
http://www.aimspress.com/journal/mbe

MBE, 21(1): 1445–1471.
DOI: 10.3934/mbe.2024062
Received: 11 October 2023
Revised: 30 November 2023
Accepted: 10 December 2023
Published: 28 December 2023

Research article

An actor-critic framework based on deep reinforcement learning for
addressing flexible job shop scheduling problems

Cong Zhao and Na Deng*

School of Electronic and Electrical Engineering, Shanghai University of Engineering Science,
Shanghai 201620, China

* Correspondence: Email: dengna@sues.edu.cn.

Abstract: With the rise of Industry 4.0, manufacturing is shifting towards customization and flexibil-
ity, presenting new challenges to meet rapidly evolving market and customer needs. To address these
challenges, this paper suggests a novel approach to address flexible job shop scheduling problems
(FJSPs) through reinforcement learning (RL). This method utilizes an actor-critic architecture that
merges value-based and policy-based approaches. The actor generates deterministic policies, while
the critic evaluates policies and guides the actor to achieve the most optimal policy. To construct the
Markov decision process, a comprehensive feature set was utilized to accurately represent the system’s
state, and eight sets of actions were designed, inspired by traditional scheduling rules. The formula-
tion of rewards indirectly measures the effectiveness of actions, promoting strategies that minimize job
completion times and enhance adherence to scheduling constraints. The experimental evaluation con-
ducted a thorough assessment of the proposed reinforcement learning framework through simulations
on standard FJSP benchmarks, comparing the proposed method against several well-known heuristic
scheduling rules, related RL algorithms and intelligent algorithms. The results indicate that the pro-
posed method consistently outperforms traditional approaches and exhibits exceptional adaptability
and efficiency, particularly in large-scale datasets.

Keywords: flexible job shop scheduling problems; deep reinforcement learning; actor-critic method;
markov decision process; deep neural networks

1. Introduction

The manufacturing industry has been in a constant state of evolution. Recently, a paradigm shift
from conventional mass production models to more adaptable, agile production systems has become
evident [1]. In this innovative model, flexible job shops emerge as a pivotal element. Their adaptability
is derived from versatile machine tools, robotics and advanced integrated information technology. Ac-

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2024062

1446

cordingly, to effectively arrange production resources and improve resource utilization, the FJSP has
also become a hot topic in research and in practice [2].

As is widely acknowledged, the FJSP extends the classic job shop scheduling problem (JSP) and
is classified as an NP-hard problem [3, 4]. The FJSP necessitates the identification of an optimal
sequence for executing operations across jobs and astutely distributing these tasks among machines.
Unlike its classical counterpart, the FJSP is characterized by its versatility, permitting the allocation of
a job’s operations to one or more machines with varying processing times. At present, the approaches
to exploring the flexible job shop scheduling dilemma are categorized into two classes: exact and
heuristic methods.

Exact methods encompass the strategies like mixed-integer programming and branch-and-bound.
However, their applicability is restricted to diminutive problem sizes and they suffer from long com-
putation times. Heuristic methods, encompassing established metaheuristic algorithms [5] and priority
rule-based systems, such as genetic algorithms [6] and particle swarm optimization [7], face challenges
in achieving global optimality in addressing the FJSP. These methods are particularly time-intensive
when applied to larger instances and exhibit a suboptimal generalization performance. Priority rules
are simple and can be reasonably allocated to machines to ensure the minimum cumulative comple-
tion time of jobs. However, choosing a single effective rule requires extensive domain knowledge and
repeated experimentation.

Due to the inherent complexity of the FJSP, seeking efficient solutions often becomes a Herculean
task, especially for large-scale instances. Consequently, the academic and industrial communities alike
anticipate the advent of efficient heuristic and meta-heuristic solutions [8] to address this challenge.
Lu [9] designed a hybrid optimization algorithm that merges iterative greedy techniques with local
search strategies to resolve energy-efficient scheduling challenges in workshops.

Lately, the academic community has begun to acknowledge the profound capabilities of deep
learning and RL in addressing intricate challenges [10, 11], particularly within expansive and high-
dimensional decision spaces where conventional algorithms falter. RL, a subset of machine learning,
enables agents to identify the optimal strategies via environment interactions. It is rewarded based
on decision efficacy. Applying RL to the FJSP holds the promise of deriving policies to optimize
job-to-machine allocations, thus minimizing the overall makespan.

RL operates independently of prior knowledge. Unlike the traditional optimization algorithms that
necessitate intricate modeling, it autonomously uncovers potent strategies via exploration and exploita-
tion mechanisms. After the initial training phase, the model is capable of perpetuating its learning and
refining its strategies. Scholars have endeavored to conceptualize the development of priority rules in
scheduling conundrums as a Markov decision process (MDP), utilizing end-to-end deep reinforcement
learning (DRL) approaches taken to autonomously derive and instantiate scheduling rules. However,
most existing RL methods focus only on the classic JSP, while the flexibility of the flexible job shop
poses a significant challenge to the design of the learning mechanism. In the FJSP, both the system’s
state space in the system and the possible set of actions are enormous.

In this paper, an attempt is made to apply DRL to the FJSP to minimize the completion time. Our
method uniquely leverages the actor-critic algorithm, a renowned RL paradigm combining value-based
and policy-based advantages. To amplify solution effectiveness and learning efficacy, domain-specific
enhancements are integrated. Benchmark dataset evaluations underscore our solution’s superiority in
terms of makespan and computational efficiency vis-à-vis extant methodologies.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1447

Our contributions are detailed as follows:
1) A pioneering deep reinforcement learning methodology utilizing actor-critic constructs for the

FJSP.
2) Adoption of state feature functions tailored for dynamic, continuous environments, supplemented

by algorithmic actions rooted in parametric rules.
3) Development of a unique reward mechanism to gauge the impact of real-time scheduling on

objectives.
4) Comprehensive hyperparameter sensitivity experiments conducted to fine-tune the solution.
The structure of this article is as follows. Section 2 introduces existing methods and techniques

related to the FJSP. Section 3 describes the mathematical model and constraints on the FJSP, as well as
introduces the RL algorithm and the standard actor-critic algorithm. Section 4 offers a comprehensive
explanation of the algorithm used in our proposed solution for the FJSP. Section 5 introduces the DRL-
AC framework, which constitutes a framework for deep reinforcement learning based on actor-critic
architecture. Section 6 presents the experimental results that validate the proposed scheduling method.
Section 7 summarizes the conclusions and outlines potential future work.

2. Related work

Over the past few decades, the FJSP has gained significant attention in the field of manufactur-
ing scheduling and has become a research hotspot. At present, solutions to the FJSP mainly include
mathematical planning methods, heuristic algorithms [12], meta-heuristic algorithms [5] and machine
learning methods [13, 14]. Among them, heuristic algorithms and meta-heuristic algorithms are the
most commonly used methods, including genetic algorithms [6], simulated annealing algorithms [15]
and tabu search [16]. Such methods are prone to converging on local optima, particularly in instances
of substantial problem sizes or intricate solution spaces, implying that the quality of their optimal so-
lutions might not be optimal. Furthermore, the computational resources and time demanded by the
algorithms tend to escalate exponentially with problem size, which impedes scalability in practical
deployments. Therefore, researchers have formulated heuristic scheduling rules. Doh [17] presented
a practical priority scheduling method that employs a combination of machine selection and job se-
quencing rules to resolve this problem. However, designing practical and efficient scheduling rules is
not an easy task, which requires deep domain knowledge and long development time. When the size
of the FJSP increases or the problem becomes more complex, simple scheduling rules may not be able
to effectively capture all the characteristics and constraints of the problem, thus affecting the quality of
the solution.

