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Abstract: To address the challenges of repetitive and low-texture features in intraoral endoscopic 

images, a novel methodology for stitching panoramic half jaw images of the oral cavity is proposed. 

Initially, an enhanced self-attention mechanism guided by Time-Weighting concepts is employed to 

augment the clustering potential of feature points, thereby increasing the number of matched features. 

Subsequently, a combination of the Sinkhorn algorithm and Random Sample Consensus (RANSAC) 

is utilized to maximize the count of matched feature pairs, accurately remove outliers and minimize 

error. Last, to address the unique spatial alignment among intraoral endoscopic images, a wavelet 

transform and weighted fusion algorithm based on dental arch arrangement in intraoral endoscopic 

images have been developed, specifically for use in the fusion stage of intraoral endoscopic images. 

This enables the local oral images to be precisely positioned along the dental arch, and seamless 

stitching is achieved through wavelet transformation and a gradual weighted fusion technique. 

Experimental results demonstrate that this method yields promising outcomes in panoramic stitching 

tasks for intraoral endoscopic images, achieving a matching accuracy of 84.6% and a recall rate of 

78.4% in a dataset with an average overlap of 35%. A novel solution for panoramic stitching of 

intraoral endoscopic images is provided by this method.  

Keywords: image stitching; panoramic image generation; intraoral endoscopic imagery; attention 

mechanism; RANSAC; weighted Fusion 
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1. Introduction  

As living standards improve, people are placing increasing emphasis on dental health. With the 

rising number of patients, clinicians face the cumbersome task of image interpretation, which 

undermines the efficiency of healthcare services. In recent years, intelligent diagnostic systems based 

on intraoral endoscopy have emerged as vital adjunct tools for oral treatment, capable of conducting 

dental lesion image segmentation and preliminary diagnosis [1]. However, due to the confined space 

within the oral cavity and the limited field of view of the endoscope, each capture yields only 

fragmentary images of a few teeth, making it difficult to provide a continuous, comprehensive 

diagnostic assessment of the entire jaw. To address this issue, panoramic stitching of half jaw images 

has become a key. 

Compared to other images, intraoral endoscopic images present unique challenges due to their 

short focal length, limited shooting range and the similar structure of teeth. Furthermore, these images 

are often affected by variables such as oral cavity structure, tongue and saliva, which can result in 

uneven lighting or occlusions, manifesting in repetitive and weak textural features. These factors 

complicate the stitching of intraoral endoscopic images, leading to issues such as a scarcity of feature 

points and low accuracy in feature matching. Moreover, the spatial relationship between intraoral 

Endoscopic images generally not horizontal or vertical but instead conforms to the curvature of the 

dental arch. Therefore, specialized treatment is required during the image fusion stage to accommodate 

this curvilinear spatial arrangement. Such treatment enables accurate capture of the curved tooth 

structures. Presently, methods based on local features like SURF [2] and ORB [3] are widely applied 

in the image stitching domain [4,5]. However, when applied to intraoral endoscopic image stitching, 

these methods are prone to false detections and mismatches due to similarities in tooth shape and the 

deformable nature of oral soft tissues. Additionally, traditional panoramic image fusion techniques are 

ill-suited for the specific alignment of intraoral endoscopic images, leading to issues like noticeable 

double exposures and artifacts. 

In summary, we introduce a method for panoramic stitching of semi-mandibular intraoral 

endoscopic images to address these unique image characteristics and alignment challenges. The main 

contributions are as follows: 

1) By integrating the concept of Time-weighting [6], the attention mechanism has been enhanced, 

effectively increasing the quantity of feature-matching pairs. Coupled with the Sinkhorn [7] and 

RANSAC [8] algorithms, this results in heightened matching accuracy and reduced error rates. 

2) We propose a wavelet transform and weighted fusion algorithm based on dental arch 

arrangement intraoral endoscopic images, resolving the applicability issues of intraoral endoscopic 

image arrangement and facilitating seamless fusion of these images. 

3) An intraoral endoscopic image stitching dataset, termed as Intraoral Camera Panorama Album 

(ICPA), has been constructed. This dataset features image pairs with smaller overlapping regions, 

averaging around 35%. 

2. Related works 

Image stitching is the process of merging multiple partially overlapping images into a larger 

composite image, involving steps such as feature detection, feature matching and image fusion. In the 

domain of endoscopic medical image stitching [9], early research primarily utilized frequency-domain 

correlation algorithms and maximum mutual information methods. For example, Y.Hernandez-Mier [10] 

proposed an automated stitching algorithm specifically designed for 2D cystoscopic sequence images, 
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demonstrating robustness against blurring, variable lighting and non-uniform radial distortions. This 

algorithm also exploited cancer autofluorescence within the images to detect cancerous lesions. Bergen 

et al. [11] employed graph-based techniques for stitching cystoscopic video frames, identifying 

coherent subgraphs from framework graphs to stitch local patches into larger composites. In intestinal 

endoscopic image stitching, Igarashi et al. [12,13] and Ishii et al. [14] utilized the "shape-from-

shading" technique to generate open panoramic images of tubular organs, such as male urethrae, pig 

colons and human colons. They assumed the organs to be cylindrical and that the light axis was 

perfectly aligned with the cylindrical axis, generating panoramas from circles extracted around the 

image center during constant endoscope retraction. In 2002, Can et al. [15] presented mosaics 

generated from images of the human retina acquired with a fundus microscope. They explicitly 

exploited vascular structures to register pairs of images and used a quadric surface model to represent 

the retina. Their work is based on earlier experiments by Becker et al. carried out in 1998 [16]. In 2013, 

Yi et al. [17] presented real-time visualization technology for capsule endoscopic videos based on 

gastrointestinal tract unfolding panoramas. However, their approach was solely reliant on homographic 

descriptions of inter-frame transformations, leading to issues of ghosting and artifacts in the stitched result. 

Schuster et al. [18] have successfully applied general-purpose stitching software to laryngoscopic image 

sequences and presented panorama images of the larynx for documentation purposes. 

Research and literature on stitching images in intraoral endoscopy are relatively sparse. In 2018, 

Ruiqing He proposed a teeth occlusal surface panoramic image stitching technique based on local 

optimization algorithms [19]. This method utilized adaptive SIFT for the stitching process but required 

image acquisition from devices equipped with a shooting track, making it computationally intensive 

and time-consuming. In the same year, he also presented a modification of the previous method, 

introducing a teeth buccal side panoramic image stitching technique based on local optimization 

algorithms [20]. This updated method employed bundle adjustment to calculate adjacent 

transformation matrices, thus enhancing the quality of the stitching. However, the time consumption 

issue persisted due to the continued use of SIFT. Additionally, the requirement for specialized image 

acquisition equipment with shooting tracks limits the method's universality. 

