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Abstract: Deep learning technology has shown considerable potential in various domains. However,
due to privacy issues associated with medical data, legal and ethical constraints often result in smaller
datasets. The limitations of smaller datasets hinder the applicability of deep learning technology
in the field of medical image processing. To address this challenge, we proposed the Federated
Particle Swarm Optimization algorithm, which is designed to increase the efficiency of decentralized
data utilization in federated learning and to protect privacy in model training. To stabilize the
federated learning process, we introduced Tri-branch feature pyramid network (TFPNet), a multi-
branch structure model. TFPNet mitigates instability during the aggregation model deployment and
ensures fast convergence through its multi-branch structure. We conducted experiments on four
different public datasets: CVC-ClinicDB, Kvasir, CVC-ColonDB and ETIS-LaribPolypDB. The
experimental results show that the Federated Particle Swarm Optimization algorithm outperforms
single dataset training and the Federated Averaging algorithm when using independent scattered data,
and TFPNet converges faster and achieves superior segmentation accuracy compared to other models.

Keywords: artificial intelligence; deep learning; federated learning; colon polyps segmentation;
multi-branch network

1. Introduction

Colorectal cancer is the third most common cancer worldwide and its incidence is increasing every
year [1]. About the precursors of colon cancer, it is commonly accepted that most colorectal cancers
evolve from adenomatous polyps [2]. Recent surveys and statistics underline that polypoid lesions are
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precursors to most (>85%) colorectal cancers [3, 4]. In recent years, the application of artificial
intelligence technology in medical imaging has demonstrated remarkable effectiveness. Compared to
traditional segmentation methods based on threshold, region and edge, the use of semantic
segmentation methods in Artificial Intelligence (Al)-colonoscopy detection can significantly reduce
the risks associated with misdiagnosis or missed polyps, colorectal tumor lesions and colorectal
cancer at all stages of disease progression due to a variety of factors [5].

In AI technology, the amount and diversity of data is important for model training, as expected [6].
However, strict privacy requirements for medical data limit the amount of data that can be shared for
model training. Federated learning obtains a central model on the server by aggregating models trained
locally on clients [7]. The federated learning process does not need to expose the raw data so it can
solve the problem of insufficient data during model training.

Currently, the most widely used method in federated learning is the Federated Averaging
algorithm, which uses an equal-weight aggregation approach. However, the application of
equal-weight aggregation has certain limitations given the variations in the volume and diversity of
distributed data. Among them, Li et al. [8] pointed out that it is expected to achieve a better
aggregation effect by adjusting the aggregation weights with reference to some machine learning
methods. To maximize the utilization of distributed independent data and optimize the aggregation
effect, we propose the Federated Particle Swarm Optimization algorithm. The main contribution of
this algorithm is its ability to improve the aggregation effect by optimizing the aggregation weight of
the model uploaded by the federated learning client.

During the training process, we observed unstable oscillations when the client used the server
aggregation model. To address this, we propose a Tri-branch Feature Pyramid Network. This
network, designed for federated learning, uses a multi-branch structure to mitigate the instability
experienced during the deployment of the aggregation model. As a result, it allows a more effective
use of the independent scattered data.

The main contributions of this paper are as follows:

1) The Federated Particle Swarm Optimization algorithm is proposed as a means of preserving
privacy while maximizing the utility of independent scattered data.

2) The Tri-branch Feature Pyramid Network is proposed, which achieves a better training effect by
using scattered data under the Federal Particle Swarm Optimization algorithm.

2. Related works

2.1. Federated learning

Federated learning can ensure data privacy and security as it allows multiple data owners to
collaboratively train a machine learning model without requiring access to each other’s raw data [9].
The process of updating the global model by aggregating local models serves to maintain data privacy
and security. Based on the distinctions in data feature space and sample space, federated learning can
be categorized into three types: Horizontal federated learning, vertical federated learning and
federated transfer learning [10]. Here, federated transfer learning is designed for situations in which
data from different parties differs not only in sample ID space but also in feature space [11]. For the
vertical federated learning, the objectives of different clients may be different [12]. Learning for
vertical distributed data is called vertical federated learning [13]. Horizontal federated learning
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enables distributed clients to train a shared model and keep their data privacy [14]. Since each client’s
task is the semantic segmentation of colon polyps, it becomes imperative to employ a distributed
client training model within a shared feature space. Consequently, horizontal federated learning
emerges as the most appropriate framework.

