h]. (3.7)

By Itô,s formula, from systems (2.1) and (3.1), we obtain

|φ(t) − S u(t)| ≤ µ
∫ t

0
|φ(τ) − S u(τ)|dτ + β

∫ t

0
S u(τ)Iu(τ)
a+Iαu (τ) dτ + σ1|

∫ t

0
(φ(τ) − S u(τ))dB1(τ)|

+σ2|
∫ t

0
S u(τ)Iu(τ)
a+Iαu (τ) )dB2(τ)|.

Noticing that (
∑4

i=1 ai)2 ≤ 16
∑4

i=1 a2
i holds, then

(φ(t) − S u(t))2 ≤ 16[µ2(
∫ t

0
|φ(τ) − S u(τ)|dτ)2 + β2(

∫ t

0
S u(τ)Iu(τ)
a+Iαu (τ) dτ)2

+σ2
1|
∫ t

0
(φ(τ) − S u(τ))dB1(τ)|2 + σ2

2|
∫ t

0
S u(τ)Iu(τ)
a+Iαu (τ) )dB2(τ)|2].

(3.8)

Let τH
u = {t ≥ 0, φ(t) ∨ S u(t) ≥ H}, ρ = τσ ∧ τH

u . From (3.8), we obtain

E[supτ≤t(φ(τ ∧ ρ) − S u(τ ∧ ρ))2] ≤ 16[µ2E(
∫ t∧ρ

0
|φ(τ) − S u(τ)|dτ)2 + β2E(

∫ t∧ρ

0
S u(τ)Iu(τ)
a+Iαu (τ) dτ)2

+σ2
1E supτ̄≤t |

∫ τ̄∧ρ
0

(φ(τ) − S u(τ))dB1(τ)|2

+σ2
2E supτ̄≤t |

∫ τ̄∧ρ
0

S u(τ)Iu(τ)
a+Iαu (τ) dB2(τ)|2].

(3.9)

For t ∈ [0,T ], applying Hölder’s inequality we have

β2E(
∫ t∧ρ

0

S u(τ)Iu(τ)
a + Iαu (τ)

dτ)2 ≤
Tβ2H2

a2 σ2.

Using the Burkholder-Davis-Gundy inequality [29], we obtain

σ2
1E[sup

τ̄≤t
|

∫ τ̄∧ρ

0
(φ(τ) − S u(τ))dB1(τ)|2] ≤ 4σ2

1E[
∫ t∧ρ

0
(φ(τ) − S u(τ))2dτ],

σ2
2E[sup

τ̄≤t
|

∫ τ̄∧ρ

0

S u(τ)Iu(τ)
a + Iαu (τ)

dB2(τ)|2] ≤ 4σ2
2
T H2

a2 σ
2.

From (3.9) and the above estimates, we have

E[supτ≤t(φ(τ ∧ ρ) − S u(τ ∧ ρ))2] ≤ c3σ
2 + c4E[

∫ t∧ρ

0
(φ(τ) − S u(τ))2dτ]

≤ c3σ
2 + c4

∫ t

0
E[supτ≤t(φ(τ ∧ ρ) − S u(τ ∧ ρ))2]dτ

(3.10)
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where c3 = 16(β2 + 4σ2
2)T H2

a2 , c4 = 16(µ2 + 4σ2
1).

Applying Gronwall,s inequality, we have

E[sup
τ≤T

(φ(τ ∧ ρ) − S u(τ ∧ ρ))2] ≤ c3ec4Tσ2.

By Chebyshev,s inequality, we have

P[sup
τ≤T

(φ(τ ∧ ρ) − S u(τ ∧ ρ))2 ≥ η2] ≤
c3ec4T

η2 σ
2 <
ε

2
. (3.11)

In addition, {supt≤T (φ(t) ∨ S u(t)) ≤ H, t ∈ [0,T ]} ⊂ {t ∧ ρ = t ∧ τσ, t ∈ [0,T ]}. As a result,

P{t ∧ ρ = t ∧ τσ, t ∈ [0,T ]} ≥ P{sup
t≤T

(φ(t) ∨ S u(t)) ≤ H, t ∈ [0,T ]} ≥ 1 −
ε

2
. (3.12)

Combining (3.11) and (3.12), we complete the proof.
Lemma 3.3. Assume that µ > 4 max{σ2

1, σ
2
3} and Rs

0 < 1 hold. For any h > 1, ε > 0, there is a
δ̄ = δ̄(h, ε) > 0 such that

P(lim sup
t→+∞

|
ln Iu(t)

t
− λ| ≤ ε) ≥ 1 − 7ε, u ∈ [0, h] × (0, δ̄],

where λ = (1
2
σ2

2
a2

∫ ∞
0
φ2 f (φ)dφ + c2)(Rs

0 − 1).
Proof. From (3.5) and the ergodicity of φ, we have

limt→+∞
1
t

∫ t

0
(βaφ(τ) − 1

2
σ2

2
a2 φ

2(τ))dτ − c2 = λ,

and then there exists T1 = T1(ε) and P(Ω3) ≥ 1 − ε, where

Ω3 = {
1
t

∫ t

0
(
β

a
φ(τ) −

1
2
σ2

2

a2 φ
2(τ))dτ − c2 ≤ λ + ε, t ≥ T1}.

