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Abstract: A stochastic Microcystins degradation model with distributed delay is studied in this pa-
per. We first demonstrate the existence and uniqueness of a global positive solution to the stochastic
system. Second, we derive a stochastic critical value R; related to the basic reproduction number Ry.
By constructing suitable Lyapunov function types, we obtain the existence of an ergodic stationary
distribution of the stochastic system if R; > 1. Next, by means of the method developed to solve the
general four-dimensional Fokker-Planck equation, the exact expression of the probability density func-
tion of the stochastic model around the quasi-endemic equilibrium is derived, which is the key aim of
the present paper. In the analysis of statistical significance, the explicit density function can reflect
all dynamical properties of a chemostat model. To validate our theoretical conclusions, we present
examples and numerical simulations.
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1. Introduction

Microcystins (MCs) represent a highly prevalent form of cyanotoxins derived from harmful
cyanobacterial blooms. These toxins can introduce toxicity into vital organs including liver, kidney,
heart etc., posing major threats to human health [1]. Biodegradation has emerged as an economically
and environmentally favorable approach for MCs degradation, garnering considerable research atten-
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tion [2,3]. Recently, Song et al. [4] proposed a degradation model as follows:

x1() = Dayg — apnxi(0)x:(t) — ay3xi (t)x3(t) — (D + dy)x (),
x5(1) = anx(H)x1(t) = axx2(t) = (D + da)xx(1), (L.1)
x5(1) = azoxa(t) — azx1(H)x3(t) — (D + d3)x3(0),

where x;(?), x,(¢) and x3(¢) denote the concentrations of MCs, MC-degrading bacteria and degrading
enzymes produced by MC-degrading bacteria at time ¢, respectively. a;o > 0 is the input concentration
of MCs; D is the washout rate; a;; > 0 is the consumption rate of MCs; a,; > 0 is the maximal growth
rate of MC-degrading bacteria; ayp > 0 is the consumption rate of MC-degrading bacteria; a3y > 0
is the maximal growth rate of degrading enzymes; a;3 > 0 and a3; > 0 are the degradation rate of
MCs and the consumption rate of degrading enzymes, respectively; d; > 0(i = 1,2, 3) represents the
death rates of MCs, MC-degrading bacteria and degrading enzymes, as distinguished by, 1 = 1, 2, 3,
respectively. Re-scaling model (1.1) by

T D + d, 6120+D+d2 D+d3
X1 =apX, X, =y, x3=2,t=—, D = , Dy = , D3 = ,
D D D D
ap as az1ago aso asiaio
alz_’azz_a b1: ’Clz_a C2: D
D D D D D

the authors of [5] obtained the following dimensionless model:

X () =1 = ax()y(t) — ax(H)z(t) — D x(1),
V' (1) = bix()y(t) — D2y(1), (1.2)
7 (1) = ciy(t) = crax(H)z(t) — D3z3(2).

Time delays cannot be ignored in models for MCs degradation, especially the delay between MC-
degrading bacteria and the production of new degrading enzymes particles. There has been extensive
discussion of the presence of such delays and their impact on microbial population dynamics (see
[6-8]). Song et al. [9] considered the following model with time delay:

X () =1 = ax()y(t) — ax(H)z(t) — D x(1),
Y (1) = bie”"x(t — T)y(t — 7) — Daoy(2),
7 (1) = ciy(t) = cax(D)z(t) — D3z3(2).

Here the constant 7 > O represents the time consumed by MC-degrading bacteria to convert MCs, once
consumed, into viable biomass and e~°" represents the survival probability of degrading bacteria during
the conversion process. However, a more realistic delayed MC-degrading model should be an equation
with distributed delay, which describes the cumulative effect of the past history of a system. In this
paper, we will mainly consider the following degradation model with distributed delay

t
dz(t) = [ f K(t — $)y(s)ds — c,x()z(t) — D3z3(2)]de.
According to MacDonald [10], the distributed delay function f(7) can be described by the Gamma
distribution
a,n+1tne—at
K(t) = ————,
n!

Mathematical Biosciences and Engineering Volume 21, Issue 1, 602-626.



604

as a kernel, where @ > 0 and n is a nonnegative integer. In this article, we mainly consider the weak
kernel, that is K(t) = e (n = 0) with a > 0.

On the other hand, in the real world, population systems are inevitably influenced by the envi-
ronmental noise (see [11-15]). According to May [16], the birth rate, carrying capacity, competition
coeflicient, and other parameters should exhibit random fluctuations as a result of environmental noise.
In order to investigate the impact of environmental noise on population dynamics, various scholars
have added white noise into deterministic systems (see [17-21]).

Therefore, based on the model (1.2), we further consider the following stochastic MCs degradation
model with distribution delay

dx(?) = [1 — a1 x(0)y(t) — ax(t)z(t) — D1 x(¢)]dt + o1 x(t)d B, (2),
dy(r) = [b1x(D)y(t) = Day(1)]dt + o2y(1)dBa(t), (1.3)

dz(t) = [ f Kt = $)y(s)ds — cxx(D2(t) = Dyza(D]dt + o520 B (1),

where B;(t) denotes mutually independent standard Brownian motions and o2 > 0 denotes the intensity
of white noises i = 1, 2, 3. Set

w(t) = f K(t — s)y(s)ds = f ae " y(s)ds.

[

Then, by using the linear chain technique, system (1.3) is transformed into the following equivalent

system:
dx(?) = [1 — a1 x(0)y(t) — a,x(£)z(¢t) — D1 x(2)]dt + o1 x(£)d B, (2),

dy(1) = [b1x(0)y(2) — Dry(1)]dr + ooy(1)d By (1),
dz(t) = [c1w(1) — c2x(0)z(f) — D3z(1)]dt + o32(H)d B3 (1),
dw(?) = [ay(t) — aw(t)]dr.

In this paper, we propose a Microcystins degradation model with distributed delay and stochastic
perturbation. As is known to us, there is no work concerning the existence of stationary distribution in
system (1.3). The main difficulty is to find appropriate Lyapunov functions. It should be emphasized
that there are relatively few studies focusing on the explicit expression of probability density functions
due to the difficulty of solving the corresponding Fokker-Planck equation.

