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Abstract: A stochastic Microcystins degradation model with distributed delay is studied in this pa-
per. We first demonstrate the existence and uniqueness of a global positive solution to the stochastic
system. Second, we derive a stochastic critical value Rs

0 related to the basic reproduction number R0.
By constructing suitable Lyapunov function types, we obtain the existence of an ergodic stationary
distribution of the stochastic system if Rs

0 > 1. Next, by means of the method developed to solve the
general four-dimensional Fokker-Planck equation, the exact expression of the probability density func-
tion of the stochastic model around the quasi-endemic equilibrium is derived, which is the key aim of
the present paper. In the analysis of statistical significance, the explicit density function can reflect
all dynamical properties of a chemostat model. To validate our theoretical conclusions, we present
examples and numerical simulations.

Keywords: Microcystins degradation model; distributed delay; stationary distribution; probability
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1. Introduction

Microcystins (MCs) represent a highly prevalent form of cyanotoxins derived from harmful
cyanobacterial blooms. These toxins can introduce toxicity into vital organs including liver, kidney,
heart etc., posing major threats to human health [1]. Biodegradation has emerged as an economically
and environmentally favorable approach for MCs degradation, garnering considerable research atten-
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tion [2,3]. Recently, Song et al. [4] proposed a degradation model as follows:
x′1(t) = Da10 − a12x1(t)x2(t) − a13x1(t)x3(t) − (D + d1)x1(t),
x′2(t) = a21x2(t)x1(t) − a20x2(t) − (D + d2)x2(t),
x′3(t) = a30x2(t) − a31x1(t)x3(t) − (D + d3)x3(t),

(1.1)

where x1(t), x2(t) and x3(t) denote the concentrations of MCs, MC-degrading bacteria and degrading
enzymes produced by MC-degrading bacteria at time t, respectively. a10 > 0 is the input concentration
of MCs; D is the washout rate; a12 ≥ 0 is the consumption rate of MCs; a21 ≥ 0 is the maximal growth
rate of MC-degrading bacteria; a20 ≥ 0 is the consumption rate of MC-degrading bacteria; a30 ≥ 0
is the maximal growth rate of degrading enzymes; a13 ≥ 0 and a31 ≥ 0 are the degradation rate of
MCs and the consumption rate of degrading enzymes, respectively; di > 0 (i = 1, 2, 3) represents the
death rates of MCs, MC-degrading bacteria and degrading enzymes, as distinguished by, i = 1, 2, 3,
respectively. Re-scaling model (1.1) by

x1 = a10x, x2 = y, x3 = z, t =
T
D
, D1 =

D + d1

D
,D2 =

a20 + D + d2

D
, D3 =

D + d3

D
,

a1 =
a12

D
, a2 =

a13

D
, b1 =

a21a10

D
, c1 =

a30

D
, c2 =

a31a10

D
,

the authors of [5] obtained the following dimensionless model:
x′(t) = 1 − a1x(t)y(t) − a2x(t)z(t) − D1x(t),
y′(t) = b1x(t)y(t) − D2y(t),
z′(t) = c1y(t) − c2x(t)z(t) − D3z3(t).

(1.2)

Time delays cannot be ignored in models for MCs degradation, especially the delay between MC-
degrading bacteria and the production of new degrading enzymes particles. There has been extensive
discussion of the presence of such delays and their impact on microbial population dynamics (see
[6–8]). Song et al. [9] considered the following model with time delay:

x′(t) = 1 − a1x(t)y(t) − a2x(t)z(t) − D1x(t),
y′(t) = b1e−δτx(t − τ)y(t − τ) − D2y(t),
z′(t) = c1y(t) − c2x(t)z(t) − D3z3(t).

Here the constant τ ≥ 0 represents the time consumed by MC-degrading bacteria to convert MCs, once
consumed, into viable biomass and e−δτ represents the survival probability of degrading bacteria during
the conversion process. However, a more realistic delayed MC-degrading model should be an equation
with distributed delay, which describes the cumulative effect of the past history of a system. In this
paper, we will mainly consider the following degradation model with distributed delay

dz(t) =
[
c1

∫ t

−∞

K(t − s)y(s)ds − c2x(t)z(t) − D3z3(t)
]
dt.

According to MacDonald [10], the distributed delay function f (t) can be described by the Gamma
distribution

K(t) =
αn+1tne−αt

n!
,
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as a kernel, where α > 0 and n is a nonnegative integer. In this article, we mainly consider the weak
kernel, that is K(t) = αe−αt (n = 0) with α > 0.

On the other hand, in the real world, population systems are inevitably influenced by the envi-
ronmental noise (see [11–15]). According to May [16], the birth rate, carrying capacity, competition
coefficient, and other parameters should exhibit random fluctuations as a result of environmental noise.
In order to investigate the impact of environmental noise on population dynamics, various scholars
have added white noise into deterministic systems (see [17–21]).

Therefore, based on the model (1.2), we further consider the following stochastic MCs degradation
model with distribution delay

dx(t) =
[
1 − a1x(t)y(t) − a2x(t)z(t) − D1x(t)

]
dt + σ1x(t)dB1(t),

dy(t) =
[
b1x(t)y(t) − D2y(t)

]
dt + σ2y(t)dB2(t),

dz(t) =
[
c1

∫ t

−∞

K(t − s)y(s)ds − c2x(t)z(t) − D3z3(t)
]
dt + σ3z(t)dB3(t),

(1.3)

where Bi(t) denotes mutually independent standard Brownian motions and σ2
i > 0 denotes the intensity

of white noises i = 1, 2, 3. Set

w(t) =
∫ t

−∞

K(t − s)y(s)ds =
∫ t

−∞

αe−α(t−s)y(s)ds.

Then, by using the linear chain technique, system (1.3) is transformed into the following equivalent
system: 

dx(t) =
[
1 − a1x(t)y(t) − a2x(t)z(t) − D1x(t)

]
dt + σ1x(t)dB1(t),

dy(t) =
[
b1x(t)y(t) − D2y(t)

]
dt + σ2y(t)dB2(t),

dz(t) =
[
c1w(t) − c2x(t)z(t) − D3z(t)

]
dt + σ3z(t)dB3(t),

dw(t) =
[
αy(t) − αw(t)

]
dt.

(1.4)

In this paper, we propose a Microcystins degradation model with distributed delay and stochastic
perturbation. As is known to us, there is no work concerning the existence of stationary distribution in
system (1.3). The main difficulty is to find appropriate Lyapunov functions. It should be emphasized
that there are relatively few studies focusing on the explicit expression of probability density functions
due to the difficulty of solving the corresponding Fokker-Planck equation.

The paper is organized as follows. In Section 2, we prove that the stochastic Microcystins degrada-
tion system (1.4) with distributed delay has a unique global positive solution. In Section 3, a unique
global solution of system (1.4) is proved to be stationary by constructing several suitable Lyapunov
functions. Numerical simulations are presented to illustrate our analytical results in Section 4.

2. The positivity of the solution

To study the dynamical behavior of Microcystins degradation model, we first need to consider
whether the solution is global and positive. In this section, we will prove the existence and uniqueness
of a global solution to system (1.4) with any positive initial value.