Since limt→+∞
B3(t)

t = 0 a.s., there is a T2 = T2(ε) > 0, such that P(Ω4) ≥ 1 − ε, where

Ω4 = {
σ3B3(t)

t
≤ ε, t ≥ T2}.

From Lemma 2.1 and (3.7), there is an H, h > 1, such that P(Ω5) ≥ 1 − ε,

Ω5 = {0 ≤ φ(t), S u(t), Iu(t) ≤ H, u ∈ [0, h] × (0, h], t ∈ [0,T ]} (3.13)

where T = T1 ∨ T2.
Supposing |S u(t) − φ(t)| < η and |Iu(t)| < η, from (3.13) we obtain

β| S u(t)
a+Iαu (t) −

1
aφ(t)| ≤ b1η (3.14)

where b1 =
β(H+a)

a2 .

σ2
2

2 |
S 2

u(t)
(a+Iαu (t))2 −

1
a2φ

2(t)| ≤ b2η (3.15)
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where b2 =
σ2

2H
2a2 (2 + 1+2a

a2 H). From (3.14) and (3.15), there is an η < min{1, ε
2(b1+b2) } such that

β|
S u(t)

a + Iαu (t)
−

1
a
φ(t)| +

σ2
2

2
|

S 2
u(t)

(a + Iαu (t))2 −
1
a2φ

2(t)| <
ε

2
. (3.16)

On the other hand, by the exponential martingale inequality we have P(Ω6) ≥ 1 − ε, where

Ω6 = {

∫ t

0
σ2

S u(τ)
a + Iαu (τ)

dB2(τ) ≤
k2

ε
ln

1
ε
+
ε

2k2

∫ t

0
σ2

2
S 2

u(τ)
(a + Iαu (τ))2 dτ, t ≥ 0},

k = σ2H
a .

In view of [2], there exists a cε > 0, such that P(Ω7) ≥ 1 − ε, where

Ω7 = {|σ1B1(t)| ≤ qε(t), t ≥ 0} ∩

{|

∫ t

T
ec5τ−σ1B1(τ) Iu(τ)S u(τ)

a + Iαu (τ)
dB3(τ)| ≤ cε

√
n(t)(| ln n(t)| + 1), t ≥ T },

qε(t) = cε
√

t(| ln t| + 1), n(t) =
∫ t

T
e2c5τ+2cε

√
τ(| ln τ|+1) I2

u (τ)S 2
u(τ)

(a+Iαu (τ))2 dτ, c5 = µ +
σ2

1
2 . It is clear that

Φ1(ε) := sup
t≥0

e−c5t+qε(t)+c5T+qε(T )(
(β + σ2)H

a
+

k2

ε
ln

1
ε
+
ε

2
)T < ∞. (3.17)

From Lemma 3.2, there exists η1 > 0 satisfying

η1 < min{η,
η

2Φ1(ε)
}

such that u ∈ [0, h] × (0, η1] and P(Ω8) ≥ 1 − ε, where Ω8 = {|S u(t) − φ(t)| < η, t ≤ T ∧ τη1},
τη1 = inf{t ≥ 0, Iu(t) > η1}.
Let τηφ,S = inf{t : |S u(t) − φ(t)| > η} and ρ̄ = τη1 ∧ τ

η
φ,S . From Lemma 3.1, there is a 0 < δ < η1 such

that u ∈ [0, h] × (0, δ],P(Ω9) ≥ 1 − ε, where

Ω9 = {τ
η1 ≥ T }.

Therefore, for all u ∈ [0, h] × (0, δ], ω ∈ ∩9
i=3Ωi, we have ρ̄ ≥ T .

For u ∈ [0, h] × (0, δ], t ∈ [T, ρ̄], ω ∈ ∩9
i=3Ωi, from the system (2.1), we have

ln Iu(t) = ln i +
∫ t

0
(β S u(τ)

a+Iαu (τ) −
1
2σ

2
2

S 2
u(τ)

(a+Iαu (τ))2 − c2)dτ
+σ3B3(t) +

∫ t

0
σ2

S u(τ)
a+Iαu (τ)dB2(τ)

≤ ln i +
∫ t

0
(βaφ(τ) − σ

2
2

2a2φ
2(τ) − c2)dτ

+β
∫ t

0
|

S u(τ)
a+Iαu (τ) −

1
aφ(τ)|dτ + σ

2
2

2

∫ t

0
|

S 2
u(τ)

(a+Iαu (τ))2 −
1
a2φ

2(τ)|dτ
+σ3B3(t) +

∫ t

0
σ2

S u(τ)
a+Iαu (τ)dB2(τ)

≤ ln i + k2

ε
ln 1
ε
+ (λ + 3ε)t.

(3.18)

From (3.18), we have

Iu(t) ≤ iε−
k2
ε e(λ+3ε)t, t ∈ [T, ρ̄]. (3.19)
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In the following, we estimate |φ(t) − S u(t)|. From systems (2.1) and (3.1), we obtain

d(φ(t) − S u(t)) = µ(φ(t) − S u(t))dt + β S u(t)Iu(t)
a+Iαu (t) dt + σ1(φ(t) − S u(t))dB1(t)

+σ2
S u(t)Iu(t)
a+Iαu (t) dB2(t).