In recent years, machine learning methods have achieved an excellent performance in solving com-
binatorial optimization problems. RL, as a type of machine learning technique, has been applied to
address several combinatorial optimization problems, including the job shop scheduling problem. The
RL approach requires the agent to learn the optimal policy through its interactions with the environ-
ment and receiving rewards. With RL used to define the shop scheduling problem as a Markov decision
process [18], the job scheduling process is viewed as the mapping from one sequence to another.

Some significant contributions in RL-based solutions for job shop scheduling problems include
Shahrabi [19] who innovatively combined variable neighborhood search (VNS) with Q-learning to
propose a method for solving job shop scheduling problems. Similarly, Wang and Yan [20] proposed an

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1448

adaptive scheduling algorithm that catered to the inherent uncertainties in manufacturing environments.
Wang [21] developed a multi-agent model that iteratively updates Q-values and incorporates a system
based on multi-agent knowledge, thus guiding equipment in policy selection. However, Q-learning
methodologies [22], as applied to the FJSP, present some challenges. A glaring issue is the need to
design a Q-value table that encapsulates all conceivable states and actions, causing an exponential
surge in storage and computational demands.

The surge of DRL in various domains prompted its introduction in the shop floor scheduling do-
main as well. For instance, Luo [23] devised a deep Q network (DQN) to solve the FJSP, optimizing
the scheduling policy for minimal delays. Another groundbreaking contribution by Li [24] involved
a MOEA/D algorithm optimized with RL to solve the multi-objective FJSP. Song [11] addressed the
FJSP by combining the operation selection and machine assignment into a composite decision and by
taking an end-to-end DRL approach. Additionally, a graph neural network (GNN) was proposed to
represent the complex relationships between operations and machines. Liu [25] proposed a training
method that combines asynchronous updates with deep deterministic policy gradients. Yuan [26] de-
signed a novel state representation using bidirectional scheduling features and applied the technique of
masking invalid actions to narrow the search space.

From the extensive literature on the application of RL in job shop scheduling, several clear trends
can be observed. First, while traditional job shop scheduling problems are a primary application area
for RL methods, recent years have seen a growing focus on the FJSP, particularly as DRL demonstrates
potential in addressing the complexity of the FJSP. Most existing studies [19, 21, 27] tend to rely more
on a singular learning strategy (like Q-learning), which tends to form deterministic policies in the action
space. Alternatively, using DQN [28, 29] and more abstract state representations requires carefully
designed graph structures and feature encoding to capture the complex relationships between jobs and
machines, resulting in significant computational resource demands.

Different from prior research, we focus on adopting an actor-critic architecture, combining value-
based and policy-based methods and introduce parameterized rules instead of simply following fixed
rules, allowing for more precise adjustments and more flexible decision-making. Furthermore, by us-
ing the beta distribution to predict optimal actions, our method demonstrates innovation in statistical
decision-making and offers a balanced approach between exploration and exploitation. This approach
empowers the agent to more effectively explore and exploit various scheduling strategies, thereby sus-
taining stability throughout the pursuit of the optimal solution.

3. Problem description and method

3.1. The flexible job shop scheduling problem

The FJSP discussed in this article can be defined as follows. There are n jobs J = {J1, J2, . . . , Jn}

processed on m machines M = {M1,M2, . . . ,Ml} and each job Ji consists of a sequence of operations,
where Oih represents the hth operation of job Ji. A distinguishing feature of the FJSP is that each
operation Oih has a set of candidate machines it can be processed on, rather than being restricted to a
single machine, allowing for greater flexibility in scheduling. The jobs must follow a feasible sequence
of operations. The machining process also adheres to the following constraints [30].

1) A machine can process only one job at a time.
2) An operation, once started, must proceed to completion without interruption.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1449

3) The processing time for each operation is predetermined. The movement or setup times between
operations are considered as part of the machine processing time.

4) If a machine is not assigned a task, it goes into a waiting state.
5) Machines are assumed to have a consistent performance across different jobs, irrespective of the

specific job or operation they are handling.
Based on what is mentioned above and the model developed by Lu [30], Table 1 presents the

symbols used for problem formulation.

Table 1. Explanation of the symbols used in problem statement.

Symbol Explanation

Indices
i, j indices of jobs, i, j = 1, 2, . . . , n.
h, k indices of operations, h, k = 1, 2, . . . , o.
m index of machines, m = 1, 2, . . . , l.

Parameters
n total number of jobs
l total number of machines
o total number of operations
t current scheduling time
Pih processing time of operation Oih

Pihm processing time of the hth operation of job Ji on machine Mm

Cihm completion time of the hth operation of job Ji on machine Mm

S ihm start time of the hth operation of job Ji on machine Mm

Ci completion time of job Ji, Ci ≥ 0
Tpreset preset completion time
tm
i time for job Ji to arrive at machine Mm

nrest(t) count of remaining operations for Ji at time t

L a sufficiently large integer
Ji ith job
Oih the hth operation of job Ji

Set
Ωih set of operations of job Ji on machine Mm

The decision variables are denoted as:

Xihm =

{
1, if Oih selects the machine Mm;
0, otherwise

Yih jkm =

{
1, if Oihm is processed before O jkm;
0, otherwise

In general, the scheduling objectives to be optimized are related to the completion time of the jobs.
In this research, our objective is to minimize the makespan, as represented by Cmax, which corresponds

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1450

to the maximum completion time among all operations. Based on the symbols and assumptions intro-
duced earlier, the objective function of the FJSP as mentioned in this study is expressed as follows:

min Cmax = min(max
1≤i≤n

(Ci)) (3.1)

Cmax(t) is the makespan at time step t, as illustrated in Figure 1. The objective function is subjected
to the following constraints.

Figure 1. The schematic representation of Cmax(t) and Cmax

s.t.

S ihm + Xihm × Pihm ≤ Cihm,∀i, h,m (3.2)
S ihm + Pihm ≤ S jkm + L(1 − Yih jkm),∀i, h,m, j, k (3.3)
Cih ≤ Cmax ,∀i, h,m (3.4)∑
m∈Ωih

Xihm = 1,∀i, h (3.5)

Equation (3.2) represents the sequential constraint, which specifies the order in which operations
must be performed for each job. Equation (3.3) denotes the resource constraint, which makes a machine
capable of handling one operation at any given time. Equation (3.4) defines the time constraints, which
ensure that each job must be completed within the total completion time. Finally, Eq (3.5) is the
machine constraint, which stipulates that a particular operation can only be processed by one machine
at a time.

3.2. Basic theory of reinforcement learning

Reinforcement learning is a machine learning approach that involves training an agent to make
optimal decisions through its interactions with an environment. The core of RL is the Markov decision
process (MDP). MDP can be described as a five-tuple (S, A, P, γ, R), where S denotes the state space,
A denotes the action space, P denotes the state transition probability function, R denotes the reward
function, and γ denotes the discount factor. Figure 2 shows the interaction between the agent as a
subject and the environment as an object in MDP.

More specifically, the steps taken during an episode are denoted as the index t = 0, 1, . . . ,T , where
t = 0 represents the initial state. At each time step t, the agent is in a state S t ∈ S, an action At ∈ A is

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1451

Figure 2. The interaction between the agent and the environment.

selected, and the environment transitions to a new state S t+1 according to the probability distribution
p(S t+1 | S t, At), while also rewarding the agent based on the reward function R(S t, At, S t+1). In general,
the agent seeks to maximize the expected return, which is represented by Gt and the return is the sum
of the rewards. Herein, to ensure that the agent maximizes the sum of future returns, we introduce a
discount factor γ(0 ≤ γ ≤ 1) into the calculation. This factor weights the returns received by the agent
in the future, and the resulting equation for the expected return is expressed as follows:

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + · · · =

∞∑
k=0

γkRt+k+1 (3.6)

Of course, it is worth noting that the rewards that the agent expects to obtain in the future are
dependent on the actions it takes at time step t. The mapping between the probabilities of selection
from states to each action is called the policy. The ultimate goal of addressing a RL task is to find a
policy that enables the agent to receive significant rewards over an extended period of time.