The realm of image stitching has garnered substantial attention in recent research endeavors. A 

View-Free Image Stitching Network (VFISNet) was proposed by Lang Nie and co-authors [21], which 

employs deep learning to estimate homography matrices based on global homography, thus enabling 

effective image stitching. This method successfully mitigates the poor generalizability of previous 

learning algorithms in scenarios involving flexible views. However, its effectiveness diminishes in the 

presence of sparse feature points and abundant repetitive textures within images. Subsequently, Lang 

Nie and associates [22] advanced an Unsupervised Deep Image Stitching (UDIS) technique, 

specifically designed to enhance the accuracy of homography-based registrations in images featuring 

large disparities by reconstructing the stitching features. However, its utility is restricted to specific 

natural scenes endowed with sufficient geometric complexities. Contributing further, Daniel DeTone 

and collaborators [23] devised the SuperPoint network for feature detection and description in images, 

which detects a broader spectrum of interest points relative to conventional methods. Moreover, Sarlin 

and others [24] introduced the SuperGlue methodology, which incorporates graph neural networks and 

attention mechanisms to address the optimization of feature point assignments. Xiangyang Xu and 

colleagues [25] also formulated an image stitching method that integrates both global and local features, 

thus overcoming challenges of large disparities and high-resolution needs. 

In summary, methods for stitching intraoral endoscopic images require the ability to identify as 

many feature points and matching pairs as possible while maintaining accuracy, especially in cases of 

repetitive and low textures. SuperPoint and SuperGlue demonstrate high performance in both feature 
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detection count and accuracy when applied to intraoral endoscopic images. Therefore, we employ 

SuperPoint for the task of feature detection and borrows and refines the attention mechanism concept 

from SuperGlue for feature matching. Subsequently, we utilize a wavelet transform weighted fusion 

approach based on dental arch alignment to achieve panoramic image stitching of intraoral endoscopy. 

3. Proposed method 

3.1. Overall architecture 

As illustrated in Figure 1, the overall stitching workflow of the proposed method is delineated, 

with the green dashed section representing the primary innovations of this paper. Initially, 

preprocessing steps are applied to the intraoral endoscopic images slated for stitching. These include 

lighting compensation, resizing and grayscale conversion to counteract issues related to point light 

source imaging and significant lighting variations. Considering the recurrent and low-texture 

characteristics often found in intraoral endoscopic images, we employ the SuperPoint deep learning 

methodology for feature extraction. In addition, we design a feature-matching network that 

incorporates Time-weighting concepts and iteratively improves upon self-attention mechanisms for 

more effective feature aggregation. Subsequently, a combination of Sinkhorn and RANSAC 

algorithms is utilized to ascertain mutually matching feature points between images intended for 

stitching, thus deriving the homography matrices. Finally, due to the typical arc-shaped arrangement 

in intraoral endoscopic images, we propose a wavelet-transform-based weighted fusion algorithm 

aligned with dental arch configurations. This algorithm initially preprocesses image pairs for alignment 

and utilizes wavelet transformation for image fusion. Moreover, a fade-in, fade-out weighted fusion 

strategy is deployed for seamless stitching. 

3.2. Feature detection 

First, it is imperative to standardize the dimensions of the input images and perform lighting 

compensation to ensure that significant discrepancies in lighting intensity across image pairs do not 

adversely impact the visual perception of the stitched image. Subsequently, we employ a pre-trained 

SuperPoint network for feature detection. The SuperPoint network incorporates a strategy known as 

Homographic Adaptation to enhance the detection rate of feature points and their adaptability across 

different scenarios. Consequently, when confronted with large areas of repetitive textures and low-

texture environments, SuperPoint is capable of detecting a greater number of features with higher 

accuracy compared to traditional feature detection methods. 
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Figure 1. Schematic diagram of image stitching algorithm. 

3.3. Feature matching 

This phase consists of two main components: the attention-based Graph Neural Network (GNN) 

section and the matching section. In the GNN section, feature aggregation is iteratively performed 

through Time-Weighting improved self-attention and cross-attention mechanisms, culminating in the 

generation of matching descriptors akin to feature descriptors. The matching section takes the output 

from the GNN as input and establishes an allocation matrix. It then employs the Sinkhorn algorithm 

in conjunction with the RANSAC method to identify correspondingly matched feature point pairs. 

3.3.1. Attention GNN 

(1) MLP encoder 

The attention GNN part is shown in Figure 2, For the 𝑖 -th feature point of the image 𝐴 to be 

spliced, it is represented by 𝑝𝑖
𝐴, The feature descriptor is represented as 𝑑𝑖

𝐴，The same method is used 
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for image 𝐵 . Initially, the feature points of both images are enhanced for unique matching 

characteristics via a Multilayer Perceptron (MLP) encoder. Subsequently, the concept of Time-

Weighting is employed to improve the self-attention mechanism. Feature points and descriptors are 

then cyclically iterated through self-attention and cross-attention processes to aggregate image features, 

ultimately yielding matching descriptors analogous to traditional feature descriptors. 

 

Figure 2. Schematic diagram of attention GNN network. 

Both the location and the descriptor of each feature point contribute to heightened specificity in 

feature matching. Therefore, the initial representation 𝑥
(0)

𝑖  of each feature point combines the 

position and the descriptor as illustrated in Eq (1). 

𝑥𝑖 = 𝑑𝑖 +𝑀𝐿𝑃𝑒𝑛𝑐(𝑝𝑖)         (1) 

Among them, 𝑝𝑖  represents the 𝑖  -th feature, the descriptor is represented by 𝑑𝑖 ,𝑀𝐿𝑃𝑒𝑛𝑐 

represents a Multilayer Perceptron (MLP) employed for dimensionality elevation of low-level features, 

effectively coupling visual appearance with feature point location. The architecture of this encoder 

facilitates subsequent attention mechanisms to fully consider both the appearance and positional 

similarity of the features. 

(2) Time-Weighting improves attention mechanism 

For a given individual image, each node within its graph corresponds to each feature point in the 

image. The graph consists of two types of undirected edges: one type “s "Intra-image edg”s," also 

known as self-edges, which connect feature points within the same image. The other type “s "Inter-

image edg”s," or cross-edges, which link feature points from the graph to all feature points in another 

image, thereby constituting that particular edge. Among them, self-edge uses self-attention, and cross 

edge uses cross-attention. Aggregating self-attention and cross-attention to obtain 𝑚𝜀→𝑖 , as shown in 

Eq (2).  