It follows that

φ(t) − S u(t) = e−c5t+σ1B1(t)
∫ t

0
ec5τ−σ1B1(τ)(β S u(τ)Iu(τ)

a+Iαu (τ) dτ + σ2
S u(τ)Iu(τ)
a+Iαu (τ) dB2(τ))

= A1(t) + A2(t)
(3.20)

where

A1(t) = βe−c5t+σ1B1(t)
∫ t

0
ec5τ−σ1B1(τ) S u(τ)Iu(τ)

a + Iαu (τ)
dτ,

A2(t) = σ2e−c5t+σ1B1(t)
∫ t

0
ec5τ−σ1B1(τ) S u(τ)Iu(τ)

a + Iαu (τ)
dB2(τ).

For all u ∈ [0, h] × (0, δ], ω ∈ ∩9
i=3Ωi, t ≥ T , from (3.19) we have

A1(t ∧ ρ̄) = βe−c5(t∧ρ̄)+σ1B1(t∧ρ̄)(
∫ T

0
ec5τ−σ1B1(τ) S u(τ)Iu(τ)

a + Iαu (τ)
dτ +

∫ t∧ρ̄

T
ec5τ−σ1B1(τ) S u(τ)Iu(τ)

a + Iαu (τ)
dτ)

≤
βH
a

e−c5(t∧ρ̄)+qε(t∧ρ̄)(η1

∫ T

0
ec5τ+qε(τ)dτ + iε−

k2
ε

∫ t∧ρ̄

T
ec5τ+qε(τ)e(λ+3ε)τdτ) (3.21)

≤ Φ1(ε)η1 + Φ2(ε)i

where

Φ2(ε) :=
βH
a
ε−

k2
ε sup

t≥0
e−c5t+qε(t)

∫ t

T
ec5τ+qε(τ)e(λ+3ε)τdτ < +∞.

Similarly, for u ∈ [0, h] × (0, δ], ω ∈ ∩9
i=3Ωi, t ≥ T , we have

A2(t ∧ ρ̄) ≤ η1e−c5(t∧ρ̄)+σ1B1(t∧ρ̄)ec5T+qε(T )|

∫ T

0
σ2

S u(τ)Iu(τ)
a + Iαu (τ)

dB2(τ)|

+ e−c5(t∧ρ̄)+σ1B1(t∧ρ̄)|

∫ t∧ρ̄

T
σ2ec5τ−σ1B1(τ) S u(τ)Iu(τ)

a + Iαu (τ)
dB2(τ)| (3.22)

≤ Φ1(ε)η1 + e−c5(t∧ρ̄)+qε(t∧ρ̄)
∫ t∧ρ̄

T
cε

√
n(τ)(| ln n(τ)| + 1)dτ

where

n(t) =
∫ t

T
σ2

2e2c5τ+2qε(τ) I2
u(τ)S 2

u(τ)
(a + Iαu (τ))2 dτ.

From (3.19), we have n(t) ≤ i2m(t), m(t) = k2ε−
2k2
ε

∫ t

T
e2c5τ+2qε(τ)e2(λ+3ε)τdτ. Then,

Φ3(ε) := sup
t≥0

e−c5t+qε(t)
∫ t

T
cε

√
m(τ)(| ln m(τ)| + 1)dτ < ∞
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and

A2(t ∧ ρ̄) ≤ η1Φ1(ε) + iΦ3(ε). (3.23)

Let δ̄ ∈ (0, δ), satisfying
2δ̄(Φ2(ε) + Φ3(ε)) <

η

2
.

From (3.20)–(3.23), for u ∈ [0, h] × (0, δ̄], ω ∈ ∩9
i=3Ωi, t ≥ T , we have

|φ(t ∧ ρ̄) − S u(t ∧ ρ̄)| ≤ 2η1Φ1(ε) + (Φ2(ε) + Φ3(ε))i <
η

2
+
η

2
= η. (3.24)

It follows that t ∧ ρ̄ ≤ τηφ,s, t ≥ T holds. Therefore, for all ω ∈ ∩9
i=3Ωi, ρ̄ ≤ τ

η
φ,s, the equality only occurs

when ρ̄ = τηφ,s = ∞. As a consequence, ω ∈ ∩9
i=3Ωi ⊂ {τ

η1 ≤ τ
η
φ,s}. From (3.19) we obtain that, for

u ∈ [0, h] × (0, δ̄], ω ∈ ∩9
i=3Ωi, t ≥ T and

Iu(t ∧ τη1) ≤ δ̄ε−
k2
ε e(λ+5ε)T < η1.

This implies that t ∧ τη1 < τη1 , t ≥ T or τη1 = ∞ for u ∈ [0, h] × (0, δ̄], ω ∈ ∩9
i=3Ωi.

lim sup
t→∞

|
ln Iu(t)

t − λ| ≤ lim sup
t→∞

ln Iu(0)
t + lim sup

t→∞
|
σ3B3(t)

t |

+ lim sup
t→∞

| 1t

∫ t

0
σ2

S u(τ)
a+Iαu (τ)dB2(τ)|

+ lim sup
t→∞

β

t

∫ t

0
|

S u(τ)
a+Iαu (τ) −

φ(τ)
a |dτ

+1
2σ

2
2 lim sup

t→∞

∫ t

0
|

S 2
u(τ)

(a+Iαu (τ))2 −
φ2(τ)

a2 |dτ

≤ ε2 + (b1 + b2)η < ε.

