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Abstract: This article is concerned with the determination of the diffusion matrix in the reaction-
diffusion mathematical model arising from the spread of an epidemic. The mathematical model that
we consider is a susceptible-infected-susceptible model with diffusion, which was deduced by assum-
ing the following hypotheses: The total population can be partitioned into susceptible and infected
individuals; a healthy susceptible individual becomes infected through contact with an infected indi-
vidual; there is no immunity, and infected individuals can become susceptible again; the spread of
epidemics arises in a spatially heterogeneous environment; the susceptible and infected individuals
implement strategies to avoid each other by staying away. The spread of the dynamics is governed
by an initial boundary value problem for a reaction-diffusion system, where the model unknowns are
the densities of susceptible and infected individuals and the boundary condition models the fact that
there is neither emigration nor immigration through their boundary. The reaction consists of two terms
modeling disease transmission and infection recovery, and the diffusion is a space-dependent full dif-
fusion matrix. The determination of the diffusion matrix was conducted by considering that we have
experimental data on the infective and susceptible densities at some fixed time and in the overall do-
main where the population lives. We reformulated the identification problem as an optimal control
problem where the cost function is a regularized least squares function. The fundamental contributions
of this article are the following: The existence of at least one solution to the optimization problem or,
equivalently, the diffusion identification problem; the introduction of first-order necessary optimality
conditions; and the necessary conditions that imply a local uniqueness result of the inverse problem.
In addition, we considered two numerical examples for the case of parameter identification.
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1. Introduction

The mathematical modeling of viral infectious disease transmission is a research area that has re-
ceived the attention of several researchers in mathematical biology [1–15]. Particularly, we refer to [16]
for a recent summary of challenges in modeling the dynamics of zoonotic infectious diseases. The in-
creasing interest of mathematicians in researching the topic of biology is motivated by several aspects;
among them, there is the rapid development of advanced technology and the generation of multidisci-
plinary teams to understand some complex problems that originated in human body behavior or in the
interaction of humans with their environment. The current technology generates numerical datasets
that require advanced mathematical tools for their analysis, then there are several mathematical mod-
els. The potential contributions of multidisciplinary teams were evidenced in the solution of some
specific emergencies generated in the last few years, like the Ebola virus or the COVID-19 pandemic,
where the knowledge of mathematicians and epidemiologists was fundamental to the development of
health public policy. However, despite the technological development achieved in recent years, there
are many aspects that are not observable or measurable by contemporary technology; and, thus, models
are necessary to simulate, conjecture; or predict situations where technology is not capable.

Although the current list of works dedicated to the modeling of virus transmission is voluminous,
from the mathematical modeling cycle approach; we can distinguish some common steps that are
used in the mathematical epidemiology [17]: the analysis of the experimental data for the precise
disease; the election of the appropriate mathematical framework that models the quantitative data;
the mathematical analysis to characterize the behavior of the model; the parameter calibration of the
mathematical model; the validation model and improvement of the model if it is necessary, since the
process is cyclic. Moreover, in the context of modeling, there are articles that are specialized or are
interested in a single step of the cycle; for instance, the articles covering the topic of the well-posedness
of the ordinary differential systems that are deduced as mathematical models. In this paper, we are
interested in the calibration of a model of the dynamics of two populations during infectious diseases.
Then, in order to present the identification problem, we begin by precisely stating the mathematical
model.

The epidemiological model considered in this article is based on partial differential equations, where
the main variables model the dynamics of two populations: The population of healthy persons who are
susceptible to contracting an infection and the population of infected persons who can transmit the
disease to the population of healthy ones. More precisely, we consider the following initial boundary
value problem:

∂tS − div (d1(x)∇S ) = −β(x)
S I

S + I
+ γ(x)I, in QT := Ω×]0,T ], (1.1)

∂tI − div (d2(x)∇I) = β(x)
S I

S + I
− γ(x)I, in QT , (1.2)

∇S · ν = ∇I · ν = 0, in ΓT := ∂Ω×]0,T ], (1.3)
(S , I)(x, 0) = (S 0, I0)(x), on Ω, (1.4)

where S and I are the unknowns of the system, denoting the density of susceptible and infective
populations;Ω ⊂ Rd (d = 1, 2, 3) is the spatial domain where the total population lives; ν is the outward
normal to the boundary ∂Ω; β the transmission rate coefficient and γ is the recovery rate coefficient;
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di j, i, j = 1, 2, defined from Ω to R+, are the diffusion functions; and S 0 and I0 denote the initial
densities of susceptible and infective populations. In a broad sense, the system (1.1)–(1.4) is deduced
considering the following assumptions: A population living in the spatial domain Ω is partitioned
into two sets of individuals [18, 19]: Susceptible and infective; the healthy susceptible individuals can
contract the disease from cross contacts with infected ones (modeled by the term βS I/(S + I)); there
is no immunity. In that sense, the infected individuals who are recovered can contract the diseases.
That fact is modeled by the term γI; the spreading of the disease is influenced by the movement of
individuals on the domain (modeled by the diffusion terms di j); and we consider that the boundary ∂Ω
is closed to emigration or immigration, which is modeled by the flux boundary condition (1.3).

