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Abstract: Non-classical secreted proteins (NCSPs) refer to a group of proteins that are located in the 

extracellular environment despite the absence of signal peptides and motifs. They usually play different 

roles in intercellular communication. Therefore, the accurate prediction of NCSPs is a critical step to 

understanding in depth their associated secretion mechanisms. Since the experimental recognition of 

NCSPs is often costly and time-consuming, computational methods are desired. In this study, we 

proposed an ensemble learning framework, termed NCSP-PLM, for the identification of NCSPs by 

extracting feature embeddings from pre-trained protein language models (PLMs) as input to several 

fine-tuned deep learning models. First, we compared the performance of nine PLM embeddings by 

training three neural networks: Multi-layer perceptron (MLP), attention mechanism and bidirectional 

long short-term memory network (BiLSTM) and selected the best network model for each PLM 

embedding. Then, four models were excluded due to their below-average accuracies, and the remaining 

five models were integrated to perform the prediction of NCSPs based on the weighted voting. Finally, 

the 5-fold cross validation and the independent test were conducted to evaluate the performance of 

NCSP-PLM on the benchmark datasets. Based on the same independent dataset, the sensitivity and 

specificity of NCSP-PLM were 91.18% and 97.06%, respectively. Particularly, the overall accuracy of 

our model achieved 94.12%, which was 7~16% higher than that of the existing state-of-the-art 

predictors. It indicated that NCSP-PLM could serve as a useful tool for the annotation of NCSPs. 

Keywords: protein language model; non-classical secreted protein; deep learning; imbalanced 

classification; ensemble learning 
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1. Introduction  

As a fundamental mechanism for intercellular communication, protein secretion could occur in 

all living organisms and has an important role in many physiological processes. The majority of 

secretory proteins contain an N-terminal signal peptide that allows their translocation into the 

endoplasmic reticulum via the classical secretory system [1]. Nevertheless, several cytoplasmic 

proteins detected in the extracellular environment lacking a known signal peptide are secreted via the 

non-classical protein secretion pathway [2]. They are usually described as NCSPs and can play diverse 

roles in various biological processes including intercellular signaling, immune regulation, tissue repair 

and regeneration, cell communication and human diseases such as neurodegenerative disorders and 

cancer [3–5]. 

Accurate identification of NCSPs is important for unraveling the complexity of intercellular 

communication and the underlying mechanisms involved in the above physiological and pathological 

processes. Since experimental approaches are often costly and time-consuming, computational 

methods will be required to enable genome-wide annotation of NCSPs with high efficiency and low 

cost [6]. To date, various methods based on machine learning have been developed for predicting 

NCSPs, including SecretomeP [7], SecretP [8], NClassG+ [9], PeNGaRoo [10], NonClasGP-Pred [11], 

ASPIRER [12], iNSP-GCAAP [13] and so on. For instance, Bendtsen et al. proposed the first tool 

termed SecretomeP for predicting NCSPs in mammals by employing six sequence-based features as 

the input of the neural network [7]. The SecretP model trained a support vector machine (SVM) to 

distinguish the three types of secretory proteins by using both sequence and structural features [8]. The 

NClassG+ tool was designed for identifying NCSPs in Gram-positive bacteria, which adopted the 

nested k-fold cross-validation (CV) to select the best models from four different sequence 

transformation vectors and SVMs with linear, polynomial and Gaussian kernel functions [9]. Recently, 

Zhang et al. developed a two-layer LightGBM ensemble learning framework, termed PeNGaRoo, for 

predicting NCSPs in Gram-positive bacteria by extracting three groups of features, i.e., sequence-

derived features, evolutionary information-based features and physicochemical property-based 

features [10]. Moreover, the NonClasGP-Pred model improved the performance of NCSPs prediction 

based on the same datasets with PeNGaRoo by handling the potential prediction bias arising from 

imbalanced data [11]. Additionally, ASPIRER trained a hybrid deep learning-based framework to 

enhance the identification of NCSPs by combining a whole amino acid sequence-based model and an 

N-terminal sequence-based model [12]. iNSP-GCAAP utilized the global composition of amino acid 

properties to encode protein sequences and then adopted the random forest algorithm to perform the 

prediction of NCSPs, which achieved the superior performance than the other state-of-the-art methods [13]. 