The proof is completed by noting that P(∩9
i=3Ωi) ≥ 1 − 7ε.

In the following, we give the property of the stochastic extinction of HIV/AIDS.
Theorem 3.1. Assume that µ > 4 max{σ2

1, σ
2
3} holds. If Rs

0 < 1, then the solution (S u(t), Iu(t)) of
system (2.1) satisfies

P
{

lim
t→+∞

ln Iu(t)
t
= (

1
2
σ2

2

a2

∫ ∞

0
φ2 f (φ)dφ + c2)(Rs

0 − 1)
}
= 1, u ∈ [0, h∗] × (0, h∗] ⊂ R2,i

+

and the distribution of S u(t) converges weakly to φ, which is the unique stationary distribution of (3.1)
with density (3.2).
Proof. Let u0 ∈ [0, h∗] × (0, h∗] and ε > 0. From Lemma 1.1, there is a constant H > 1 such that

lim
t→+∞

P{(S u0(t), Iu0(t)) ∈ A0} ≥ 1 − ε (3.25)

where A0 = {[0,H] × (0,H]}.
From Lemma 3.3, we have that the process (S u0(t), Iu0(t)) is not recurrent in the invariant set R2,i

+ .
Meanwhile, the diffusion Eq (2.1) is non-degenerate, its solution process must be transient [26]. For ε
above, let δ̄ > 0 satisfy Lemma 3.3, and by the transience of (S u0(t), Iu0(t)), we have

lim
t→+∞

P{(S u0(t), Iu0(t)) ∈ A1} = 0 (3.26)
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where A1 = {[0,H] × [δ̄,H]}.
Since A0 − A1 ⊂ [0,H] × (0, δ̄] = A2, from (3.25) and (3.26) we have

lim
t→+∞

P{(S u0(t), Iu0(t)) ∈ A2} ≥ 1 − ε.

Therefore, there exists a T0 > 0 such that

P{(S u0(T0), Iu0(T0)) ∈ A2} ≥ 1 − 2ε. (3.27)

By the Markov property of stochastic process (S u0(t), Iu0(t)) and the results in Lemma 3.3, from (3.27)
we obtain

P(lim sup
t→+∞

|
ln Iu0(t)

t
− λ| ≤ ε) ≥ (1 − 7ε)(1 − 2ε) ≥ 1 − 9ε.

From the arbitrariness of ε, we have

P(lim sup
t→+∞

ln Iu0(t)
t
= λ) = 1, u0 ∈ [0, h∗] × (0, h∗] (3.28)

that is, Iu0(t) converges almost surely to 0 at an exponential rate.
Next, we will prove that the distribution of S u0(t) converges weakly to the measure φ. By

Portmanteau,s theorem [14], it is sufficient to prove that for any g(x) : R→ R satisfying
(i) |g(x)| ≤ M, x ∈ R, M is a positive constant,
(ii) |g(x1) − g(x2)| ≤ M|x1 − x2|, x1, x2 ∈ R, then

lim
t→+∞

E(g(S u0(t)) =
∫ +∞

0
g(ϕ) f (ϕ)dϕ£ = g∗, u0 ∈ [0, h∗] × (0, h∗].

Since the diffusion Eq (3.1) is non-degenerate, it is well known that the distribution of φ(t) weakly
converges to f . So, we have

lim
t→+∞

E[g(φ(t))] = g∗. (3.29)

From (3.28), it follows for ε > 0 that there exists T > 0 such that P(Ω10) > 1 − ε, where

Ω10 = {Iu0(t) ≤ exp{
λt
2
}, t ≥ T }.

For σ > 0 in Lemma 3.2, we choose T̄ > T satisfying Iu0(t) ≤ exp{λT̄2 } < σ. From Lemma 3.2 and
Lemma 3.3, we have that

P{|S u0(t) − φ(t)| < η, t > T̄ } > 1 − ε. (3.30)

In addition,

|E(g(S u0(t)) − g∗| ≤ |Eg(S u0(t)) − Eg(φ(t))| + |Eg(φ(t)) − g∗|
≤ MP(|S u0(t) − φ(t)| < η)η + 2MP(|S u0(t) − φ(t)| ≥ η) + |Eg(φ(t)) − g∗|.

(3.31)

From (3.29)–(3.31), we obtain

lim sup
t→+∞

E[|g(φ(t)) − g∗|] < M(η + 2ε) + ε.

From the arbitrariness of ε, η, we get that E(g(S u0(t)) converges to g∗. The proof is complete.
It is clear that Rs

0 = R0 holds if σi = 0(i = 1, 2, 3, 4).

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1650–1671.