𝑚𝜀→𝑖 = ∑𝛼𝑖𝑗𝑣𝑗         (2) 

The attention weight 𝛼𝑖𝑗 is the softmax of the similarity between the query and retrieved object 

key values, as shown in Eq (3): 

𝛼𝑖𝑗 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥( 𝑞𝑖
𝛵𝑘𝑗)         (3) 
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In Eq (2), let the feature point 𝑖 to be queried be located on the query image 𝑄, and all source 

feature points 𝑗 be located on the source image 𝑆. For 𝑞𝑖 and key 𝑘𝑖, the value 𝑣𝑗  can be written 

in the form of Eq (4): 

𝑞𝑖 = 𝑊1
(ℓ)
𝑥𝑖
𝑄 + 𝑏1  and  

[
𝑘𝑗
𝑣𝑗
] = [

𝑊2

𝑊3
] (ℓ)𝑥𝑖

𝑆 + [
𝑏2
𝑏3
]
      (4) 

Each layer ℓ  has its corresponding set of projection parameters 𝑊 , which are shared by all 

feature points. 𝑞𝑖  represents a feature point 𝑖  on the query image. 𝑘𝑖, 𝑘𝑗, 𝑣𝑖 and 𝑣𝑗  are 

representations of a transformed feature point 𝑗.𝛼𝑖𝑗 signifies the similarity between the two features; 

a higher value indicates greater similarity. Subsequently, this similarity measure is utilized to weight-

sum 𝑣𝑗  , resulting in 𝑚𝜀→𝑖, which is termed as feature aggregation. 

According to the idea of time-weighting, each point is weighted after each softmax. As shown in 

Eq (5): 

𝛼𝑖𝑗 = 𝛼𝑖𝑗 ∗ 𝜔𝑖𝑗         (5) 

𝜔𝑖𝑗 represents the Time-Weighting factor. The weight is relatively low in non-overlapping areas 

along the image's edges. Conversely, the weight is higher in the image's central region and the 

overlapping areas. Time-Weighting is employed as a component of the relative position embedding 

in text recognition. Incorporating Time-Weighting into the self-attention mechanism is motivated 

by two considerations.  

First, during the process of stitching intraoral endoscopic images, the contributions   for 

different regions, such as teeth and tongue, ought to vary.  

Second, for peripheral information with a comparatively low data density, the overall self-

attention weight should be reduced. 

In self-attention, edges within a single image are aggregated to better focus on all distinctive 

points, unrestricted by their neighboring positional features. In contrast, cross-attention serves to match 

features between two images that share similar appearances.  

After 𝐿  iterations of self/cross-attention, the output of the attention-based Graph Neural 

Network (GNN) for image 𝐴 can be represented as shown in Equation (6). 

𝑓𝑖
𝐴 = 𝑊𝑥𝑖

𝐴 + 𝑏, ∀𝑖 ∈ 𝐴
         (6) 

𝑓𝑖
𝐴can be interpreted as the matching descriptor for the 𝑖th feature point of Image 𝐴, analogous 

to a feature descriptor. This is specifically designed for feature matching purposes. A similar 

formulation applies to Image 𝐵. 

The visualization of the aforementioned process is illustrated in Figure 3. In self-attention, edges 

within a single image are aggregated to heighten focus on all unique points without being limited by 

neighboring positional features. Conversely, cross-attention is employed to match features between 

two visually similar images. Analogous to how humans perform feature matching—by tentatively 

filtering key matching points through iterative scrutiny between two images—the model aims to 

simulate this human-like approach. The core idea is to leverage Graph Neural Networks (GNNs) based 

on attention mechanisms to replicate this process, thereby actively seeking context to enhance feature-

point specificity and exclude anomalous matches. 
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Figure 3. Registration process of self-attention and cross-attention. 

3.3.2. Matching section 

（1） Assignment matrix 

In the matching section, the objective is to construct an assignment matrix 𝑃to determine the 

pairs of matched features, as outlined in Figure 4. Initially, the inner products of 𝑓𝑖
𝐴 and 𝑓𝑗

𝐵 obtained 

from the GNN steps are calculated to yield scores 𝑆𝑖𝑗, which are then organized into a score matrix 𝑆. 

An "unmatched" channel is incorporated to form 𝑆̄ . Subsequently, the Sinkhorn algorithm, in 

conjunction with the RANSAC algorithm, is employed to identify and refine feature matches, 

excluding erroneous matches during each iteration. The ultimate goal is to derive an optimal 

assignment matrix 𝑃 , achieved by calculating a score matrix 𝑆 ∈ 𝑅𝑚×𝑛  that represents potential 

matches. The optimization of 𝑃 is accomplished by maximizing the aggregate score∑ 𝑖𝑗𝑆𝑖,𝑗𝑃𝑖,𝑗 , 
According to the matrix information, the set 𝑚𝐴𝐵of feature point pairs matching the image 𝐴and 𝐵 

is obtained. 
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Figure 4. Matching layer flow chart. 

As demonstrated in Figure 5, the yellow rectangles and circles represent the reference image 𝐴 

and its 𝑀 corresponding feature points within a pair of images to be stitched, while the blue rectangles 

and circles represent the target image 𝐵 and its 𝑁 feature points. Each row of the assignment matrix 

𝑃 represents the potential 𝑁 matches for a particular feature point originating from the reference 

image 𝐴 to the target image 𝐵. 

 

Figure 5. The matching relationship between the feature point mapping of the image pair in the 

assignment matrix. 

In the reference image 𝐴, there are three feature points, whereas the target image 𝐵 has four. 

Consequently, the dimensions of the assignment matrix 𝑃 would be 3×4. From the first row of matrix 

𝑃, as shown in Figure 5, the maximum value is 0.6, indicating a match between the first feature point 

in reference image 𝐴 and the second feature point in target image 𝐵. Likewise, in the first column of 

𝑃, the highest value is 0.5, signifying a match between the first feature in 𝐵 and the second feature in 

𝐴. It is worth mentioning that this assignment matrix 𝑃 is not fully distributed. In an ideal scenario, 

the sum of each row or column in 𝑃 should be equal to 1. This " ideal scenario" assumes that all 
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features in both images 𝐴 and 𝐵 have corresponding matches; however, real-world conditions such 

as occlusions, changes in viewpoint, or noise may prevent such perfect matching. 

 

Figure 6. There is a situation where the sum of the assignment matrix is less than 1. 