3.3. Standard actor-critic method

Among many reinforcement learning algorithms, this research chooses the actor-critic method,
which combines value-based and policy-based learning to improve policies by estimating the state-
value function. The actor, like the part of the athlete responsible for executing the decision, is respon-
sible for generating the policy, while the critic, like the judge, is responsible for evaluating the policy.
In the actor-critic algorithm, unlike others, the action selection in the actor network no longer depends
on the value function, but on updating the policy.

In the critic network using the value-based policy evaluation method, a common estimation method
is to use temporal-difference (TD) learning, and specifically, to update the estimated value of the current
state by calculating the TD error between the estimated value of the current state and the estimated
value of the next state, with the following update Eq (3.7):

V(S t)← V(S t) + α
[
Rt+1 + γV(S t+1) − V(S t)

]
(3.7)

Ultimately, the critic’s target is to learn an accurate value function for evaluating long-term returns
in arbitrary states. The actor and critic interact with each other, and this interaction accelerates the
learning process because the actor can adjust the strategy through the critic’s feedback. Also, the critic

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1452

can better estimate the value function through the exploration by the actor. Figure 3 illustrates the
framework of the actor-critic method.

Figure 3. Actor-critic framework.

4. Solving the FJSP based on DRL-AC

4.1. Modeling flexible job shop scheduling as a Markov decision process

The FJSP focuses on how to allocate machines and time to each job task in an environment with
multiple machines in order to meet certain optimization criteria. State: In the FJSP, the workshop’s
status at any given time can be represented by the working state of each machine and the queue of tasks
waiting for processing. These states can change over time. Action: At a certain state, the workshop
might need to decide which job should be processed on which machine. Decisions are guided by a set
of heuristic rules that specify which job should be processed on which machine. Transition Probability:
Based on a certain action, it is the probability of the workshop transitioning from the current state to
the next. Reward: For each action or state transition, there is an associated reward or cost. In the
FJSP, this could be the speed of task completion, machine utilization rate or other indicators related
to the optimization goal. Markov property: In the MDP, the next state of the system only depends on
the current state and the action taken, rather than on previous states or actions. Similarly in the FJSP,
once the current workshop status and decision are given, the next state largely depends only on this
information. Policy: Just like in the MDP, the goal of the FJSP is to find a policy, i.e., the best action
to be taken in various states, to achieve the set optimization goals.

Due to these characteristics of the FJSP that align with the MDP framework, it is feasible to view
the FJSP as an MDP problem and employ relevant solution methods to find optimal or near-optimal
solutions.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1453

4.2. State features

In RL-based job scheduling problems, some indicators of the production plant are usually defined
as state features. As an important component in reinforcement learning, the state can directly affect
the operational efficiency and accuracy of the whole scheduling algorithm, and inappropriate state fea-
ture definitions can make the algorithm difficult to train and use. The state features are defined based
on the following principles: 1) The dimensions of the state should be minimized to reduce the size
of the state space and lower computational complexity; 2) The state must be able to accurately and
comprehensively describe the status of the workshop. Insufficient or inaccurate state information can
have a detrimental effect on the algorithm’s performance. 3) It is essential for the state to differentiate
between various scheduling schemes. If identical state representations arise from different schemes,
the agent will be unable to discern and decide differently. Hence, the state representation must incor-
porate a rich set of features that can effectively distinguish between diverse production setups and their
corresponding decision results. 4) In FJSPs, time efficiency is one of the most important optimization
objectives. Therefore, state features are typically based on time, such as the remaining time for jobs,
the utilization rate of machines, and the completion rate of jobs, etc. These features are capable of
reflecting the progress towards the achieving optimization goal. 5) Given the susceptibility of deep
learning models to the scale of input data, normalizing state features to a range between 0 and 1 can
enhance the learning efficacy of the model. This normalization not only mitigates the influence of
disparate feature scales but also facilitates a swifter convergence of the algorithm.

To provide a continuous and comprehensive view of the production status of the shop floor, inspired
by [31, 32], the following variables are taken into account in this study’s state space analysis: the
ratio between the operation’s minimum and maximum processing times; machine utilization and av-
erage utilization; job completion rate and average job completion rate; and remaining operation time.
The state is defined by consecutive parameters. These state parameters are consistent to minimize
makespan, and they are therefore primarily time-based. To ensure generalization, the values of each
value and vector element are set between 0 and 1. Each state has an initial value of 0 at t = 0. The
detailed parameters and description of state features at time t are shown in Table 2.

(1) Processing time per operation OP(t), as defined in (4.1)

OP(t) = Pih(t) (4.1)

(2) Utilization per machine U(t), as defined in (4.2)

U(t) =

n∑
i=1

o∑
h=1

Pihm

Cmax(t)
(4.2)

(3) The average utilization rate of total machines Uave(t), which is defined in (4.3)

Uave(t) =
1
l

l∑
m=1

n∑
i=1

o∑
h=1

Pihm

Cmax(t)
(4.3)

(4) The standard deviation of the utilization rate Dstd(t) of total machines at time t, as defined in
(4.4)

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1454

Dstd(t) =

√√√√ l∑
m=1

(U(t) − Uave(t))2

l
(4.4)

(5) Completion rate per job JO(t), as defined in (4.5)

JO(t) =
nrest(t)

oi
(4.5)

(6) Average completion rate of total jobs JOave(t), which is defined in (4.6)

JOave(t) =

n∑
i=1

nrest(t)
oi

n
(4.6)

(7) The ratio between the minimum and maximum processing time of operation Raop(t), as defined
in (4.7)

Raop(t) =
min(Pih(t))
max(Pik(t))

(4.7)

(8) The ratio of the minimum remaining processing time of a job to the maximum completion time
at time t, as defined in (4.8)

MinRe(t) =
min

(
oi∑

k=h+1
Pik

)
Cmax(t)

(4.8)

Table 2. The state space parameters.

Parameter State features Description of features

s1
t OP = (OP1,OP2,OP3, . . . ,OPo) Processing time per operation

s2
t U = (U1,U2,U3, . . . ,Um) Utilization per machine

s3
t JO = (JO1, JO2, JO3, . . . , JOn) Completion rate per job

s4
t Raop(t) The ratio between the minimum and maximum processing time of operation

s5
t Uave(t) Average utilization of total machines

s6
t JOave(t) Average completion rate of total jobs

s7
t Dstd(t) Standard deviation of the utilization of total machines

s8
t MinRe(t) Minimum remaining operating time

4.3. Action space selection

The action space can be described as the collection of all feasible actions that the agent is capable of
performing in a given state. In job shop scheduling, the action space is usually composed of different
heuristic rules of which the agent action selects the priority jobs to be scheduled according to the

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1455

heuristic scheduling rules [33]. The definition of the action space should be reasonable, meaning they
can be assigned to a job and a machine without any conflicts or constraints. The actions in the action
space have some features so that the agent can make wise choices among them.

Table 3. The defined action space.