Theorem 2.1: For any initial value (x(0), y(0), z(0),w(0)) ∈ R4
+, there is a unique solution of the

system (1.4) on t ≥ 0 and the solution will remain in R4
+ with probability one.
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Proof. The coefficients of system (1.3) satisfy the local Lipschitz condition, so there is a unique
local solution (x(t), y(t), z(t),w(t)) on t ∈ [0, τe), where τe is the explosion time. Now we shall
show that this solution is global, i.e., prove τe = ∞ a.s. Let k0 ≥ 1 be sufficiently large so that
x(0), y(0), z(0) and w(0) all lie within the interval [ 1

k0
, k0]. For each integer k ≥ k0, define the stopping

time:

τk = inf
{
t ∈ [0, τe) : min{x(t), y(t), z(t),w(t)} ≤

1
k

or max{x(t), y(t), z(t),w(t)} ≥ k
}
,

where throughout this paper we set inf ∅ = ∞. Evidently, τk is increasing as k → ∞. Denote τ∞ =
limk→∞ τk, where τ∞ ≤ τe a.s. If we can prove that τ∞ = ∞ a.s., then τe = ∞ and (x(t), y(t), z(t),w(t)) ∈
R4
+ a.s. for all t ≥ 0. In other words, to complete the proof all we need to prove is that τ∞ = ∞ a.s. If

this statement is false, then there is a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T } > ε.

Hence there is an integer k1 ≥ k0 such that

P{τk ≤ T } > ε for all k ≥ k1. (2.1)

Define the nonnegative C2− Lyapunov function V0 as follows

V0(x, y, z,w) = x − 1 − ln x + ay − ln y − (1 + ln a) + cz − d ln z − (d + ln
c
d

) + bw − ln w − (1 + ln b),

where a, b, c, d are positive constants which will be determined later.
Based on the basic inequality u − 1 − ln u ≥ 0, we have

cz − d ln z − (d + ln
c
d

) = d(
cz
d
− 1 − ln

cz
d

) ≥ 0.

Applying Itô’s formula, we have

dV0 = LV0dt + σ1(x − 1)dB1(t) + σ2(ay − 1)dB2(t) + σ3(cz − d)dB3(t), (2.2)

LV0 = 1 − a1xy − a2xz − D1x + a(b1xy − D2y) + c(c1w − c2xz − D3z) + b(αy − αw) −
1
x
+ a1y + a2z

+ D1 +
1
2
σ2

1 − b1x + D2 +
1
2
σ2

2 + d(−
c1w

z
+ c2x + D3 +

1
2
σ2

3) −
αy
w
+ α

≤ 1 + D1 + D2 + dD3 + α +
1
2

(σ2
1 + σ

2
2 + dσ2

3) + (ab1 − a1)xy + (a2 − cD3)z + (−D1 − b1 + dc2)x

+ (−aD2 + a1 + bα)y + (cc1 − bα)w.

Choose b = a2c1
αD3
, c = a2

D3
, d = b+D1

c and a = min{ a1
b1
, a1D3+c1a2

D2D3
} such that ab1−a1 ≤ 0 and a1−aD2+αb ≤

0, then, we have

LV0 ≤ 1 + D1 + D2 + dD3 + α +
1
2

(σ2
1 + σ

2
2 + dσ2

3) := K1,

where K1 is a positive constant. Integrating equation (2.2) from 0 to τk ∧ T and then taking the expec-
tation on both sides, we have
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EV0

(
x(τk ∧ T ), y(τk ∧ T ), z(τk ∧ T ),w(τk ∧ T ))

)
≤ V0(x(0), y(0), z(0),w(0)) + K1E(τk ∧ T )

≤ V0(x(0), y(0), z(0),w(0)) + K1T
(2.3)

Set Ωk = {τk ≤ T } for k ≥ k1 and in view of Eq (2.1), we have P(Ωk) ≥ ϵ. Note that for ev-
ery ω ∈ Ωk, there is x(τk, ω) or y(τk, ω) or z(τk, ω) or w(τk, ω) that is equal to either k or 1

k . Thus
V0
(
x(τk, ω), y(τk, ω), z(τk, ω),w(τk, ω)

)
is no less than either(

k − 1 − ln k
)
∧

(
ak − ln k − (1 + ln a)

)
∧ d
( c
d

k − 1 − ln
ck
d

)
∧

(
bk − ln k − (1 + ln b)

)
or
(1
k
− 1 − ln

1
k

)
∧

(
a

1
k
− ln

1
k
− (1 + ln a)

)
∧ d
( c
d

1
k
− 1 − ln

c
dk

)
∧

(
b

1
k
− ln

1
k
− (1 + ln b)

)
=

(
k − 1 − ln k

)
∧

(
ak − ln k − (1 + ln a)

)
∧ d
( c
d

k − 1 − ln(ck) + ln d
)
∧

(
bk − ln k − (1 + ln b)

)
or
(1
k
− 1 + ln k

)
∧

(
a

1
k
+ ln k − (1 + ln a)

)
∧ d
( c
d

1
k
− 1 − ln c + ln(dk)

)
∧

(
b

1
k
+ ln k − (1 + ln b)

)
Therefore, we obtain

V0

(
x(τk, ω), y(τk, ω), z(τk, ω),w(τk, ω))

)
≥

(
k − 1 − ln k

)
∧

(
ak − ln k − (1 + ln a)

)
∧ d
( c
d

k − 1 − ln(ck) + ln d
)
∧

(
bk − ln k − (1 + ln b)

)
∧

(1
k
− 1 + ln k

)
∧

(
a

1
k
+ ln k − (1 + ln a)

)
∧ d
( c
d

1
k
− 1 − ln c + ln(dk)

)
∧

(
b

1
k
+ ln k − (1 + ln b)

)
It follows from Eq (2.3) that

V0(x(0), y(0), z(0),w(0)) + K1T ≥E
[
IΩk(ω)V0

(
x(τk, ω), y(τk, ω), z(τk, ω),w(τk, ω))

)]
≥ϵ
(
k − 1 − ln k

)
∧

(
ak − ln k − (1 + ln a)

)
∧ d
( c
d

k − 1 − ln(ck) + ln d
)

∧

(
bk − ln k − (1 + ln b)

)
∧

(1
k
− 1 + ln k

)
∧

(
a

1
k
+ ln k − (1 + ln a)

)
∧ d
( c
d

1
k
− 1 − ln c + ln(dk)

)
∧

(
b

1
k
+ ln k − (1 + ln b)

)
where IΩk(ω) is the indicator function of Ωk. Let k → ∞, we obtain

∞ > V0(x(0), y(0), z(0),w(0)) + K1T = ∞

which is a contradiction and so we must have that τ∞ = ∞. This completes the proof.