Most of existing techniques often depend on handcrafted features as the input of machine learning 

algorithms [14,15], such as the position-specific scoring matrix (PSSM) derived from time-consuming 

database searches [16]. In contrast, pre-trained PLMs could automatically learn efficient 

representations (also known as PLM embeddings) from the protein sequences in a self-supervised 

manner by treating the protein sequences as sentences in the field of natural language processing. 

These pre-trained models include ProtVec [17], SeqVec [18], ProSE [19], UniRep [20], Tape [21], 

ESM-1b [22], ProtBERT [23], ProtT5 [23], ProteinBERT [24] and so on. Recent studies have shown 

that PLM embeddings could be successfully applied for different protein-related downstream tasks, 

such as protein subcellular localization [25], peptide recognition [26,27], protein fold prediction [28], 

recognition of post-translational modification sites [29,30] and so on [31,32]. 
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To the best of our knowledge, the PLM technique has not been systematically tested on the 

prediction of NCSPs. In this study, we proposed a novel computational approach, termed NCSP-PLM, 

to identify the NCSPs based on their protein sequences by selecting the optimal model from nine 

different PLM embeddings and three deep learning models. For each of these nine embeddings, we 

first trained three neural networks, i.e., MLP, attention mechanism and bidirectional long short-term 

memory network (BiLSTM), and then picked out the best one. Second, we selected the top five models 

with the accuracies higher than the average accuracy of these nine models. Third, the ensemble 

classifier was adopted to perform the final prediction of NCSPs using the weighted voting of these five 

optimal models. Benchmark experiments on the 5-fold CV and the independent test suggested that the 

proposed NCSP-PLM model outperformed existing tools based on the traditional handcrafted features 

and the PLM embeddings are particularly useful for the NCSPs prediction. Figure 1 illustrates the flow 

chart of the NCSP-PLM model. 

 

Figure 1. The flow chart of the NCSP-PLM model. 

2. Materials and methods 

2.1. Benchmark datasets 

The critical first step in developing a robust and efficient classification model is the construction 

of a high-quality benchmark dataset. In this study, we used the benchmark datasets constructed by 

Zhang et al. [10] to train and evaluate the proposed model. The training dataset includes 141 positive 

samples (i.e., NCSPs) and 446 negative samples (i.e., cytoplasmic proteins), which was applied to 
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perform the 5-fold CV. In addition, the independent test dataset consists of 34 positive and 34 negative 

samples, which was employed to compare our model with the other existing tools. 

The reasons why we adopted these datasets were chiefly as follows. (1) All NCSPs were 

experimentally verified in literature. (2) The sequence similarity was reduced to 80% to avoid the 

homology bias. (3) There were no overlapping sequences between the training dataset and the 

independent test dataset. 

2.2. Pre-trained protein language model embeddings 

As protein representations, we directly extracted self-supervised embeddings from pre-trained 

PLMs without fine-tuning the training data. In this present work, nine popular PLMs were adopted, 

including ProtVec [17], SeqVec [18], ProSE [19], UniRep [20], Tape [21], ESM-1b [22], ProtBERT [23], 

ProtT5 [23] and ProteinBERT [24]. Given a protein with the length of L, the size of a PLM embedding 

is L × F, where F denotes the dimension of the individual embedding for each amino acid. To obtain a 

fixed-length vector representation, we averaged the embedding matrix over the length L. 

Table 1. The summary of the nine PLM embeddings adopted in this study. 

Name Dimension Database 

ProtVec 100 Swiss-Prot [33] 

SeqVec 1024 UniRef50 [34] 

ProSE 6165 UniRef50 + SCOP [35] 

UniRep 

Tape 

1900 

768 

UniRef50 

Pfam [36] 

ESM-1b 1280 UniRef50 

ProtBERT 1024 BFD [37] + UniRef100 [34] 

ProtT5 1024 BFD + UniRef50 

ProteinBERT  15599  UniRef90 [34] 

