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Abstract: To address the challenges of repetitive and low-texture features in intraoral endoscopic
images, a novel methodology for stitching panoramic half jaw images of the oral cavity is proposed.
Initially, an enhanced self-attention mechanism guided by Time-Weighting concepts is employed to
augment the clustering potential of feature points, thereby increasing the number of matched features.
Subsequently, a combination of the Sinkhorn algorithm and Random Sample Consensus (RANSAC)
is utilized to maximize the count of matched feature pairs, accurately remove outliers and minimize
error. Last, to address the unique spatial alignment among intraoral endoscopic images, a wavelet
transform and weighted fusion algorithm based on dental arch arrangement in intraoral endoscopic
images have been developed, specifically for use in the fusion stage of intraoral endoscopic images.
This enables the local oral images to be precisely positioned along the dental arch, and seamless
stitching is achieved through wavelet transformation and a gradual weighted fusion technique.
Experimental results demonstrate that this method yields promising outcomes in panoramic stitching
tasks for intraoral endoscopic images, achieving a matching accuracy of 84.6% and a recall rate of
78.4% in a dataset with an average overlap of 35%. A novel solution for panoramic stitching of
intraoral endoscopic images is provided by this method.

Keywords: image stitching; panoramic image generation; intraoral endoscopic imagery; attention
mechanism; RANSAC; weighted Fusion
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1. Introduction

As living standards improve, people are placing increasing emphasis on dental health. With the
rising number of patients, clinicians face the cumbersome task of image interpretation, which
undermines the efficiency of healthcare services. In recent years, intelligent diagnostic systems based
on intraoral endoscopy have emerged as vital adjunct tools for oral treatment, capable of conducting
dental lesion image segmentation and preliminary diagnosis [1]. However, due to the confined space
within the oral cavity and the limited field of view of the endoscope, each capture yields only
fragmentary images of a few teeth, making it difficult to provide a continuous, comprehensive
diagnostic assessment of the entire jaw. To address this issue, panoramic stitching of half jaw images
has become a key.

Compared to other images, intraoral endoscopic images present unique challenges due to their
short focal length, limited shooting range and the similar structure of teeth. Furthermore, these images
are often affected by variables such as oral cavity structure, tongue and saliva, which can result in
uneven lighting or occlusions, manifesting in repetitive and weak textural features. These factors
complicate the stitching of intraoral endoscopic images, leading to issues such as a scarcity of feature
points and low accuracy in feature matching. Moreover, the spatial relationship between intraoral
Endoscopic images generally not horizontal or vertical but instead conforms to the curvature of the
dental arch. Therefore, specialized treatment is required during the image fusion stage to accommodate
this curvilinear spatial arrangement. Such treatment enables accurate capture of the curved tooth
structures. Presently, methods based on local features like SURF [2] and ORB [3] are widely applied
in the image stitching domain [4,5]. However, when applied to intraoral endoscopic image stitching,
these methods are prone to false detections and mismatches due to similarities in tooth shape and the
deformable nature of oral soft tissues. Additionally, traditional panoramic image fusion techniques are
ill-suited for the specific alignment of intraoral endoscopic images, leading to issues like noticeable
double exposures and artifacts.

In summary, we introduce a method for panoramic stitching of semi-mandibular intraoral
endoscopic images to address these unique image characteristics and alignment challenges. The main
contributions are as follows:

1) By integrating the concept of Time-weighting [6], the attention mechanism has been enhanced,
effectively increasing the quantity of feature-matching pairs. Coupled with the Sinkhorn [7] and
RANSAC [8] algorithms, this results in heightened matching accuracy and reduced error rates.

2) We propose a wavelet transform and weighted fusion algorithm based on dental arch
arrangement intraoral endoscopic images, resolving the applicability issues of intraoral endoscopic
image arrangement and facilitating seamless fusion of these images.

3) An intraoral endoscopic image stitching dataset, termed as Intraoral Camera Panorama Album
(ICPA), has been constructed. This dataset features image pairs with smaller overlapping regions,
averaging around 35%.