3. Stationary distribution

For the stochastic model, we mainly focus on the existence of a stationary distribution. Define a
critical value

Rs
0 =

b1

(D1 +
1
2σ

2
1)(D2 +

1
2σ

2
2)
.
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Consider the integral equation

X(t) = X(t0) +
∫ t

t0
b(s, X(s))ds +

k∑
r=1

∫ t

t0
σr(s, X(s))dB(s). (3.1)

Lemma 3.1. ([22]) Suppose that the coefficient of (3.1) is independent of t and satisfies the follow-
ing condition for some constant B:

|b(s, x) − b(s, y)| +
k∑

r=1

|σr(s, x) − σr(s, y)| ≤ B |x − y| ,

|b(s, x)| +
k∑

r=1

|σr(s, x)| ≤ B(1 + |x|),

(3.2)

in UR ⊂ R
d
+ for every R>0, also suppose that there exists a nonnegative C2-function V(x) ∈ Rd

+ such
that

LV(x) ≤ −1 outside some compact set.

Then system (3.1) has a solution, which is a stationary distribution.
Remark 3.1. According to the proof of Lemma 2.1 in [23], we know that condition (3.2) in Lemma

3.1 can be replaced by the global existence of the solutions. Hence, Theorem 2.1 indicates that (3.2) in
Lemma 3.1 is satisfied.

Theorem 3.1. For any initial value (x(0), y(0), z(0),w(0)) ∈ R4
+, if Rs

0>1, then system (1.4) has at
least one stationary solution (x(t), y(t), z(t),w(t)) ∈ R4

+.

Proof. By Lemma 3.1, we only need to construct a nonnegative C2-function Ṽ(x, y, z,w) and a
closed set U ⊂ R4

+ such that

LṼ(x, y, z,w) ≤ −1, for any (x, y, t,w) ∈ R4
+ \ U.

Define
V1(x, y, z,w) = − ln x − e1 ln y +

a2

D3
z +

c1a2

αD3
w,

where e1 is a positive constant to be chosen later. Then applying Itô’s formula to V1, we have

LV1 ≤ −
1
x
− e1b1x + e1(D2 +

1
2
σ2

2) + D1 +
1
2
σ2

1 + a1y + a2z +
a2

D3
(c1w − c2xz − D3z)

+
c1a2

D3α
(αy − αw)

≤ −2
√

b1e1 + e1(D2 +
1
2
σ2

2) + D1 +
1
2
σ2

1 + (a1 +
c1a2

D3
)y

(3.3)

Taking e1 =
b1

(D2+
1
2σ

2
2)2 , then in view of (3.3) one can see that

LV1 ≤ −
b1

D2 +
1
2σ

2
2

+ D1 +
1
2
σ2

1 + (a1 +
c1a2

D3
)y

= −(D1 +
1
2
σ2

1)(Rs
0 − 1) + (a1 +

c1a2

D3
)y

=: −λ + (a1 +
c1a2

D3
)y,

(3.4)
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where
Rs

0 =
b1

(D1 +
1
2σ

2
1)(D2 +

1
2σ

2
2)
, λ = (D1 +

1
2
σ2

1)(Rs
0 − 1).

Define
V2 = − ln x − ln w − ln z.

Then applying Itô’s formula to V2, one gets

LV2 ≤ −
1
x
−
αy
w
−

c1w
z
+ a1y + a2z + D1 +

1
2
σ2

1 + c2x + D3 +
1
2
σ2

3 + α. (3.5)

Select
V3(x, y, z,w) =

1
θ + 2

(x +
a1

b1
y +

a1D2

4b1c1
z +

a1D2

2αb1
w)θ+2,

where 0 < θ < min{D1−
σ2

1
2

D1+
σ2

1
2

,
D2−σ

2
2

D2+σ
2
2
,

D3−
σ2

3
2

D3+
σ2

3
2

}. Applying the same method to V3, we have

LV3 ≤ (x +
a1

b1
y +

a1D2

4b1c1
z +

a1D2

2αb1
w)θ+1

{
1 − D1x −

a1D2

2b1
y −

a1D2D3

4b1c1
z −

a1D2

4b1
w
}

+
θ + 1

2
(x +

a1

b1
y +

a1D2

4b1c1
z +

a1D2

2αb1
w)θ
[
σ2

1x2 + σ2
2(

a1

b1
)2y2 + σ2

3(
a1D2

4c1b1
)2z2]}

≤ (x +
a1

b1
y +

a1D2

4b1c1
z +

a1D2

2αb1
w)θ+1 − D1xθ+2 −

D2

2
(
a1

b1
)θ+2yθ+2 − D3(

a1D2

4b1c1
)θ+2zθ+2

−
α

2
(
a1D2

2αb1
)θ+2wθ+2 +

θ + 1
2

(x +
a1

b1
y +

a1D2

4b1c1
z +

a1D2

2αb1
w)θ
[
σ2

1x2 + σ2
2(

a1

b1
)2y2 + σ2

3(
a1D2

4c1b1
)2z2]

≤ −D1θxθ+2 −
D2θ

2
(
a1

b1
)θ+2yθ+2 − D3θ(

a1D2

4b1c1
)θ+2zθ+2 −

α

4
(
a1D2

2αb1
)θ+2wθ+2 + B0,

(3.6)
where

B0 = sup
(x,y,z,w)∈R4

+

{
(x +

a1

b1
y +

a1D2

4b1c1
z +

a1D2

2αb1
w)θ+1 − D1(1 − θ)xθ+2 −

D2(1 − θ)
2

(
a1

b1
)θ+2yθ+2

− D3(1 − θ)(
a1D2

4b1c1
)θ+2zθ+2 −

α

4
(
a1D2

2αb1
)θ+2wθ+2 +

θ + 1
2

(x +
a1

b1
y +

a1D2

4b1c1
z +

a1D2

2αb1
w)θ

·
[
σ2

1x2 + σ2
2(

a1

b1
)2y2 + σ2

3(
a1D2

4c1b1
)2z2]} < ∞.

Consequently, we have
V = M0V1 + V2 + V3, (3.7)

where M0 > 0 satisfies that −M0Rs
0 + c0 ≤ −2. Also,

c0 = sup
(x,y,z,w)∈R4

+

{
− D1θxθ+2 −

D2θ

2
(
a1

b1
)θ+2yθ+2 − D3θ(

a1D2

4b1c1
)θ+2zθ+2 −

α

4
(
a1D2

2αb1
)θ+2wθ+2

+ a2z + c2x + D1 + D3 +
1
2
σ2

1 +
1
2
σ3

2 + α + B0

}
.
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It is obvious that

lim inf
n→∞, (x,y,z,w)∈R4

+\Kn

V(x, y, z,w) = +∞,

and Kn = ( 1
n , n)× ( 1

n , n)× ( 1
n , n)× (1

n , n). It is evident that V(x, y, z,w) is a continuous functions, so there
exists a minimum point (x0, y0, z0,w0) ∈ R4

+. Thereafter, we formulate the nonnegative C2 function Ṽ
as follows:

Ṽ(x, y, z,w) = V(x, y, z,w) − V(x0, y0, z0,w0).

Combining with (3.4), (3.5), (3.6) and (3.7), we obtain that

LṼ ≤ −M0λ +

[
M0(a1 +

a2c1

D3
) + a1

]
y + a2z + c2x + D1 +

1
2
σ2

1 + D3 +
1
2
σ2

3 + α − D1θxθ+2 −
D2θ

2
(
a1

b1
)θ+2yθ+2

− D3θ(
a1D2

4b1c1
)θ+2zθ+2 −

α

4
(
a1D2

2αb1
)θ+2wθ+2 + B0 −

1
x
−
αy
w
−

c1w
z
.