In order to precisely describe the problem and the main results of the paper, we present the function
framework notation and the regularity assumptions on the domain, coefficients, and initial conditions
of the problem (1.1)–(1.4). We consider the following function spaces that are standardly used in
the analysis of parabolic equations [20–22]: Ck,α(Ω), k ∈ N, α ∈]0, 1] denotes the Hölder k−times
continuously differentiable functions whose kth-partial derivatives are Hölder continuous with exponent
α; Lp(Ω), p ≥ 1; denotes the space of all functions from Ω to R, which are p-integrable in the sense
of Lebesgue; Wm,p(Ω) denotes the usual Sobolev spaces of functions that have weak derivatives up to
order m and belong to Lp(Ω); Hm(Ω) = Wm,2(Ω) and Cα(Ω) = C0,α(Ω). Our analysis, in the present
study, is conducted by considering the following set of assumptions:

(D0) The spatial environment Ω is an open bounded and convex set with boundary ∂Ω of C1 class.
(D1) The functions S 0 and I0 defining the initial conditions belonging to C2,α(Ω) and satisfying

(S 0, I0)(x) ∈ [0, S max] × [0, Imax],
∫
Ω

I0(x)dx > 0, (S 0 + I0)(x) ∈ [ϕ0,∞[,

on Ω, for some positive constant ϕ0;
(D2) The coefficients of reaction have the regularity (β, γ) ∈ Cα(Ω) and (β, γ)(x) ⊆ [b, b] × [r, r] on Ω

for some b, b, r, r ∈]0, 1[.
(D3) The functions S obs and Iobs define the observation belonging to C2+α,1+α/2(Ω).

We notice that the assumptions (D0)–(D2) are necessary to study the identification problem in the
context of classical solutions of the direct problem (1.1)–(1.4), and more weak conditions can be con-
sidered to study the problem in the context of weak solutions; see, for instance, [23] for the particular
case of the identity diffusion matrix.

In this paper, we are interested in the model calibration, or specifically, the main aim is the iden-
tification of the diffusion matrix D = diag(d1, d2) from the observation of susceptible and infective
population densities over all spatial domain Ω in a fixed time T , i.e., S obs, Iobs : Ω → R are known at
time T . More precisely, let us consider the functions α, γ, S 0, I0, S obs and Iobs from Ω to R+ are known,
and we want to determine D the solution of the following constrained optimization problem

inf
D∈Uad(Ω)

J(D), J(D) = J(S D, ID), (1.5)

subject to (S D, ID) solution of the system (1.1)-(1.4), (1.6)

where J andUad(Ω) are defined as follows

J(S , I) :=
1
2
∥S (·,T ) − S obs∥2L2(Ω) +

1
2
∥I(·,T ) − Iobs∥2L2(Ω) +

Γ

2
∥D∥2L2(Ω)2 , (1.7)
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Uad(Ω) = ∆∆(Ω) ∩ H |[d/2]|+1(Ω)2, D = diag(d1, d2), (1.8)

∆∆(Ω) =
{
D : Ω→ R2×2 : d1, d2 ∈ Cα(Ω),

2∏
i=1

Ran(di) ⊆
2∏

i=1

[δi, δi] ⊂]0, 1[2
}
, (1.9)

and Γ > 0 is an appropriate constant. Hereinafter, we consider the notation ∥D∥2L2(Ω)2 = ∥d1∥
2
L2(Ω) +

∥d2∥
2
L2(Ω). We note that the functional J defined on (1.7) is the more pertinent for the determination of

D, since the first and second terms of J are a comparison of the state solution profiles (S (·,T ), I(·,T ))
and the observation (S obs, Iobs) in the L2 norm and the third term is a regularization term, where Γ
should be appropriately selected in order to get a unique solution of the optimization problem.

SIR (susceptible–infectious–removed) SIS (susceptible–infectious–susceptible)
The analysis for the calibration of compartmental models (susceptible–infectious–susceptible and

susceptible–infectious–removed shortly as SIS and SIR, respectively) was recently developed [17, 19,
23–27]. We observe that in all of those works, the authors identify the reaction coefficients; for in-
stance, in [19] the authors get results for the identification of reaction term coefficients in the one-
dimensional spatial domain (d = 1), and it is extended to the higher dimensions (d ≥ 2) in [17, 24].
Moreover, in those works, the matrix modeling the diffusion is the identity matrix. However, to the best
of our knowledge, the identification of matrix diffusion in epidemiological compartmental models has
not yet been conducted. However, we must recognize that there are some works on the identification of
the diffusion matrix in linear elliptic and parabolic problems whose results are not directly extensible
to matrix diffusion identification in nonlinear systems of reaction-diffusion [28–32].

The main results, which are the contributions of this paper, are given by the following five results:
(i) The introduction of the necessary conditions to establish the existence and uniqueness of a positive
solution to the direct problem (1.1)–(1.4) (see Section 2); (ii) the existence of optimal solutions for
(1.5)–(1.9) (see Section 3); (iii) the introduction of an adjoint system with classical bounded solution
(see Section 4); (iv) the definition of a first-order optimality condition that characterizes the optimal
solution in terms of direct and adjoint state solutions (see Section 5); and (v) a local uniqueness of
identification problem (see Section 6). Furthermore, we present two numerical examples on and state
some main conclusions (see Sections 7 and 8, respectively).

2. Well-posedness of the state system (1.1)–(1.4)

Theorem 2.1. Consider that the hypotheses (D0)–(D2) are satisfied. If (d1, d2) ∈ Cα(Ω)2, there is a
unique positive pair of functions (S , I) ∈ C2+α,1+α/2(QT )2 that satisfies the direct problem defined by
the initial boundary value problem (1.1)–(1.4), which admits a unique positive classical solution (S , I).
Moreover, S and I are bounded on QT , i.e., the estimate

∥S (·, t)∥L∞(Ω) + ∥I(·, t)∥L∞(Ω) ≤ C, t ∈ [0,T ]; (2.1)

is satisfied for any given T ∈ R+.

Proof. If we assume the existence of the solution of (1.1)–(1.4), we deduce some a priori estimates.
We can prove the nonnegativity behavior of S and T by applying the maximum principle. From (1.1),
(1.2), the positivity of S and T , the relation S/(S + I) < 1; and the bounded behavior of reaction
coefficients, we deduce that

∂tS − div (d1(x)∇S ) ≤ rImax, in QT ,
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∂tI − div (d2(x)∇I) ≤ bImax, in QT ,

∇S · ν = ∇I · ν = 0, in ΓT ,

(S , I)(x, 0) = (S 0, I0), on Ω.