As illustrated in Figure 6, for the third column of matrix 𝑃, which corresponds to the third feature 

in the target image 𝐵, no matching feature is identified. Hence, the sum of the third column is less 

than 1. The subsequent aim is to compute and construct an optimal assignment matrix 𝑃. 

（2） Sinkhorn combines RANSAC algorithm to improve accuracy 

In the matching section, the inner product of 𝑓𝑖
𝐴 and 𝑓𝑗

𝐵, obtained through GNN aggregation, is 

first calculated to yield the score 𝑆𝑖𝑗, as shown in Eq (7). 

𝑆𝑖𝑗 =< 𝑓𝑖
𝐴, 𝑓𝑗

𝐵 >,∀(𝑖, 𝑗) ∈ 𝐴 × 𝐵         (7) 

Moreover, a specialized "unmatched" channel is introduced in the final column or row of the score 

matrix, denoted as 𝑆, to create an augmented matrix 𝑆̄. This addition aims to address instances where 

no feature points are identifiable, serving as a mechanism to eliminate erroneous matches. 

Feature points from the reference image 𝐴 are either mapped to corresponding feature points in 

the target image 𝐵 or relegated to a designated "unmatched" channel. Under this framework, each 

"unmatched" is associated with 𝑁 or 𝑀 potential matches. Accordingly, the constraints imposed on 

the assignment matrix are articulated in Eq (8) and (9). 

𝑃̄1𝑁+1 = 𝑎, 𝑃̄1𝑀+1 = 𝑏                                                (8) 

𝑎 = [1𝑀
𝑇 , 𝑁]𝑇 , 𝑏 = [1𝑁

𝑇 , 𝑀]𝑇                                              (9) 

The variable 𝑎 denotes the anticipated count of feature matches from the reference image 𝐴, 

including its dedicated "unmatched" channel. Conventionally, each feature point within image 𝐴 

aligns with a solitary corresponding point in target image 𝐵. However, the feature points that fall into 

the "unmatched" channel from image 𝐴 may potentially align with any feature point in image 𝐵, 
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thereby introducing 𝑁 potential matches. Consequently, we have𝑎 = [1𝑀
𝑇 , 𝑁]𝑇. The same goes for 𝑏. 

As delineated in Algorithm Table 1, we leverage an integrative approach utilizing both Sinkhorn 

and RANSAC algorithms to maximize our scoring metric. The Sinkhorn algorithm is traditionally 

deployed for optimal transport issues. In our setup, Eq (8) and (9) act as specialized cost functions, or 

more precisely, as their negations. While 𝑆̄ in classical optimal transport scenarios serves as a cost 

matrix, in this context, it represents the cosine similarity between matching descriptors. Consequently, 

the objective diverges from minimizing cost to maximizing descriptor similarity, as indicated by the 

maximization operation in Eq (8). Various parameters are set: A regularization term 𝜆 at 1, confidence 

𝜉 at 0.995, error threshold 𝜄 at 10, inlier proportion 𝜔 and a minimum sample count 𝑚 of 4 for 

computing model 𝐻. By purging outliers, the method achieves a marked improvement in registration 

precision and minimizes errors. 

 

Algorithm 1 Integration of the Sinkhorn with the RANSAC 

Inputs: Cosine similarity matrix of matching descriptors 𝑆̄. The length and width of the matrix 𝑛 

and 𝑚, anticipated count of feature matches 𝑎 and 𝑏, regularization term 𝜆, confidence 𝜉, 

error threshold 𝜄 

Output: Feature point matching pairs removing external points 𝑃 

1: Initialize assignment matrix:𝑃̄ = 𝑒𝑥𝑝𝜆𝑆̄ ; 

2: while 𝑃̄does not converge do //Determine whether the Sinkhorn algorithm converges 

3:    𝑖 → 𝑚; 

4:    𝑃̄𝑖𝑗 ÷ ∑ 𝑗=0
𝑚 𝑃̄𝑖𝑗 × 𝑎𝑖; 

5:    𝑗 → 𝑛 

6:    𝑃̄𝑖𝑗 ÷ ∑ 𝑖=0
𝑛 𝑃̄𝑖𝑗 × 𝑏𝑗; 

7: end while 

8: while the number of iterations is less than 𝐾 do //Ransac algorithm removes outliers 

9:    𝑀̄𝑖𝑗 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑃̄𝑖0, 𝑃̄0𝑗)
𝑚; 

10:   𝐻 = 𝐹𝑖𝑛𝑑𝐻𝑜𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦(𝑀̄𝑖𝑗); 

11:   𝐸𝑟𝑟𝑜𝑟 = 𝑃̄𝑖0 × 𝐻 − 𝑃̄0𝑗; 

12:   𝐾 =
𝑙𝑜𝑔 1−𝜉

𝑙𝑜𝑔(1−𝜔𝑚)
; 

13:   if 𝑃 = 𝐸𝑟𝑟𝑜𝑟 < 𝜄 then // When the error is less than the set threshold, it ends 

14:     break; 

15:   end if 

16: end while 

17: return 𝑃 

3.4. Image fusion 

Standard approaches to panoramic image stitching usually necessitate that the images align in a 
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horizontal or vertical sequence. However, intraoral endoscopic images inherently correspond to the 

curvature of the dental arch, necessitating specialized methods during the image fusion stage. As 

depicted in Figure 7, we have formulated a wavelet transform and weighted fusion algorithm based on 

dental arch arrangement intraoral endoscopic images specifically crafted for images arrayed along the 

dental arch, which alleviates issues arising from suboptimal or incorrect stitching when the images are 

not horizontally or vertically aligned. 

 

Figure 7. Relationship between dental arch line and intraoral endoscopic image position. 

Let 𝐼𝑠 stand for the collection of images awaiting stitching, and 𝐻𝑖𝑗 signify the homography 

matrix that corresponds to the source image 𝐼𝑖 and its target image 𝐼𝑗. In the preprocessing phase of 

the images, a unique identifier, denoted as 𝑇 and constrained within the interval (0,1), is assigned to 

each image. Specifically, 𝑇𝑖 serves as the identifier for image 𝐼𝑖. 

As delineated in Algorithm Table 2, the initial procedure is to obtain the source image's bias 

matrix. The technique involves transforming the corner points of the source image through dot 

multiplication with the homography matrix. Following this transformation, the smallest values of the 

x and y coordinates of these transformed corners serve as the 𝑏𝑖𝑎𝑠offset. The resultant bias matrix, 

termed as 𝑏𝑖𝑎𝑠𝑚𝑎𝑡𝑟𝑖𝑥, is elaborated upon in Eq (10) and (11). 