Next, we define the following bounded closed set

Uε =
{
ε ≤ x ≤

1
ε
, ε ≤ y ≤

1
ε
, ε2 ≤ w ≤

1
ε3 , ε

3 ≤ z ≤
1
ε3

}
.

For convenience, we can divide R4
+ \ Uε into eight regions:

U1 =

{
(x, y, z,w) ∈ R4

+, 0 < y < ε
}
,U2 =

{
(x, y, z,w) ∈ R4

+, 0 < x < ε
}
,

U3 =

{
(x, y, z,w) ∈ R4

+, 0 < w < ε2, y > ε
}
,U4 =

{
(x, y, z,w) ∈ R4

+, 0 < z < ε3, w ≥ ε2
}
,

U5 =

{
(x, y, z,w) ∈ R4

+, y >
1
ε

}
,U6 =

{
(x, y, z,w) ∈ R4

+, x >
1
ε

}
,

U7 =

{
(x, y, z,w) ∈ R4

+, z >
1
ε3

}
,U8 =

{
(x, y, z,w) ∈ R4

+,w >
1
ε2

}
.

Case 1. If (x, y, z,w) ∈ U1, in view of (3.8) we get

LṼ ≤ −M0λ +
[
M0(a1 +

a2c1

D3
) + a1

]
y + a2z + c2x − D1θxθ+2 −

D2θ

2
(
a1

b1
)θ+2yθ+2

− D3θ(
a1D2

4b1c1
)θ+2zθ+2 −

α

4
(
a1D2

2αb1
)θ+2wθ+2 + B0 + D1 +

1
2
σ2

1 + D3 +
1
2
σ2

3 + α

≤ −M0λ +
{
M0(a1 +

a2c1

D3
) + a1]ε + c0 ≤ −1;

here, ε is a positive constant small enough to satisfy the following conditions:

−M0λ +
[
M0(a1 +

a2c1

D3
) + a1

]
ε + c0 ≤ −1, (3.8)

−
1
ε
+ E ≤ −1, (3.9)
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−
α

ε
+ E ≤ −1, (3.10)

−
c1

ε
+ E ≤ −1, (3.11)

−
D2θ

4
(

a1

b1ε
)θ+2 + E ≤ −1, (3.12)

−
D1θ

2
(
1
ε

)θ+2 + E ≤ −1, (3.13)

−
D3θ

2
(

a1D2

4b1c1ε3 )θ+2 + E ≤ −1, (3.14)

−
α

8
(

a1D2

2αb1ε2 )θ+2 + E ≤ −1, (3.15)

where

E = sup
(x,y,z,w)∈R4

+

{
−

D1θ

2
xθ+2 −

D2θ

4
(
a1

b1
)θ+2yθ+2 −

D3θ

2
(

a1D2

4b1c1
)θ+2zθ+2 −

α

8
(
a1D2

2αb1
)θ+2wθ+2 + a2z + c2x

+

[
M(a1 +

a2c1

D3
) + a1

]
y + D1 +

1
2
σ2

1 + D3 +
1
2
σ2

3 + α + B0

}
.

Case 2 : If (x, y, z,w) ∈ U2 according to (3.9), it implies that

LṼ ≤ −
1
x
+

[
M0(a1 +

a2c1

D3
) + a1

]
y + a2z + c2x − D1θxθ+2 −

D2θ

2
(
a1

b1
)θ+2yθ+2

− D3θ(
a1D2

4b1c1
)θ+2zθ+2 −

α

4
(
a1D2

2αb1
)θ+2wθ+2 + B0 + D1 +

1
2
σ2

1 + D3 +
1
2
σ2

3 + α

≤ −
1
ε
+ E ≤ −1.

Case 3 : If (x, y, z,w) ∈ U3, by (3.10) we have

LṼ ≤ −
αy
w
+ E ≤ −

α

ε
+ E ≤ −1.

Case 4 : If (x, y, z,w) ∈ U4, according to (3.11), we deduce that

LṼ ≤ −
c1w

z
+ E ≤ −

c1

ε
+ E ≤ −1.

Case 5 : If (x, y, z,w) ∈ U5, by condition (3.12), we conclude that

LṼ ≤ −
D2θ

4
(
a1

b1
)θ+2yθ+2 + E ≤ −

D2θ

4
(

a1

b1ε
)θ+2 + E ≤ −1.

Case 6 : If (x, y, z,w) ∈ U6, and the condition (3.13) is satisfied, it follows that

LṼ ≤ −
D1θ

2
xθ+2 + E ≤ −

D1θ

2
(
1
ε

)θ+2 + E ≤ −1.
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Case 7 : If (x, y, z,w) ∈ U7, in view of (3.14) we get

LṼ ≤ −
D3θ

2
(

a1D2

4b1c1
)θ+2zθ+2 + E ≤ −

D3θ

2
(

a1D2

4b1c1ε3 )θ+2 + E ≤ −1.

Case 8 : If (x, y, z,w) ∈ U8, from (3.15), it is deduced that

LṼ ≤ −
α

8
(
a1D2

2αb1
)θ+2wθ+2 + E ≤ −

α

8
(

a1D2

2αb1ε2 )θ+2 + E ≤ −1.

Clearly, there exists a small enough constant ε to make the conclusion

LṼ ≤ −1, for all (x, y, z,w) ∈ UC
ε .

Remark 3.2. In the proof of the above theorem, the construction of V3 means to obtain the constant
E and high-order terms of x, y and z.

4. Probability density function analysis

Let u1(t) = ln x, u2(t) = ln y, u3(t) = ln z and u4(t) = ln w. Using the Itô’s formula, an equivalent
equation of system (1.4) is given as follows

du1 =

[
e−u1 − a1eu2 − a2eu3 − (D1 +

1
2
σ2

1)
]
dt + σ1dB1(t),

du2 =

[
b1eu1 − (D2 +

1
2
σ2

2)
]
dt + σ2dB2(t),

du3 =

[
c1eu4−u3 − c2eu1 − (D3 +

1
2
σ2

3)
]
dt + σ3dB3(t),

du4 =

(
αeu2−u4 − α

)
dt.

(4.1)

Assume that Rs
0 > 1, then, there is the quasi-endemic equilibrium E∗ = (x∗, y∗, z∗,w∗) =

(eu∗1 , eu∗2 , eu∗3 , eu∗4) where

x∗ =
D2 +

1
2σ

2
2

b1
,

y∗ =
[
b1(D3 +

1
2σ

2
3) + c2(D2 +

1
2σ

2
2)
][

b1 − (D1 +
1
2σ

2
1)(D2 +

1
2σ

2
2)
]

a2b1c1(D2 +
1
2σ

2
2) + a1b1(D2 +

1
2σ

2
2)(D3 +

1
2σ

2
3) + a1c2(D2 +

1
2σ

2
2)2
,

z∗ =
b1c1
[
b1 − (D1 +

1
2σ

2
1)(D2 +

1
2σ

2
2)
]

a2b1c1(D2 +
1
2σ

2
2) + a1b1(D2 +

1
2σ

2
2)(D3 +

1
2σ

2
3) + a1c2(D2 +

1
2σ

2
2)2
,

w∗ = y∗ =
[
b1(D3 +

1
2σ

2
3) + c2(D2 +

1
2σ

2
2)
][

b1 − (D1 +
1
2σ

2
1)(D2 +

1
2σ

2
2)
]

a2b1c1(D2 +
1
2σ

2
2) + a1b1(D2 +

1
2σ

2
2)(D3 +

1
2σ

2
3) + a1c2(D2 +

1
2σ

2
2)2
.