2. Related works

Image stitching is the process of merging multiple partially overlapping images into a larger
composite image, involving steps such as feature detection, feature matching and image fusion. In the
domain of endoscopic medical image stitching [9], early research primarily utilized frequency-domain
correlation algorithms and maximum mutual information methods. For example, Y.Hernandez-Mier [10]
proposed an automated stitching algorithm specifically designed for 2D cystoscopic sequence images,
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demonstrating robustness against blurring, variable lighting and non-uniform radial distortions. This
algorithm also exploited cancer autofluorescence within the images to detect cancerous lesions. Bergen
et al. [11] employed graph-based techniques for stitching cystoscopic video frames, identifying
coherent subgraphs from framework graphs to stitch local patches into larger composites. In intestinal
endoscopic image stitching, Igarashi et al. [12,13] and Ishii et al. [14] utilized the "shape-from-
shading" technique to generate open panoramic images of tubular organs, such as male urethrae, pig
colons and human colons. They assumed the organs to be cylindrical and that the light axis was
perfectly aligned with the cylindrical axis, generating panoramas from circles extracted around the
image center during constant endoscope retraction. In 2002, Can et al. [15] presented mosaics
generated from images of the human retina acquired with a fundus microscope. They explicitly
exploited vascular structures to register pairs of images and used a quadric surface model to represent
the retina. Their work is based on earlier experiments by Becker et al. carried out in 1998 [16]. In 2013,
Yi et al. [17] presented real-time visualization technology for capsule endoscopic videos based on
gastrointestinal tract unfolding panoramas. However, their approach was solely reliant on homographic
descriptions of inter-frame transformations, leading to issues of ghosting and artifacts in the stitched result.
Schuster et al. [18] have successfully applied general-purpose stitching software to laryngoscopic image
sequences and presented panorama images of the larynx for documentation purposes.

Research and literature on stitching images in intraoral endoscopy are relatively sparse. In 2018,
Ruiqing He proposed a teeth occlusal surface panoramic image stitching technique based on local
optimization algorithms [19]. This method utilized adaptive SIFT for the stitching process but required
image acquisition from devices equipped with a shooting track, making it computationally intensive
and time-consuming. In the same year, he also presented a modification of the previous method,
introducing a teeth buccal side panoramic image stitching technique based on local optimization
algorithms [20]. This updated method employed bundle adjustment to calculate adjacent
transformation matrices, thus enhancing the quality of the stitching. However, the time consumption
issue persisted due to the continued use of SIFT. Additionally, the requirement for specialized image
acquisition equipment with shooting tracks limits the method's universality.

The realm of image stitching has garnered substantial attention in recent research endeavors. A
View-Free Image Stitching Network (VFISNet) was proposed by Lang Nie and co-authors [21], which
employs deep learning to estimate homography matrices based on global homography, thus enabling
effective image stitching. This method successfully mitigates the poor generalizability of previous
learning algorithms in scenarios involving flexible views. However, its effectiveness diminishes in the
presence of sparse feature points and abundant repetitive textures within images. Subsequently, Lang
Nie and associates [22] advanced an Unsupervised Deep Image Stitching (UDIS) technique,
specifically designed to enhance the accuracy of homography-based registrations in images featuring
large disparities by reconstructing the stitching features. However, its utility is restricted to specific
natural scenes endowed with sufficient geometric complexities. Contributing further, Daniel DeTone
and collaborators [23] devised the SuperPoint network for feature detection and description in images,
which detects a broader spectrum of interest points relative to conventional methods. Moreover, Sarlin
and others [24] introduced the SuperGlue methodology, which incorporates graph neural networks and
attention mechanisms to address the optimization of feature point assignments. Xiangyang Xu and
colleagues [25] also formulated an image stitching method that integrates both global and local features,
thus overcoming challenges of large disparities and high-resolution needs.

In summary, methods for stitching intraoral endoscopic images require the ability to identify as
many feature points and matching pairs as possible while maintaining accuracy, especially in cases of
repetitive and low textures. SuperPoint and SuperGlue demonstrate high performance in both feature
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detection count and accuracy when applied to intraoral endoscopic images. Therefore, we employ
SuperPoint for the task of feature detection and borrows and refines the attention mechanism concept
from SuperGlue for feature matching. Subsequently, we utilize a wavelet transform weighted fusion
approach based on dental arch alignment to achieve panoramic image stitching of intraoral endoscopy.