In the research based on the framework of horizontal federated learning, You et al. [15] proposed
an approach to optimize the overall performance of the server’s global model by evaluating the
contribution of each client terminal model. Li et al. [16], based on federated learning, proposed a
dynamic verification model that exhibited better diagnostic accuracy in situations of data imbalance.
Abbas et al. [17], based on the context of the loss factor and class imbalance issues achieved better
application of image classification. In addition, Ye et al. [18] proposed a robust decentralized
stochastic gradient descent method to reduce communication frequency and speed up convergence.
Taking into account the heterogeneity of clients, Yu et al. [19] defined the criteria for local
convergence. In application, Liu et al. [20] successfully applied the Federated Sveraging algorithm to
lung nodule detection and demonstrated its effectiveness. Hu et al. [21] proposed a federated
evolutionary feature selection method based on particle swarm optimization algorithm with multiple
participants, which can find the feature subsets with a better comprehensive performance.

2.2. Image segmentation on colon polyps

About colon polyp segmentation, Hu et al. [22] highlighted in 2023 that precisely polyp
segmentation is still an open issue. This paper aims to achieve high-precision polyp segmentation
using a pyramid pooling model with a multi-branch structure and a pyramid structure, and the relevant
state of the art in this regard is as follows.

On the multi-branch structure, Liu et al. [23] added a branch of boundary attention to the last detail
finding branch to improve the segmentation accuracy. Hu et al. [22] made a memory-keeping pyramid
pooling module into each side of the branch of the encoder to enhance the effectiveness on feature
extraction. Wang et al [24] used an object detection branch and a mask generation branch to implement
a highly accurate anchor-free instance segmentation framework. Through our experiments, we have
found that the implementation of a multi-branch structure not only improves the efficiency and accuracy
of polyp segmentation, but also improves the stability within the federated learning framework.

On the pyramid pool model and feature pyramid structure, Shi et al. [25] designed a context-aware
pyramid aggregation module to boost the network’s ability to utilize global context. Shen et al. [26]
used four null space convolutional pooling pyramids to improve the inference speed and computational
efficiency. Sharma et al. [27] used atrous spatial pyramid pooling to handle the problem of segmenting
objects at multiple scales. Wang et al. [28] introduced a network called the stepwise feature fusion
transformer (SS-Former). Simultaneously, Chang et al. [29] presented an effective stage-wise feature
pyramid network (ESFPNet). The two feature pyramid networks proposed in the last two years have
shown excellent performance in colon polyp segmentation.
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3. Methods

3.1. Overview

The Federated Particle Swarm Optimization algorithm presented in this paper is based on the
federated learning framework, which consists of a client-server architecture. The client uses
undisclosed raw data to train a local model, while the server aggregates locally uploaded models into
a global model, as shown in Figure 1.

To optimize the aggregation weight, we introduce the Federated Particle Swarm Optimization
algorithm. This algorithm optimizes the aggregation weight of the client’s optimal model by the effect
of the client’s training. The global model is generated by this weight aggregation, then the global
model is sent to the client as the server model. This server model is then aggregated with the model
from each client’s local training to generate a local optimal model. This process is illustrated in
Figure 1.

Welght2 Weight,

elght1
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Sending server model @,@;@@; Local optimal model
Local update Local train

$ Optimization global model

Figure 1. The architecture of the Federated Particle Swarm Optimization algorithm.

Building on this foundation, we propose a Tri-branch Feature Pyramid Network. This network
improves and stabilizes the performance of the Federated Particle Swarm Optimization algorithm by
exploiting the feature pyramid and multi-branch architecture.
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3.2. Federated Particle Swarm Optimization algorithm

Federated learning is often used to deal with fragmented private data. This methodology gained
prominence when McMabhan et al. [30] introduced the Federated Averaging algorithm. This algorithm
mitigates communication frequency by aggregating gradients, making federated learning increasingly
suitable for deep learning tasks with high communication overhead. Building on this, another research
points out that using the best model from each client’s training round during each aggregation cycle
can improve the performance of federated learning [31]. Thus, during aggregation, a 20% weight is
maintained for each client’s superior model.