Before proving Theorem 4.1, we need to firstly introduce two important standard matrices in the fol-
lowing Lemmas 4.1 and 4.2.
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Lemma 4.1 ([24]). For the algebraic equation H2
0 + B0Σ0 + Σ0BT

0 = 0, where H0 = diag(1, 0, 0, 0)
and Σ0 is a real symmetric matrix, we have the standard matrix

B0 =


−γ1 −γ2 −γ3 −γ4

1 0 0 0
0 1 0 0
0 0 1 0

 .
If γ1 > 0, γ3 > 0, γ4 > 0 and γ1γ2γ3 − γ

2
3 − γ

2
1γ4 > 0, then Σ0 is a positive definite matrix, where

Σ0 =



γ2γ3−γ1γ4

2(γ1γ2γ3−γ
2
3−γ

2
1γ4) 0 −

γ3

2(γ1γ2γ3−γ
2
3−γ

2
1γ4) 0

0 γ3

2(γ1γ2γ3−γ
2
3−γ

2
1γ4) 0 −

γ1

2(γ1γ2γ3−γ
2
3−γ

2
1γ4)

−
γ3

2(γ1γ2γ3−γ
2
3−γ

2
1γ4) 0 γ1

2(γ1γ2γ3−γ
2
3−γ

2
1γ4) 0

0 −
γ1

2(γ1γ2γ3−γ
2
3−γ

2
1γ4) 0 γ1γ2−γ3

2γ4(γ1γ2γ3−γ
2
3−γ

2
1γ4)

 .

Here B0 in this form is called the standard R1 matrix.

Lemma 4.2 ([24]). For the algebraic equation H2
0 + E0Ω0 + Ω0ET

0 = 0, where H0 = diag(1, 0, 0, 0)
and Ω0 is a real symmetric matrix, we have the standard matrix

E0 =


−τ1 −τ2 −τ3 −τ4

1 0 0 0
0 1 0 0
0 0 0 τ5

 .
If τ1 > 0, τ3 > 0 and τ1τ2 − τ3 > 0, then the matrix Ω0 is a semi-positive definite matrix, which means
that

Ω0 =


τ2

2(τ1τ2−τ3) 0 − 1
2(τ1τ2−τ3) 0

0 1
2(τ1τ2−τ3) 0 0

− 1
2(τ1τ2−τ3) 0 τ1

2τ3(τ1τ2−τ3) 0
0 0 0 0

 .
Denote P = (p1, p2, p3, p4)T = (u1 − u∗1, u2 − u∗2, u3 − u∗3, u4 − u∗4)T (k = 1, 2, 3, 4). Therefore, the

linearized equation system of Eq (4.1) is obtained as follows
dp1 = (−b11 p1 − b12 p2 − b13 p3)dt + σ1dB1(t),
dp2 = b21 p1dt + σ2dB2(t),
dp3 = (−b31 p1 − b33 p3 + b33 p4)dt + σ3dB3(t),
dp4 = (αp2 − αp4)dt,

(4.2)

where

b11 =
1
x∗
> b12 + b13, b12 = a1y∗, b13 = a2z∗,

b21 = b1x∗, b31 = c2x∗, b33 = c1
w∗

z∗
> b31.
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Theorem 4.1. Assume that Rs
0 > 1; for any initial value (x(0), y(0), z(0),w(0)) ∈ R4

+, then the
solution (x, y, z,w) of system (1.4) will have a log-normal probability density Φ(x, y, z,w) around E∗,
which is given by

Φ(x, y, z,w) = (2π)−2|Σ|
− 1

2 e
− 1

2 (ln x
x∗ , ln

y
y∗ , ln

z
z∗ , ln

w
w∗ )Σ−1(ln x

x∗ , ln
y

y∗ , ln
z

z∗ , ln
w

w∗ )T

with Σ = Σ1 + Σ2 + Σ3 as a positive definite matrix; Σ1,Σ2 and Σ3 are defined as follows

Σ1 =

(b31b33σ1)2(T3T2T1)−1Ω2[(T3T2T1)−1]T , if q1 = 0,
(b31b33q1σ1)2(T4T2T1)−1Ω1[(T4T2T1)−1]T , if q1 , 0,

Σ2 =


α2b2

13(b12b31 + αb33)2σ2
2

b2
12

(T7T6T5)−1Ω1[(T7T6T5)−1]T , if q2 = 0,

(b12b31 + b33α)2σ2
2(T9T8T6T5)−1Ω̃2[(T9T8T6T5)−1]T , if q2 , 0, q3 = 0,

(b12b31 + b33α)2q2
3σ

2
2(T10T8T6T5)−1Ω1[(T10T8T6T5)−1]T , if q2 , 0, q3 , 0,

Σ3 = (−b13b21ασ3)2(T12T11)−1Ω1[(T12T11)−1]T ,

where q1 =
b21α
[
b13b33−(b21+b33)α

]
b2

31b33
b33, q2 =

α(−b11+α)
b12

, q3 = −
b13α
b12
−

b12b33q2
b12b31+b33α

+
b12q2(−b12b33q2+b12b31α+b33α

2)
(b12b31+b33α)2 , and

the matrices T1, . . .T12, Ω1,Ω2, Ω̃3 are defined in the following proof.
Proof. For convenience and simplicity, let B(t) = (B1(t), B2(t), B3(t), 0)τ,
G = diag(σ1, σ2, σ3, 0) and

M =


−b11 −b12 −b13 0
b21 0 0 0
−b31 0 −b33 b33

0 α 0 −α

 ,
the linearized system (4.2) can be equivalently rewritten as

dP = MP(t)dt +GdB(t). (4.3)

Since G is a constant matrix, according to Gardiner [27], we have

G2 + MΣ + ΣMT = 0.

In view of the independence of Brownian motions B1(t), B2(t) and B3(t), by the principle of finite
independent superposition, it is easy to know that Eq (4.4) can be equivalently developed into the sum
of the solution to the following three algebraic sub-equations:

G2
k + MΣk + ΣkMT = 0, k = 1, 2, 3,
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where G2
1 = diag(σ2

1, 0, 0, 0),G2
2 = diag(0, σ2

2, 0, 0),G2
3 = diag(0, 0, σ2

3, 0) and Σ = Σ1 + Σ2 + Σ3.