The paper is organized as follows. In Section 2, we prove that the stochastic Microcystins degrada-
tion system (1.4) with distributed delay has a unique global positive solution. In Section 3, a unique
global solution of system (1.4) is proved to be stationary by constructing several suitable Lyapunov
functions. Numerical simulations are presented to illustrate our analytical results in Section 4.

(1.4)

2. The positivity of the solution

To study the dynamical behavior of Microcystins degradation model, we first need to consider
whether the solution is global and positive. In this section, we will prove the existence and uniqueness
of a global solution to system (1.4) with any positive initial value.

Theorem 2.1: For any initial value (x(0), y(0), z(0), w(0)) € R?, there is a unique solution of the
system (1.4) on 7 > 0 and the solution will remain in R? with probability one.
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Proof. The coeflicients of system (1.3) satisfy the local Lipschitz condition, so there is a unique
local solution (x(t), y(¢), z(t), w(¢)) on ¢t € [0,7,), where 7, is the explosion time. Now we shall
show that this solution is global, i.e., prove 7, = oo a.s. Let ky > 1 be sufficiently large so that
x(0), y(0), z(0) and w(0) all lie within the interval [é, ko]. For each integer k > k, define the stopping
time:

T, = Inf {t € [0, 7.) : min{x(¢), y(1), z(t), w(t)} < % or max{x(?), y(t), z(t), w(t)} > k},

where throughout this paper we set inf ) = oco. Evidently, 7y is increasing as k — oo. Denote 7., =
limy_,, 7, Where 7., < 7, a.s. If we can prove that 7., = oo a.s., then 7, = co and (x(?), y(), z(¢), w(t)) €

R? a.s. for all # > 0. In other words, to complete the proof all we need to prove is that 7o, = oo a.s. If
this statement is false, then there is a pair of constants 7 > 0 and € € (0, 1) such that

Plto, <T}>e&.
Hence there is an integer k; > kj such that
Plry < T} > ¢ forall k > k. (2.1)
Define the nonnegative C>— Lyapunov function V; as follows
Vo(x,y,zzw)=x—1—-Inx+ay—Iny— (1 +Ina)+cz—dInz — (d+ln§) +bw —Inw— (1 +1nb),

where a, b, ¢, d are positive constants which will be determined later.
Based on the basic inequality # — 1 — Inu > 0, we have

c cz cz
—dlnz—-(d+In-)=d(—-1-In—)>0.
cz—dlnz—(d+In=) =d(- n—)z
Applying 1t6’s formula, we have

dVy = LVydt + o(x — 1)dB(t) + 0»(ay — 1)dB,(t) + 03(cz — d)dB;5(1), 2.2)

1
LVy=1—-aixy—axz— Dix+ a(bixy — Dyy) + c(ciw — c2x2 — D3z) + b(ay — aw) — — + a1y + a»2
X

1 1 c 1 o
+D1+§o-f—b1x+D2+Eo-§+d(—17w+c2x+D3+§o§)—Wy+a

1
<1+D;+Dy+dD;+a+ 5(03 + 03 +do3) + (aby — ay)xy + (ay — cD3)z + (=D — by + dcy)x
+ (—aD; + ay + ba)y + (cc; — ba)w.

_ apc _ a _ b+D; _ sogar aiDs+ciap _ _
Choose b = o, € = DS,d =>=anda= mm{bl, 5D, } such that ab; —a; <0 and a;—aD,+ab <

0, then, we have
1
LV, <1+ D +D2+dD3+a/+§(a-f+o-§+da§) =K,

where K is a positive constant. Integrating equation (2.2) from Oto 7, A T and then taking the expec-
tation on both sides, we have
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EVo(x(‘rk AT, y(ri AT, 2(t A T, w(te A T))) < Vox(0).3(0 200D + KEGAT)

< Vo(x(0), ¥(0), 2(0), w(0)) + K, T

Set Q, = {rx < T} fork > k; and in view of Eq (2.1), we have P(€;) > €. Note that for ev-

ery w € (, there is x(74, w) or y(1y, w) or z(Ty, w) or w(ty, w) that is equal to either k or % Thus
Vo(x(ti, w), y(i,, w), 2(Tg, ), w(Ty, w)) is no less than either

(k— 1 —lnk)/\(ak—lnk—(l +1na))/\d(§k— 1 —ln%c)/\(bk—lnk—(l +lnb))
1 1 1 1 cl c 1 1
or (E 1 —lnz)/\(az ~In (1 +1na))/\d(c—iz 1 —ln%)/\(b% —In (1 +lnb))
:(k— 1 —lnk)/\ (ak—lnk— a +1na))/\d(§k— | = In(ck) +lna’)/\ (bk—lnk—(l +lnb))
| 1 | |
or (% 1 +lnk)/\ (a% FInk— (1 +lna))/\d(§% 1 —lnc+ln(dk))/\ (b% Fink-(1 +1nb))

Therefore, we obtain
VO(.X(Tk, C()), )’(Tk, (l)), Z(Tka (1)), W(Tk’ C())))
> (k— = lnk) A (ak “nk— (1 + lna)) A d(gk— 1 = In(ck) + lnd) A (bk— Ink - (1+ lnb))
/\(1— 1 +1nk)/\( D k- +m ))Ad(fl— 1 -1In +1n(dk))/\(bl+lnk—(1 +lnb))
k “% a4 dk ¢ k
It follows from Eq (2.3) that

Vo(x(0), y(0), 2(0), w(0)) + K1 T 2E|Io, () Vo(X(Tk, ), y(Th, ), 2Tk, ), w(Tis w)))]

Ze(k— 1 —lnk) A (ak— Ink — (1 +1na)) /\d(gk— 1 = In(ck) + lnd)
| |
A (bk—lnk—(l +lnb))/\ (% _ +lnk)/\ (a% +Ink-( +lna))

cl 1
Ad(ﬁ _1 —1nc+1n(dk))/\ (b% +Ink-(1 +lnb))

where Ig, (., 1s the indicator function of (). Let k — oo, we obtain
o0 > V(x(0), y(0), 2(0), w(0)) + Ki T = oo

which is a contradiction and so we must have that 7., = co. This completes the proof.
3. Stationary distribution