𝑏𝑖𝑎𝑠 = 𝑚𝑖𝑛( (𝑥𝑖 , 𝑦𝑖)𝐻)                                                (10) 

𝑏𝑖𝑎𝑠𝑚𝑎𝑡𝑟𝑖𝑥 = [
1 0 𝑏𝑖𝑎𝑠[0]

0 1 𝑏𝑖𝑎𝑠[1]
0 0 1

]                                             (11) 

Here, (𝑥𝑖, 𝑦𝑖) refers to the coordinates of the four corners of the source image𝐼𝑖, where 𝑖 is an 

integer between 0 and 3. The final homography matrix for the source image is obtained by matrix 

multiplication between the bias matrix and the original homography matrix. This leads to the 

transformed coordinates (𝑥𝑜𝑢𝑡, 𝑦𝑜𝑢𝑡) = 𝐻𝑖𝑗𝑏𝑖𝑎𝑠𝑚𝑎𝑡𝑟𝑖𝑥𝐼𝑖 for the resultant source image 𝐼𝑜𝑢𝑡. 
After the transformation, we use image labels 𝑇𝑖and 𝑇𝑗 to ascertain whether the set of images to 

be stitched pertains to the left or right half jaw teeth. Concretely, when𝑇𝑖 = 𝑇𝑗 = 1, the set of images 

correspond to the left half jaw teeth and their area of overlap is in the upper-left corner of the target 

image. Based on the coordinates post-transformation, image pairs are meticulously aligned. The 

aligned images are then fused using a wavelet transformation fusion technique. To ensure the 

seamlessness of the stitched images, a weighted fusion strategy is executed, featuring a fade-in, fade-
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out weighted matrix. 

 

Algorithm 2 Wavelet transform and weighted fusion algorithm based on dental arch arrangement 

intraoral endoscopic images 

Inputs: Images set 𝐼1, 𝐼2. . . . 𝐼𝑛,Source image 𝐼𝑖 and target image 𝐼𝑗,mutually matched feature 

points 𝑃𝑖 , 𝑃𝑗and position markers 𝑇𝑖and 𝑇𝑗, weighted matrix width 𝜃 

Output: Stitching result image 𝐼𝑟𝑒𝑠𝑢𝑙𝑡 

1: 𝑏𝑖𝑎𝑠 = 0; 

2: for 𝑖 = 1 → 𝑛 − 1 do 

3:    𝑗 = 𝑖 + 1; 

4:    if 𝑇𝑖 == 𝑇𝑗 == 1 then     // Determine whether it is the left half of the jaw 

5:      𝐻𝑖𝑗 = 𝐹𝑖𝑛𝑑𝐻𝑜𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦(𝑃𝑖, 𝑃𝑗); 

6:      𝑏𝑖𝑎𝑠 = |𝑚𝑖𝑛( 𝑥𝑖, 𝑦𝑖)|; 

7:      𝒃𝒊𝒂𝒔𝒎𝒂𝒕𝒓𝒊𝒙 = [[𝟏, 𝟎, 𝒃𝒊𝒂𝒔[𝟎]], [𝟎, 𝟏, 𝒃𝒊𝒂𝒔[𝟏]], [𝟎, 𝟎, 𝟏]];  // Build bias matrix 

8:      𝑰𝒍𝒆𝒇𝒕 = 𝒃𝒊𝒂𝒔𝒎𝒂𝒕𝒓𝒊𝒙 ∗ 𝑯𝒊𝒋 ∗ 𝑰𝒊; 

9:      ℎ𝑗 , 𝑤𝑗 = 𝐼𝑗 . 𝑠ℎ𝑎𝑝𝑒(); 

10:     𝐼𝑙𝑒𝑓𝑡[𝑏𝑖𝑎𝑠[0]: 𝑏𝑖𝑎𝑠[0] + ℎ𝑗][𝑏𝑖𝑎𝑠[1]: 𝑏𝑖𝑎𝑠[1] + 𝑤𝑗] = 𝐼𝑗;   

11:     𝑤𝑎𝑣𝑒𝑙𝑒𝑡𝑓𝑢𝑠𝑖𝑜𝑛();   // Perform wavelet fusion 

12:     𝐻𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑔𝑒𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝑚𝑎𝑡𝑟𝑖𝑥(𝜃, 𝑏𝑖𝑎𝑠); // Create weighted matrix 

13:     𝐼𝑙𝑒𝑓𝑡 = 𝐼𝑙𝑒𝑓𝑡 ∗ 𝐻𝑤𝑒𝑖𝑔ℎ𝑡 + 𝐼𝑗 ∗ (1 − 𝐻𝑤𝑒𝑖𝑔ℎ𝑡); // Weighted fusion processing seams 

14:   end if 

15:   if 𝑇𝑖 == 𝑇𝑗 == 0 then 

16:     Get 𝐼𝑟𝑖𝑔ℎ𝑡in the same way 

17:   end if 

18: end for 

19: Similarly, merge 𝐼𝑙𝑒𝑓𝑡 and 𝐼𝑟𝑖𝑔ℎ𝑡into 𝐼𝑟𝑒𝑠𝑢𝑙𝑡 

20: return 𝐼𝑟𝑒𝑠𝑢𝑙𝑡 

4. Experiments 

We conducted the experiments on a hardware setup featuring a 64-bit Windows 10 operating 

system and an AMD Ryzen 9 5900HX with Radeon Graphics, clocked at 3.30 GHz. The programming 

is built on PyCharm, which is seamlessly integrated with Anaconda and running in a Python 3.6 

environment. The implementation leverages libraries like PyTorch and OpenCV-Python. The set 

parameters are as follows: A SuperPoint detection threshold of 0.007, attention iteration 𝐿fixed at 16, 

Time-Weighting with default settings, a RANSAC regularization term 𝜆 set to 1, a confidence value 

𝜉 of 0.995, an error cutoff 𝜄 at 10, a minimum sample size m of 4 and a weighted matrix width 𝜃 
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marked at 50. The hyperparameter settings employed in the proposed method of this paper are as 

follows: The learning rate is set at 0.0001, the Batch Size at 64 and the number of Epochs at 150. The 

model features 102 layers in the hidden layer, with ReLu as the activation function. The Sinkhorn 

iteration count is set to 150. For the convolutional layer, the kernel size is configured to (1,) and the 

stride to (1,). Batch normalization momentum is set at 0.1, with epsilon at 0.00001, and the Stochastic 

Gradient Descent (SGD) is used as the optimizer. Regularization employs Dropout with a dropout rate 

of 38.1%, and the weights are initialized randomly. These parameter settings are based on 

recommended values from relevant literature and best practices in existing research.  Parameter 

settings for comparison methods follow either default configurations or recommendations cited in 

relevant studies. 