Regarding the aggregation weights in federated learning, it is expected to achieve a better
aggregation effect by determining the weighting weights of aggregation global models according to
the proportion of customer samples and adjusting the aggregation weights with reference to machine
learning methods [8]. Therefore, we use the concept of Particle Swarm Optimization algorithm [32]
to optimize the remaining 80% of the weight. The proportion of customer samples serves as the initial
weight in this optimization process:

¢! =0.5d; +0.5d; - (t/T) W

¢, = 0.5d, +0.5d, - (t/T)*
vish =l (s = ) + ¢ (S = 5e) )
Wil = wi + Vi, 3)

where t represents the aggregation round of federated learning, 7 is the total aggregation round of
federated learning and d; and d, are tunable parameters. Given the significant variation in previous
training rounds for each client, these learning parameters ¢ and ¢} incrementally increased by Eq (1).
w is the weight optimized for each client’s training. s/, is the optimal fitness derived from the evaluation
of the validation set across all client training iterations within the #-th aggregation round for each client.
sp» 1 the best fitness obtained by evaluating the validation set across all client training iterations within
all aggregation rounds. The average of the mean intersection over union (mloU) and Dice coefficients
on the validation set is set to the fitness. s, is the predefined adjustable expected training fitness.
The specific process of Federated Particle Swarm Optimization algorithm is as follows:

Algorithm 1 Federated Particle Swarm Optimization algorithm

1: procedure Server Update:

2: Initial model parameter: cy, ¢2, WY, Sep, dy

3. for every aggregation epoch ¢ do

4 for every client i do

5: &, st « Client Update ([;')
3 t .

6 if Sy > Spp:

7 Spb = 8,

8 end if

9 wil « Eq. (1) and Eq. (2)

10: Wil =whl +a,,a; = 0.2
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. t+1 _ t+1 | ot
11: gy =2XWi &

id id
12:  end for
13: end for

14: for every client epoch

15:  client model « &/

16:  Test result « Each client model is tested by the test dataset
17: end for
18: procedure Client Update: (g!;')

19: client model « &

20: for every client epoch 7 do
21:  The client model is trained by the training dataset.

22: &}, « This average corresponds to the sum of model gradients

23:  mloU and Dice coeflicient « The client model is verified by the validation dataset
24: s; = (mloU + Dice)/2

25: end for

- 7

26: Iy max(sp) )
. ! 2 fmax tS!’

27: &4, S, = €SSy

. ! !
28: return g; & Sp

In the Federated Particle Swarm Optimization algorithm above, &, represents the model on the i-th
client during the #-th round of aggregation. W is the weight assigned to each client during the global
model aggregation, consisting of w and a,. W symbolizes the weight optimized by Eqgs (1) and (2),
with a sum of 0.8. On the other hand, a, is the inherent weight of each client model, which accounts
for the remaining 20%. Initially, a, is set to [0, 0, 0, O]. This configuration ensures a balanced and fair
distribution of weights across all client models.

In addition, Wgz is set to [0.22, 0.13, 0.38, 0.07], a value derived from the number of sample images
present in each dataset. s, 1s set to [0.956, 0.943, 0.935, 0.932], a value determined empirically from
previous experience. In addition, numerous experiments have led to the conclusion that initializing
c1 to 0.02 and ¢, to 0.01 significantly improves the performance of the Federated Particle Swarm
Optimization algorithm.

3.3. Tri-branch Feature Pyramid Network

Severe loss oscillation may occur in federated learning, which affects the convergence of the joint
model [33]. To address this problem, we propose the Tri-branch Feature Pyramid Network with a multi-
branch structure. This structure is designed to mitigate instability and reduce oscillatory phenomena
during the training process. Each branch contains the Res Linear Uper architecture.

Res Linear Uper architecture (RL-Uper). As shown in Figure 2(a), we use UperNet’s pyramid
pooling module (PPM) [34] to extract high-dimensional features to obtain comprehensive feature
information of polyps. The architecture of Res Linear is shown in Figure 2(b). Unlike a typical linear
layer, the Residual Linear module (RL) stabilizes the training process and preserves the
characteristics of each class in the binary classification problem, which is achieved by using
GroupNormal and sigmoid linear unit (SiLu).

Tri-branch Feature Pyramid Network (TFPNet). As shown in Figure 2(c), we use the
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Figure 2. (a) The architecture of Res Linear Uper. (b) The architecture of Res Linear. (c)
The architecture of Tri-branch Feature Pyramid Network.

multi-branch structure because it helps to mitigate training fluctuations during distributed training. In
addition, we use encoders such as Pyramid Vision Transformer V2 (PVTv2) m4 [35], Mixed
Transformer (MiT) m4 [36], and ResNetl101 [37] to extract a wide range of basic features. Compared
to a single-branch structure, the multi-branch configuration can yield more complex features. The
Residual Linear module facilitates the concatenation of feature information from different branches to
achieve effective fusion.