For the stochastic model, we mainly focus on the existence of a stationary distribution. Define a

critical value
s b

RS = .
7Dy + LoDy + 10D
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Consider the integral equation
t k t
X(@®) = X(t) + f b(s, X(s))ds + Zf o (s, X(s))dB(s). 3.1
fo r=1 Y1

Lemma 3.1. ([22]) Suppose that the coeflicient of (3.1) is independent of ¢ and satisfies the follow-
ing condition for some constant B:

k
|b(s, x) — b(s,y)| + Z lo(s, x) — o (s, y)| < Blx -,
=l (3.2)

k
Ib(s, 0l + > oy (s, )| < B+ |x),
r=1

in Uz C RY for every R>0, also suppose that there exists a nonnegative C2-function V(x) € R? such
that
LV(x) < -1 outside some compact set.

Then system (3.1) has a solution, which is a stationary distribution.

Remark 3.1. According to the proof of Lemma 2.1 in [23], we know that condition (3.2) in Lemma
3.1 can be replaced by the global existence of the solutions. Hence, Theorem 2.1 indicates that (3.2) in
Lemma 3.1 is satisfied.

Theorem 3.1. For any initial value (x(0), y(0), z(0), w(0)) € Ri, if R)>1, then system (1.4) has at
least one stationary solution (x(1), y(t), z(t), w(t)) € R%.

Proof. By Lemma 3.1, we only need to construct a nonnegative C>-function V(x,y, Z,w) and a
closed set U c R? such that

L‘~/(x, v,z,w) < —1, forany (x,y,t,w) € Ri \ U.

Define 4 ca
Vilx,y,z,w) = —Inx —e; In + == +¥w,

1(x,y,z,w) iy + 524 oh,

where e, is a positive constant to be chosen later. Then applying 1t6’s formula to V;, we have

1 1 1 a
LV, < — —eibix+e;(Dy+ =03) + Dy + =03 + a1y + axz + D—Z(clw — c2x2 — Ds7)
X 3

2 2
c1a
+ —D:;(a/y —aw) (3.3)
1 2 1 2 ci1dy
<=2 \/blel + 61(D2 + —0'2) + Dl + 0]+ (Cl] + —)y
2 2 D;
Taking e; = (sz—jz)z, then in view of (3.3) one can see that
292
by I, ci1ay
LV, ——+ D)+ o]+ (a; + —
1 D, + %0_5 1 20'1 (ai D; )y
1 ,
= ~(Di + 50D®Ry ~ 1) + (a1 + =2)y (3:4)
2 Ds

c1ay
= =+ (a; + =)y,
(a1 D, )y
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where
b,

Dy + Lo)(D; + Lo

1 ‘
A= (D + Eaf)(kg) - 1).

Define
Vo,=—Inx—Inw-—1Inz.

Then applying It6’s formula to V5, one gets

1 1 1
LV, < ———ﬂ—m+a1y+a2z+D]+ 0'1+czx+D3+ 0'3+oz. 3.5
X w Z 2 2

Select | D D
a a 2 Cll 2 \6+2
V s Ve Ko = = +—y+ s
ey ey = s et eyt e Y 2an, )

[om (Tz
. (Di-—4 Dy-¢} D3-3
where 0 < 6 < min{—=-, =—2, =2

}. Applying the same method to V3, we have

D1+O—71 D+ (r%’ D3+ ﬁ
CllDz CllDz 0+1 a\D, a1D,D; aD,
LV; <(x+—y+ 1-D - -
s bly e, >t 2ap, " 0 YT Tabie, C an,
0+1 a aD aD aD
; b: 41191;“ 2lozb?W)9[ v +U2( ) (41 b2 )ZZZ]}
aD, a1D2 6+1 0+2 D, al 6+2. 6+2 aD, 0+2_0+2
<(x+—y+ — - —=
(x bly 4b1€1z 2ab1 ) ! 2 (bl) Y 3(41?1 1) ¢
@ aiD; g5 g0 0+ ai aDy aD, 22 4 o2 aiD; , ,
- — + + —vy+ + + + —
> Gab, 2 i by 4191 e, [ + o 1) 73 G 7
D,0 a, a aD
<—-D0 0+2 _ 27 INO+260+2 D 0 0+2 9+2 0+2 9+2 + By,
10x > (b1) y (4b1 1) 4(2ab1) 0
(3.6)
where
aD, ang 0+1 02 D21 =0) ar 45 51r
By= su {(x+—+ 7+ w)" = Di(1 - 0)x" — ————=(—=)"y""
L b " Abie, " 2ab, 2 b
aiDy g5 g0 @ 1Dy g gy O+ al aD, aiDy g
-D;3(1-6 — + +
o )(451 R RIC s 2 e 5 A 2am,"
CllD2
[O'Ix + 0'2( )2 24 Ug(m)zzz]} < 0.
Consequently, we have
V=MV, +V,+ V3, (37)
where M, > 0 satisfies that —MoR; + ¢ < —2. Also,
D»0 a a;D, a, a1D,
— - DO 0+2 9+2 0+2 D 0 0+2 9+2 0+2 9+2
Co= up { o > G e & " 1% Y

(xy.z,w)eRY

1 1
+a2z+c2x+D1+D3+§o-f+§o-g+a+Bo}.
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It is obvious that

lim inf V(x,y,z,w) = +oo,
n—oo, (x,y,z,w)GRi \Kp,

and K, = (%, n) X (%, n) X (%, n) X (%, n). It is evident that V(x, y, z, w) is a continuous functions, so there
exists a minimum point (xo, o, 20, wo) € R*. Thereafter, we formulate the nonnegative C2 function V
as follows:

V(x,y,2,w) = V(x,y,2,w) = V(xo, Yo, 20, Wo).