Table 1 summarizes the nine PLM embeddings used in this study. (1) The ProtVec embedding is 

the first word vector-based protein representation, which was trained on the Swiss-Prot database [33] 

through a Skip-gram neural network and generated a 100-dimensional vector [17]. (2) The SeqVec was 

trained on the UniRef50 database [34] by using an architecture composed of a convolutional layer and 

two BiLSTM layers [18]. (3) The structure of ProSE is a three-layer BiLSTM similar to the SeqVec 

structure, with the difference that it uses not only the sequence data but also the structural information 

of the proteins [19]. (4) The UniRep model contains a layer of multiplicative LSTM with 1900 hidden 

units, which was trained on the UniRef50 database [20]. (5) The Tape model aims to leverage the 

power of transformers to capture long-range dependencies and context in protein sequences [21], 

trained on the Pfam database [36]. (6) The ESM-1b model has 33 transformer layers and was trained 

on the UniRef50 database by using the masked language modeling objective [22]. (7) The ProtBERT 

and ProtT5 models are based on two auto-encoder transformer structures, trained on data from the 

BFD [37] and UniRef databases. The difference between the two models is that ProtBERT trained only 

the encoder component, while ProtT5 consists of both an encoder and a decoder. (8) Unlike the classic 

transformers, ProteinBERT is a denoising auto-encoder model and contains both local and global 

representations [24]. The details of these nine PLM embeddings were also provided in Supplementary 
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Table S1. 

2.3. Deep learning model architecture 

In this study, we adopted three different deep learning architectures, i.e., MLP, attention 

mechanism and BiLSTM, to process the PLM embeddings and perform the prediction of NCSPs. 

Figure 2 shows the overall network structures of these three models. We implemented our models by 

using TensorFlow (1.15.5) and the specific parameters of these deep networks are available in 

Supplementary Table S2. 

 

Figure 2. The network structures of three deep learning models. (a) The MLP model 

processes PLM embeddings through three dense layers. (b) The Attention model adds the 

attention mechanism before two dense layers. (c) The BiLSTM model uses a flatten layer 

after the output of BiLSTM, followed by two dense layers. 

As shown in Figure 2(a), the MLP was employed as our baseline model, which consists of an 

input layer, three hidden layers and an output layer. Additionally, we applied the batch normalization 

(BatchNorm) to mitigate the overfitting after the hidden layers. In Figure 2(b), an attention layer before 

the MLP structure was introduced to amplify the influence of key input features. As the output of the 

attention layer, a weighted feature vector quantifying the importance of the embeddings was obtained 

and then passed to a dense layer consisting of 512 units. As illustrated in Figure 2(c), we designed a 

BiLSTM layer with 512 cells before the MLP to process the input PLM embeddings in both forward 

and backward directions simultaneously. The output of the BiLSTM layer was fed to a flatten layer, 

followed by two dense layers with 512 cells. With the aim of reducing the overfitting, we also applied 

the BatchNorm to both the flatten and dense layers. 
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2.4. Imbalanced classification problem solving 

The imbalanced proportion of positive and negative samples could affect the prediction accuracy 

of the classifier. In this study, we explored three approaches to address this issue, i.e., synthetic 

minority oversampling technique (SMOTE) [38], focal loss [39] and weighted binary cross-entropy 

(WCE) [40]. 

SMOTE is an oversampling technique that allows us to create synthetic samples for our minority 

class on the lines connecting a sample point and one of its K-nearest neighbors [38]. Focal loss is an 

improved version of cross-entropy loss that specifically handles the imbalanced classification problem 

by assigning higher weights to hard or frequently misclassified instances, while down-weighting the 

easy instances [39]. WCE is also a variant of the binary cross-entropy loss function that assigns 

different weights to the positive and negative classes to balance their contributions to the loss function [40]. 

The weights are usually inversely proportional to the class frequencies, meaning that the weight of the 

minority class is higher than the weight of the majority class. 

2.5. Performance assessment 

In this study, the 5-fold CV and the independent test were performed to examine the performance 

of our models for the prediction of NCSPs. In addition, six common metrics were adopted to report 

the predictive ability of the proposed model [41,42], including sensitivity (SN), specificity (SP), 

precision (P), accuracy (ACC), F1 and Matthews correlation coefficient (MCC), defined with the 

following equations: 

SN =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, (1) 

SP =
𝑇𝑁

𝑇𝑁+𝐹𝑃
, (2) 

P =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,   (3) 

ACC =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
,   (4) 

F1 = 2 ×
𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
,   (5) 

MCC =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑃+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
,   (6) 

where TP, FP, TN and FN represent the numbers of the true positive, false positive, true negative and 

false negative samples, respectively. 