4. Experiments

4.1. Dataset

The experimental data for this study was derived from the following public datasets:
CVC-ClinicDB [38], CVC-ColonDB [39], Kvasir [40] and ETIS-LaribPolypDB [1], as detailed in
Table 1. Given the variance in image size across these datasets, we standardize all images to a
resolution of 356 X 356 pixels and establish a batch size of 4. Furthermore, to augment the dataset, we
implement random flipping, scaling, rotation and random dilation and erosion operations.

Table 1. The public dataset is used for colon polyp segmentation.

Dataset CVC-ClinicDB CVC-ColonDB Kvasir  ETIS
Images number 612 380 1000 196

Max ratio object 45.88% 63.15% 62.13%  29.05%
Min ratio object  0.34% 0.30% 0.79%  0.11%
Input size 384 x 288 574 x 500 Variable 1225 % 966

Each dataset is allocated to individual clients to emulate the distributed federated learning process
across diverse data sources. From each dataset, 80% is utilized for training purposes, 10% dedicated
to validation and the other 10% for testing.
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4.2. Environment

In the experimental section, all models use the AdamW optimizer with an initial learning rate set
to 0.001. In the context of binary classification between polyps and background, it is critical for our
model to focus primarily on the distinctive features of polyps while learning to discriminate those of
the background. Accordingly, we chose the cross-entropy and the mIoU loss functions to ensure that
both the background and the polyps receive adequate attention, and the Dice loss function is used
specifically to focus only on polyp characteristics only. In the federated learning process, the server
model is frequently sent to the client, which exacerbates the challenge of achieving convergence during
model training. To accelerate this convergence, three different loss functions are used. Together, these
three loss functions form the training process for the optimization model in our experimental segment.
The experiments were run on multiple servers equipped with NVIDIA V100-32GB GPU and Intel®
Xeon processors (Skylake, IBRS) CPU.

4.3. Evaluation metrics

To evaluate the binary segmentation accuracy between polyps and background, we selected the
mloU as the binary segmentation evaluation metric for polyps and background and the Dice coefficient
was chosen as the segmentation metric for polyps. The formulas for mloU and Dice are detailed below:

2 X
Dice = ———"0" )
Zj np;j + Zj nip
1 ke(P,B) N
mloU = — 2 , ®))
2 Z i+ Xing —ng

where n; denotes the set of true predicted values as j. k denotes the categories of polyps and
background (with P as an abbreviation for polyps and B for background). n; represents the number of
accurately predicted values, while n;; and nj; represent false positives and false negatives, respectively.

4.4. The experiment of federated learning

A comparative experiment is conducted to validate the effectiveness of federated learning in using
scattered data for colon polyp segmentation. In this experiment, TFPNet is designated as the
benchmark model, Each dataset is independently trained, validated and tested as a comparative
method: “Independently”. The cross-entropy loss function supervises the training of each dataset. In
the Federated Averaging and Federated Particle Swarm Optimization algorithms, each dataset is
deployed across multiple clients for federated learning, with the Federated Averaging algorithm [30]
serving as an additional comparison method. The number of server-side epochs for both the Federated
Averaging algorithm and the Federated Particle Swarm Optimization algorithm is set to 50, while the
number of client-side epochs is set to 3. This configuration is chosen to balance communication costs
and stability; too few client-side epochs would increase the cost of sending information to the server,
while too many epochs could result in excessive fluctuations during aggregation. Thus, three epochs
are chosen as the client epochs. Additionally, to compare fairness, the Federated Averaging algorithm
also extracts all clients for training during server epochs. For additional experimental parameters and
configuration details, refer to the Federated Particle Swarm Optimization subsection in Section 3 and
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the Data, Environment and Evaluation metrics subsection in Section 4. The experimental results are
shown in Figure 3(a) and Table 2.

Ground Truth Our Fed Avg Independently Ground Truth  TFPNet ESFPNet  SS-Former  UperNet UNet

EOE B
19

(a) (b)

Figure 3. Visual segmentation results (From top to bottom, there are Kvasir, CVC-ClinicDB,
ETIS and CVC-ColonDB datasets). (a) In the experiment of federated learning. (b) In the
experiment with different baseline networks.

Table 2. The results of the compare experiment with different baseline methods.