Next it will be proved that M has all negative real-part eigenvalues. The characteristic polynomial
of M is defined as

ΨM(λ) = λ4 + r1λ
3 + r2λ

2 + r3λ + r4,

where
r1 = b11 + b33 + α > 0,
r2 = b11b33 − b13b31 + b12b21 + α(b11 + b33),
r3 = b12b21b33 + α(b11b33 − b13b31 + b12b21),
r4 = b21b31α(b12 + b13) > 0.

By calculation, we can obtain

b11b33 − b13b31 > b13b31 − b13b31 = 0,

which yields that r2 and r3 > 0. Furthermore, we can verify that r1r2 − r3>0 and r1r2r3 − r2
3 − r2

1r4 > 0
So, the matrix M is a Hurwitz matrix. Next, we will prove the definiteness of Σ by following three
steps.

Step 1. Consider the algebraic equation

G2
1 + MΣ1 + Σ1MT = 0. (4.4)

Let M1 = T1MT−1
1 , where

T1 =


1 0 0 0
0 1 0 0
0 b31

b21
1 0

0 0 0 1

 ,M1 =


−b11 −b12 +

b13b31
b21

b13 0
b21 0 0 0
0 b31b33

b21
−b33 b33

0 α 0 −α

 .
Take M2 = T2M1T−1

2 , where

T2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −

b21α
b31b33

1

 ,M2 =


−b11 −b12 +

b13b31
b21

−b13 0
b21 0 0 0
0 b31b33

b21
−b33 +

b21α
b31

b33

0 0 q1 −
(b21+b31)α

b31

 ,
where q1 =

b21α[b31b33−(b21+b31)α]
a2

31b33
.

Case 1.1 : If q1 = 0, the standard transformation matrix T3 is given by

T3 =


b31b33 b33(−b31b33

b21
+ α) (b33 −

b21α
b31

)2 −b33(b33 + α)
0 b31b33

b21
−b33 +

b21α
b31

b33

0 0 1 0
0 0 0 1

 .
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Then, we calculate

Q1 = T3M2T−1
3 =


−τ11 −τ12 −τ13 −τ14

1 0 0 0
0 1 0 0
0 0 1 −

(b21+b31)α
b31

 ,
where

τ11 = b11 + b33 −
b21α

b31
,

τ12 = b12b21 − b13b31 + b11b33 −
b11b21α

b31
,

τ13 = −b21
(
− b12b33 − b13α +

b12b21α

b31

)
,

τ14 = −b33

{
b12b21 − b13b31 +

(b21 + b31)α [−b11b31 + (b21 + b31)α]
b2

31

}
.

Therefore the equivalent equation of (4.4) can be written as (T3T2T1)G2
1(T3T2T1)T +

Q1

[
(T3T2T1)Σ1(T3T2T1)T

]
+
[
(T3T2T1)Σ1(T3T2T1)T

]
QT

1 = 0. From Lemma 4.2, we have

(T3T2T1)Σ1(T3T2T1)T = (b31b33σ
2
1)Ω2,

where

Ω2 =


τ12

2(τ11τ12−τ13) 0 − 1
2(τ11τ12−τ13) 0

0 1
2(τ11τ12−τ13) 0 0

− 1
2(τ11τ12−τ13) 0 τ11

2τ13(τ11τ12−τ13) 0
0 0 0 0


is a symmetric positive semi-definite matrix. Hence,

Σ1 = (b31b33σ1)2(T3T2T1)−1Ω2

[
(T3T2T1)−1

]T
.

Case 1.2 : If q1 , 0, we can find standardized transformation T4 such that Q2 = T4M2T−1
4 , where

T4 =


b31b33q1 j1 j2 j3

0 b31b33q1
b21

−q1(b33 + α) b33q1 +
(b21+b31)2α2

b2
31

0 0 q1 −
(b21+b31)α

b31

0 0 0 1

 ,

where j1 = −
b31b33q1(b33+α)

b21
, j2 =

q1[b2
31b33(b33+q1)+b31(−b21+b31)b33α+(b2

21+b21b31+b2
31)α2]

b2
31

, j3 = −b33q1(b33 + α) −
(b21+b31)α[b2

31b33q1+(b21+b31)2α2]
b3

31
.

Then, we have

Q2 =


−r1 −r2 −r3 −r4

1 0 0 0
0 1 0 0
0 0 1 0

 .
Mathematical Biosciences and Engineering Volume 21, Issue 1, 602–626.



616

Likewise, (4.4) can be transformed into the following form: (T4T2T1)G2
1(T4T2T1)T +

Q2

[
(T4T2T1)Σ1(T4T2T1)T

]
+
[
(T4T2T1)Σ1(T4T2T1)T

]
QT

2 = 0. From Lemma 4.1, we have

(T4T2T1)Σ1(T4T2T1)T = (b31b33q1σ1)2Ω1,

where

Ω1 =


r2r3−r1r4

2(r1r2r3−r2
3−r2

1r4) 0 −
r3

2(r1r2r3−r2
3−r2

1r4) 0

0 r3
2(r1r2r3−r2

3−r2
1r4) 0 −

r1
2(r1r2r3−r2

3−r2
1r4)

−
r3

2(r1r2r3−r2
3−r2

1r4) 0 r1
2(r1r2r3−r2

3−r2
1r4) 0

0 −
r1

2(r1r2r3−r2
3−r2

1r4) 0 r1r2−r3
2r4(r1r2r3−r2

3−r2
1r4)

 .
is a positive definite symmetric matrix; hence,

Σ1 = (b31b33q1σ1)2(T4T2T1)−1Ω1

[
(T4T2T1)−1

]T
,

is also a positive definite matrix.
Step 2 . Consider

G2
2 + MΣ2 + Σ2MT = 0. (4.5)

Let M3 = T5MT−1
5 , where

T5 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,M3 =


0 b21 0 0
−b12 −b11 −b13 0

0 −b31 −b33 b33

α 0 0 −α

 .
Take M4 = T6M3T−1

6 , where

T6 =


1 0 0 0
0 1 0 0
0 0 1 0
0 α

b12
0 1

 , M4 =


0 b21 0 0
−b12 −b11 −b13 0

0 −
b12b31+b33α

b12
−b33 b33

0 q2 −
b13α
b12

−α

 ,
with q2 =

α(−b11+α)
b12

.

Case 2.1 : If q2 = 0, we let Q3 = T7M4T−1
7 , where the standard transformation matrix T7 is given

by

T7 =


−

b13α(b12b31+b33α)
b12

j4 j5 j6

0 b13α(b12b31+b33α)
b2

12

b13α(b33+α)
b12

α(−b13b33
b12
+ α)

0 0 −
b13α
b12

−α

0 0 0 1

 ,

Q3 =


−r1 −r2 −r3 −r4

1 0 0 0
0 1 0 0
0 0 1 0

 ,
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where j4 = −
b13α(b11+b33+α)(b12b31+b33α)

b2
12

, j5 = −
b13α(b13b31+b2

33+b33α+α
2)

b12
, j6 = −α

3 +
b13b33α(b33+2α)

b12
. Therefore,

we have

(T7T6T5)G2
2(T7T6T5)T + M

[
(T7T6T5)Σ2(T7T6T5)T

]
+
[
(T7T6T5)Σ2(T7T6T5)T

]
MT = 0,

where

(T7T6T5)Σ2(T7T6T5)T =
[
−

b13α(b12b31 + b33α)
b12

]2
Ω1.