Combining with (3.4), (3.5), (3.6) and (3.7), we obtain that

% @e 1 1 D»6 a
LV < —Mod + | My(a, + =) + a |y + @rz + cax + Dy + =07 + D3 + =02 + @ — D 0x%7 — Z22(21)%2)042
Ds 2 2 2 b
aiDy g2 g0 @ 1Dy g5 gin 1 ay cw
= D30(-— - —(=—)"w""+By———— — —_—
. (4b101) ¢ 4(2ab1) 0 X w z

Next, we define the following bounded closed set

For convenience, we can divide R? \ U, into eight regions:
U, = {(x,y,z,w) eRL,0<y< 8}, U, = {(x,y,z,w) eRL,O<x< e},
Us; = {(x,y,z,w) € Ri,O <w<ég y > s}, U, = {(x,y,z,w) € Ri, O<z<é&,w> 82},
4 1 4 1
US = {(X,y,Z,W) € R+a y > _}9 U6 = {(x’y,ZaW) € R+9 X > _}’
£ £
1 1
U; = {(x,y,z, w) € Ri, 7> —3}, Ug = {(x,y, 7, W) € R‘l,w > —2}.
& &
Case 1. If (x,y,z,w) € Uy, in view of (3.8) we get

— a»c D»0 a
LV < —MyA + [Mo(a1 + %) + al]y + @z + cyx — DX — 72([)—1)9%9+2
3 1

aD, o0+2_0+2 @ a; D 6+2. 6+2
— D2 - —(—
3 (4b1C1) ¢ 4(2a'b1) v

< —Mpa + {Mo(al + agi) +ajle+ ¢y < -1,
3

1 2 1 2
+BO+D1+§0'1+D3+§G'3+0/

here, ¢ is a positive constant small enough to satisfy the following conditions:

“Mod + [Mo(a1 + %) taile+ e < -1, (3.8)
3
1
i E<-1, (3.9)
E
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where

E= sup

(x,y.zw)eRS

YL E<,
&

C1
-——+ F < -1,
&

DY ai 4ir
()P rE <1,
4(m3 B
D6 1
()" E< -1,

2 ¢

0+2
S L E <,
2 (4b1C183) N

a aiDy 4
ST AR e pa,
8(2ab182) -

D6 D>0 a D30 aD a aD
{ _ _1x0+2 _ _2(_1)0+2y9+2 _ _3( 172 )6+2Z9+2 - = 1 2)6+2 0+2
2 4 b, 2 4bic; 8 2ab,;

1 1
+ [M(a1 + %)+a1]y+D1 + =071+ D3+ §a§+a+Bo}.
3

Case 2 :

Case 3 :

Case 4 :

Case 5 :

Case 6 :

Mathematical Biosciences and Engineering

2

If (x,y,z,w) € U, according to (3.9), it implies that

D29 a
0+2 _(_)9+2y9+2

~ 1
LV < ——+ [Mo(al + %) +a |y +ayz+ cox — D6x
X D3 2 bl

aiDy g5 g0 @ a1D2 gy gin 1, 1,
- D360(—— - —(— +Bo+ D+ 0]+ D3+ 05 +
W) & " 3G Y I R

1
<——+E<-1.
E

If (x,y,z,w) € Us, by (3.10) we have

LVs—a—y+Es—g+Es—1.
w E

If (x,y,z,w) € Uy, according to (3.11), we deduce that

Ww<-LiE<-2ip<nl
Z E

If (x,y,z,w) € Us, by condition (3.12), we conclude that
LV < _D_zg(ﬂ)9+2y9+2 +E< _D_ze(ﬂ

6+2
+E < -1.
-4 b 4 bls) -

If (x,y,z,w) € Us, and the condition (3.13) is satisfied, it follows that

K2+ E< —1)716’(1)9+2 +E<-1.
€

o D6
LV < ———

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

w + a7 + Crx

Volume 21, Issue 1, 602-626.
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Case 7: If (x,y,z,w) € U7, in view of (3.14) we get

v D30 a\D; 4., 272 D30 a\Dy .,
LV < ——— +E<— +E<-1.
2 (4b1C1) 2 (4b1C183)

Case 8 : If (x,y,z,w) € Ug, from (3.15), it is deduced that

@ a\D; g4.) W2 @ aiDy 4.,
LV <—— +E<—— + F < -1.
8(2ab1) (2ab182)

Clearly, there exists a small enough constant € to make the conclusion
LV < -1, forall (x,y,z,w) € US.

Remark 3.2. In the proof of the above theorem, the construction of V3 means to obtain the constant
E and high-order terms of x, yand z.

4. Probability density function analysis

Let ui(t) = Inx, uy(t) = Iny, u3(t) = Inz and uy(¢#) = Inw. Using the It6’s formula, an equivalent
equation of system (1.4) is given as follows

[ 1
du; = |e™ —ae™ — ae” — (D + 50’%)]dt + o1dB (1),

[ 1
du, = ble”‘ — (D, + EO’%)]dl‘ + 0dB5 (1),
- 4.1)

[ 1
dus = |c1e™™™ — cre" — (D3 + Eog)]dt + 03dB;(1),

duy = (ae“z_”“ - a/)dt.

Assume that Rj > 1, then, there is the quasi-endemic equilibrium E* (x*y5,z5w") =

(e"1, €™, e", e"s) where

L _Dat;o;
X'= —=
b
o [61(D5 + 202 + co(Ds + 30D)][b1 — (D1 + 36D, + L0d)]
Clzb]C](Dz + %0’%) + Cllbl(Dz + %O’%)(Dg, + %O’%) + a1C2(D2 + %O’%)z’
. bici[by — (D) + %U%)(Dz + lO’%)]
7 =
arbic1(Dy + %0’%) +a b (D, + %U%)(D3 + %O’%) + ajcy(Dy + 0'2)2
. . [bl(D3 + %0’%) + (D, + %U%)][b] - (D + EG%)(DQ + 50’2)]

1 1 1 1 '
a)bici(D;y + 50'%) + a1by(D;, + 50'%)(D3 + 50’%) + ajcr(Dy + 50‘%)2

Before proving Theorem 4.1, we need to firstly introduce two important standard matrices in the fol-
lowing Lemmas 4.1 and 4.2.
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Lemma 4.1 ([24]). For the algebraic equation H(Z) + ByXo + ZoBg = 0, where H, = diag(1,0,0,0)
and X is a real symmetric matrix, we have the standard matrix