Additionally, the area under the receiver operating characteristic (ROC) curve (AUC) and the area 

under the precision-recall (PR) curve (AUPRC) were calculated as another two reliable performance 

metrics for the comparison with existing algorithms. 

3. Results and discussion 

3.1. Performance of protein language model embedding with different deep learning models 

In this section, we employed three deep learning models, i.e., MLP, attention mechanism and 
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BiLSTM, to compare the performance of nine PLM embeddings for the prediction of NCSPs. For each 

embedding, three neural networks were trained on the benchmark dataset, resulting in 27 base models. 

The results of the independent tests were shown in Figure 3 and those of the 5-fold CV were illustrated 

in Supplementary Figure S1. 

 

Figure 3. Performance comparison of nine PLM embeddings, i.e., (a) ProtVec, (b) 

SeqVec, (c) ProSE, (d) UniRep, (e) Tape, (f) ESM-1b, (g) ProtBERT, (h) ProtT5 and (i) 

ProteinBERT. 

As seen from Figure 3, different embeddings achieved the best ACC values using different deep 

learning models. Specifically, the UniRep, ESM-1b, ProtBERT and ProteinBERT embeddings 

exhibited the outstanding ability of identifying the NCSPs by utilizing the attention mechanism model, 

with the ACC values of 0.7794, 0.8382, 0.7500 and 0.7647, respectively. The MLP models trained by 
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the ProtVec, Tape and ProtT5 embeddings, respectively, outperformed the attention mechanism and 

BiLSTM models, with the AUC values of 0.8244, 0.7638 and 0.9325. The BiLSTM models obtained 

the highest ACC values (i.e., 0.6912 and 0.7647) when using the SeqVec and ProSE embeddings. 

Moreover, ProtT5 performed better than the other embeddings in terms of ACC, MCC, F1, AUC and 

AUPRC. 

To further select the optimal models, the best ACC values for these nine models selected from 27 

base models were plotted in Figure 4. The average ACC of nine models was 0.765. Four embeddings 

were discarded in the subsequent analysis due to their below-average ACC values. In other words, 

ProSE+BiLSTM, ProtT5+MLP, UniRep+Attention, ESM-1b+Attention and ProteinBERT+Attention 

were selected to build the ensemble classifier for the identification of the NCSPs. 

 

Figure 4. The line chart shows the ACC values for nine PLM embeddings. 

3.2. Performance of ensemble approaches 

In this section, the independent test was performed to assess the performance of the ensemble 

models, which adopted the soft voting strategy to integrate the output of the 5 optimal base models by 

assigning different weights. For the sake of simplicity, the weights of ProSE+BiLSTM, 

UniRep+Attention, ESM-1b+Attention and ProteinBERT+Attention were equally set to 1 due to their 

comparable levels. Moreover, ProtT5+MLP was assigned higher weights to strengthen its influence in 

the final results because of its remarkable performance. The five metrics, including SN, SP, ACC, 

MCC and F1, were adopted to evaluate the performance of these models, and the corresponding results 

were listed in Table 2. 

As can be seen from Table 2, all ensemble models achieved the better and more stable 

performance compared with the corresponding individual models, indicating the effectiveness of the 

soft voting strategy. Besides, the ensemble model obtained the highest ACC, MCC and F1 values when 

ProtT5+MLP had a weight of 3. However, the ACC value witnessed a downward trend when increasing 

the weight of ProtT5+MLP higher than 3, indicating that the excessively high weight setting may lead 



1480 

Mathematical Biosciences and Engineering  Volume 21, Issue 1, 1472-1488. 

to the overreliance on a single model and thus harm the overall performance. 

Table 2. Performance of the soft voting by using different weights. 