Hence

Σ2 =
α2b2

13(b12b31 + b33α)2σ2
2

b2
12

(T7T6T5)−1Ω1

[
(T7T6T5)−1)

]T
,

is a positive define matrix.
Case 2.2 : Consider that q2 , 0. Let M5 = T8M4T−1

8 , where

T8 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 b12q2

b12b31+b33α
1

 ,M5 =


0 b21 0 0
−b12 −b11 −b13 0

0 −
b12b31+b33α

b12
b33(−1 − b12q2

b12b31+b33α
) b33

0 0 q3 −α + b12b33q2
b12b31+b33α

 ,

where q3 = −
b13α
b12
−

b12b33q2
b12b31+b33α

+
b12q2(−b12b33q2+b12b31α+b33α

2)
(b12b31+b33α)2 .

Case 2.2.1. If q2 , 0 and q3 = 0, let Q4 = T9M5T−1
9 , where

T9 =


b12b31 + b33α j7 j8 j9

0 −
b12b31+b33α

b12
b33(−1 − b12q2

b12b31+b33α
) b33

0 0 1 0
0 0 0 1

 ,

Q4 =


−τ21 −τ22 −τ23 −τ24

1 0 0 0
0 1 0 0
0 0 1 −α + b12b33q2

b12b31+b33α

 ,
where j7 = b11b31 + b33(b31 + q2) + b33α(b11+b33)

b12
, j8 = b13(b31 +

b33α
b12

) + (b33 +
b12b33q2

b12b31+b33α
)2, j9 =

−b33(b33+α), τ21 = b11+b33(1+ b12q2
b12b31+b33α

), τ22 = −
(
−b12b21+b13b31−b11b33+

b13b33α
b12
−

b11b12b33q2
b12b31+b33α

)
, τ23 =

b12b21b33[b12(b31+q2)+b33α]
b12b31+b33α

, τ24 = −b33

{
α(−b11 + α) + b12

[
b21 +

b33q2(b11b12b31+b12b33q2−2b12b31α+b11b33α−2b33α
2)

(b12b31+b33α)2

]}
.

Therefore, we conclude that

(T9T8T6T5)G2
2(T9T8T6T5)T + Q4

[
(T9T8T6T5)Σ2(T9T8T6T5)T

]
+
[
(T9T8T6T5)Σ2(T9T8T6T5)T

]
QT

4 = 0.

where
(T9T8T6T5)Σ2(T9T8T6T5)T = [(b12b31 + b33α)σ2]2 Ω̃2.
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Beside, it follows from Lemmas 4.2 that the specific form of the positive semi-definite matrix Ω̃2 is

Ω̃2 =


τ22

2(τ21τ22−τ23) 0 − 1
2(τ21τ23−τ23) 0

0 1
2(τ21τ22−τ23) 0 0

− 1
2(τ21τ22−τ23) 0 τ21

2τ23(τ21τ22−τ23) 0
0 0 0 0

 .
Therefore, we conclude that

Σ2 = (b12b31 + b33α)2σ2
2(T9T8T6T5)−1Ω̃2

[
(T9T8T6T5)−1

]T
,

is semi-positive definite.
Case 2.2.2. If q2 , 0, q3 , 0, we let Q5 = T10M5T−1

10 , where

T10 =


q3(b12b31 + b33α) j10 j11 j12

0 −
q3(b12b31+b33α)

b12
−q3(b33 + α) b33q3 + (α − b12b33q2

b12b31+b33α
)2

0 0 q3 −α + b12b33q2
b12b31+b33α

0 0 0 1

 ,

Q5 =


−r1 −r2 −r3 −r4

1 0 0 0
0 1 0 0
0 0 1 0

 ,
with

j10 =
q3(b11 + b33 + α)(b12b31 + b33α)

b12
,

j11 = q3

{
α2 + b33(b33 + q3 + α) + b13(b31 +

b33α

b12
) +

b12b33q2
[
b12b33(b31 + q2) − b12b31α + b33(b33 − α)α

]
(b12b31 + b33α)2

}
,

j12 = −b33q3(b33 + α) + (−α +
b12b33q2

b12b31 + b33α
)
[
b33q3 + (α −

b12b33q2

b12b31 + b33α
)2].

Therefore, we have

(T10T8T6T5)G2
2(T10T8T6T5)T+Q5

[
(T10T8T6T5)Σ2(T10T8T6T5)T

]
+
[
(T10T8T6T5)Σ2(T10T8T6T5)T

]
QT

5 = 0,

where
(T10T8T6T5)Σ2(T10T8T6T5)T = q2

3(b12b31 + b33α)2σ2
2Ω1.

Hence
Σ2 = q2

3(b12b31 + b33α)2σ2
2(T10T8T6T5)−1Ω1

[
(T10T8T6T5)−1

]T
,

is also a positive definite matrix.
Step 3. Consider

G2
3 + MΣ3 + Σ3MT = 0. (4.6)
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We let M6 = T11MT−1
11 , where

T11 =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 , M6 =


−b33 −b31 0 b33

−b13 −b11 −b12 0
0 b21 0 0
0 0 α −α

 .
Let Q6 = T12M6T−1

12 , where the standard transformation matrix T12 is given by

T12 =


−b13b21α −b21α(b11 + α) −b12b21α + α

3 −α3

0 b21α −α2 α2

0 0 α −α

0 0 0 1

 .
By direct calculation, we obtain that

Q6 =


−r1 −r2 −r3 −r4

1 0 0 0
0 1 0 0
0 0 1 0

 .
Thus (4.6) can be transformed into the following from:

(T12T11)G2
3(T12T11)T + Q6

[
(T12T11)Σ3(T12T11)T

]
+
[
(T12T11)Σ3(T12T11)T

]
QT

6 = 0,

where
(T12T11)Σ3(T12T11)T = (−b13b21ασ3)2Ω1.

Thus,
Σ3 = (−b13b21ασ3)2(T12T11)−1Ω1

[
(T12T11)−1

]T
,

is a positive definite matrix.
Summing up the above steps, we have Σ = Σ1 + Σ2 + Σ3 is a positive definite matrix. The solution

(x(t), y(t), z(t),w(t)) of system (1.4) has a log-normal probability density function

Φ(x, y, z,w) = (2π)−2|Σ|
− 1

2 e
− 1

2 (ln x
x∗ , ln

y
y∗ , ln

z
z∗ , ln

w
w∗ )Σ−1(ln x

x∗ , ln
y

y∗ , ln
z

z∗ , ln
w

w∗ )T

.

5. Extinction

Theorem 5.1. Let (x(t), y(t), z(t),w(t)) be the solution of the system (1.4) with any initial value
(x(0), y(0), z(0),w(0)) ∈ R4

+. If RE
0 =

b1

D1(D2+
1
2σ

2
2)
< 1, then

lim sup
t→+∞

ln y(t)
t
≤ (D2 +

1
2
σ2

2)(RE
0 − 1) < 0, a.s.,

which means the extinction of y(t).
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Proof. Consider the following SDE:

dx̂(t) = [1 − D1 x̂(t)]dt + σ1 x̂(t)dB1(t),

with the same initial value x̂(0) = x(0) > 0,making use of the stochastic comparison theorem, we have

x(t) ≤ x̂(t), a.s.