1662

4. Existence of stationary distribution

In this section, we will focus on the stationary distribution of the solution of model (2.1). Since
λ = ( 1

2
σ2

2
a2

∫ ∞
0
φ2 f (φ)dφ + c2)(Rs

0 − 1), Rs
0 > 1 is equivalent to λ > 0, we deal with the case Rs

0 > 1. In
the following, we present some useful lemmas.
Lemma 4.1. Assume that µ > 4 max{σ2

1, σ
2
3} holds. There are constants K1 > 0 and K2 > 0 such that,

for any u = (s, i) ∈ [0, h∗] × (0, h∗], t ≥ 1, and A ∈ F̃,

E(ln− Iu(t))2IA ≤ P(A)(ln− i)2 + K1

√
P(A)(ln− i)t + K2

√
P(A)t2 (4.1)

where ln− ξ = max{0,− ln ξ} and IA denotes the indicator function of A.
Proof. For any u = (s, i) ∈ [0, h∗] × (0, h∗], in view of Lemma 2.1, we have ES 8

u(t) ≤ C, which implies
that

ES 2
u(t) ≤ C̄,ES 4

u(t) ≤ C̄, t ≥ 0

where C̄ > 0 is a constant. From system (2.1), we have

ln Iu(t) = ln i − c2t +
∫ t

0
σ2

S u(τ)
a+Iαu (τ)dB2(τ) +

∫ t

0
σ3dB3(τ) +

∫ t

0
(β S u(τ)

a+Iαu (τ) −
1
2σ

2
2

S 2
u(τ)

(a+Iαu (τ))2 )dτ

≥ ln i − c2t +
∫ t

0
σ2

S u(τ)
a+Iαu (τ)dB2(τ) +

∫ t

0
σ3dB3(τ) − 1

2σ
2
2

∫ t

0
S 2

u(τ)
(a+Iαu (τ))2 dτ.

Hence,

ln− Iu(t) ≤ ln− i + c2t + σ2|
∫ t

0
S u(τ)

a+Iαu (τ)dB2(τ)| + σ3|B3(t)| + 1
2a2σ

2
2

∫ t

0
S 2

u(τ)dτ.

Using the inequality (
∑5

m=1 am)2 ≤ a2
1 + 2a2

2 + 4(a2
3 + a2

4 + a2
5) + 2a1(a2 + a3 + a4 + a5), we obtain

(ln− Iu(t))2IA ≤ (ln− i)2IA + 2c2
2t2IA + 4σ2

2|
∫ t

0
S u(τ)

a+Iαu (τ)dB2(τ)|2IA + 4σ2
3|B3(t)|2IA

+ 1
a4σ

4
2(
∫ t

0
S 2

u(τ)dτ)2IA + 2(ln− i)c2tIA + 2(ln− i)σ2|
∫ t

0
S u(τ)

a+Iαu (τ)dB2(τ)|IA

+2(ln− i)σ3|B3(t)|IA + 2(ln− i) 1
2a2σ

2
2

∫ t

0
S 2

u(τ)dτIA.

Applying Hölder’s inequality, we get

E
∫ t

0
S 2

u(τ)dτIA ≤
√

C̄
√

P(A)t,
E(

∫ t

0
S 2

u(τ)dτ)2IA ≤ E(t
∫ t

0
S 4

u(τ)dτ)IA ≤
√

C
√

P(A)t2.

Applying Hölder’s inequality and the Burkholder-Davis-Gundy inequality, we obtain

E|B3(t)|IA ≤

√
EB2

3(t)
√

P(A) ≤
√

t
√

P(A),EB2
3(t)IA ≤

√
EB4

3(t)
√

P(A) ≤ 3t
√

P(A),

E|
∫ t

0
S u(τ)

a+Iαu (τ)dB2(τ)|IA ≤
√

P(A)(E
∫ t

0
S 2

u(τ)
(a+Iαu (τ))2 dτ)

1
2 ≤
√

C̄
√

P(A)
√

t,

E|
∫ t

0
S u(τ)

a+Iαu (τ)dB2(τ)|2IA ≤
√

P(A)(E
∫ t

0
|

S u(τ)
a+Iαu (τ)dB2(τ)|4)

1
2 ≤
√

P(A)(3E(
∫ t

0
S 2

u(τ)
(a+Iαu (τ))2 dτ)2)

1
2

≤
√

P(A)(3t2E
∫ t

0
S 4

u(τ)dτ)
1
2 ≤
√

3C̄
√

P(A)t.

Therefore, there exist two constants K1,K2 such that

E(ln− Iu(t))2IA ≤ P(A)(ln− i)2 + K1

√
P(A)(ln− i)t + K2

√
P(A)t2.
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The proof of Lemma 4.1 is complete.
Let ε ∈ (0, 1) satisfy

−
5λ
4

(1 − ε) + K1
√
ε < −λ. (4.2)

Lemma 4.2. Assume that µ > 4 max{σ2
1, σ

2
3} and Rs

0 > 1 hold. For ε chosen in (4.2), there are
T ∗ = T ∗(ε) > 1 and δ∗ ∈ (0, 1) such that

P{ln i +
5λ
8

t ≤ ln Iu(t) < 0, t ∈ [T ∗, 2T ∗]} > 1 − ε

for u = (s, i) ∈ [0, h∗] × (0, δ∗].
Proof. By the ergodicity of φ, there exists T ∗1 > 1 such that P(Ω∗1) ≥ 1 − ε4 , where

Ω∗1 = {
1
t
(
∫ t

0

β

a
φ(τ)dτ −

1
2

∫ t

0

σ2
2

a2 φ
2(τ)dτ) − c2 ≥

3
4
λ, t ≥ T ∗1 }.