Weight SN SP ACC MCC F1 

1:1:1:1:1 0.8824 0.9412 0.9118 0.8250 0.9091 

2:1:1:1:1 0.9118 0.9412 0.9265 0.8533 0.9254 

3:1:1:1:1 0.9118 0.9706 0.9412 0.8839 0.9394 

4:1:1:1:1 0.8824 0.9706 0.9265 0.8563 0.9231 

5:1:1:1:1 0.9118 0.8824 0.8971 0.7945 0.8986 

3.3. Effect of different strategies for handling sample imbalance 

In this section, we investigated the effect of three different strategies for solving the data 

imbalance problem, including SMOTE, focal loss and WCE. Table 3 summarized the comparison 

results on the independent test dataset. The corresponding ROC and PR curves were shown in Figure 5.  

Table 3. Effect of three balancing strategies. 

Strategy SN SP ACC MCC F1 

No balancing 0.8824  0.9412  0.9118  0.8250  0.9143 

SMOTE 0.7941 0.9118 0.8529 0.7108 0.8438 

Focal loss 0.8824 0.9796 0.9265 0.8563 0.9231 

WCE 0.9118 0.9706 0.9412 0.8839 0.9394 

 

Figure 5. The ROC and PR curves based on three different balancing strategies. (a) ROC 

curves; and (b) PR curves. 

Referring to Table 3, the SN values were always lower than the SP values in any case, caused by 

the low proportion of the positive samples in the training dataset compared to the negative samples. In 

addition, the SMOTE technique unexpectedly performed poorly in terms of ACC and MCC, 

suggesting that synthetic examples generated by the SMOTE did not retain the specific characteristics 

of the NCSPs. In contrast, the focal loss and WCE techniques, which were based on the cross-entropy 
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loss function, markedly improved the model’s performance. The WCE method was superior to the 

focal loss method in terms of all evaluation metrics except for SP. Hence, we adopted the WCE method 

as the final scheme to handle the imbalanced classification in this study. 

3.4. Comparison with existing methods 

To the best of our knowledge, there are only four computational tools for the identification of the 

NCSPs on the same training dataset and the independent test dataset, including PeNGaRoo [10], 

NonClasGP-Pred [11], ASPIRER [12] and iNSP-GCAAP [13]. As mentioned above, these models 

relied on a variety of handcrafted features to train different supervised learning algorithms for 

predicting the NCSPs. Table 4 presented a comparison of our NCSP-PLM model with these methods 

using eight evaluation indices. The ROC and PR curves of NCSP-PLM were illustrated in Figure 6. 

Table 4. Performance comparison with existing methods using the independent test. 

Method SN SP P ACC MCC F1 AUC AUPRC 

PeNGaRoo 0.8235  0.7353  0.7568  0.7794  0.5610  0.7887  0.8521  0.9042  

NonClasGP-Pred  0.8676  0.8529  0.8571  0.8676  0.7356  0.8696  0.9019  0.9177  

ASPIRER  0.6471  0.9701  0.9565  0.8088  0.6528  0.7719  0.9533  0.9444 

iNSP-GCAAP 0.6176 0.9706 - 0.7941 0.6287 - 0.9256 - 

NCSP-PLM 0.9118  0.9706  0.9688  0.9412  0.8839  0.9394  0.9758  0.9623  

 

Figure 6. The ROC and PR curves of NCSP-PLM based on the independent test. (a) ROC 

curves; and (b) PR curves. 

As shown in Table 4, the proposed NCSP-PLM predictor outperformed the listed state-of-the-art 

methods in terms of SN (0.9118), SP (0.9706), P (0.9688), ACC (0.9412), MCC (0.8839), F1 (0.9394), 

AUC (0.9758) and AUPRC (0.9623). This indicated that the performance of traditional protein 

representations can be reached or surpassed by the PLM embeddings for the NCSPs prediction task. 

Additionally, the NonClasGP-Pred tool achieved the balanced SN and SP values, which addressed the 

data imbalance issue by generating ten balanced datasets. Moreover, the ASPIRER and iNSP-GCAAP 
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models yielded the comparable SP values higher than 0.97. However, the SN values of these two 

methods were lower than 0.65, probably caused by the data imbalance. 