Parameterized Description Explanation The priority rules for mapping

arg min {tm
i } The first arriving job Ji at scheduling

moment t

FCFP(FIRST COME FIRST
PROCESSED)

arg max {tm
i } The last arriving job Ji at scheduling

moment t

FCLP(FIRST COME LAST
PROCESSED)

arg min { Pim(t)
oi∑

h=h′
Pim(t)
} The job Ji with the shortest processing

time at scheduling moment t

SPT(SHORTEST PROCESS-
ING TIME)

arg max { Pim(t)
oi∑

h=h′
Pim(t)
} The job Ji with the longest processing

time at scheduling moment t

LPT(LONGEST PROCESS-
ING TIME)

arg min {(oi−nrest(t)+1
oi

)} The job Ji with the current mini-
mum number of remaining operations
at scheduling moment t

LOR(LEAST OPERATION
REMAINING)

arg max {(oi−nrest(t)+1
oi

)} The job Ji with the current maxi-
mum number of remaining operations
at scheduling moment t

MOR(MOST OPERATION
REMAINING)

arg min {
oi∑

k=h+1
Pik(t)} The job Ji with the shortest remaining

processing time at scheduling moment
t

SRPT(SHORTEST REMAIN-
ING PROCESSING TIME)

arg max {
oi∑

k=h+1
Pik(t)} The job Ji with the most remaining pro-

cessing time at scheduling moment t

MRPT(MOST REMAINING
PROCESSING TIME)

Traditional scheduling methods rely on fixed heuristic rules, such as shortest processing time (SPT)
or longest processing time (LPT). However, these rules often perform inconsistently under different
conditions. In this research, parametric priority rules are introduced here where the parameters range
from 0 to 1, a real number that can represent different priorities so that each discrete priority rule can
be mapped to each specific value in the parameter space. The action space is dynamic, allowing the
selection of actions according to different production states, and it consists of eight parameters that
are normalized. It implies that we are not constrained to a handful of predefined rules; instead, we
possess a continuous action space that opens up a broader spectrum of possibilities. Parametrized rules

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1456

enable a balance between exploration (trying new scheduling strategies) and exploitation (utilizing
known effective strategies). Adjusting parameters allows for a seamless transition between different
rules, avoids abrupt shifts and thereby enables the agents to fine-tune their scheduling strategies with
greater precision. This action space includes priority rules, including rules based on processing times
and operations, and each rule is divided into forward and reverse rules. The specific parameterized
priority rules are shown in Table 3.

The agent’s decision-making process employs the beta distribution to forecast the forthcoming op-
timal action. The β distribution, a continuous probability distribution characterized by two parameters,
α and β, can embody various prioritization rules contingent on the values of these parameters. By
examining all feasible actions within the current state, the agent constructs a probabilistic model, from
which it selects actions based on a sampling method. The agent gauges the Euclidean distance be-
tween the parameters of each viable action and those of the optimal action, opting for the action that
minimizes this distance.

4.4. Reward function

The reward plays a crucial role in the Markov decision process and serves as a feedback signal
that the agent receives from the environment at each time step to guide the learning process of the
agent. The Reward function should be set with the objective, and it should reflect whether the agent’s
performance converges to the optimal solution.

The objective of this study is to use the actor-critic framework to learn a strategy to optimize
scheduling for the minimum makespan. However, in the shop job schedule, it is known only when
the complete operation is performed, which belongs to the case of sparse reward in RL. There exist
numerous approaches to address the issue of sparse rewards. For example, [34] proposes to maximize
the average machine utilization instead of minimizing the completion time, and this research is inspired
to rely on average machine utilization and job completion rate instead of the completion time to obtain
the immediate reward because minimizing the completion time can be indirectly reflected as the aver-
age machine utilization Uave(t) and the average completion rate of job JOave(t) to reach the equilibrium
state. After the rule scheduling is completed, the budgeted completion time is compared by estimating
the completion time and if it is not and the average machine utilization and the average completion rate
of the job have improved, a positive reward is generated, otherwise, a negative reward is generated.
Immediate rewards are applied to each step of the scheduling process during the judgment process and
the reward r is determined based on the steps outlined in Algorithm 1:

5. Proposed DRL-AC model architecture

In the actor-critic based framework, both the actor network and the critic network are composed
of deep neural networks (DNNs). The actor network is the action selection strategy that determines
the best action for flexible shop scheduling and consists of one input layer, two hidden layers and two
output layers. The input layer receives the state information, the hidden layer uses the ReLU function
to enhance the accuracy and convergence of the actor network and each output layer uses the SoftPlus
function to obtain the alpha and beta parameters of the beta distribution. The activation functions used
in this study are the ReLU function and SoftPlus function, represented by Eqs (5.1) and (5.2):

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1457

Algorithm 1 Algorithm proposed for reward
1: Initialize environment
2: Initialize actor network and critic network
3: for episode = 1 to L do
4: The agent observes the initial state and generates a feature vector that captures the relevant

information about the state.
5: for t = 1 to T do
6: if scheduling continues then
7: if scheduling time Cmax(t) ≤ Tpreset, U′ave(t) > Uave(t) and JO′ave(t) > JOave(t) then
8: generate the positive reward: rt ← 1
9: else

10: generate the negative reward: rt ← −1
11: end if
12: else
13: generate the negative reward: rt ← −100
14: end if
15: end for
16: end for

ReLU(x) = max (0, x) (5.1)

S o f tPlus(x) = log(1 + ex) (5.2)

During the learning process, the critic network estimates the value of state st by comparing the
chosen action with the average action taken in that state. The network uses linear layers and the ReLU
function to extract useful features from the state. Specifically, it consists of an input layer, two hidden
layers and an output layer, where the input layer receives the state information, the hidden layer is
used to extract the features of the state and the output layer contains a neuron that is used to predict
the value of the state. The two networks are optimized using Adam to optimize the objective function
for the strategy executed by the agent. For this purpose, each network has its objective function to
be optimized. The architecture and algorithm of the complete network are illustrated in Figure 4 and
Algorithm 2 as follows:

In this study, the weights of the actor network and critic network are initialized, the initial state is
sent to the actor network and the critic network and the Adam optimization algorithm is used to train
the actor network during the training process. Finally, the actor network outputs eight pairs of two
parameters of the beta distribution, α, β, and then samples the best action from the beta distribution.
Also, the Euclidean distance is used to search for the best fitting action. The agent takes an action. That
is to say, after the first work is scheduled, the state moves to the next state and the environment rewards
the critic network according to the average machine utilization rate and the average job completion rate.
The critic network will evaluate whether the job has taken good actions during the scheduling process,
and then the actor network will modify the scheduling strategy according to the critic network. Once
all the work is completed, the environment will give the final reward back, calculate the makespan and

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1458

Figure 4. The proposed DRL-AC architecture.

adjust the state to the initial state until the number of iterations reaches the specified iteration threshold.
The algorithm gradually approaches convergence, and the training is terminated. The algorithm learns
the optimal scheduling strategy corresponding to each production state and can dynamically allocate
production tasks in the flexible job shop production process. The update rules of the algorithm are
based on the loss function. To minimize the difference between the predicted value and the target value,
the critic-network part of the neural network is enabled to better estimate the value of the current state.
Therefore, the critic network minimizes its squared error during training.

Lcritic =
1
2

T∑
t=1

(Vθ(st) −Gt)2 (5.3)

The purpose of the actor network loss function is to maximize the expected value of the reward
while minimizing the entropy of the strategy to facilitate exploration.