Moreover, we can observe that (S max, Imax) is a supersolution of the following linear system

∂tW − div (d1(x)∇W) = rImax, in QT ,

∂tZ − div (d2(x)∇Z) = bImax, in QT ,

∇W · ν = ∇Z · ν = 0, in ΓT ,

(Z,W)(x, 0) = (S max, Imax), on Ω.

Thus, the upper a priori estimate

S (x, t) ≤ W(x, t) ≤ S max I(x, t) ≤ Z(x, t) ≤ Imax on QT . (2.2)

can be deduced by applying the well-known comparison principle for parabolic equations.
We can follow the local existence of classical solutions of (1.1)–(1.4) by the standard results given

in [33–35] and we can deduce the Hölder regularity of the local solution by modifying appropriately
the arguments used in [18]. Thus, we have that there is a pair of nonnegativity functions (Ŝ , Î)(x, t) that
are the local solutions of (1.1)–(1.4); or, equivalently, there is Tmax > 0 (the maximal existence time),
such that (Ŝ , Î)(x, t) is the following initial boundary value problem:

∂tŜ − div (d1(x)∇Ŝ ) = −β(x)
Ŝ Î

Ŝ + Î
+ γ(x)Î, in QTmax := Ω×]0,Tmax[, (2.3)

∂t Î − div (d2(x)∇Î) = β(x)
Ŝ Î

Ŝ + Î
− γ(x)Î, in QTmax , (2.4)

∇Ŝ · ν = ∇Î · ν = 0, in ΓTmax := ∂Ω×]0,Tmax[, (2.5)
(Ŝ , Î)(x, 0) = (S 0, I0)(x), on Ω. (2.6)

Consequently, the proof of existence and uniqueness of the global solution is reduced to guaranteeing
the L∞ estimations of Ŝ and T̂ and applying similar arguments to those given in [18, 36] (see also
Theorem 2 in [37] and Lemma 1.1 in [38]).

We observe that the positive constant p0 defined on the relation (1.6) of [37] should be selected such
that p0 > d max{0, 1}/2 > 3/2 [37, Theorem 1], then to obtain the L∞ estimations is enough to obtain
estimates in Lp0 for some p0 > 3/2. Indeed, we select p0 = 2; and we derive L2 estimations of (Ŝ , T̂ ).
Multiplying (2.3) by Ŝ , integrating on Ω; and (2.2), we have that

1
2

d
dt

∫
Ω

Ŝ 2dx + δ1

∫
Ω

|∇Ŝ |2dx ≤
1
2

d
dt

∫
Ω

Ŝ 2dx +
∫
Ω

d1(x)|∇Ŝ |2dx

≤ −

∫
Ω

β(x)
Ŝ 2 Î

Ŝ + Î
dx +

∫
Ω

γ(x)ÎŜ dx ≤ r
∫
Ω

ÎŜ dx ≤ rS maxImax|Ω|. (2.7)

Similarly, multiplying (2.4) by Î; integrating on Ω, and using the fact that Ŝ /(Ŝ + Î) ≤ 1, we have that

1
2

d
dt

∫
Ω

Î2dx + δ2

∫
Ω

|∇Î|2dx ≤
1
2

d
dt

∫
Ω

Î2dx +
∫
Ω

d2(x)|∇Î|2dx
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≤

∫
Ω

β(x)
Ŝ Î2

Ŝ + Î
dx −

∫
Ω

γ(x)ÎŜ dx ≤
b
2

∫
Ω

Î2dx ≤
b
2

I2
max|Ω|. (2.8)

The estimates (2.7) and (2.8) implies that

∥S (·, s)∥2L2(Ω) + ∥I(·, s)∥2L2(Ω) ≤ ∥S 0∥
2
L2(Ω) + ∥I0∥

2
L2(Ω) + (2rS max + bImax)Imax|Ω|

≤
(
S 2

max + 2rS maxImax + (1 + b)I2
max

)
|Ω|, s ∈]0, Imax[,

and, consequently, with the application of [37, Theorem 1], we deduce the existence and uniqueness
of the global solution and, particularly, the estimate (2.1) is satisfied. □

3. Existence of solutions for the constrained optimization problem (1.5)–(1.9)

Theorem 3.1. Consider the assumptions (D0)–(D3) are satisfied, then the optimization problem (1.5)–
(1.9) has at least one solution.

Proof. We note that the admissible set is not empty andJ(D) is bounded for any D ∈ Uad(Ω). The first
assertion, i.e.,Uad(Ω) , ∅, follows by considering the diffusion matrixD(x) = diag(δ1+δ1, δ2+δ2)/2 ∈
Uad(Ω). Meanwhile, we can prove that the cost function J is bounded by analyzing the boundedness
of each term: The first two terms are bounded as consequence of the bounded behavior of the direct
problem as result of Theorem 2.1, and the regularity of the observation functions is given on hypothesis
(D3); the third term is bounded as consequence of the fact that D ∈ Uad(Ω) and the definition of the
admissible set. Consequently, we can deduce the existence of {Dn} ⊂ U := ∆∆(Ω) ∩M ⊂ Uad(Ω) as a
minimizing sequence of J , whereM is a bounded and closed set of H |[d/2]|+1(Ω)2.

We observe that the following compact embedding H |[d/2]|+1(Ω) ⊂ Cα(Ω) is satisfied for all α ∈
]0, 1/2] and the convexity of Ω is assumed on (D0). This kind of inclusion is the consequence of two
results: H |[d/2]|+1(Ω) is continuous embedding in C1/2(Ω) (see Theorem 6 [39, pp 270]), and C1/2(Ω) is
compact embedding in Cα(Ω) for all α ∈]0, 1/2], and Ω is a convex set (see Theorem 1.3.1 [40, pp
11]). Thus, clearly, H |[d/2]|+1(Ω) ⊂ C1/2(Ω) ⊂ Cα(Ω) for all α ∈]0, 1/2] implies that the embedding
H |[d/2]|+1(Ω) in Cα(Ω) is compact for all α ∈]0, 1/2], and Ω is a convex set.