 

Figure 8. Intraoral endoscopic device A3M 

4.1. Dataset construction 

In this paper, we establish a specialized intraoral camera dataset, named ICPA, for capturing 

localized image samples of lower jaw teeth using an A3M model intraoral endoscope. As illustrated in 

Figure 8, the endoscope lens employed in this dataset features a diameter of 1.2 cm and a viewing 

angle of 60 degrees. To maximize the richness of the captured image content, a focal length of 

approximately 1.5 cm is maintained. Utilizing a stationary camera setup, the ICPA dataset captures 
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images of both the upper and lower jaws, accumulating a total of roughly 400 adjacent image pairs 

across 16 mouths, all collected from real oral environment. For a set of 10 half-jaw images, we consider 

that there are 9 pairs of adjacent images with individual image dimensions being 480×640 pixels. The 

feature points of the images in the data set range from approximately 400 to 600, and the pairs of 

matching feature points range from approximately 60 to 180 pairs. The sample size of the data set is 

shown in Table 1. The images encompass common oral features such as crowded dentition, mandibular 

deviation, sparse tooth arrangement and dental malformations like prognathism, as well as prevalent 

oral diseases including dental caries, plaque, mouth ulcers and gingival bleeding. During the model 

training phase, we augmented the 400-pair dataset using techniques like rotation, brightness 

adjustment and random noise addition, expanding the data to approximately 1600 pairs. Concerning 

image overlap rate, a lower overlap rate can challenge the algorithm's ability to precisely match feature 

points, impacting the stitching's accuracy and overall quality. Conversely, a higher overlap rate, while 

providing more matching points and enhancing stitching precision, also increases the data collection 

time and cost. In practical dental diagnostics, due to the necessity of processing a large volume of cases 

rapidly, diagnostic images typically have a lower overlap rate. To emulate this reality, our study 

maintained an overlap rate of about 35% for image pairs, with an average of 10 images per half-jaw 

and a minimum overlap area of 25%, averaging around 35%. This setup ensures that the dataset 

accurately reflects the image processing requirements of real clinical diagnosis and enhances the 

feasibility and applicability of our research findings in future practical diagnostic applications. 

Table 1. Number of samples in ICPA dataset. 

Average number of 

feature points in the 

data set 

The average number of 

feature point pairs that 

match each other 

Average number of 

unmatched feature 

point pairs 

Proportion of feature 

point pairs that match 

each other 

486 160 326 32% 

 

Moreover, excessive exposure in images compromises the clarity of edges and finer details. As 

depicted in Figure 9, the histogram of a well-exposed dental image maintains a balanced distribution, 

whereas in an overexposed version, the predominance of high-luminance pixels skews the grayscale 

histogram to the right. To rectify this imbalance, we implement the ACE (Automatic Color 

Equalization) algorithm to harmonize the color profile of the dataset. This method not only adjusts the 

brightness, hue and contrast of images but also takes into account local and nonlinear characteristics, 

aligning with the Gray World Theory and White Patch Assumption frameworks. A comparative 

analysis of the dataset pre- and post-ACE algorithm application is presented in Figure 10. 
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Figure 9. Grayscale histogram comparison between normal and overexposed tooth images. 

 

Figure 10. Comparison of the data set before and after passing the ACE algorithm. 

4.2. Image matching comparison analysis 

4.2.1. Image matching algorithm comparison 

As delineated in Eq (12) to (14), the principal metrics for evaluating feature matching encompass 

the Matching Score (𝑀𝑠 ), Precision (𝑃 ) and Recall (𝑅 ). In this context, 𝑛  and 𝑚  represent the 

number of feature points in the two images to be matched. The 𝑚𝑖𝑛( 𝑛,𝑚) denotes the smaller value 

between 𝑛 and 𝑚. 𝑇𝑃 (True Positives) refers to the feature point pairs that are correctly matched. 
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Conversely, 𝐹𝑃  (False Positives) signifies the feature point pairs that are incorrectly matched. 

Lastly,𝐹𝑁 (False Negatives) pertains to the feature point pairs that should have been matched but were 

not. 𝑇𝑁 (True Negatives) represents pairs of feature points that are considered not to match each other. 

𝑀𝑠 =
𝑇𝑃+𝐹𝑃

𝑚𝑖𝑛(𝑛,𝑚)
                                             (12) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                               (13) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                 (14) 

Correctly matched point pairs are identified based on annotated feature-matching pairs in the 

dataset, used to ascertain the ground-truth homography matrix𝐻 . Utilizing 𝐻 , feature points are 

projected into the coordinate space of a corresponding image, where distances to another set of feature 

points are computed. A pair of feature points with the minimum distance is deemed to be a correct 

match. Given the potential for errors in manual annotation, a distance threshold 𝛾 is established, set 

at 5 in this study, constraining the distance between correctly matched feature point pairs to be within 

a 5-pixel range. 

We evaluate five comparative algorithms: ORB, GMS [26], PointCN [27], OANet [28] and 

SuperGlue. Experimental trials were undertaken on a test set, and the average results were computed. 

Data from Table 1 illustrates that the methodology proposed herein outstripped competing approaches, 

with improvements of 4.5%, 6.3% and 10.6% in Ms, P and R metrics, respectively. The novel approach 

amalgamates self-attention with cross-attention to elevate feature point matching specificity and 

escalate the chances of match success. Additionally, outlier elimination is achieved in each Sinkhorn 

iteration through the application of the RANSAC algorithm, ensuring the accuracy of feature point 

matching and consequently yielding a higher recall rate vis-à-vis other methods. 

When considering matching methodologies that leverage homography estimation, the yardstick 

for assessment is the Frobenius norm. The Frobenius norm of an arbitrary matrix 𝐴 can be computed 

as illustrated in Eq (15). 

||𝐴||𝐹 = √∑ ∑ |𝑎𝑖𝑗|
2𝑛

𝑗=1
𝑚
𝑖=1                                                  (15) 

Herein, ||𝐴||𝐹 stands for the Frobenius norm of matrix𝐴. The variables 𝑚 and 𝑛 correspond 

to the number of rows and columns in the matrix, respectively, while 𝑎𝑖𝑗 denotes the element located 

at the 𝑖  -th row and 𝑗  -th column. In the evaluation of discrepancies between two homography 

matrices, the Frobenius norm serves as a widely-accepted metric. The experimental protocol involves 

computing the Label homography matrix using labeled feature point pairs and then calculating the 

absolute difference between its Frobenius norm and that of the estimated homography matrix. A lower 

value suggests a higher degree of similarity between the estimated and Label homography matrices. 