3. Proposed method
3.1. Overall architecture

As illustrated in Figure 1, the overall stitching workflow of the proposed method is delineated,
with the green dashed section representing the primary innovations of this paper. Initially,
preprocessing steps are applied to the intraoral endoscopic images slated for stitching. These include
lighting compensation, resizing and grayscale conversion to counteract issues related to point light
source imaging and significant lighting variations. Considering the recurrent and low-texture
characteristics often found in intraoral endoscopic images, we employ the SuperPoint deep learning
methodology for feature extraction. In addition, we design a feature-matching network that
incorporates Time-weighting concepts and iteratively improves upon self-attention mechanisms for
more effective feature aggregation. Subsequently, a combination of Sinkhorn and RANSAC
algorithms is utilized to ascertain mutually matching feature points between images intended for
stitching, thus deriving the homography matrices. Finally, due to the typical arc-shaped arrangement
in intraoral endoscopic images, we propose a wavelet-transform-based weighted fusion algorithm
aligned with dental arch configurations. This algorithm initially preprocesses image pairs for alignment
and utilizes wavelet transformation for image fusion. Moreover, a fade-in, fade-out weighted fusion
strategy is deployed for seamless stitching.

3.2. Feature detection

First, it is imperative to standardize the dimensions of the input images and perform lighting
compensation to ensure that significant discrepancies in lighting intensity across image pairs do not
adversely impact the visual perception of the stitched image. Subsequently, we employ a pre-trained
SuperPoint network for feature detection. The SuperPoint network incorporates a strategy known as
Homographic Adaptation to enhance the detection rate of feature points and their adaptability across
different scenarios. Consequently, when confronted with large areas of repetitive textures and low-
texture environments, SuperPoint is capable of detecting a greater number of features with higher
accuracy compared to traditional feature detection methods.
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Figure 1. Schematic diagram of image stitching algorithm.
3.3. Feature matching

This phase consists of two main components: the attention-based Graph Neural Network (GNN)
section and the matching section. In the GNN section, feature aggregation is iteratively performed
through Time-Weighting improved self-attention and cross-attention mechanisms, culminating in the
generation of matching descriptors akin to feature descriptors. The matching section takes the output
from the GNN as input and establishes an allocation matrix. It then employs the Sinkhorn algorithm
in conjunction with the RANSAC method to identify correspondingly matched feature point pairs.

3.3.1. Attention GNN
(1) MLP encoder

The attention GNN part is shown in Figure 2, For the i -th feature point of the image A to be
spliced, it is represented by p;, The feature descriptor is represented as dj!, The same method is used
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for image B . Initially, the feature points of both images are enhanced for unique matching
characteristics via a Multilayer Perceptron (MLP) encoder. Subsequently, the concept of Time-
Weighting is employed to improve the self-attention mechanism. Feature points and descriptors are
then cyclically iterated through self-attention and cross-attention processes to aggregate image features,
ultimately yielding matching descriptors analogous to traditional feature descriptors.

0
|Ir 1
i N J "h‘}{“i
N - —//' i
P %G L, B
! MLP encoder
o Rl 1
H - i

Self-attention Time-weighting Cross attention

% .
-|_-ﬁ fo—

.

Figure 2. Schematic diagram of attention GNN network.

Both the location and the descriptor of each feature point contribute to heightened specificity in
feature matching. Therefore, the initial representation (O)xi of each feature point combines the
position and the descriptor as illustrated in Eq (1).

X; = di + MLPonc(py) (1)

Among them, p; represents the i -th feature, the descriptor is represented by d;,MLP,,
represents a Multilayer Perceptron (MLP) employed for dimensionality elevation of low-level features,
effectively coupling visual appearance with feature point location. The architecture of this encoder
facilitates subsequent attention mechanisms to fully consider both the appearance and positional
similarity of the features.

(2) Time-Weighting improves attention mechanism

For a given individual image, each node within its graph corresponds to each feature point in the
image. The graph consists of two types of undirected edges: one type “s "Intra-image edg”s," also
known as self-edges, which connect feature points within the same image. The other type ‘s "Inter-
image edg”s," or cross-edges, which link feature points from the graph to all feature points in another
image, thereby constituting that particular edge. Among them, self-edge uses self-attention, and cross
edge uses cross-attention. Aggregating self-attention and cross-attention to obtain m,_,; , as shown in

Eq (2).