Kvasir ClinicDB ETIS ColonDB
Dice mloU Dice mloU Dice mloU Dice mloU
Independently 0.895 0.897 0.938 0.940 0.828 0.890 0.891 0.898
Fed Avg 0900 0.900 0937 0940 0.828 0.885 0.901 0.905
Our 0903 0.902 0946 0947 0.826 0.878 0.910 00912

Method

In Table 2 and Figure 3(a), “Independently” indicates that each dataset is trained, validated and
tested independently. “Fed Avg” represents the Federated Averaging algorithm and “Our” represents
our proposed Federated Particle Swarm Optimization algorithm. Table 2 shows that the training
effectiveness of our Federated Particle Swarm Optimization algorithm on the Kvasir, CVC-ClinicDB
and CVC-ColonDB datasets surpasses that of the Federated Averaging algorithm and single dataset
training independently. To further analyze the performance of the Federated Particle Swarm
Optimization algorithm compared to individual training on each dataset and compared to the
Federated Averaging algorithm, we used the scores of the metric results generated by the number of
samples in the test dataset as data samples. These scores correspond to the mloU and Dice coefficients
shown in Table 2. According to the t-test calculation, it is concluded that the corresponding p-value of
the Federated Particle Swarm Optimization algorithm and the Federated Averaging algorithm is less
than 0.01 when they are better than the individual training on each dataset. This indicates that both
algorithms are significantly better than individual training. This result is particularly relevant in the
medical field, where privacy concerns limit data sharing. Distributed training through federated
learning could help overcome the problem of insufficient medical data. Similarly, according to the
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t-test calculation, the corresponding p-value of the Federated Particle Swarm Optimization algorithm
was better than the Federal Averaging algorithm by less than 0.01. This indicates that this algorithm
significantly outperforms the Federated Averaging algorithm. This suggests that the aggregate weight
optimization in the Federated Particle Swarm Optimization Algorithm can improve the segmentation
accuracy of colon polyps, providing a clear advantage over the Federated Averaging algorithm.

To further investigate the reasons for the suboptimal performance of the Federated Particle Swarm
Optimization algorithm and Federated Averaging algorithm on the ETIS dataset compared to training
on independent datasets, we analyzed the average polyline of the loss curves across multiple datasets.
In addition, we examined the polyline on the ETIS dataset in these three cases, as shown in Figure 4(a).

1.4

1.4 - —— FPS3O0L train loss (Avg) —— TFPMNet train loss (Avg)
FL train loss (Avg) SSFormer train loss (Avg)
train loss independent (Avg) 1.3 - ESFPNet train loss (Avg)

---- FPSOL train loss (ETIS)
FL train loss (ETIS)
train loss independent (ETIS) 124

UperNet train loss (Avg)
- FCN train loss (Avg)
UNet train loss (Avg)

114 "\\ Is

1.0 \_,\

0.9 4

(a) (b)

Figure 4. The loss curves. (a) Under the Federated Particle Swarm Optimization algorithm,
Federated Averaging algorithm, and training each dataset independently. (b) Under Federated
Particle Swarm Optimization algorithm.

In Figure 4(a) and Table 2, the comparative analysis of the loss curves for the Federated Particle
Swarm Optimization algorithm, the Federated Averaging algorithm and the independent dataset
training on the ETIS dataset shows a higher loss function for the Federated Particle Swarm
Optimization algorithm. This shows that the poor performance is due to the underfitting effect during
training. Furthermore, as shown in Figure 4(a), the average loss curve for the independent dataset
training is lower than that of the two federated learning algorithms on the four datasets. At the same
time, according to Table 2, the performance on the remaining three datasets is superior for the
federated learning algorithms compared to training each dataset independently, indicating that
federated learning across multiple independent datasets eftfectively prevents overfitting. Therefore, we
can infer that the underfitting effect of federated learning on the ETIS dataset is due to the differences
between the independent datasets. Although this leads to underfitting when training on the ETIS
dataset, it helps prevent overfitting on the other three island datasets. Thus, from a holistic
perspective, the Federated Particle Swarm Optimization algorithm proves to be more proficient in
utilizing scattered data. In addition, as shown in Figure 4(a) and Table 2, TFPNet exhibits strong
performance not only in the Federated Particle Swarm Optimization algorithm but also in the
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Federated Averaging algorithm, indicating that the multi-branch structure has significant potential in
the context of the federated learning framework.