The compact embedding of H |[d/2]|+1(Ω) in Cα(Ω) for α ∈]0, 1/2] and Ω convex, implies that {Dn} is
bounded in the strong topology of Cα(Ω)2 for all α ∈]0, 1/2], since

∃C > 0 : ∥Dn∥Cα(Ω)2 ≤ C∥Dn∥H|[d/2]|+1(Ω)2 , ∀α ∈]0, 1/2],

where C is independent of d1, d2 and n. Here, we remark that the righthand side is bounded by the fact
that Dn ∈ U = ∆∆(Ω) ∩M withM as a bounded and closed set of H |[d/2]|+1(Ω)2.

Let us consider the notation (S n, In) to the solution of the direct problem (1.1)–(1.4) corresponding
toDn, then, by considering the fact that {Dn} ∈ Cα(Ω)2 for all α ∈]0, 1/2], by Theorem 2.1, we have that
(S n, In) ∈ C2+α,1+ α2 (QT )2. Also {(S n, In)} is a bounded sequence in the strong topology of C2+α,1+ α2 (QT )2

for all α ∈]0, 1/2].
The boundedness of the sequence {(Dn, S n, In)}, implies that there exists (D, S ,T ) such that

D ∈ C1/2(Ω)2 ∩Uad(Ω), (S ,T ) ∈ C2+ 1
2 ,1+

1
4 (QT )2;
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and uniformly convergent subsequences, which are again labeled by {Dn} and {(S n, In)}; to be precise

Dn → D uniformly on Cα(Ω)2, (3.1)

(S n, In)→ (S , I) uniformly on
[
Cα,

α
2 (QT ) ∩C2+α,1+ α2 (QT )

]2
. (3.2)

Moreover, it is straightforward to deduce that (S , I) is the solution of (1.1)–(1.4) when the diffusion
matrix is given by D.

Hence, using the definition of the minimizing sequence, the weak lower-semicontinuity of the L2

norm, and the Lebesgue’s dominated convergence theorem, we get that

J(D) ≤ lim
n→∞

J(Dn) = inf
D∈Uad(Ω)

J(D). (3.3)

Thus, D is a solution of (1.5)–(1.9). □

4. Adjoint system

In order to deduce the adjoint system, we adapt the formal calculus of the adjoint equation for
scalar strongly parabolic equations in [41, 42]. Let us consider L, the Lagrangian associated to the
optimization problem (1.5)–(1.9), defined as follows

L(S , I, p, q) = J(S , I) − E1(S , I, p) − E2(S , I, q) (4.1)

where E1 and E2 are the weak formulations of (1.1) and (1.2), respectively. More precisely

E1 = −

∫ T

0

∫
Ω

{
S
(
pt + div (d1(x)∇p)

)
− β(x)

S I
S + I

p + γ(x)I p
}
dxdt

+

∫
Ω

(S p)(x,T )dx −
∫
Ω

S 0(x)p(x, 0)dx +
∫ T

0

∫
∂Ω

S d1(x)
∂p
∂ν

(x, t)dσdt,

E2 = −

∫ T

0

∫
Ω

{
I
(
qt + div (d2(x)∇q)

)
+ β(x)

S I
S + I

q − γ(x)Iq
}
dxdt

+

∫
Ω

(S q)(x,T )dx −
∫
Ω

I0(x)q(x, 0)dx +
∫ T

0

∫
∂Ω

Id2(x)
∂q
∂ν

(x, t)dσdt,

for p and q the test functions.
Let D be a solution of optimization problem (1.5)–(1.9) and (S , I) be the solution of the forward

problem (1.1)–(1.4) with D instead of D. By a formal calculus of the derivative of L with respect to
d1 and d2 and introducing the test functions (p, q), such that the derivatives of the state variables (S , I)
with respect to d1 and d2 are vanished, we get that the functions (p, q) are obtained as the solution of
the backward boundary value problem:

pt + div (d1(x)∇p) = β(x)
I

2

(S + I)2
(p − q), in QT , (4.2)

qt + div (d2(x)∇q) =
(
β(x)

S
2

(S + I)2
− γ(x)

)
(p − q), in QT , (4.3)
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∇p · ν = ∇q · ν = 0, on Γ, (4.4)

(p, q)(x,T ) =
(
S (x,T ) − S obs(x), I(x,T ) − Iobs(x)

)
, in Ω. (4.5)

The system (4.2)–(4.5) is called the adjoint system to (1.1)–(1.4).

Theorem 4.1. Consider that Ω, S 0, I0, S obs, Iobs, β and γ; satisfy the assumptions of Theorem 3.1.
Moreover, consider that D ∈ Uad is a solution of (1.5)–(1.9); and (S , I) is the solution of the di-
rect problem (1.1)–(1.4) with D instead of D, then, the solution of (4.2)–(4.5) satisfies the following
estimates

∥p(·, t)∥2L2(Ω) + ∥q(·, t)∥2L2(Ω) ≤ C, (4.6)
∥p(·, t)∥H1

0 (Ω) + ∥q(·, t)∥H1
0 (Ω) ≤ C, (4.7)

∥∆p(·, t)∥L2(Ω) + ∥∆q(·, t)∥L2(Ω) ≤ C, (4.8)
∥p(·, t)∥L∞(Ω) ≤ C, ∥q(·, t)∥L∞(Ω) ≤ C, (4.9)

for t ∈ [0,T ]. Here, C denotes some positive generic constant.