Lactor = Eπ[∇ log π(at|st; θ)A(st, at)] + Eπ[µ∇H(π(st; θ))] (5.4)

A(st, at) represents the advantage function, which measures how much better the action a is than
the average value in the state st. Herein, TD error is used to approximate A(st, at) as it is an unbiased
estimate of A(st, at), and the equation is δθ = r + γVθ(st+1) − Vθ(st). We also use another small method
to improve the exploration [35] by adding the entropy of the strategy to the objective function of the
strategy network minimization. In this function, E denotes the entropy function of the probability
distribution and µ denotes the parameter influencing the super-control entropy regularization.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1459

Algorithm 2 The proposed DRL-AC Algorithm for FJSP
1: Initialize environment
2: Initialize actor network and critic network
3: for episode = 1 to L do
4: Acquire the initial state and extract the feature vector of the state
5: for t = 1 to T do
6: Determine action at based on α and β from the Beta distribution
7: Advance the system time when the job is completed in
8: Update the current system time
9: Calculate the average machine utilization Uave(t) and the average completion rate of job

JOave(t)
10: Obtain the current state st+1 and reward rt

11: Store state st, action, reward rt, and the next state st+1 in memory
12: Sample a batch from the memory to train the actor and critical networks
13: Update the critic network with the gradient ∇(Vθ(st) −Gt)2

14: Compute TD error δθ = r + γVθ(st+1) − Vθ(st) is used to approximate A(st, at) according to
the critic network

15: Update the actor network using gradient ∇ log π(at|st; θ)A(st, at) + µ∇H(π(st; θ))
16: end for
17: end for

6. Results and discussion

This part shows the results of the simulation and computation. The algorithms run on Python 3.8
and Pytorch 1.10 based platforms. The experiments are performed on an Intel (R) Core (TM) i7-8550U
@CPU1.80 GHz SERVER with RAM 8GB. To assess the effectiveness of the proposed framework,
we tested it on the public FJSP benchmark test set and random instances. For the common FJSP
datasets, we utilized the Brandimarte dataset, Kacem dataset and Hurink dataset, which encompass
the problems ranging from small-scale to larger-scale. In experiments, the benchmark test cases we
used are all static, all jobs are present and ready to be processed at the start time t = 0 and no other
factors are involved. Thus, each data case can be both a training set and a testing set. With this work,
the algorithm is to learn a maximally optimal strategy that minimizes makespan. The study designed
experiments to validate the robustness of the proposed framework and the hyperparameters.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1460

Table 4. Hyperparameter set for training.

Hyperparameter Values
Number of episodes 1000
Number of input layer neurons of the actor-network (o+m+n+5)
Number of input layer neurons of the critic-network (o+m+n+13)
Number of neurons in each hidden layer 256
Number of hidden layers 2
Hyperparameters affecting entropy regularization (µ) 0.001
Learning rate (α) 0.001
Discount rate (γ) 0.9

6.1. The impact of hyperparameters on model sensitivity

To demonstrate the effect of hyperparameters on the algorithm model, a comprehensive sensitivity
analysis was performed on pivotal hyperparameters, including the number of neurons in hidden layers,
the number of hidden layers and the learning rate, as shown in Figure 5.

As shown in Figure 5(a), the number of neurons is adjusted from 128 to 1024. It is found that, when
there are more neurons in the hidden layers, the algorithm has better convergence performance and con-
verges to the minimum makespan. This improvement in performance can be attributed to the increased
capacity of the network to capture more complex features and patterns within the data. However, it is
also observed that beyond a certain threshold in the number of neurons, the performance of the model
begins to oscillate, indicating overfitting, which can reduce the ability of the model to generalize to
unseen data. Networks with a sparse hidden layer featuring too few neurons (like 128) might lack
the necessary complexity for certain tasks, whereas those with an excessive count (like 1024) could
be susceptible to overfitting and demand more computational resources. A network comprising 256
neurons achieves a balance, providing ample complexity for learning patterns while avoiding the short-
comings associated with larger networks. The results in Figure 5(b) show that the number of hidden
layers has little effect on the scheduling results and that the number of hyperparametric hidden layers
is not sensitive to the algorithm framework and does not require parameter optimization. This indicates
that, within our algorithmic framework, this hyperparameter—the number of hidden layers—does not
significantly impact performance. Figure 5(c) shows that the learning rate is 10−3, and the results are
relatively stable. This learning rate appears to provide a balance, ensuring sufficient learning while
avoiding oscillation issues that may arise from too large a step size.

6.2. Comparison with related deep reinforcement learning methods and heuristic scheduling rules

In this section, a comprehensive series of experimental tests were conducted to evaluate the per-
formance and effectiveness of the proposed algorithms. The completion time of each algorithm was
meticulously measured. The algorithms were then used to train a single model, with the aim to address
the flexible job shop scheduling problems on various scales. Comparative analysis was performed with
related static scheduling algorithms in line with reinforcement learning and five heuristic rules. The
relative error (RE) for each instance was calculated using Eq (6.1).

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1461

(a) Number of neurons in the hidden layer of the instance

(b) Number of hidden layers of the instance

(c) Learning rate setting of the instance

Figure 5. The effect of hyperparameters.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1462

RE =
Cmax − LB

LB
× 100% (6.1)

The smaller the RE, the more stability in algorithm performance, which is a common metric for
job shop scheduling. Tables 5 and 7 show the scheduling results of different algorithms on the BRdata
dataset, where n × l indicates that the instance contains n jobs and l machines, Flex. indicates the
average number of machining processes of the flexible machine and LB and UB represent the optimal
lower and upper bounds, respectively.

Table 5. The scheduling results of different reinforcement learning algorithms on the BRdata
dataset.

Opt. Makespan DRL-AC AC-S DRL SARSA DRL Q

Instance n × l Flex. LB UB Best RE Best RE Best RE Best RE
MK01 10 × 6 2.09 36 42 41 13.89% 49 36.11% 47 30.56% 53 47.22%
MK02 10 × 6 4.10 24 32 28 16.67% 47 95.83% 32 33.33% 32 33.33%
MK03 15 × 8 3.01 204 211 206 0.98% 257 25.98% 264 29.41% 255 25.00%
MK04 15 × 8 1.91 48 81 88 83.33% 86 79.17% 92 91.67% 102 112.50%
MK05 15 × 4 1.71 168 186 175 4.17% 222 32.14% 195 16. 07% 189 12. 50%
MK06 10 × 15 3.27 33 86 93 181.82% 149 351.52% 98 196.97% 112 239.39%
MK07 20 × 5 2.83 133 157 213 60.15% 227 70.68% 238 78.95% 232 74.44%
MK08 20 × 10 1.43 523 523 525 0.38% 581 11.09% 551 5.35% 527 0.76%
MK09 20 × 10 2.53 299 369 361 20.74% 473 58.19% 374 25.08% 384 28.43%
MK10 20 × 15 2.98 165 296 277 67.88% 405 145.45% 304 84.24% 279 69.09%

Table 6. The scheduling results of different scheduling rules on the BRdata dataset.
Opt. Makespan SPT MOR MOR+SPT LOR LPT

Instance n×l Flex. LB UB Best RE Best RE Best RE Best RE Best RE
MK01 10 × 6 2.09 36 42 65 80.56% 83 130.56% 71 97.22% 89 147.22% 73 102.78%
MK02 10 × 6 4.10 24 32 44 83.33% 87 262.50% 46 91.67% 75 212.50% 61 154.17%
MK03 15 × 8 3.01 204 211 397 94.61% 462 126.47% 330 61.76% 423 107.35% 378 85.29%
MK04 15 × 8 1.91 48 81 109 127.08% 134 179.17% 188 291.67% 176 266.67% 204 325.00%
MK05 15 × 4 1.71 168 186 231 37.50% 195 16.07% 192 14.29% 238 41.67% 209 24.40%
MK06 10 × 15 3.27 33 86 128 287.88% 162 390.91% 101 206.06% 182 451.52% 254 669.70%
MK07 20 × 5 2.83 133 157 188 41.35% 341 156.39% 217 63.16% 261 96.24% 251 88.72%
MK08 20 × 10 1.43 523 523 670 28.11% 723 38.24% 603 15.30% 540 3.25% 625 19.50%
MK09 20 × 10 2.53 299 369 573 91.64% 503 68.23% 466 55.85% 459 53.51% 405 35.45%
MK10 20 × 15 2.98 165 296 536 224.85% 345 109.09% 423 156.36% 544 229.70% 531 221.82%

Figure 6 shows the scheduling Gantt chart for DRL-AC at MK01. AC-S method [36] is a method
for minimizing the completion time of flexible job shops based on 3D disjunctive graph dispatching
through a DRL and attention mechanism architecture, and its static dispatch data are used here. This
paper also compares the use of RL on the FJSP combined with value-based approaches. DRL SARSA
is the algorithm combined with SARSA, and DRL Q is the algorithm combined with Q-learning.