Moo = X 5V ©)

The attention weight a;; is the softmax of the similarity between the query and retrieved object
key values, as shown in Eq (3):

a;; = Soft max(q] k;) 3)
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In Eq (2), let the feature point i to be queried be located on the query image @, and all source
feature points j be located on the source image S. For q; and key k;, the value v; can be written
in the form of Eq (4):

k; w. b
_w® .0 i) _ [W s, [b2
q =W +b 4 [v,-]‘[WJ (Ox; + b3] @)

Each layer ¢ has its corresponding set of projection parameters W, which are shared by all
feature points. q; represents a feature point i on the query image. k;, kj, v; and v; are
representations of a transformed feature point j.q;; signifies the similarity between the two features;
a higher value indicates greater similarity. Subsequently, this similarity measure is utilized to weight-
sum v; , resulting in m,_,;, which is termed as feature aggregation.

According to the idea of time-weighting, each point is weighted after each softmax. As shown in

Eq (5):

Cfl'j =aij*a)ij (5)

w;j represents the Time-Weighting factor. The weight is relatively low in non-overlapping areas
along the image's edges. Conversely, the weight is higher in the image's central region and the
overlapping areas. Time-Weighting is employed as a component of the relative position embedding
in text recognition. Incorporating Time-Weighting into the self-attention mechanism is motivated
by two considerations.

First, during the process of stitching intraoral endoscopic images, the contributions for
different regions, such as teeth and tongue, ought to vary.

Second, for peripheral information with a comparatively low data density, the overall self-
attention weight should be reduced.

In self-attention, edges within a single image are aggregated to better focus on all distinctive
points, unrestricted by their neighboring positional features. In contrast, cross-attention serves to match
features between two images that share similar appearances.

After L iterations of self/cross-attention, the output of the attention-based Graph Neural
Network (GNN) for image A can be represented as shown in Equation (6).

A_ A ;
fi: =Wx{ +bVieA 6)

f:Acan be interpreted as the matching descriptor for the ith feature point of Image A, analogous
to a feature descriptor. This is specifically designed for feature matching purposes. A similar
formulation applies to Image B.

The visualization of the aforementioned process is illustrated in Figure 3. In self-attention, edges
within a single image are aggregated to heighten focus on all unique points without being limited by
neighboring positional features. Conversely, cross-attention is employed to match features between
two visually similar images. Analogous to how humans perform feature matching—by tentatively
filtering key matching points through iterative scrutiny between two images—the model aims to
simulate this human-like approach. The core idea is to leverage Graph Neural Networks (GNNs) based
on attention mechanisms to replicate this process, thereby actively seeking context to enhance feature-
point specificity and exclude anomalous matches.
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Figure 3. Registration process of self-attention and cross-attention.

3.3.2. Matching section
(1)  Assignment matrix

In the matching section, the objective is to construct an assignment matrix Pto determine the
pairs of matched features, as outlined in Figure 4. Initially, the inner products of f;* and ij obtained
from the GNN steps are calculated to yield scores S;;, which are then organized into a score matrix S.
An "unmatched" channel is incorporated to form S. Subsequently, the Sinkhorn algorithm, in
conjunction with the RANSAC algorithm, is employed to identify and refine feature matches,
excluding erroneous matches during each iteration. The ultimate goal is to derive an optimal
assignment matrix P, achieved by calculating a score matrix S € R™ ™ that represents potential
matches. The optimization of Pis accomplished by maximizing the aggregate score . ijS;;P;;,
According to the matrix information, the set m,gof feature point pairs matching the image Aand B
is obtained.
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Figure 4. Matching layer flow chart.

As demonstrated in Figure 5, the yellow rectangles and circles represent the reference image A
andits M corresponding feature points within a pair of images to be stitched, while the blue rectangles
and circles represent the target image B and its N feature points. Each row of the assignment matrix
P represents the potential N matches for a particular feature point originating from the reference
image A to the target image B.

B
__— Aﬂ}-—:‘::__ S—
1 2 1 2 3 4
3
1 0.2 0.6 0.1 0.1
!
’—> L\/ 2 0.5
B
2
ORP= 3 >
(a) ; i
Assignment matrix P

Figure 5. The matching relationship between the feature point mapping of the image pair in the
assignment matrix.