The methods employed for comparative analysis are HomographyNet[29], VFISNet and UDIS. 

As evidenced by Table 2, our technique demonstrates a 31% reduction in the Frobenius norm 

difference, thereby drawing us closer to the Label. It is noteworthy that higher accuracy and recall 

rates, under the condition of a consistent Label, lead to a homography matrix that is increasingly 

congruent with the Label's homography matrix. Hence, the homography matrix derived from our 

proposed method exhibits a closer alignment with the Label. 
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Table 2. Feature matching comparison. 

method type Methods Ms P(%) R(%) 
Difference in absolute 

value of ||𝐴||𝐹 

Matching 

based on 

feature points 

ORB 11.9 10.8 2.6 

/ 

GMS 10.7 33.0 7.8 

PointCN 19.5 56.2 23.6 

OANet 23.8 65.0 40.9 

SuperGlue 31.4 78.3 67.8 

Ours 35.9 84.6 78.4 

Based on 

homography 

matrix 

estimation 

HomographyNet 

/ 

113.68 

VFISNet 84.47 

UDIS 72.59 

Ours 49.60 

 

Considering the imbalance present in the dataset, this method incorporates the G-mean and 

Precision-Recall Area Under Curve (PR-AUC) metrics to provide a more nuanced evaluation. G-mean 

as delineated in Eq (16). The PR-AUC represents the area under the Precision-Recall (PR) curve, 

which illustrates the relationship between Precision and Recall for the model at various thresholds. In 

comparison to other metrics, the PR-AUC serves as a more valuable performance indicator, 

particularly when dealing with imbalanced datasets. Specific indicators are shown in Table 3. 

    𝐺 −𝑚𝑒𝑎𝑛 = √
𝑇𝑃

𝑇𝑃+𝐹𝑁
×

𝑇𝑁

𝐹𝑃+𝑇𝑁

                                     

(16) 

Table 3. Comparison of G-mean and PR-AUC indicators. 

Methods G-mean PR-AUC 

PointCN 0.445 0.484 

OANet 0.581 0.560 

SuperGlue 0.749 0.766 

Ours 0.832 0.813 

4.2.2. Comparison of image groups with different features 

To assess the comparative advantages of our proposed methodology over existing techniques, we 

conducted experiments using distinctively featured images sourced from the ICPA database, as 

delineated in Figure 11. The experimental setup comprises three specific groups: The left molar region 

(inclusive of the third, second and first molars), the right molar region and the anterior incisor region 

(which includes lateral incisors, central incisors and canines). 
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Figure 11. Use three sets of input images in different areas to verify the image matching effect. 

Figure 12 provides a comparative analysis of matching outcomes across diverse regions between 

our proposed technique and extant algorithms. In the inaugural column, algorithms like GMS, PointCN 

and OANet are observed to perform matches based on the reflections generated by saliva. Our method 

efficaciously eradicates a substantial number of such feature-point pairs prone to reflective matching. 

Given that soft tissues such as saliva and the tongue are susceptible to morphological changes during 

image capture, matches based on reflections usually exhibit diminished confidence levels. In the 

subsequent two columns, apparent mismatches are also discernible in other techniques. Hence, our 

approach is proficient at identifying a greater number of credible feature-point matches while 

effectively filtering out erroneous ones, thereby minimizing error rates. 

 

Figure 12. Matching results of GMS, PointCN, OANet, SuperGlue and the proposed 

method on three different groups of dental image areas. Red rectangles circle obviously 

mismatched pairs. 
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To authenticate the algorithm's utility, we conducted experiments on three data sets from Figure 

11, incorporating a total of 10 variations that encompass translational shifts, rotational adjustments, 

perspective transformations and variations in overlap rates. Figure 13 illustrates the test dataset, and 

Figure 14 delineates the matching precision of our proposed method in comparison with existing 

algorithms like GMS, PointCN, OANet and SuperGlue across mandibular teeth images taken at 10 

divergent angles. Remarkably, our method outperforms the other algorithms, achieving an average 

accuracy rate exceeding 80%. 

 

(a) left molar regions 

 

 (b) anterior incisor regions 

 

(c) right molar regions 

Figure 13. Examples of test images from the ICPA dataset include: (a) left molar 

regions; (b) anterior incisor regions; and (c) right molar regions. Group 0 and Gr

oup 1 consist of mutually matching original images. Using the images in Group 1

as the source images, Groups 2, 3, 4 and 5 undergo translational transformations.

Groups 6 and 7 undergo rotational transformations of 90° and 180°, respectively, 

while Groups 8, 9 and 10 undergo perspective transformations. 

 

Figure 14. The horizontal axis, ranging from 1 to 10, signifies the sets matched by diverse 

algorithms for each image's Group 0 and its subsequent 10 groups as illustrated in Figure 

11. The vertical axis furnishes a measure of the achieved matching precision rate. 
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In Figure 14, an analysis of data from Groups 2 to 5 shows that all examined algorithms maintain 

a consistent level of matching accuracy under translational variations. However, the data from Groups 

6 and 7 reveal a marked reduction in performance for GMS and PointCN when subjected to rotational 

transformations. Furthermore, in Groups 8 through 10, all three algorithms—GMS, PointCN and 

OANet—suffer from decreased accuracy. SuperGlue fares poorly in feature-sparse regions like the left 

(or right) molars but exhibits stable performance in feature-rich zones like the anterior incisors. 

Remarkably, the method proposed in this study demonstrates stable matching accuracy across different 

feature compositions. 

4.3. Image fusion comparison 

In the phase dedicated to image fusion, we address a core limitation: Conventional panoramic 

image stitching demands either a vertical or horizontal positional relationship between images, a 

constraint not well-suited for intraoral endoscopic image pairs. The principal metrics evaluated are the 

mean gradient and standard deviation. Higher values in these metrics translate to better preservation 

of image details and smoother, more natural transitions in the fused image. As evidenced in Table 4, 

the methodology we propose achieves optimal levels in both these key metrics. This approach employs 

wavelet transformations for the fusion process and uses a weighted, fade-in, fade-out technique to 

seamlessly blend image seams. Consequently, relative to traditional approaches, our method yields 

superior fusion outcomes, preserving a greater extent of image details and facilitating smoother, more 

natural transitions. 

Table 4. Comparison of fusion algorithms. 