To further analyze the computational results, the box-line plots of the methods mentioned in this
paper with the associated deep reinforcement learning methods and heuristic scheduling rules are plot-

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1463

Figure 6. The scheduling Gantt chart for DRL-AC at MK01.

ted. Figures 7 and 8 showcase the boxplots of RE leveraging the Brandimarte dataset. The outcomes
distinctly illustrate that the DRL-AC approach yields the minimal statistical RE figures and exhibits the
tightest clustering of data trends. Such findings not only underscore the efficacy of our methodology
in tackling scheduling challenges but also highlight its superior performance in stability—a critical
measure of the robustness of a scheduling algorithm.

Figure 7. The RE boxplot of the four deep reinforcement learning-related algorithms.

Figure 9 illustrates how the three methods compare in terms of their convergence performance,
value-based and value-and-strategy-based, on MK05, illustrating that the method proposed in this pa-
per converges at a lower completion time than the value-based method based on Q-learning and SARSA
methods.

6.3. Comparison with intelligent algorithms

In this subsection, the proposed algorithms are compared with classical algorithms from the existing
literature, using benchmark instances from the Kacem dataset, which includes both partial and total
flexible job shop scheduling problems. The dataset comprises four different problem sizes: 4 × 5,
8 × 8, 10 × 10 and 15 × 10. These correspond to scenarios with 4 jobs and 5 machines with 12
operations (partial flexibility), 8 jobs and 8 machines with 27 operations (partial flexibility), 10 jobs and

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1464

Figure 8. The RE boxplot for the proposed method and the heuristic scheduling rule method.

Figure 9. Convergence plots of the three methods on MK05.

10 machines with 30 operations (total flexibility) and 15 jobs and 10 machines with 56 operations (total
flexibility), respectively. Partial flexibility implies that certain jobs cannot be processed on specific
machines.

The proposed DRL-AC algorithm is compared with other classical algorithms from the literature.
The results for completion times are presented in Table 7 and Figure 10. In Table 7, the symbol
“-” indicates that a solution is not available in the literature, bold font denotes the best solution for
each instance, “Random” represents a random scheduling algorithm, “classic GA” represents a classic
genetic algorithm, “MATSPSO/PSO+TS” [37] is a method from the literature based on a hybrid multi-
agent model combining Tabu Search (TS) and particle swarm optimization (PSO), “PSO+SA” [38]
combines PSO and simulated annealing (SA) incorporating both local and global search strategies and
“Kacem” [39] refers to a method proposed in the literature. “EDPSO” [7] refers to a distributed Particle
Swarm Optimization algorithm proposed in the literature.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1465

Table 7. Comparison of the algorithm with others on different instances.

Random classic GA MATSPSO/PSO+TS PSO+SA Kacem EDPSO DRL-AC

4 × 5 11 13 - 11 16 11 11
8 × 8 20 16 15 15 19 17 14
10 × 10 9 7 7 7 16 8 8
15 × 10 15 - - 12 23 - 12

Figure 10. Performance comparison of algorithms on different problem instances.

The algorithms Random, classic GA, MATSPSO/PSO+TS and EDPSO can only find a single best
solution, while Kacem fails to find any optimal solutions. On the other hand, PSO + SA and the pro-
posed DRL-AC find three optimal solutions, demonstrating that DRL-AC performs well on small-scale
problems and outperforms the traditional GA. Across the four problem instances, the performance of
DRL-AC is relatively stable, without extreme high or low values, indicating that the DRL-AC algo-
rithm demonstrates good stability across problems of varying sizes.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1466

Table 8. Comparison of the algorithm with others on larger-scale instances.

TS HA DRL-AC

n×l Flex. Makes RE Makespan RE CPU(s) Makespan RE CPU(s)

20*5 5
1073 0.19% 1071 0 1.73 1071 0 0.83
940 0.43% 936 0 2.73 936 0 0.58
1041 0.29% 1038 0 4.34 1038 0 6.56

20*10 5
1058 0.57% 1053 0.10% 41.43 1053 0.10% 15.29
1088 0.37% 1085 0.09% 35.29 1085 0.09% 15.21
1076 0.65% 1070 0.09% 42.17 1073 0.37% 19.1

30*10 5
1521 0.07% 1521 0.07% 58.25 1520 0 18.34
1659 0.12% 1658 0.06% 65.78 1657 0 21.4
1499 0.13% 1499 0.13% 53.82 1498 0.07% 17.97

For larger-scale instances, tests were conducted on larger datasets from the Hurink dataset [40],
specifically using datasets with a higher flexibility of five. The sizes tested were 20 × 5, 20 × 10 and
30 × 10, with three datasets each. TS denotes the traditional Tabu Search algorithm, while HA [41]
refers to a hybrid algorithm that combines Genetic Algorithms with Tabu Search. As can be seen
from Table 8, compared to TS, the hybrid algorithm and the algorithm proposed in this paper obtained
the majority of the best solutions in terms of completion times. Furthermore, Figure 11 reveals that
as the size of the instances grows, the difference in CPU time between the DRL-AC algorithm and
the HA algorithm becomes increasingly significant, with the runtime for the HA algorithm showing a
substantial growth. This underscores the enhanced capability of the algorithm presented in this paper
to manage highly complex problems.

Figure 11. CPU time comparison of HA and DRL-AC across different instance sizes.

6.4. Discussion

The proposed DRL-AC method has significantly enhanced the performance of flexible job shop
scheduling across multiple dimensions. A primary benefit of the proposed approach is its capacity for
comprehensive analysis and assessment of the entire job suite prior to operation initiation. Further-
more, the designed action space enables the agent to tailor its decisions to the current state, offering a

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1467

level of adaptability not found in conventional methods. In conclusion, our reward function steers the
learning process of the agent towards desired outcomes by aligning it directly with optimization goals,
such as minimizing production time and maximizing machine utilization rates.

One of the principal strengths of DRL-AC is its adaptability to problems of varying scales, from
small to large. On smaller datasets, like the Kacem dataset, the algorithm efficiently identifies optimal
solutions, showcasing its precision and potential within constrained environments. As the model scales
to larger instances, like those in the Hurink dataset, DRL-AC retains its performance levels without no-
table increases in computation time, suggesting that the algorithm can manage heightened complexity
without any compromise on efficiency.

However, the performance of the algorithm comes at the expense of computational resources, par-
ticularly during the training phase. The training process is resource-intensive, necessitating signifi-
cant computational power to realize the expected outcomes. Furthermore, hyperparameter tuning is a
substantial undertaking, demanding meticulous experimentation and expertise to optimize algorithm
performance. Despite these challenges, the DRL-AC algorithm distinguishes itself through its stable
performance and scalability.