Proof. If we introduce the change of the time variable by the following relation τ = T − t for t ∈ [0,T ]
and the unknowns of the direct problem and the adjoint system by the identity (w1,w2, S ∗, I∗)(x, τ) =
(p1, p2, S , I)(x,T − τ), we can rewrite the adjoint system (4.2)–(4.5) as the following initial boundary
value problem

(w1)τ − div (d1(x)∇w1) = −β(x)
(I∗)2

(S ∗ + I∗)2 (w1 − w2), in QT ,

(w2)τ − div (d2(x)∇w2) =
(
− β(x)

(S ∗)2

(S ∗ + I∗)2 + γ(x)
)
(w1 − w2), in QT ,

∇w1 · ν = ∇w2 · ν = 0, on Γ,

(w1,w2)(x, 0) =
(
S (x,T ) − S obs(x), I(x,T ) − Iobs(x)

)
, in Ω.

Next, by applying the standard arguments of energy and regularity of solutions for linear parabolic
equations, we get the desired estimates (4.6)–(4.9), see [19] for d = 1 and [24] for d ≥ 1 for the case
of the identity matrix diffusion. □

5. Necessary optimality conditions.

Theorem 5.1. Consider that D is a solution of the optimization problem (1.5)–(1.9), (S , I) is the so-
lution of the direct problem (1.1)–(1.4) with D instead of D, and (p, q) is the solution of the adjoint
system (4.2)–(4.5), then, the inequality"

QT

pdiv
(
(d̂1 − d1)(x)∇S

)
+ qdiv

(
(d̂2 − d2)(x)∇I

)
dxdt

+ Γ

∫
Ω

(
d1(d̂1 − d1)

)
(x) +

(
d2(d̂2 − d2)

)
(x) dx ≥ 0, ∀D̂ ∈ Uad(Ω); (5.1)

is satisfied and defines the first-order optimality condition.
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Proof. Let us consider the arbitrary diffusion D̂ ∈ Uad(Ω), then we define the notation

Dε = (1 − ε)D + εD̂ ∈ Uad(Ω),

Jε = J(Dε) =
1
2

∫
Ω

(∣∣∣S ε(x,T ) − S obs(x)
∣∣∣2 + ∣∣∣Iε(x,T ) − Iobs(x)

∣∣∣2) dx

+
Γ

2

∫
Ω

(∣∣∣dε1(x)
∣∣∣2 + ∣∣∣dε2(x)

∣∣∣2) dx,

where (S ε, Iε) is the solution of (1.1)–(1.4) with Dε instead of D. The fact that that D is an optimal
solution of (1.5)–(1.9), by taking the Fréchet derivative of Jε, we deduce that the following inequality

dJε
dε

∣∣∣∣
ε=0
=

∫
Ω

(∣∣∣S ε(x,T ) − S obs(x)
∣∣∣ ∂S ε
∂ε

∣∣∣∣
ε=0
+

∣∣∣Iε(x,T ) − Iobs(x)
∣∣∣ ∂Iε
∂ε

∣∣∣∣
ε=0

)
dx

+Γ

∫
Ω

(
d1(d̂1 − d1)

)
(x) +

(
d2(d̂2 − d2)

)
(x) dx ≥ 0, (5.2)

is satisfied. Here, ∂εS ε and ∂εIε for ε = 0 are the sensitivities of solutions for (1.1)–(1.4), with respect
to the ε-perturbations of D.

The calculus of the sensitivities (∂εS ε, ∂εIε) when ε → 0 is developed by considering the SIS
systems of the form (1.1)–(1.4), (S ε, Iε) and (S , I), then letting ϵ → 0. More precisely, we have that
(S ε, Iε) and (S , I) are solutions of the following initial boundary value problems

(S ε)t − div (dε1(x)∇S ε) = −β(x)
S εIε

S ε + Iε
+ γ(x)Iε, in QT , (5.3)

(Iε)t − div (dε2(x)∇Iε) = β(x)
S εIε

S ε + Iε
− γ(x)Iε, in QT , (5.4)

∇S ε · ν = ∇Iε · ν = 0, on Γ, (5.5)
S ε(x, 0) = S 0(x), Iε(x, 0) = I0(x), in Ω, (5.6)

and

(S )t − div (d1(x)∇S ) = −β(x)
S I

S + I
+ γ(x)I, in QT , (5.7)

(I)t − div (d1(x)∇I) = β(x)
S I

S + I
− γ(x)I, in QT , (5.8)

∇S · ν = ∇I · ν = 0, on Γ, (5.9)

S (x, 0) = S 0(x), I(x, 0) = I0(x), in Ω, (5.10)

respectively. Subtracting the system (5.7)–(5.10) from (5.3)–(5.6), dividing by ε and using the notation(
zε1, z

ε
2

)
= ε−1

(
S ε − S , Iε − I

)
, we deduce the initial boundary value problem

(zε1)t − div
(
(d̂1 − d1)(x)∇S ε + d1(x)∇zε1

)
= −

β(x)

S ε − S

 S εIε

S ε + Iε
−

S Iε

S + Iε

 zε1 −
β(x)

Iε − S

 S εIε

S ε + Iε
−

S I

S + I

 zε2 + γ(x)zε2, in QT , (5.11)
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(zε2)t − div
(
(d̂2 − d2)(x)∇Iε + d2(x)∇zε2

)
=
β(x)

S ε − S

 S εIε

S ε + Iε
−

S Iε

S + Iε

 zε1 +
β(x)

Iε − S

 S εIε

S ε + Iε
−

S I

S + I

 zε2 − γ(x)zε2, in QT , (5.12)

∇zε1 · ν = ∇zε2 · ν = 0, on Γ, (5.13)
zε1(x, 0) = zε2(x, 0) = 0, in Ω. (5.14)

Let us consider that (z1, z2) is the limit of (zε1, z
ε
2) when ε→ 0, from (5.11)–(5.14); we deduce straight-

forward answer that (z1, z2) is a solution of the following system

(z1)t − div
(
(d̂1 − d1)∇S + d1∇z1

)
= −

β(x)

(S + I)2

(
I

2
z1 + S

2
z2

)
+ γ(x)z2, in QT , (5.15)

(z2)t − div
(
(d̂2 − d2)∇I + d2∇z2

)
=
β(x)

(S + I)2

(
I

2
z1 + S

2
z2

)
− γ(x)z2, in QT , (5.16)

∇z1 · ν = ∇z2 · ν = 0, on Γ, (5.17)
z1(x, 0) = z2(x, 0) = 0, in Ω. (5.18)

We remark that, in the context of optimization with partial differential equation constraints, the system
(5.15)–(5.18) is called the sensitivity system for (1.1)–(1.4).