Noting

E|
∫ t

0
σ3dB3(τ)|2 = E

∫ t

0
σ2

3dτ = σ2
3t,

E|
∫ t

0
σ2

S u(τ)
a+Iαu (τ)dB2(τ)| ≤ σ2

(
E

∫ t

0
S 2

u(τ)
(a+Iαu (τ))2 dτ

) 1
2
≤ σ2

√
C̄t

and (ii) of Lemma 2.1, by Chebyshev’s inequality we obtain P(Ω∗2) ≥ 1 − ε4 , where

Ω∗2 = {|σ3B3(t)| + |
∫ t

0
σ2

S u(τ)
a + Iαu (τ)

dB2(τ)| ≤ M(ε)
√

t, t ≥ 1}

and M(ε) > 0.
Using Itô’s formula, we obtain

ln Iu(t) ≥ ln i +
∫ t

0
(βaφ(τ) − σ

2
2

2a2φ
2(τ) − c2)dτ

+β
∫ t

0
( S u(τ)

a+Iαu (τ) −
1
aφ(τ))dτ + σ

2
2

2

∫ t

0
( 1

a2φ
2(τ) − S 2

u(τ)
(a+Iαu (τ))2 )dτ

−|σ3B3(t)| − |
∫ t

0
σ2

S u(τ)
a+Iαu (τ)dB2(τ)|.

(4.3)

Let T ∗ > max{1,T ∗1 ,
162 M2(ε)
λ2 }. From Lemma 3.2 we can choose 0 < η∗ < 1 and 0 < η∗1 < η

∗ such that
P(Ω∗3) ≥ 1 − ε4 and, for ω ∈ Ω∗3,

β|
S u(t)

a + Iαu (t)
−

1
a
φ(t)| +

σ2
2

2
|
1
a2φ

2(t) −
S 2

u(t)
(a + Iαu (t))2 | <

λ

16

where Ω∗3 = {|φ(t) − S u(t)| < η∗, t ∈ [0, 2T ∗ ∧ τη
∗
1]}, τη

∗
1 = inf{t ≥ 0, Iu(t) > η∗1}.

By Lemma 3.1, there exists δ∗ ∈ (0, η∗1) such that u ∈ [0, h∗] × (0, δ∗],P(Ω∗4) ≥ 1 − ε4 , where

Ω∗4 = {τ
η∗1 ≥ 2T ∗}.
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From (4.3), for u ∈ [0, h∗] × (0, δ∗], t ∈ [T ∗, 2T ∗] and ω ∈
⋂4

i=1Ω
∗
i , we obtain

0 > ln η∗1 > ln Iu(t) ≥ ln i +
∫ t

0
(βaφ(τ) − σ

2
2

2a2φ
2(τ) − c2)dτ

−β
∫ t

0
|

S u(τ)
a+Iαu (τ) −

1
aφ(τ)|dτ − σ

2
2

2

∫ t

0
| 1a2φ

2(τ) − S 2
u(τ)

(a+Iαu (τ))2 |dτ
−|σ3B3(t)| − |

∫ t

0
σ2

S u(τ)
a+Iαu (τ)dB2(τ)|

> ln i + 3λ
4 t − λ

16 t − λ
16 t ≥ ln i + 5λ

8 t.

Therefore, we complete the proof by P(
⋂4

i=1Ω
∗
i ) > 1 − ε.

Lemma 4.3. Assume that µ > 4 max{σ2
1, σ

2
3} and Rs

0 > 1 hold. For ε,T ∗ chosen as in (4.2) and
Lemma 4.2, respectively, there is a K3 > 0 such that

E(ln− Iu(t))2 ≤ (ln− i)2 − λt ln− i + K3T ∗ (4.4)

for u = (s, i) ∈ [0, h∗] × (0, h∗], t ∈ [T ∗, 2T ∗].
Proof. First, consider u = (s, i) ∈ [0, h∗] × (0, δ∗], where δ∗ is as in Lemma 4.2. By Lemma 4.2, we
have P(Ω∗5) ≥ 1 − ε, where

Ω∗5 = {ln
− Iu(t) ≤ ln− i −

5λ
8

t, t ∈ [T ∗, 2T ∗]}.

From the above inequality, we obtain

(ln− Iu(t))2 ≤ (ln− i)2 −
5λ
4

(ln− i)t +
25λ2

64
t2, t ∈ [T ∗, 2T ∗]

which implies that

E(ln− Iu(t))2IΩ∗5 ≤ (ln− i)2P(Ω∗5) −
5λ
4

P(Ω∗5)(ln− i)t +
25λ2

64
P(Ω∗5)t2. (4.5)

Let (Ω∗5)c = Ω −Ω∗5, then P((Ω∗5)c) < ε. From Lemma 4.1, we have

E(ln− Iu(t))2I(Ω∗5)c ≤ (ln− i)2P((Ω∗5)c) + K1

√
P((Ω∗5)c)(ln− i)t + K2

√
P((Ω∗5)c)t2. (4.6)

Combining (4.5) and (4.6), we have

E(ln− Iu(t))2 ≤ (ln− i)2 − (
5λ
4

(1 − ε) − K1
√
ε)(ln− i)t + (K2 +

25λ2

64
)t2. (4.7)

From (4.2), we obtain

E(ln− Iu(t))2 ≤ (ln− i)2 − λ(ln− i)t + (K2 +
25λ2

64
)t2. (4.8)

Now, for u = (s, i) ∈ [0, h∗] × [δ∗, h∗], it follows from Lemma 4.1 that

E(ln− Iu(t))2 ≤ (ln− i)2 + K1(ln− i)t + K2t2

≤ | ln− δ∗|2 + K1| ln− δ∗|t + K2t2.
(4.9)

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1650–1671.