7. Conclusions

This study aimed to address the FJSP using a novel deep reinforcement learning methodology an-
chored in an actor-critic framework. By effectively transforming the FJSP into a Markovian decision
process, we harmoniously integrated value-based and policy-based strategies. Our unique represen-
tations for states, actions and rewards enabled a more intuitive understanding and handling of the
problem. The experimental evaluation comprehensively assesses the proposed reinforcement learning
framework through simulations on standard FJSP benchmarks, comparing the proposed method with
several well-known heuristic scheduling rules, relevant RL algorithms, and intelligent algorithms. The
results showed that the proposed DRL-AC algorithm consistently outperformed existing scheduling
rules. When pitted against traditional reinforcement learning algorithms, it showcased a commendable
accuracy in convergence.

It is pertinent to note that, while our DRL-AC algorithm has demonstrated a superior performance
over priority rules and conventional reinforcement learning schedulers, it has yet to achieve optimal
scheduling results in certain cases. This gap underscores the inherent complexity of the FJSP and the
challenges of devising a one-size-fits-all solution. For practitioners aiming to optimize their flexible job
shop schedules, our research provides a promising avenue that goes beyond traditional methods. How-
ever, we believe the solution can be further enhanced. Hyperparameter tuning stands out as a potential
area of improvement for our proposed framework. In future explorations, we intend to optimize these
hyperparameters to further bolster the DRL-AC’s performance. Additionally, delving into advanced
policy-based strategies, like A3C and PPO, could provide insights into even more robust scheduling
methods. Given the dynamic nature of manufacturing environments, it is imperative to account for an
array of disturbances that might arise during real-world production processes. Future research will fo-
cus on expanding the adaptability of the model to these unpredictable scenarios, thus ensuring holistic
shop floor productivity.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

1468

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. M. Parente, G. Figueira, P. Amorim, A. Marques, Production scheduling in the con-
text of Industry 4.0: Review and trends, Int. J. Prod. Res., 58 (2020), 5401–5431.
https://doi.org/10.1080/00207543.2020.1718794

2. A. Ham, Flexible job shop scheduling problem with parallel batch process-
ing machine, in 2016 Winter Simulation Conference (WSC), (2016), 2740–2749.
https://doi.org/10.1109/WSC.2016.7822311

3. K. Gao, F. Yang, M. Zhou, Q. Pan, P. N. Suganthan, Flexible job-shop rescheduling for new
job insertion by using discrete Jaya algorithm, IEEE Trans. Cybern., 49 (2019), 1944–1955.
https://doi.org/10.1109/TCYB.2018.2817240

4. C. Lu, X. Li, L. Gao, W. Liao, J. Yi, An effective multi-objective discrete virus optimization
algorithm for flexible job-shop scheduling problem with controllable processing times, Comput.
Ind. Eng., 104 (2017), 156–174. https://doi.org/10.1016/j.cie.2017.01.030

5. N. Shahsavari-Pour, B. Ghasemishabankareh, A novel hybrid meta-heuristic algorithm for
solving multi-objective flexible job shop scheduling, J. Manuf. Syst., 32 (2013), 771–780.
https://doi.org/10.1016/j.jmsy.2013.04.015

6. K. Hu, L. Wang, J. Cai, L. Cheng, An improved genetic algorithm with dynamic neighborhood
search for job shop scheduling problem, Math. Biosci. Eng., 20 (2023), 17407–17427.

7. M. Nouiri, A. Bekrar, A. Jemai, S. Niar, A.C. Ammari, An effective and distributed particle
swarm optimization algorithm for flexible job-shop scheduling problem, J. Intell. Manuf., 29
(2016), 603–615. https://doi.org/10.1007/s10845-016-1233-5

8. I.A. Chaudhry, A. A. Khan, A research survey: Review of flexible job shop scheduling techniques,
Int. Trans. Oper. Res., 23 (2016), 551–591. https://doi.org/10.1111/itor.12199

9. C. Lu, L. Gao, J. Yi, X. Li, Energy-efficient scheduling of distributed flow shop with heterogeneous
factories: A real-world case from automobile industry in China, IEEE Trans. Ind. Inf., 17 (2020),
6687–6696. https://doi.org/10.1109/TII.2020.2963792

10. Y. Feng, L. Zhang, Z. Yang, Y. Guo, D. Yang, Flexible job shop scheduling based on deep rein-
forcement learning, in 2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT),
(2021), 660–666. https://doi.org/10.1109/ACAIT53529.2021.9731322

11. W. Song, X. Chen, Q. Li, Z. Cao, Flexible job-shop scheduling via graph neural net-
work and deep reinforcement learning, IEEE Trans. Ind. Inf., 19 (2022), 1600–1610.
https://doi.org/10.1109/TII.2022.3189725

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

http://dx.doi.org/https://doi.org/10.1080/00207543.2020.1718794
http://dx.doi.org/https://doi.org/10.1109/WSC.2016.7822311
http://dx.doi.org/https://doi.org/10.1109/TCYB.2018.2817240
http://dx.doi.org/https://doi.org/10.1016/j.cie.2017.01.030
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2013.04.015
http://dx.doi.org/https://doi.org/10.1007/s10845-016-1233-5
http://dx.doi.org/https://doi.org/10.1111/itor.12199
http://dx.doi.org/https://doi.org/10.1109/TII.2020.2963792
http://dx.doi.org/https://doi.org/10.1109/ACAIT53529.2021.9731322
http://dx.doi.org/https://doi.org/10.1109/TII.2022.3189725

1469

12. M. Ziaee, A heuristic algorithm for solving flexible job shop scheduling problem, Int. J. Adv.
Manuf. Technol., 71 (2014), 519–528. https://doi.org/10.1007/s00170-013-5510-z

13. P. Priore, A. Gomez, R. Pino, R. Rosillo, Dynamic scheduling of manufacturing sys-
tems using machine learning: An updated review, AI Edam, 28 (2014), 83–97.
https://doi.org/10.1017/S0890060413000516

14. Y. Li, S. Carabelli, E. Fadda, D. Manerba, R. Tadei, O. Terzo, Machine learning and optimization
for production rescheduling in Industry 4.0, Int. J. Adv. Manuf. Technol., 110 (2020), 2445–2463.
https://doi.org/10.1007/s00170-020-05850-5

15. G. Chenyang, G. Yuelin, L. Shanshan, Improved simulated annealing algorithm for flexible job
shop scheduling problems, in 2016 Chinese Control and Decision Conference (CCDC), (2016),
2191–2196. https://doi.org/10.1109/CCDC.2016.7531349

16. G. Vilcot, J. C. Billaut, A tabu search algorithm for solving a multicriteria flex-
ible job shop scheduling problem, Int. J. Prod. Res., 49 (2011), 6963–6980.
https://doi.org/10.1080/00207543.2010.526016

17. H. H. Doh, J. M. Yu, J. S. Kim, D. H. Lee, S. H. Nam, A priority scheduling approach
for flexible job shops with multiple process plans, Int. J. Prod. Res., 51 (2013), 3748–3764.
https://doi.org/10.1080/00207543.2013.765074

18. C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, X. Chi, Learning to dispatch for job shop
scheduling via deep reinforcement learning, Adv. Neural Inf. Process. Syst., 33 (2020), 1621–
1632.

19. J. Shahrabi, M. A. Adibi, M. Mahootchi, A reinforcement learning approach to param-
eter estimation in dynamic job shop scheduling, Comput. Ind. Eng., 110 (2016), 75–82.
https://doi.org/10.1016/j.cie.2017.05.026

20. H. X. Wang, H. S. Yan, An interoperable adaptive scheduling strategy for knowledge-
able manufacturing based on SMGWQ-learning, J. Intell. Manuf., 27 (2016), 1085–1095.
https://doi.org/10.1007/s10845-014-0936-1

21. Y. F. Wang, Adaptive job shop scheduling strategy based on weighted Q-learning algorithm, J.
Intell. Manuf., 31 (2020), 417–432. https://doi.org/10.1007/s10845-018-1454-3

22. Y. Zhao, Y. Wang, Y. Tan, J. Zhang, H. Yu, Dynamic job shop schedul-
ing algorithm based on deep Q network, IEEE Access, 9 (2021), 122995–123011.
https://doi.org/10.1109/ACCESS.2021.3110242

23. S. Luo, Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement
learning, Appl. Soft Comput., 91 (2020), 106208. https://doi.org/10.1016/j.asoc.2020.106208 .