4. Conclusions 

In this study, we presented a novel approach called NCSP-PLM for predicting the NCSPs in 

Gram-positive bacteria. First, we provided a comparative analysis of nine different PLM embeddings 

with three deep learning models, and picked out the five optimal base models. Then, we constructed 

the ensemble learning framework using the weighted soft voting scheme to improve the performance 

of the proposed model and adopted the WCE technique to handle the data imbalance issue. Finally, 

benchmark experiments demonstrated that NCSP-PLM performed remarkably well in the NCSPs 

identification task and obtained a significant performance boost over current state-of-the-art methods 

based on traditional protein feature representations. The source code and all the datasets are freely 

available at https://github.com/hollymmm/NCSP-PLM.  

There are two aspects that highlight the novelty of our model: (1) The knowledge derived from 

the pre-trained PLMs was extracted as feature embeddings and adopted to predict the NCSPs for the 

first time; and (2) the comparison of nine PLMs was made to develop the most of their potential for 

the annotation of NCSPs. In our future endeavors, we aspire to continually improve our model through 

three major avenues. First, to mitigate the risk of overfitting, we will gather additional NCSP samples 

from published work and build a larger dataset for training our model. Second, we will explore the 

combined use of multi-view features to enhance the prediction of NCSPs such as sequence-derived 

features, PSSM-based features, physicochemical property-based features and PLMs-based features. 

Third, we will provide a user-friendly web server accessible to the public, offering more than just the 

source code of the model. 
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Supplementary 

 

Figure S1. Performance comparison of nine PLM embeddings on the 5-fold CV. 
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Table S1. Description of the nine PLM feature embeddings. 

Name Description 

ProtVec ProtVec is the word vector-based protein representation, which was trained on the Swiss-

Prot database through a Skip-gram neural network. 

SeqVec SeqVec was trained on the UniRef50 database by using an architecture composed of a 

convolutional layer and two BiLSTM layers, which was designed to reduce the risk of 

overfitting by sharing weights between the forward and the backward LSTMs. The 

encoding vector per residue obtained by two LSTMs were concatenated and then 

averaged to get a single vector per protein. 

ProSE The structure of ProSE is a three-layer BiLSTM similar to the SeqVec structure, with the 

difference that it uses not only the sequence data but also the structural information of the 

proteins. 

UniRep UniRep contains a layer of multiplicative LSTM with 1900 hidden units, which was 

trained on the UniRef50 database. UniRep can capture important information about the 

protein's structure, function, and evolutionary relationships. 

Tape Tape utilized a 12-layer Transformer with 512 hidden units and 8 attention heads, which 

were trained on the Pfam database. Tape aims to leverage the power of transformers to 

capture long-range dependencies and context in protein sequences. 

ESM-1b ESM-1b is a variant of the ESM model for protein sequence representation, which 

consists of 33 transformer layers with embedding dimension of 1280. The model was 

trained on the UniRef50 database via the masked language modeling objective. 

ProtBERT ProtBERT is a powerful protein language model generated by self-supervised training on 

the BFD and UniRef databases. It is a multi-layer bidirectional transformer encoder, 

which is leveraged for the more comprehensive representation of protein sequences. 

ProtT5 ProtT5 is pretrained in a self-supervised manner on the BFD and UniRef50 database. 

Unlike the other PLMs, ProtT5 is composed of an encoder that converts a source 

language into an embedding space and a decoder that utilizes the encoder’s embedding to 

produce a translation in a target language. 

ProteinBERT ProteinBERT was pretrained on protein sequences and Gene Ontology annotations 

extracted from the UniRef database. Unlike the classic transformers, ProteinBERT is a 

denoising auto-encoder model and contains both local (residue level) and global 

(sequence level) representations. 

Table S2. Description of the parameters required by NCSP-PLM. 

Model Layer Configuration 

MLP Dense Units: PLM embedding Dimension 

BatchNorm - 

Dense Units: 512 

BatchNorm - 

Dense Units:1 

Activation Sigmoid 

Attention Attention - 

Dense Units: 512 

BatchNorm - 

Dense Units: 1 

Activation Sigmoid 

BiLSTM Bidirectional LSTM Units: 512 

Return Sequences: True 
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Model Layer Configuration 

Merge Mode: Concat 

Flatten - 

BatchNorm - 

Dense Units: 512 

BatchNorm - 

Dense Units: 1 

Activation Sigmoid 
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