Using the sensitivity system (5.15)–(5.18), we observe that the relation (5.2) can be rewritten as
follows

dJε
dε

∣∣∣∣
ε=0
=

∫
Ω

( ∣∣∣S ε(·,T ) − S obs
∣∣∣ z1(·,T ) +

∣∣∣Iε(·,T ) − Iobs
∣∣∣ z2(·,T )

)
dx

+Γ

∫
Ω

(
d1(d̂1 − d1)

)
(x) +

(
d2(d̂2 − d2)

)
(x) dx ≥ 0. (5.19)

Moreover, we notice two facts: First"
QT

∂

∂t
(pz1 + qz2)dxdt =

∫
Ω

(
p(x,T )z1(x,T ) + q(x,T )z2(x,T )

)
dx

=

∫
Ω

( ∣∣∣S (x,T ) − S obs(x)
∣∣∣ z1(x,T ) +

∣∣∣I(x,T ) − Iobs(x)
∣∣∣ z2(x,T )

)
dx, (5.20)

and second, by easy algebraic computations, from the systems (4.2)–(4.5) and (5.15)–(5.18), we can
deduce the following identity

∂

∂t
(pz1 + qz2) = pdiv

(
d1(x)∇z1

)
+ qdiv

(
d2(x)∇z2

)
− z1div

(
d1(x)∇p

)
− z2div

(
d2(x)∇q

)
+ pdiv

(
(d̂1 − d1)(x)∇S

)
+ qdiv

(
(d̂2 − d2)(x)∇I

)
,

which implies that"
QT

∂

∂t
(pz1 + qz2)dxdt

=

"
QT

pdiv
(
(d̂1 − d1)(x)∇S

)
+ qdiv

(
(d̂2 − d2)(x)∇I

)
dxdt, (5.21)
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by integration on QT . Thus, the relations (5.21) and (5.20) implies that"
QT

pdiv
(
(d̂1 − d1)(x)∇S

)
+ qdiv

(
(d̂2 − d2)(x)∇I

)
dxdt

=

∫
Ω

( ∣∣∣S (x,T ) − S obs(x)
∣∣∣ z1(x,T ) +

∣∣∣I(x,T ) − Iobs(x)
∣∣∣ z2(x,T )

)
dx. (5.22)

Hence, we can conclude the proof of (5.1) by replacing (5.22) in the first term of (5.19). □

6. A result of local uniqueness

Theorem 6.1. Let us consider that (D0)–(D3) is satisfied and let us consider the quotient setU(Ω)/ ∼
where the equivalence relation ∼ is defined as follows

D1 ∼ D2 if and only if ∥∇(D1 − D2)∥L∞(Ω) = 0, (6.1)

then, there exists Γ∗ ∈ R+ such that the solution of the optimization problem (1.5)–(1.9) is uniquely
defined (up an additive constant) on the quotient setU(Ω)/ ∼ for any regularization parameter Γ > Γ∗.

Proof. Let us consider that D, D̂ ∈ U(Ω)/ ∼ are two solutions of (1.5)–(1.9). Moreover, let us consider
that the sets of functions {S , I, p, q} and {Ŝ , Î, p̂, q̂} are solutions to the systems (1.1)–(1.4) and (4.2)–
(4.5) with diffusion matrices D and D̂, respectively. From Theorem 5.1 and the hypothesis that D and
D̂ are solutions of (1.5)–(1.9), we have that the following inequalities"

QT

pdiv
(
(d1 − d1)(x)∇S

)
+ qdiv

(
(d2 − d2)(x)∇I

)
dxdt

+ Γ

∫
Ω

(
d1(d1 − d1)

)
(x) +

(
d2(d2 − d2)

)
(x) dx ≥ 0, ∀ D ∈ Uad(Ω), (6.2)"

QT

p̂div
(
(d

1
− d̂1)(x)∇Ŝ

)
+ q̂div

(
(d

2
− d̂2)(x)∇Î

)
dxdt

+ Γ

∫
Ω

(
d̂1(d

1
− d̂1)

)
(x) +

(
d̂2(d

2
− d̂2)

)
(x) dx ≥ 0, ∀ D ∈ Uad(Ω), (6.3)

are satisfied. If we choose the particular cases D = D̂ in (6.2) and D = D in (6.3), and then add both
inequalities, we get

Γ
[
∥d̂1 − d1∥

2
L2(Ω) + ∥d̂2 − d2∥

2
L2(Ω)

]
≤

"
QT

{
pdiv

(
(d̂1 − d1)(x)∇S

)
+ qdiv

(
(d̂2 − d2)(x)∇I

)
+ p̂div

(
(d1 − d̂1)(x)∇S

)
+ q̂div

(
(d2 − d̂2)(x)∇I

)}
dxdt := RHS . (6.4)

We observe that, by integrating by parts two times, applying the Theorems (2.1) and (4.1), and using
the fact that D, D̂ ∈ U(Ω)/ ∼, we can bound the righthand side of (6.4), as follows

RHS =
"