1 =72 3 Y4

-y -
1 0 0 0
Bo=lo 1 0o o
0 0 1 0
If y; >0, 3> 0, y4 > 0and y1y2y3 — ¥5 — ¥1va > 0, then X is a positive definite matrix, where

Y2Y3—Y1Y4 Y3
= 0 Y7 0
20n7273-Y5—YiY4e)

217273-Y3-Yiy4)
0 V3 — 0 _ Y1 —
= 20n7273=Y5 YY) 20n72¥3=Y5-Yv4)
0—=1_ 73 4l .
0 0
20ny273-Y3-Y3v4) 20n1273-Y3-¥3v4)
0 Y1 0 Y1y2 ’}’; 5
2ya(1y2y3=y5—Y1Y4)

2017273-Y3-Y3¥4)

Here By in this form is called the standard R, matrix.
Lemma 4.2 ([24]). For the algebraic equation Hg + EyQy + QoEg = 0, where H, = diag(1,0,0,0)
and ) is a real symmetric matrix, we have the standard matrix

—T1 —Ty T3 T4

1 0 0 0
Eo=lov 1 0 o
0 0 0 15

Ifr; >0, 73 > 0 and 717, — 73 > 0, then the matrix ) is a semi-positive definite matrix, which means

that
T 0 .
2(11712-73) . 2(7172-73)
o= ° wmw O 9
-1 S S
2(1172-73) 273(T172-73)
0 0 0 0

Denote P = (p1, pa, p3, pa)’ = (uy — uf,up — u, uz — s, us — uy)" (k = 1,2,3,4). Therefore, the

linearized equation system of Eq (4.1) is obtained as follows

dpy = (=b11p1 — bizpz — bi3p3)dt + 071dBy (1),

dps = by p1dt + 02dBy(1), 42)
dps = (=b31p1 — b33ps + b3z ps)dt + 03dB; (1),

dps = (ap2 — ap4)ds,

where
1

by = —=>bin+bis, by =ayy', bizs = ad,
x*

*

* *
byy = b1 X", b3 = c2x", b3z = CIZ_* > bs;.
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Theorem 4.1.  Assume that R} > 1; for any initial value (x(0), y(0),z(0), w(0)) € Rﬁt, then the
solution (x,y,z,w) of system (1.4) will have a log-normal probability density ®(x, y, z, w) around E*,
which is given by

,% —%(ln X%,ln %,ln Z%,ln H‘/—‘;)Z*l(ln )%;,ln ‘%,ln z%,ln %)T

D(x,y,z,w) = 20 °[Z| "e

with ¥ = ¥ + X, + X3 as a positive definite matrix; £, X, and X3 are defined as follows

s = (b31b330 (T3 ToTy) Q[T T T) ', if ¢, =0,
1= _ _ .
(b31b33q10) (T T 1) QTS LT if g, # 0,
a?bi,(biobs; + abyz)* o3 )
= = 2(T7T6Ts) ™ Qu(T7T6Ts)™'1", if g =0,
)Y} " ~ )
(b12b31 + b33a)* 05 (ToTsT6Ts) ' Qu[(ToTsTsTs) ', if ¢o#0, g3 =0,
(biabs1 + b33@)* @305(T10TsTeTs)  Q(T10TsT6Ts) ', if gp#0, g3#0,

Y3 = (=b13byacs) (T T1) ' QT Ti) ™',

_ b21‘1[b13b33_(b21+b33)‘1] _ a(=by+a) _ __bia b1ob3zq2 biaga(~biabs3qa+biobsia+bsza?)
where g, = T b33, g2 = =5 =243 = =3 ~ Gobibia (b12b31+D330)2 , and

the matrices T;,... T3, Ql,ﬁz, 53 are defined in the following proof.
Proof. For convenience and simplicity, let B(¢) = (B(t), B»(t), Bs(t),0)",
G = diag(o,0,,03,0) and

-byy =bin -bi3 0

by 0 0 0

—byy 0 —byz b3’
0 @ 0 -

M =

the linearized system (4.2) can be equivalently rewritten as
dP = MP(t)dt + GdB(t). 4.3)
Since G is a constant matrix, according to Gardiner [27], we have
G*+MZ+IM" =0,

In view of the independence of Brownian motions Bi(f), B,(¢) and Bs(t), by the principle of finite
independent superposition, it is easy to know that Eq (4.4) can be equivalently developed into the sum
of the solution to the following three algebraic sub-equations:

Gi+MZ +5M" =0, k=1,2,3,
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where G? = diag(oﬁ, 0,0,0), G% = diag(0, 0'%, 0,0), G% = diag(0, 0, 0'%, O)and X =%; + X, + 25.
Next it will be proved that M has all negative real-part eigenvalues. The characteristic polynomial
of M is defined as

WD) = 2 + 1 + A + rd + 1y,
where
ri =by + bz +a>0,
ry = bi1bsz — b1y + biabay + a(byy + b33),
r3 = biaby b3z + a(b11b33 — D133y + b1abay),
rq = byby1a(bi + by3) > 0.

By calculation, we can obtain
b11b33 - b13b31 > b13b31 - b13b31 = O’

which yields that r, and r3 > 0. Furthermore, we can verify that rir, — r3>0 and rirars — r3 — rirg > 0
So, the matrix M is a Hurwitz matrix. Next, we will prove the definiteness of X by following three
steps.