Moreover,

lim
t→+∞

1
t

∫ t

0
x̂(s)ds =

∫ +∞

0
s · h(s)ds =

1
D1
,

where h(s) =
[( 2
σ2

1

)1+ 2D1
σ2

1 Γ−1(1 + 2D1
σ2

1

)]
s
−2(1+ 2D1

σ2
1

)
e
− 2
σ2

1 s , s > 0. Applying Itô’s formula to ln y(t), we have

d ln y =
[
b1x − (D2 +

1
2
σ2

2)
]
dt + σ2dB2(t)

]
≤
[
b1 x̂ − (D2 +

1
2
σ2

2)
]
dt + σ2dB2(t)

]
,

(5.1)

Integrating (5.1) from 0 to t on both sides, one can see that

ln y(t)
t
≤

ln y(0)
t
− b1

1
t

∫ t

0
x̂(s)ds − (D2 +

1
2
σ2

2) +

∫ t

0
σ2dB2(s)

t
. (5.2)

Applying the strong law of large numbers yields

lim
t→+∞

∫ t

0
σ2dB2(s)

t
= 0.

Next, we take the superior limit on both sides of (5.2)

lim sup
t→+∞

ln y(t)
t
≤ b1 lim sup

t→+∞

1
t

∫ t

0
x̂(s)ds − (D2 +

1
2
σ2

2)

=
b1

D1
− (D2 +

1
2
σ2

2)

= (D2 +
1
2
σ2

2)(RE
0 − 1) < 0.

which implies that
lim

t→+∞
y(t) = 0, a.s.

6. Numerical simulation

In this section, employing the Milstein higher-order method, we will present numerical simulations
to verify the theoretical results. The discretization equations of model (1.4) are given by

xk+1 = xk +
(
1 − a1xkyk − a2xkzk − D1xk

)
△t + σ1xk

√
△tη1,k +

σ2
1xk

2
(η2

1,k − 1)△t,

yk+1 = yk +
(
b1xkyk − D2yk

)
△t + σ2yk

√
△tη2,k +

σ2
2yk

2
(η2

2,k − 1)△t,

zk+1 = zk +
(
c1wk − c2xkzk − D3zk

)
△t + σ3zk

√
△tη3,k +

σ2
3zk

2
(η2

3,k − 1)△t,

wk+1 = wk +
(
αyk − αwk

)
△t,

(6.1)
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where ηi,k(i = 1, 2, 3; k = 1, 2 . . . , n) denotes independent Gaussian random variables which follow the
distribution N(0, 1).

Figure 1. Left-hand column presents the numbers of x, y, z and w for system (6.1) with
(σ1, σ2, σ3) = (0.01, 0.01, 0.05), and its deterministic system, respectively. Right-hand
columns shows the frequency histograms and corresponding marginal density function
curves of x, y, z and w, respectively.

Example 6.1. Let us choose a1 = 1, a2 = 4, D1 = 1.01, D2 = 8, D3 = 1.02, b1 = 20, c1 =

5, c2 = 5, α = 0.09, σ1 = σ2 = 0.01, σ3 = 0.05 and the initial value (x(0), y(0), z(0),w(0)) =
(0.9, 0.1, 0.1, 0.1).We conclude that R0 =

b1
D1D2
= 2.4752 > 1 and Rs

0 =
b1

(D1+
1
2σ

2
1)(D2+

1
2σ

2
2)
= 2.4751 > 1.

Theorem 4.1 shows that there exists an ergodic stationary distribution of stochastic model (1.4). Noting
that (x∗, y∗, z∗,w∗) = (0.4, 0.1955, 0.3236, 0.1955), we have following the covariance matrix

Σ =


1.3643e−04 −4.7814e−06 −2.3417e−04 −1.0541e−04

−4.7814e−06 8.7590e−03 −6.2162e−04 5.2528e−05

−2.3417e−04 −6.2162e−04 7.5113e−04 2.3141e−04

−1.0541e−04 5.2528e−05 2.3141e−04 2.4051e−04

 .
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Figure 2. The marginal density functions and frequency fitting curves for x, y and z in system
(1.4).

Thus, we have the corresponding probability density function

Φ(x, y, z,w) = 1.0882 × 105 × e
− 1

2 (ln x
2.5 , ln

y
5.1142 , ln

z
3.09 , ln

w
5.1142 )Σ−1(ln x

2.5 , ln
y

5.1142 , ln
z

3.09 , ln
w

5.1142 )T

.

As a result, Φ(x, y, z,w) has the following four marginal density functions:

∂Φ

∂x
=

1
x
√

2πw11
e−

(ln x−ln x∗)2
2w11 =

1
34.1553x

e−
(ln x+0.9163)2

2.7286e−04 ,

∂Φ

∂y
=

1
y
√

2πw22
e−

(ln y−ln y∗)2
2w22 =

1
0.2346y

e−
(ln y+1.632)2

0.0175 ,

∂Φ

∂z
=

1
z
√

2πw33
e−

(ln z−ln z∗)2
2w33 =

1
0.0687z

e−
(ln z+1.1282)2

0.0015 ,

∂Φ

∂w
=

1
w
√

2πw44
e−

(ln w−ln w∗)2
2w44 =

1
0.0389w

e−
(ln w+1.632)2

4.8101e−04 ;

we can conclude that system (1.2) admits a global positive stationary solution on R4
+; see Figure 1 and

Figure 2.
Example 6.2. Let us choose b1 = 20, D1 = 2.3, D2 = 8 and σ2 = 1.8. Then the condition

RE
0 = 0.693 < 1 is satisfied. Theorem 5.1 shows that MC-degrading bacteria of system (1.4) will go to

extinction with probability one, which is numerically confirmed by Figure 3.
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Figure 3. Corresponding numbers for solution (x(t), y(t), z(t)) to system (1.4) with random
perturbations (σ1, σ2, σ3) = (0.01, 1.8, 0.05) and main parameters (b1,D1,D2) = (20, 2.3, 8).

7. Conclusions

In the current paper, we consider a stochastic Microcystins degradation model with distributed
delay. We have established sufficient conditions for the existence of an ergodic stationary distribution
of the positive solutions to system (1.4) by constructing a suitable stochastic Lyapunov function. The
result shows that a small amount of white noise can guarantee the existence of an ergodic stationary
distribution of the positive solutions to system (1.4). In addition, we have obtained the exact probability
density function around a quai-equilibrium point.

Some interesting topics deserve further consideration. On the one hand, the paper focuses on the
dynamical evolution and stability of the system (1.4). It should be noted that model (1.4) can potentially
be solved analytically by using the Lie algebra method [25,26]. On the other hand, because our model
is autonomous and only disturbed by white noise, it would be interesting to introduce telegraph noise,
such as a continuous-time Markov chain, into system (1.3). Moreover, it would also be interesting to
study more complicated MCs degradation models, such as multi-group MCs degradation models. We
will leave these problems as our future work.
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