Fusion methods Average gradient Standard deviation 

Based on maximum value 6.65 58.71 

Based on minimum value 4.73 49.15 

Average weighted 7.45 50.29 

Laplacian pyramid 9.332 51.36 

Wavelet transform fusion 9.66 53.75 

Ours 11.23 58.78 

4.4. ablation study 

In the ablation experiment, we chiefly examine the impact on the quality of image stitching 

involving either two or multiple images. The reliability of feature point pairs is gauged by their 

confidence scores, with higher scores indicating a greater likelihood of correct matching. These 

confidence levels are color-coded, ranging from blue for high confidence to red for low, with 

intermediary values represented by green and yellow. To enhance visual clarity, a lower mean 

confidence score will result in a reduced peak value, causing the overall image to take on more yellow 

or red tones. As indicated in Figure 15, the removal of the Time-Weighting-enhanced self-attention 

mechanism precipitates a decline in the ability to effectively aggregate feature points, and a 

corresponding reduction in matched feature point pairs. With the implementation of Time-Weighting, 

there is an approximate 16% boost in the quantity of feature point pairs. Conversely, the absence of 

the RANSAC algorithm leads to generally lower confidence scores for feature point pairs, manifesting 
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in conspicuously red and yellow connecting lines. 

 

 
Figure 15. ablation study effect of dual image stitching. 

As illustrated in Figure 16, we employ the same methodology for representing confidence levels 

in the context of multi-image stitching. Our results reveal that the proposed approach significantly 

improves the stitching outcome, augmenting the quantity of feature point pairs by an estimated 20%. 

While integrating the RANSAC method leads to a marginal reduction in the number of feature point 

pairs, it simultaneously enhances the overall confidence level of the matches. 

 

 

Figure 16. Ablation study effect of multiple image stitching. 
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4.5. Analysis of the stitching effect of half-jaw panorama 

As depicted in Figure 17, we present examples of semi-jaw data captured from an intraoral 

endoscope, consisting of three distinct dental photo sets: 10 images in set A, 8 in set A and 12 in set C. 

The image-capturing process is prone to variations in perspective due to camera shake when held by 

hand, leading to inconsistent overlap areas and positions between images. Current stitching algorithms 

generally focus on dual-image stitching, progressing step-by-step to create a panoramic image through 

iterative dual-image combinations. However, this approach is fraught with challenges, including the 

accumulation of deformation errors during the multi-image stitching, resulting in incomplete oral 

panoramic imagery in some instances. 

 

(a) Images set A 

 

(b) Images set B 

 

(c) Images set C 

Figure 17. Data examples. 

As delineated in Figure 18, we employed a comparative analysis featuring ORB, GMS, PointCN, 

OANet, SuperGlue and our proposed algorithm. Blue rectangles highlight areas of misalignment and 

ghosting artifacts; green rectangles point out conspicuous distortions; while red rectangles signify 

incorrect stitching outcomes. ORB, GMS and PointCN tend to yield flawed results, including 

misalignments that prevent the creation of a complete stitched image. OANet and SuperGlue, on the 

other hand, do produce panoramic images but suffer from varying degrees of distortion and errors. 

According to the metrics compiled in Table 5, our proposed approach achieves optimal results in terms 

of both average feature matching and accuracy. In contrast, both ORB and GMS fail to correctly stitch 

over half of the total image set, and PointCN often yields incomplete panoramic images due to cumulative 

errors. OANet and SuperGlue manage to generate panoramas, albeit with diminished accuracy. 
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Figure 18. Stitching effect of panoramas from three image sets. 

Table 5. Stitching evaluation index statistics. 

methods 
incorrect 

stitching   

ghosting 

artifacts 

conspicuous 

distortions 

Generate 

panorama 

successfully 

stitched 

images (%) 

average 

feature 

matching 

pair 

average 

accuracy 

(%) 

ORB √ √ √ × 20 16.3 10.1 

GMS √ √ √ × 26.6 26.4 23.1 

PointCN √ √ √ × 43.3 43.7 59.7 

OANet √  √ √ 100 62.2 63.1 

SuperGlue   √ √ 100 89.5 79.3 

Ours    √ 100 108.4 86.2 

 

As depicted in Figure 19, the proposed method begins the stitching process with images labeled 

starting with “a”, representing the left side of the dental arch. The approach employs a two-sided 

sequential stitching strategy: First from one side and then the other, culminating in a fusion of these 

left and right stitched images. The end result accomplishes a comprehensive semi-jaw panoramic view 

of the teeth, meticulously preserving the content details from the original images. Moreover, each 

stitched image exhibits a distortion level that is within an acceptable range, devoid of discernible 

ghosting or artifacts. 
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(a) Stitching process of image set A 

 

(b) Stitching process of image set B 
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(c) Stitching process of image set C 

Figure 19. Schematic diagram of the Stitching process. 

5. Conclusions 

In this paper, we study the splicing problem of intraoral endoscopic images and explore the impact 

of Time-Weighting combined with the attention mechanism on the number of feature point matches. 

In addition, the feature point pair matching mechanism of the Sinkhorn and RANSAC combination is 

clarified. To accomplish seamless Stitching of intraoral endoscopic visuals, a wavelet transform and 

weighted fusion algorithm based on dental arch alignment intraoral endoscopic images was designed. 

Experimental results show that the integration of Time-Weighting and attention mechanisms 

substantially augments the volume of feature point matches, whereas the accuracy of feature point pair 

matching can be improved by the combination of Sinkhorn and RANSAC. The algorithm this paper 

introduce excels in both quantitative metrics and visual aesthetics.  

The proposed method currently has the following limitations: 1) Due to the use of point light 

sources in intraoral endoscopes, the images captured often exhibit uneven brightness, with higher 

luminance at the center and lower at the edges. This results in an unnatural brightness transition at the 

seams post-stitching. 2) The process of stitching involves distortion and stretching of the source images, 

leading to irregular boundaries in the final composite, which are not in line with typical visual 

perceptions and display modes of imaging devices.  

Future research directions include: 1) Developing a global brightness optimization method [30] 

specifically for panoramic image stitching to ensure a natural luminance transition and mitigate abrupt 

brightness changes. 2) Devising a method to rectify the stitched panoramic intraoral endoscopic images 

into a rectangular format, meeting the visual expectations of humans and the display formats of 

imaging devices.  

Furthermore, the dataset constructed by the proposed method is currently not extensive and fails 

to cover all possible oral features, such as periodontitis and dental cancer. Therefore, future work 

involves expanding the dataset, and collaborating with dental hospitals and other medical institutions 
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to increase the diversity and quantity of samples. This will ensure a more comprehensive coverage of 

potential features in intraoral endoscopic images, enhancing the representativeness of the dataset and 

the520esearchh. 
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