Step 1. Consider the algebraic equation

G+ M+ M" =0. (4.4)
Let M; = T\MT;", where
bizbs;
1 0 0O —bl] _b12+T b13 0
0O 1 00 by 0 0 0
T, = 3 ’M = 31033 .
om0 o B —byy b
0 0 01 0 o’ 0 -a
Take M, = ToM,T;", where
10 0 0 —bi b+ B —by 0
T 01 0 0 Mo = by 0 0 0
00 -2 | 0 0 a —atbae

baialbsibsz—(ba1+b31)al
a§1b33 ’
Case 1.1 : If g¢; = 0, the standard transformation matrix 7’ is given by

where g, =

b31b33 b33(—% +a) (b3 — bhz—'la)z =b33(b3; + @)

b31b33 bo
7, =| 9 T ~bx + 37 bs3
0 0 1 0
0 0 0 1
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Then, we calculate

—T11 —T12 —T13 —T14
B 1 0 0 0
Ql = T3M2T3l = 0 1 0 0 )
(b21+b3 )
0 0 1 ——;313
where )
@
Ty = by + by — ——,
b3
bi1br
Ti2 = biobyy — bisbsy + by1b3s — el ,
b3,
bbby«
Ti3 = —b21( — b12b33 - b13cx + ]2 21 ),
31
bo1 + b3))a [—b11b3 + (ba1 + b3
T = —b33{b12b21 — bisbs + (bay + b3 [ 111?231 (ba1 + b31) ]}.
31

Therefore the equivalent equation of (4.4) can be written as (T53T>T)GH(T5T>T)" +
O\ [(TsTT)E (TS LTy | + (TS TaT)E(TTTy)T | @7 = 0. From Lemma 4.2, we have

(T:T,T)E(T5T,T)) = (b31b330'%)§2,

where )

T2 R SR
2(T11712-713) 0 2(T11712-713) 0
— — 1 0

— 2(T1T12-713)

2o 0 )

2(t11T12-713) 2713(T11T12-713)
0 0 0 0

is a symmetric positive semi-definite matrix. Hence,
2 15 117
X1 = (ba1byzo ) (T5T2Th) [(T3T2T1) ] .

Case 1.2 : If g; # 0, we can find standardized transformation T} such that Q, = T, M, T ! where

byibzgr i J2 J3
b31b by1+b31)%a?
T, = 0 —31,,;1341 ~qi(bss + @) byqy + BRI 21+b§311) <
4 pu pu b
_ (b t+b3)e
0 0 q1 b
0 0 0 1
. ba1bag (b . q1[ b2, b33(b33+q1)+b31(=bo +b31)b3za+(b2 +by b3 +b2)a? ] .
where j; = -5 33112(1 33+a), J2 = L — 1b§1 2 ], J3 = —b3qi(bs; + @) —
(b1 +b31)a[ b3 b3sq+(ba1 +b31)2? |
b3, '
Then, we have
L A At < R "
0, = 1 0 0 0
2lo 1 0 o0
0 0 1 0
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Likewise, (4.4) can be transformed into the following form: (T4T,T, )G%(T4T2T1)T +
Q2 [(T4T2T1)21(T4T2T1)T] + [(T4T2T1)21(T4T2T1)T:| Q; = 0. From Lemma 4.1, we have

(TyTyTHZ((TATL T = (b31b33q101)*Q,

where
rr3—riry 0 _ 3 0
2(r r2r3—r§—r%r4) 2(rirr —r%—r%m)

r3 r
0 YR RS 0 - ﬁ
Q, = 2(rirpr3—ry—rirs) 2(ryrar3—r3—rirs)

1 — 3 O r O - .
2(r r2r3—r§—r%r4) 2(r r2r3—r§—r%r4)
r rmn—r3
0 - l 2_y2 0 2_2

2(rirar3—ry—rirs) 2r4(rirar3—r;—rirs)

is a positive definite symmetric matrix; hence,
2 -1 -17
Xy = (b31b3qo ) (T4T2T1) ™ [(T4T2T1) ] ;

is also a positive definite matrix.
Step 2 . Consider

G5+ My +X,M" = 0. 4.5)
Let M3 = TsMT;', where
01 00 0 by 0 0
/1000 _|=bia by -biz 0
=lo o1 o™= o —by1 by by |
0 0 01 a 0 0 -«
Take My = TeM3T; ', where
1 0 0O 0 by 0 0
0 1 00 —b, —by, -biz 0
T6 - 0 0 1 ol M4 = 0 _h12b3bll+2—b33a —b33 b33 5
0 = 01 0 ¢ —bue g
with g, = ¥
Case 2.1: If ¢, = 0, we let Q3 = T7M,T; !, where the standard transformation matrix T; is given
by
_ blsd(blif:zl +b33a) j4 j5 j6
o 0 blsa(b12blzl+b33a) b13(l(bljzs+a) a,(_blb31bz33 +a)
’ 0 0 _bize —a ’
b1z
0 0 0 1
L T At < T "
1 0 0 0
S=lo 1 o ol
0 0 1 0
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2 2
. biza(by1+b3z+a)(bab31+byza) . _ blS"(bl3b31+h33+b33a+a ) . 3 b13bzza(b3z3+2a)

where j, = — = s Jjs = — ™ s Jo = —a’ + === Therefore,
12

we have

(T T6T)GHTT6Ts)! + M (T TeT)EAT:T6Ts)" | + (T3 TeTEAT:T6Ts)" | MT = 0,

where
b bpb b
(TS T T STy TeTs) = [ - 25 S 59 pq,
12
Hence
a’b? (b 2b3 + b33&’)20'2 T
2 = Eluttatk 2(T7T6Ts)~'Q [(T7T6T5)_1)] ,

2
b,
is a positive define matrix.

Case 2.2 : Consider that g, # 0. Let Ms = TsM, T, where

10 0 0 0 1223} 0 0
- 0 1 0 0 o b, —by; —b13 0
8 = 5= biab3i +byza biaga
00 1 o’ 0o - b by (-1 - —b12b31+b330) b33
biagn biaby3qr
00 biab3+byza 1 0 0 qs3 @+ biob31+b33a

_ _bipae _ _bnbunp biaga(=biabssga+binbsia+biza?)
where g3 = bia biab31+b33 (b12b31+b330)? :