QT

{
S div

(
(d̂1 − d1)∇p

)
− Ŝ div

(
(d̂1 − d1)∇ p̂

)
+ Idiv

(
(d̂2 − d2)∇q

)
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− Îdiv
(
(d̂2 − d2)∇q̂

)}
dxdt

=

"
QT

{
S (d̂1 − d1)(x)∆p − Ŝ (d̂1 − d1)(x)∆ p̂ + I(d̂2 − d2)(x)∆q − Î(d̂2 − d2)(x)∆q̂

+ S∇(d̂1 − d1)(x)∇p − Ŝ∇(d̂1 − d1)(x)∇ p̂ + I∇(d̂2 − d2)(x)∇q

− Î∇(d̂2 − d2)(x)∇q̂
}
dxdt

≤
[
∥S ∥L∞(Ω)∥∆p∥2L2(Ω) + ∥Ŝ ∥L∞(Ω)∥∆ p̂∥2L2(Ω)

]
∥d̂1 − d1∥

2
L2(Ω)

+
[
∥I∥L∞(Ω)∥∆q∥2L2(Ω) + ∥Î∥L∞(Ω)∥∆q̂∥2L2(Ω)

]
∥d̂2 − d2∥

2
L2(Ω)

+
[
∥S ∥2L2(Ω)∥∇p∥2L2(Ω) + ∥Ŝ ∥

2
L2(Ω)∥∇ p̂∥2L2(Ω)

]
∥∇(d̂1 − d1)∥L∞(Ω)

+
[
∥I∥2L2(Ω)∥∇q∥2L2(Ω) + ∥Î∥

2
L2(Ω)∥∇q̂∥2L2(Ω)

]
∥∇(d̂2 − d2)∥L∞(Ω)

≤ Γ∗
[
∥d̂1 − d1∥

2
L2(Ω) + ∥d̂2 − d2∥

2
L2(Ω)

]
, (6.5)

with

Γ∗ = max
{
∥S ∥L∞(Ω)∥∆p∥2L2(Ω) + ∥Ŝ ∥L∞(Ω)∥∆ p̂∥2L2(Ω),

∥I∥L∞(Ω)∥∆q∥2L2(Ω) + ∥Î∥L∞(Ω)∥∆q̂∥2L2(Ω)

}
.

Thus, from (6.5) and (6.4), we deduce the desired uniqueness result. □

7. Numerical examples

In this section, we consider two numerical examples for the one-dimensional case where the identifi-
cation is developed from observations that are constructed by considering synthetic data as observation
of state variables. We begin by stating precisely that we introduce a small modification of the notation
introduced previously. The diffusion coefficients d1 and d2 depend on a finite number of parameters
denoted by e = (e1, . . . , ek) ∈ Rk, which is explicitly denoted by di(x) = di(x; e) for i = 1, 2. The system
(1.1)–(1.4) is modified by considering the mass action β(x)S I instead of β(x)S I/(S + I). We consider
that kind of modification in the direct problem, since our aim is to apply the unconditionally stable
Implicit-Explicit (IMEX) numerical method introduced by [43]. To be precise, the direct problem
considered for the numerical simulations is given by the following initial boundary value problem:

∂tS − div (d1(x; e)∇S ) = −β(x)S I + γ(x)I, in QT , (7.1)
∂tI − div (d2(x; e)∇I) = β(x)S I − γ(x)I, in QT , (7.2)
∇S · ν(0, t) = ∇S · ν(1, t) = 0, in ΓT , (7.3)
∇I · ν(0, t) = ∇I · ν(1, t) = 0, in ΓT , (7.4)
(S , I)(x, 0) = (S 0, I0)(x), on Ω, (7.5)

where Ω =]0, 1[, ∂Ω = {0, 1} and ΓT = {0, 1} × [0,T ]. Concerning to the discretization of QT , we
select M,N ∈ N such that the discretization of Ω is given by xk = k∆x for k = 0, . . . ,M + 1 with
∆x = 1/(M + 1), and the discretization of [0,T ] is given by tn = n∆t for n = 0, . . . ,N with ∆t = 1/N.
The approximation of a given function H : Ω × R+ → R at (xk, tn) is denoted by Hn

k . Adapting the

Mathematical Biosciences and Engineering Volume 21, Issue 1, 562–581.



574

numerical discretization throughout a finite differences scheme introduced in [43], we deduce that the
approximation of the initial boundary value problem (7.1)–(7.5) is given by

S n+1
k − S n

k

∆t
=

1
∆x2

[
d1(xk; e)S n+1

k+1 −
(
d1(xk; e) + d1(xk−1; e)

)
S n+1

k + d1(xk−1; e)S n+1
k−1

]
− β(xk)S n+1

k In
k + γ(xk)In+1

k , (7.6)

In+1
k − In

k

∆t
=

1
∆x2

[
d2(xk; e)In+1

k+1 −
(
d2(xk; e) + d2(xk−1; e)

)
In+1
k + d2(xk−1; e)In+1

k−1

]
+ β(xk)S n+1

k In
k − γ(xk)In+1

k , (7.7)
S n

1 − S n
0

∆x
=

S n
M+1 − S n

M

∆x
=

In
1 − In

0

∆x
=

In
M+1 − In

M

∆x
= 0, (7.8)

S 0
k = S 0(xk), I0

k = I0(xk). (7.9)

We remark that the numerical method considered in [43] is developed and analized when d1 and d2

are constants. However, by straightforward adaptation of the arguments given in [43], we can deduce
that the implicit–explicit numerical scheme (7.6)–(7.9) has several properties, basically preserves the
biological meaning (such as positivity), and is unconditionally convergent.

For discretization of the inverse problem (1.5) and (1.6), we begin by considering the discretized
cost function

J∆(S ∆, I∆) :=
∆x
2

M∑
k=1

(S N
k − S obs

k )2 +
∆x
2

M∑
k=1

(IN
k − Iobs

k )2. (7.10)

We observe that in (7.10) we have omitted the regularization term, i.e. Γ = 0, then, in our numerical
example, we consider that the inverse problem (1.5) and (1.6), is replaced by the following parameter
identification problem

inf
e∈Rn
J∆(e), J∆(e) = J∆(S ∆, I∆), (7.11)

subject to (S ∆, I∆) solution of (7.6)-(7.9). (7.12)

In both numerical examples, we solve the optimization problem using the optimset routine of Matlab.