24. R. Li, W. Gong, C. Lu, A reinforcement learning based RMOEA/D for bi-
objective fuzzy flexible job shop scheduling, Expert Syst. Appl., 203 (2022), 117380.
https://doi.org/10.1016/j.eswa.2022.117380

25. C. L. Liu, C. C. Chang, C. J. Tseng, Actor-critic deep reinforcement learning
for solving job shop scheduling problems, IEEE Access, 8 (2020), 71752–71762.
https://doi.org/10.1109/ACCESS.2020.2987820

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

http://dx.doi.org/https://doi.org/10.1007/s00170-013-5510-z
http://dx.doi.org/https://doi.org/10.1017/S0890060413000516
http://dx.doi.org/https://doi.org/10.1007/s00170-020-05850-5
http://dx.doi.org/https://doi.org/10.1109/CCDC.2016.7531349
http://dx.doi.org/https://doi.org/10.1080/00207543.2010.526016
http://dx.doi.org/https://doi.org/10.1080/00207543.2013.765074
http://dx.doi.org/https://doi.org/10.1016/j.cie.2017.05.026
http://dx.doi.org/https://doi.org/10.1007/s10845-014-0936-1
http://dx.doi.org/https://doi.org/10.1007/s10845-018-1454-3
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3110242
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2020.106208
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.117380
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.2987820

1470

26. E. Yuan, S. Cheng, L. Wang, S. Song, F. Wu, Solving job shop scheduling prob-
lems via deep reinforcement learning, Appl. Soft Comput., 143 (2023), 110436.
https://doi.org/10.1016/j.asoc.2022.110436

27. J. C. Palacio, Y. VM. Jiménez, L. Schietgat, B. van Doninck, A. Nowé, A Q-learning algorithm for
flexible job shop scheduling in a real-world manufacturing scenario, Procedia CIRP, 106 (2022),
227–232. https://doi.org/10.1016/j.procir.2022.02.183

28. J. Popper, V. Yfantis, M. Ruskowski, Simultaneous production and AGV scheduling us-
ing multi-agent deep reinforcement learning, Procedia CIRP, 104 (2021), 1523–1528.
https://doi.org/10.1016/j.procir.2021.11.257

29. J. Chang, D. Yu, Z. Zhou, W. He, L. Zhang, Hierarchical reinforcement learning for multi-
objective real-time flexible scheduling in a smart shop floor, Machines, 10 (2022), 1195.
https://doi.org/10.3390/machines10121195

30. L. Yin, X. Li, L. Gao, C. Lu, Z. Zhang, A novel mathematical model and multi-objective method
for the low-carbon flexible job shop scheduling problem, Sustainable Comput. Inf. Syst., 13 (2017),
15–30. https://doi.org/10.1016/j.suscom.2017.01.004

31. P. Burggräf, J. Wagner, T. Saßmannshausen, D. Ohrndorf, K. Subramani, Multi-agent-based deep
reinforcement learning for dynamic flexible job shop scheduling, Procedia CIRP, 112 (2022),
57–62. https://doi.org/10.1016/j.procir.2022.01.026

32. S. Yang, Z. Xu, J. Wang, Intelligent decision-making of scheduling for dynamic
permutation flowshop via deep reinforcement learning, Sensors, 21 (2021), 1019.
https://doi.org/10.3390/s21031019

33. J. P. Huang, L. Gao, X. Y. Li, C. J. Zhang, A novel priority dispatch rule generation method based
on graph neural network and reinforcement learning for distributed job-shop scheduling, J. Manuf.
Syst., 69 (2021), 119–134. https://doi.org/10.1016/j.jmsy.2022.12.008

34. B. A. Han, J. J. Yang, Research on adaptive job shop scheduling problems based on dueling double
DQN, IEEE Access, 8 (2021), 186474–186495. https://doi.org/10.1109/ACCESS.2020.3029868

35. J. Bergdahl, Asynchronous Advantage Actor-Critic with Adam Optimization and A Layer Normal-
ized Recurrent Network, Student thesis, (2017).

36. B. Han, J. Yang, A deep reinforcement learning based solution for flexible job shop scheduling
problem, Int. J. Simul. Modell., 20 (2021), 375–386. https://doi.org/10.2507/IJSIMM20-2-CO7

37. A. Henchiri, M. Ennigrou, Particle swarm optimization combined with tabu search in a multi-
agent model for flexible job shop problem, in Advances in Swarm Intelligence: 4th International
Conference, (2013), 385–394 .

38. W. Xia, Z. Wu, An effective hybrid optimization approach for multi-objective flex-
ible job-shop scheduling problems, Comput. Indust. Eng., 48 (2005), 409–425.
https://doi.org/10.1016/j.cie.2004.11.002

39. I. Kacem, S. Hammadi, P. Borne, Approach by localization and multiobjective evolutionary op-
timization for flexible job-shop scheduling problems, IEEE Trans. Syst. Man Cybernetics, 32
(2002), 1–13. https://doi.org/10.1109/TSMCC.2002.1000156

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

http://dx.doi.org/https://doi.org/10.1016/j.asoc.2022.110436
http://dx.doi.org/https://doi.org/10.1016/j.procir.2022.02.183
http://dx.doi.org/https://doi.org/10.1016/j.procir.2021.11.257
http://dx.doi.org/https://doi.org/10.3390/machines10121195
http://dx.doi.org/https://doi.org/10.1016/j.suscom.2017.01.004
http://dx.doi.org/https://doi.org/10.1016/j.procir.2022.01.026
http://dx.doi.org/https://doi.org/10.3390/s21031019
http://dx.doi.org/https://doi.org/10.1016/j.jmsy.2022.12.008
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.3029868
http://dx.doi.org/https://doi.org/10.2507/IJSIMM20-2-CO7
http://dx.doi.org/https://doi.org/10.1016/j.cie.2004.11.002
http://dx.doi.org/https://doi.org/10.1109/TSMCC.2002.1000156

1471

40. J. Hurink, B. Jurisch, M. Thole, Tabu search for the job-shop scheduling prob-
lem with multi-purpose machines, Oper. Res. Spektrum, 15 (1994), 205–215.
https://doi.org/10.1007/BF01720537

41. X. Li, L. Gao, An effective hybrid genetic algorithm and tabu search for flexible job shop schedul-
ing problem, Int. J. Prod. Econ., 174 (2016), 93–110. https://doi.org/10.1016/j.ijpe.2016.01.016

42. J. Stopforth, D. Moodley, Continuous versus discrete action spaces for deep reinforcement learn-
ing, in Proceedings of the South African Forum for Artificial Intelligence Research, (2019).

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 1, 1445–1471.

http://dx.doi.org/https://doi.org/10.1007/BF01720537
http://dx.doi.org/https://doi.org/10.1016/j.ijpe.2016.01.016
http://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Problem description and method
	The flexible job shop scheduling problem
	Basic theory of reinforcement learning
	Standard actor-critic method

	Solving the FJSP based on DRL-AC
	Modeling flexible job shop scheduling as a Markov decision process
	State features
	Action space selection
	Reward function

	Proposed DRL-AC model architecture
	Results and discussion
	The impact of hyperparameters on model sensitivity
	Comparison with related deep reinforcement learning methods and heuristic scheduling rules
	Comparison with intelligent algorithms
	Discussion

	Conclusions