Case 2.2.1. If ¢, # 0 and g3 = 0, let Qs = ToMsT, ", where

bi2b3; + bz J7 Js Jo
biob31+b3za biagq
Ty = g - ;l;llz = b33(_1 _1b|2b3]|2+233a) b(3)3 ,
0 0 0 1
—T1 —T22 —T23 —T24
3 1 0 0 0
Q=lo 1 o 0 ’
biab
0 0 1 —a b12;7§1:f£:3a

byza(by1+b33)

where j; = bibs + bi(bs1 + qo) + ==, js = bi3(by + %) + (byy + by o =

b bizb blgb3é+?733a

— 1292 — 13033 1101203392 —

—b33(b33+@), o1 = b +b33(1+5—725—), 70 = —(=b12ba1 +b13b31 —bibss + 255 — P2 ), 75 =

b12b21b331b12(b31+42)+b330] _ _ _ b33qa(b11b12b31+b12b33g2—2b12b31 a+b11 b3za—2b33a?)
habathna v T = ~h(a(=bi + @) + biolby + (Buabsi+hya)? Iy

Therefore, we conclude that

(ToTsTsTs5)G3(ToTsTsTs)" + Q4 [(T9T8T6T5)22(T9T8T6T5)T] + [(T9T8T6T5)22(T9T8T6T5)T] Q) =0.

where
(ToTsTsT5)Zo(ToTsTsTs) = [(b12b3) + b3za)o]* Q.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 602-626.



618

Beside, it follows from Lemmas 4.2 that the specific form of the positive semi-definite matrix Q, is

T 1
2(121722-723) (1) 2(121723—723) 0
a - 0 2(121722-123) 0 0
27— 0 — = ol
2(121722-723) 2723(1217T22-723)
0 0

Therefore, we conclude that
) a5 17
2y = (biab31 + byza) 05(ToTsTsTs) € [(T9T8T6T5) ] ,

1s semi-positive definite.
Case 2.2.2. If g, # 0,3 # 0, we let Qs = T1oMsT !, where

10
q3(b12b31 + b3za) Jio Ju J12
biabs1+b3za biab
Tlo = 0 — 1217311;r = q3(b33 + a/) b33q3 + (a/ 2%1?1?;&)2
12 3342
0 0 93 @ biab31+b3za
0 0 0 1
A A At T
1 0 0 0
=g 1 0o ol
0 0 1 0

with

q3(by11 + b3z + @)(b1abs) + b3%0!)
by,

Jio =

b

' by b12b33qa|b12b33(b31 + q2) — biabzia + byz(bss — @)a]
= g3l a? + by3(b33 + g3 + @) + by3(by; + —= }

Jil f]3{ 33(b33 + q3 + @) + bi13(b3) brs )+ (biab3, + byza)?

bi2b33q>

bi12b33q» 2]
biyb3; + bz '

b )
Nb3qs + (@ braba + bt

Ji2 = —bxq3(bsz + a) + (—a +

Therefore, we have
(T10TsT6T5)G3(T1oTsT6Ts)" +0s [(TloTsTéTs)Zz(T10T8T6T5)T]+[(T10T8T6T5)22(T10T8T6T5)T] 0f =0,

where
(T10TsTsT5)Zo(T10TsT6Ts)" = q3(biabsy + byz)*03Q.

Hence ;
Yy = ¢3(b1obsy + byza) o5 (T10TsT6Ts) ™' Q [(T10T8T6T5)_1] ,

is also a positive definite matrix.
Step 3. Consider
G3 + MZ; +Z:M" = 0. (4.6)
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We let Mg = T\ MT;,!, where

Tll =

S O = O
o - O O
S O O =

Let Q¢ = T12M6T1‘21, where the standard transformation matrix 7', is given by

—bmbzld —b2101(b11 + CZ) —b12b210/ + CZS —CZS

—— 0 by —a? a?
2= 0 0 a —a |
0 0 0 1

By direct calculation, we obtain that

0
1
0

Thus (4.6) can be transformed into the following from:

(TT1)GH(TiTi)" + Qs [(T12T11)23(T12T11)T] + [(T12T11)23(T12T11)T] Q¢ =0,

where
(T12T11)23(T12T11)T = (—513[92100'3)291-

Thus,
2 -1 1"
23 = (=bi3by1ac3) (T12T11)™ Q4 [(T12T11) ] ,
1s a positive definite matrix.

Summing up the above steps, we have X = %, + %, + 25 is a positive definite matrix. The solution
(x(1), ¥(1), z(t), w(t)) of system (1.4) has a log-normal probability density function

W )T

y z _ 7
1 —%(ln xi*,ln "'7,111 Z%ﬂ,ln JT‘;)Z L(in Xi*,ln %,ln ﬁ’an

D(x,y,2,w) = Q)2 e

5. Extinction

Theorem 5.1. Let (x(¢), y(¢), z(t), w(t)) be the solution of the system (1.4) with any initial value
(x(0), ¥(0),2(0), w(0)) € R*. If RE = —L2— < 1, then

T Di(Drti0d)

In y(t 1
lim sup n%() < (D, + 50’%)(R0E -1)<0,as.,

t—+00

which means the extinction of y(z).
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Proof. Consider the following SDE:
dx(®) = [1 — D1x(r)]dt + o X(1)d B, (¢),
with the same initial value x(0) = x(0) > 0, making use of the stochastic comparison theorem, we have

x(t) < x(t), a.s.

Moreover,
1 ! +00 1
lim — x(s)ds = f s-h(s)ds = —,
t—+oo [ 0 0 D]
N U o] 20435 -2 ] )
where h(s) = (%) T T7(1+ O_—;)]s e 71", s> 0. Applying Itd’s formula to In y(r), we have
1
diny = [byx — (D> + 50’%)]dt + 0dBs(1)]
1 (5.1)
< [b1% - (D> + 5ag)]dz + 0»dBy(1)],
Integrating (5.1) from O to ¢ on both sides, one can see that
t
Iny@#) _Iny(0 I 1 02dBs(s)
ni() < nyt( )—bI;f #)ds = (Dy + 50 + f(’% (5.2)
0

Applying the strong law of large numbers yields
[ o2dBs(s)
lim —— =0
t—+00

Next, we take the superior limit on both sides of (5.2)

t 1 (7 1
lim sup ) < b, lim sup — f 2(s)ds — (D3 + =03)
t—+00 t—+o00 t 0 2
b, 1,
=L D+
D, (D 20'2)

1
= (D, + 5ag)(R{;“ -1)<0.

which implies that
lim y(#) =0, a.s.
f—+00

6. Numerical simulation

In this section, employing the Milstein higher-order method, we will present numerical simulations
to verify the theoretical results. The discretization equations of model (1.4) are given by

2
01 Xk

X1 = X + (1 = a1y — axxize — Dix) At + oy Namm . + 2 (71, — Dat,
O'%yk 2
Vet = Yk + (D10yx — Dayr) At + o2y \/Eﬂz,k + > (. — DAL, 6.1)

2
vy
3 2
Zk+l = Tk + (C]Wk — Co Xk — D3Zk)Al + 032 VA”B,k + —2 (773’]( - I)At,

Wit = Wi + (ayr — awyp)At,
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where 17;,(i = 1,2,3; k= 1,2 ...,n) denotes independent Gaussian random variables which follow the
distribution N(O, 1).