7.1. Example 1: Identification of a constant diffusion

We select the following coefficients on the reaction term β(x) = 0.000284535 and γ(x) = 0.144
and the initial condition (S 0, I0)(x) = (x, 2 − x)/2. We consider that e = (e1, e2), d1(x; e) = e1 and
d2(x; e) = e2. We construct the observation profile at T = 0.6 by considering a numerical simulation of
the direct problem with eobs = (0.5, 0.5), M = 200 and N = 100000 (i.e., ∆x = 5E−3 and ∆x = 6E−6).
The state simulation on QT is shown on Figure 1(a),(b). We consider the initial guess eobs = (0.1, 0.1)
and get that the identified parameters are e∞ = (0.52294, 0.55149). The numerical identification is
developed by considering M = 100 and N = 1000 or, equivalently, ∆x = 1.0E − 2 and ∆x = 5.9E − 4.
The comparison of the observed, identified and initial guess profiles are shown in Figure 1(c)–(f).
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Figure 1. Numerical results for Example 1 given in section 7.1. In (a) and (b) we show
the numerical solution. In (c) and (d) we show the comparison of inital guess, observed
and identified profiles at T = 0.6 for suceptibles and infective functions. In (d) and (e) we
show the comparison observed and identified profiles at T = 0.6 for suceptibles and infective
functions.
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7.2. Example 2: identification of a quadratic diffusion function

In this numerical example, we consider β(x) = 0.000284535 and γ(x) = 0.144 and the initial
condition S 0(x) = 5 and

I0(x) =


0, x ≤ 0.3,
100000x − 30000, 0.3 < x ≤ 0.5,
−100000x + 70000, 0.5 < x ≤ 0.7,
0, otherwise.

The parameters to identify are given by e ∈ R4, such that the diffusion functions are of the following
parametric form

d1(x; e) = 0.1 + e1x + e2x2, d2(x; e) = 0.2 + e3x + e4x2. (7.13)

The independent terms in d1 and d2 are fixed to prevent the degeneration of the diffusion function.
The observation profiles T = 0.6 are constructed by a numerical simulation of the direct problem with
eobs = (0.5, 0.5, 0.5, 0.5), M = 200 (∆x = 5E − 3) and N = 100000 (∆x = 6E − 6), which are shown
in Figure 2(a),(b). The initial guess and identified parameters are given by eobs = (0.1, 0.1, 0.1, 0.1)
and e∞ = (0.75143, 0.42256, 0.95842, 0.21146), respectively. For the identification, we assume that
the discretization M = 100 ( ∆x = 1.0E − 2 ) and N = 1000 ( ∆x = 5.9E − 4 ). The comparison of
observed, identified and initial guess profiles and diffusion functions are shown in Figure 2(c)–(f).

From Figure 2(c),(e), we observe that the profile S e∞(·, 0.6) fits the observation data. However,
d1(x, e∞) is close to d1(x, eobs), but we conjecture that it can be improved by incorporating the regular-
ization term on J∆. A similar behavior is observed from Figure 2(d),(f) for the cases of Ie∞(·, 0.6) and
d2(x, e∞).

8. Conclusions

In this paper, we have introduced the functional framework to develop the identification of the dif-
fusion matrix in a reaction-diffusion system arising from the modeling of the spread dynamics of virus
propagation. We considered that the disease occurs in a spatially distributed population between two
classes of individuals: The susceptible class, formed by the individuals who can catch the disease;
and the infective class, formed by the individuals who are infected and can transmit the disease. The
reaction-diffusion model was deduced by assuming that there are no vital dynamics, there is no mi-
gration or immigration during the epidemic disease propagation, and the coefficients (diffusion, trans-
mission rate, and recovery rate) of the model are functions that depend on the spatial position. The
diffusion matrix identification was developed by assuming that the susceptible and infective popula-
tions are known at a fixed time. Thus, we have formulated the inverse problem as an optimal control
problem, where the cost function to minimize is the least squares cost function and a regularization
term, and the optimization constraints are the SIS reaction-diffusion model.

We have proved that the mathematical model is well-posed and has a global positive solution in
the context of strong solutions in Hölder spaces when the initial conditions and coefficients are of
Hölder class. We have demonstrated that there exists at least one solution to the identification problem,
and the solution is unique under the assumption that the regularization parameter is large enough.
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Figure 2. Numerical results for Example 1 given in section 7.2. In (a) and (b) we show
the numerical solution. In (c) and (d) we show the comparison of inital guess, observed and
identified profiles at T = 0.6 for suceptibles and infective functions. In (d) and (e) we show
the comparison observed, initial guess and identified diffusion of the parametric form given
in (7.13).
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Furthermore, we remarked that the uniqueness of the optimal control problem is deduced from an
appropriate quotient set of the admissible set. Moreover, we have introduced a necessary optimal for
the optimal control problem.

We observed that our results define the appropriate framework to develop the numerical identifica-
tion from available experimental data for a concrete epidemic propagation and even numerical analysis
like convergence. Here, we can remark that in a practical epidemiology phenomenon, the observation
data of profiles in all spatial domain are not usual, and the typical situation is a profile at a fixed point in
the domain and during a time interval. The cost function considered in this paper must be modified to
develop identification from experimental data. Moreover, in the case of parameter identification from
laboratory or epidemic data, we should develop a study of the noise, and we can consider the recent
uncertainty concepts [44].
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41. S. Berres, R. Bürger, A. Coronel, M. Sepúlveda, Numerical identification of parameters for a
strongly degenerate convection-diffusion problem modeling centrifugation of flocculated suspen-
sions, Appl. Numer. Math., 52 (2005), 311–337. https://doi.org/10.1016/j.apnum.2004.08.002
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