1665

Since t ∈ [T ∗, 2T ∗], from (4.8) and (4.9) we take K3 sufficiently large such that K3 > K2 +
25λ2

64 and

| ln− δ∗|2 + 2K1| ln− δ∗|T ∗ + 4K2T ∗ ≤ K3T ∗

completing the proof of Lemma 4.3.
Theorem 4.1. If µ > 4 max{σ2

1, σ
2
3} and Rs

0 > 1, system (2.1) with initial condition u = (s, i) ∈
[0, h∗] × (0, h∗] is permanent, i.e., the solution (S u(t), Iu(t)) of system (2.1) has a unique invariant
probability π∗(·) concentrated on u ∈ R2,◦

+ . Moreover,
(i) For any u = (s, i) ∈ [0, h∗] × (0, h∗],

lim
t→∞

tq∗ ||P(t, u, ·) − π∗(·)|| = 0

where || · || is the total variation norm, q∗ is any positive number, and P(t, u, ·) is the transition probability
of the solution (S u(t), Iu(t)).
(ii) The law of large numbers holds, i.e., for any π∗-integrable l :∈ [0, h∗] × (0, h∗]→ R, we have

lim
t→∞

1
t

∫ t

0
l(S u(τ), Iu(τ))dτ =

∫
R2,◦
+

l(τ1, τ2)π∗(dτ1, dτ2) a.s. u = (s, i) ∈ [0, h∗] × (0, h∗]. (4.10)

Proof. Let N(t) = S u(t) + Iu(t). From Lemma 2.1, there are p1, p2 > 0 such that

E(N(2T ∗)) ≤ (1 − p1)N(0) + p2, u ∈ [0, h∗] × (0, h∗]. (4.11)

Let V̄(t) = N(t) + (ln− Iu(t))2. Then, V̄(2T ∗) = N(2T ∗) + (ln− Iu(2T ∗))2, V̄(0) = N(0) + (ln− i)2. From
Lemma 4.3 and (4.10), there is a compact set K ⊂ [0, h∗] × (0, h∗], p∗1, p

∗
2 > 0 such that

E(V̄(2T ∗)) ≤ V̄(0) − p∗1

√
V̄(0) + p∗2Iu∈K, u ∈ [0, h∗] × (0, h∗]. (4.12)

Since system (2.1) is a non-degeneracy of the diffusion, from (4.12) and [32], as n→ ∞, we have

n||P(2nT ∗, u, ·) − π∗|| → 0 (4.13)

for some invariant probability measure π∗ of the Markov chain (S u(2nT ∗), Iu(2nT ∗)). Let

τK = inf{n ∈ N : (S u(2nT ∗), Iu(2nT ∗)) ∈ K}.

From the proof of [32] and (4.12), we obtain EτK < ∞. In view of [26], the Markov process (S u(t), Iu(t))
has an invariant probability measure π∗. Therefore, π∗ is also an invariant probability measure of the
Markov chain (S u(2nT ∗), Iu(2nT ∗)). In light of (4.13), π∗ = π∗, i.e., π∗ is an invariant measure of the
Markov process (S u(t), Iu(t)). The proof is complete.

5. Numerical simulations

In this section, we prepare some numerical simulations to demonstrate the impact of environmental
noise on the HIV/AIDS model and our analytical results. The numerical simulations are given by the
following Milstein scheme [33].
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Consider the following discretization of system (1.2) for t = 0,∆t, 2∆t, ..., n∆t:

S k+1 = S k +

(
Λ − µS k −

βS k Ik
a+Iαk

)
∆t + σ1S k

√
∆tξk +

σ2
1

2 S k(ξ2
k − 1)∆t

−
σ2S k Ik
a+Iαk

√
∆tξk −

σ2
2S k Ik

2(a+Iαk ) (ξ
2
k − 1)∆t,

Ik+1 = Ik +

(
βS k Ik
a+Iαk
− (ν + µ + γ1)Ik

)
∆t + σ3Ik

√
∆tηk

+
σ2

3
2 Ik(η2

k − 1)∆t + σ2S k Ik
a+Iαk

√
∆tξk +

σ2
2S k Ik

2(a+Iαk ) (ξ
2
k − 1)∆t,

Ak+1 = Ak + (νIk − (µ + γ2)Ak)∆t + σ4Ak
√
∆tζk +

σ2
4

2 Ak(ζ2
k − 1)∆t,

(5.1)

where ∆t > 0 is time increment, ξk, ηk, ζk(k = 1, 2, · · · , n) is the Gaussian random variable which
follows N(0, 1). For simplicity, we adopt σ = σi(i = 1, 2, 3, 4).
We use the parameters given by [14,22]. The detailed values of the parameters are taken as follows:

Λ = 1, µ = 0.2, β = 0.1, a = 0.7, α = 6, ν = 0.2, γ1 = 0.02, γ2 = 0.05. (5.2)

5.1. The stochastic persistence dynamics of HIV/AIDS model (1.2)

First, we take σ = 0.01 with the parameters in (5.2). Direct calculations show that

Rs
0 =

β
a

∫ ∞
0 φ f (φ)dφ

µ+ν+γ1+
1
2σ

2+ 1
2
σ2

a2

∫ ∞
0 φ

2 f (φ)dφ

=
β
a

∫ ∞
0 φ[(

∫ ∞
0 t

2µ
σ2 e−tdt)−1( 2Λ

σ2 )
2µ
σ2 +1

φ
−( 2µ
σ2 +2)

e
− 2Λ
σ2

1
φ ]dφ

µ+ν+γ1+
1
2σ

2+ 1
2
σ2

a2

∫ ∞
0 φ

2[(
∫ ∞

0 t
2µ
σ2 e−tdt)−1( 2Λ

σ2 )
2µ
σ2 +1

φ
−( 2µ
σ2 +2)

e
− 2Λ
σ2

1
φ ]dφ
= 1.9051 > 1

which satisfies the conditions in Theorem 4.1. Then, HIV/AIDS is almost surely persistent (see Figure
1(a)). When increasing the intensity of white noise, σ = 0.03, 0.05, and then Rs

0 = 1.8321, 1.7969 >
1. We can easily observe that HIV/AIDS persists. However, the amplitude of fluctuations increases
around the epidemic equilibrium E∗0 = (2.8532, 1.1782, 0.3135) of the corresponding deterministic
system (1.1) of the stochastic model (1.2) (see Figure 1(b),(c)). Figure 1 shows that the intensity of
white noise affects the stability of endemic disease of the deterministic system (1.1).
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Figure 1. The path of

(
S (t), I(t), A(t)

)
for the stochastic model (1.2) with σ = 0.01,0.03,

0.05 if Rs
0 > 1, respectively.

We adopt σ = 0.01, 0.03, 0.05, for Rs
0 > 1, which satisfy the conditions in Theorem 4.1. When

t is sufficiently large, numerical simulations show that the amplitude of fluctuations is slight and the
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oscillations are more symmetrically distributed around the equilibrium E∗0 = (2.8532, 1.1782, 0.3135)
of the corresponding deterministic model of the stochastic model (1.2). Figures 2–4 are the histograms
of the probability density function of S (t), I(t), and A(t) for model (1.2) with σ = 0.01, 0.03, 0.05 at
t = 100.

Figure 2. Histogram of the probability density functions of S (t), I(t), and A(t) for model
(1.2) with σ = 0.01.

Figure 3. Histogram of the probability density functions of S (t), I(t), and A(t) for model
(1.2) with σ = 0.03.

Figure 4. Histogram of the probability density functions of S (t), I(t), and A(t) for model
(1.2) with σ = 0.05.
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5.2. The stochastic extinction of HIV/ADS model (1.2)

When increasing the intensity of white noise, we choose σ = 0.118, Rs
0 = 0.9765 < 1, and

HIV/AIDS is almost surely extinct (see Figure 5).
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Figure 5. The path of
(
S (t), I(t), A(t)

)
for the stochastic model (2) with initial value

(S 0, I0, A0) = (1, 0.4, 0.2).

6. Discussion

In model (1.2), we adopt the saturated incidence rate βS (t)I(t)
a+Iα(t) , replace the parameter β by β+σ1Ḃ1(t),

and obtain the threshold Rs
0 which governs the stochastic dynamics of the stochastic HIV/AIDS model.

For the stochastic HIV/AIDS model with intervention strategy, in view of the following incidence

(β1 −
β2I(t)

a + Iα(t)
)S (t)I(t) + σ

S (t)I(t)
a + Iα(t)

Ḃ(t)

where β1 is the usual contact rate without considering the infective individuals, the term β2I(t)
a+Iα(t)

represents the diminished value of the transmission rate when infectious individuals are taken into
account; investigating such problem is important and meaningful. In addition, the HIV/AIDS model
with higher order perturbation such as

µ ↪→ µ − (σ11 + σ12S m(t))Ḃ1(t),
µ + ν + γ1 ↪→ µ + ν + γ1 − (σ31 + σ32Im(t))Ḃ3(t),
µ + γ2 ↪→ µ + γ2 − (σ41 + σ41Am(t))Ḃ4(t)

where m ≥ 2 is also interesting, and we look forward to solving it in the near future.
Theorem 3.1 shows that, when increasing the intensity of white noise that Rs

0 < 1 holds, HIV/AIDS
is almost surely extinct. However, HIV transmission is affected by many factors, such as economics,
education, and policies, so it is difficult to eradicate HIV/AIDS in real life.

In addition, for the HIV/AIDS epidemic, the relevant interventions are PrEP and HAART, which
would help to control viral level. However, for simplicity, we did not bring those interventions into the
consideration.
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Hepatitis B and C are similar to HIV/AIDS in transmission. Hence, the results of this theoretical
study also are instructive to the control of hepatitis B and C. In addition, like HIV/AIDS, media reports
affect the transmission of COVID-19. So, model (1.2) is also of theoretical significance to the study of
COVID-19.
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