— Stochastic solution
&h —— Deterministc soluion

0 05 1 15 2 25 3 35 4 0.3 0.383 038 0395 04 0405 04 0415 042
Histograms and marginal density functions of x(t)

=
E

— Stochastic solution
s —— Deterministic soluion

1 012 0 016 0f6 02 02 02 028 028 03
Histograms and marginal density functions of y(t)

35

Time t

Stochastic solution
eterministic soluion

0 05 1 15 2 25 3 38 4 027 028 028 0F 03 0% 03 0% 0¥k 0% 0¥
Time t 00 Histograms and marginal density functions of z(t)

—— Stochastic solution

025 —— Deterministic solujon
2, | 10~
P . ua
0151 50-
01 L L L L 0 L L L 4 - L L L L
0 05 1 15 2 25 3 38 4 015 016 o017 018 019 02 02 02 028 (d 0%
Time t 00 Histograrms and marginal density functions of wi(t)

Figure 1. Left-hand column presents the numbers of x,y,z and w for system (6.1) with
(01,02,03) = (0.01,0.01,0.05), and its deterministic system, respectively. Right-hand
columns shows the frequency histograms and corresponding marginal density function
curves of x, y, z and w, respectively.

Example 6.1. Let us choose a; = 1,a, = 4, Dy = 1.01, D, = 8, D; = 1.02, by = 20,¢; =
5,¢0 =5 a =009, 0, = 0, = 0.01, 03 = 0.05 and the initial value (x(0), y(0), z(0), w(0)) =
_ b _ s _ b —
(0.9,0.1,0.1,0.1). We conclude that Ry = 55~ = 2.4752 > 1 and R; = m = 2.4751 > 1.
Theorem 4.1 shows that there exists an ergodic stationary distribution of stochastic model (1.4). Noting
that (x*, y*, z", w*) = (0.4, 0.1955,0.3236,0.1955), we have following the covariance matrix

1.3643¢7%  —4.7814¢7% -2.3417¢7% —1.0541¢™
—4.7814¢7%  8.7590e™" —6.2162¢7%*  5.2528¢%
23417 -6.2162¢™ 75113 2.3141e™™
-1.0541e™% 525287 2.3141e™™  2.4051e™™

> =
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100 T T 25

T T T
— Marginal density function —— Marginal density function — Marginal density function
~— Histogram fitting curve — Histogram fitting curve ~— Histogram fitting curve

|
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0 - 0 4 L 1> 0
038 0385 039 0395 04 0405 041 0415 042 04 015 02 025 03 025
x(t) ¥

Figure 2. The marginal density functions and frequency fitting curves for x, y and z in system
(1.4).

Thus, we have the corresponding probability density function

z

1 , —1 ¢ ) ,
D(x V.2 w) = 1.0882 x 105 % e’i“"%"“ $Trz- 10 35910 57T )= 0 5 In s In 55 In st T
INA RG] - . .

Z

As aresult, ®(x,y, z, w) has the following four marginal density functions:

FoL0)) 1 _ (Inx=Inx*)2 1 _ (Inx+09163)2
—_— = ——7 2wy = ———e 278670 |
Ox x V2w 34.1553x

oD 1 _ (ny-Iny*)? 1 (Iny+1.632)2
A I = — ¢ 005

0y y\2awn, 0.2346y

oD 1 _(nz-inz")? 1  (nz+11282)%
P ———’ 2w33 = — ¢ 0.0015 R
0z z27wss 0.0687z

o)) 1 _ (nw-Inw*)2 1 _ (nw+1.632)%
—_— = —— ¢ 2wyy = ———e¢ 4810170
ow WA 27TWas 0.0389w

we can conclude that system (1.2) admits a global positive stationary solution on R?; see Figure 1 and
Figure 2.

Example 6.2. Let us choose b; = 20, D; = 2.3, D, = 8 and 0, = 1.8. Then the condition
RE = 0.693 < 1 is satisfied. Theorem 5.1 shows that MC-degrading bacteria of system (1.4) will go to
extinction with probability one, which is numerically confirmed by Figure 3.
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Figure 3. Corresponding numbers for solution (x(), y(¢), z(¢)) to system (1.4) with random
perturbations (o1, 0, 03) = (0.01, 1.8, 0.05) and main parameters (b, Dy, D,) = (20, 2.3, 8).

7. Conclusions

In the current paper, we consider a stochastic Microcystins degradation model with distributed
delay. We have established sufficient conditions for the existence of an ergodic stationary distribution
of the positive solutions to system (1.4) by constructing a suitable stochastic Lyapunov function. The
result shows that a small amount of white noise can guarantee the existence of an ergodic stationary
distribution of the positive solutions to system (1.4). In addition, we have obtained the exact probability
density function around a quai-equilibrium point.

Some interesting topics deserve further consideration. On the one hand, the paper focuses on the
dynamical evolution and stability of the system (1.4). It should be noted that model (1.4) can potentially
be solved analytically by using the Lie algebra method [25,26]. On the other hand, because our model
is autonomous and only disturbed by white noise, it would be interesting to introduce telegraph noise,
such as a continuous-time Markov chain, into system (1.3). Moreover, it would also be interesting to

study more complicated MCs degradation models, such as multi-group MCs degradation models. We
will leave these problems as our future work.
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