4.5. The experiment with different baseline networks

To demonstrate that our proposed TFPNet, which is based on the Federated Particle Swarm
Optimization algorithm, is better suited to the Federated Particle Swarm Optimization algorithm
framework than alternative models, we conducted comparative experiments using different network
models as baselines within the Federated Particle Swarm Optimization algorithm framework. Since
TFPNet uses MiT and PvIv2 as encoders and the Res Linear Uper is part of the decoder is
constructed based on the pyramid structure of UperNet [34], we chose the pyramid networks
SS-Former proposed by Wang et al. [28] and ESFPNet proposed by Chang et al. [29], which also use
these two encoders, as baseline networks. We also chose the classical network UperNet, which is
similar to TFPNet, and other classical networks, Fully Convolutional Networks (FCN) [41] and a
network specifically for biomedical image segmentation: UNet [42], as additional baseline networks.
In the experiment conducted, we set the number of server epochs to 50 and the number of client
epochs to 3. Since the architectures of SS-Former, ESFPNet and UperNet are similar to that of
TFPNet, and considering that UNet and FCN are widely used as comparison models in various
scenarios, we adopted the same parameters and environment configuration as those used by TFPNet,
as detailed in the Environment subsection of this section. The final epoch of training was reserved for
testing, and the resulting test results are shown in Figure 3(b) and Table 3.

Table 3. The results of the compare experiment with different baseline networks.

NetWorks Kvasir ClinicDB ETIS ColonDB
Dice mloU Dice mloU Dice mloU Dice mloU
UNet 0.900 0.900 0.934 0.937 0.728 0.829 0.821 0.859
FCN 0.865 0.868 0.931 0.932 0.681 0.809 0.829 0.852
UperNet 0.898 0.900 0.927 0.933 0.801 0.868 0.844 0.869

SS-Former 0.896 0.897 0.946 0.946 0.864 0.900 0.898 0.905
ESFPNet 0.899 0.898 0.945 0.946 0.865 0.901 0.904 0.907
TFPNet 0.903 0.902 0.946 0.947 0.826 0.878 0.910 0.912

Table 3 shows that although the mloU and Dice coeflicients of TFPNet are not the highest for the
ETIS dataset, these coeflicients are indeed the highest for the proposed model in the Kvasir, CVC
ClinicDB and CVC-ColonDB datasets. To further analyze the performance of TFPNet against the five
comparative models on the four datasets mentioned above, we used the score results generated by the
number of samples in the test set as data samples. These scores correspond to the mloU and Dice
coefficients shown in Table 3. According to the t-test calculation, the corresponding p-value of the
TFPNet was better than the five comparison models by less than 0.01. This indicates that TFPNet
significantly outperforms the five comparison models, combined with the visual segmentation effect in
Figure 3(b). It is further evident that the segmentation accuracy of the multi-branch feature pyramid
network TFPNet, which is designed based on the Federated Particle Swarm Optimization algorithm,
surpasses that of ESFPNet, SS-Former, UperNet, FCN and UNet.
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In designing the multi-branch TFPNet, our goal was to use a diverse set of encoders across multiple
branches to extract a wider range of features while also using the multi-branch architecture to mitigate
training instability. To determine whether TFPNet stabilizes the oscillation of the loss function during
the training process, we analyzed the average loss function from four clients, each using different data
sets during training. The results of this analysis are shown in Figure 4(b).

As shown in Figure 4(b), the rate of decrease for the TFPNet loss function is the fastest, indicating
that TFPNet exhibits greater stability throughout the federated learning process. In addition, the loss
function of TFPNet is the lowest after ten generations, suggesting that TFPNet provides the most
effective adaptation to the training set. Taken together with the performance of TFPNet presented in
Table 3 and Figure 3(b) for the test set, it is clear that TFPNet achieves an optimal fit to the training set
without appearing to overfit the test set.

5. Conclusions

In this research, we introduced the Federated Particle Swarm Optimization algorithm, an approach
that optimizes the aggregation weight of the server to make more efficient use of independent
distributed datasets. Meanwhile, we proposed TFPNet, whose multi-branch structure proved to be
more stable and outperformed other networks during the training phase, as shown in our experiments.
Both the Federated Particle Swarm Optimization algorithm and TFPNet demonstrated improved use
of independent distributed datasets. However, given the performance limitations of the Federated
Particle Swarm Optimization algorithm when applied to small datasets, such as the
ETIS-LaribPolypDB dataset, we plan to explore the potential of ensemble multi-model training based
on federated learning to more effectively utilize these datasets in our future work.
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