In the reference image A, there are three feature points, whereas the target image B has four.
Consequently, the dimensions of the assignment matrix P would be 3x4. From the first row of matrix
P, as shown in Figure 5, the maximum value is 0.6, indicating a match between the first feature point
in reference image A and the second feature point in target image B. Likewise, in the first column of
P, the highest value is 0.5, signifying a match between the first feature in B and the second feature in
A. It is worth mentioning that this assignment matrix P is not fully distributed. In an ideal scenario,
the sum of each row or column in P should be equal to 1. This " ideal scenario" assumes that all
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features in both images A and B have corresponding matches; however, real-world conditions such
as occlusions, changes in viewpoint, or noise may prevent such perfect matching.

o
_ —_—____—”—:"/’/ e —_—
1 2 3 4
LANE
! 1
\ 3 0.2 0.6 0.1 0.1
ool

3 0.3 0.2 0.4 0.0

Assignment matrix P

Figure 6. There is a situation where the sum of the assignment matrix is less than 1.

As illustrated in Figure 6, for the third column of matrix P, which corresponds to the third feature
in the target image B, no matching feature is identified. Hence, the sum of the third column is less
than 1. The subsequent aim is to compute and construct an optimal assignment matrix P.

(2) Sinkhorn combines RANSAC algorithm to improve accuracy

In the matching section, the inner product of f* and ij , obtained through GNN aggregation, is
first calculated to yield the score S;;, as shown in Eq (7).

Sy =<fAfF >V, j)€EAXB @

Moreover, a specialized "unmatched" channel is introduced in the final column or row of the score
matrix, denoted as S, to create an augmented matrix S. This addition aims to address instances where
no feature points are identifiable, serving as a mechanism to eliminate erroneous matches.

Feature points from the reference image A are either mapped to corresponding feature points in
the target image B or relegated to a designated "unmatched" channel. Under this framework, each

"unmatched" is associated with N or M potential matches. Accordingly, the constraints imposed on
the assignment matrix are articulated in Eq (8) and (9).

Ply, =aPly,,=b (8)
a = [13, N1",b = [1}, M]" 9)

The variable a denotes the anticipated count of feature matches from the reference image A,
including its dedicated "unmatched" channel. Conventionally, each feature point within image A
aligns with a solitary corresponding point in target image B. However, the feature points that fall into
the "unmatched" channel from image A may potentially align with any feature point in image B,
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thereby introducing N potential matches. Consequently, we havea = [1%, N]7. The same goes for b.

As delineated in Algorithm Table 1, we leverage an integrative approach utilizing both Sinkhorn
and RANSAC algorithms to maximize our scoring metric. The Sinkhorn algorithm is traditionally
deployed for optimal transport issues. In our setup, Eq (8) and (9) act as specialized cost functions, or
more precisely, as their negations. While S in classical optimal transport scenarios serves as a cost
matrix, in this context, it represents the cosine similarity between matching descriptors. Consequently,
the objective diverges from minimizing cost to maximizing descriptor similarity, as indicated by the
maximization operation in Eq (8). Various parameters are set: A regularization term A at 1, confidence
& at 0.995, error threshold ¢ at 10, inlier proportion w and a minimum sample count m of 4 for
computing model H. By purging outliers, the method achieves a marked improvement in registration
precision and minimizes errors.

Algorithm 1 Integration of the Sinkhorn with the RANSAC

Inputs: Cosine similarity matrix of matching descriptors S. The length and width of the matrix n
and m, anticipated count of feature matches a and b, regularization term A, confidence ¢,
error threshold ¢

Output: Feature point matching pairs removing external points P

1: Initialize assignment matrix:P = expls_ ;

2: while Pdoes not converge do //Determine whether the Sinkhorn algorithm converges

3: i - m;
4 Pj+Y LoPjxag
S: j—on
6: P+ objxb
7: end while

8: while the number of iterations is less than K do //Ransac algorithm removes outliers
9: M;; = random(Pyg, Py;)™;

10:  H = FindHomography(M;;);

11:  Error = Py X H — Pyj;

. _ log1-¢&
12: kK= log(1-w™)’

13: if P = Error <t then // When the error is less than the set threshold, it ends
14: break;

15:  endif

16: end while

17: return P

3.4. Image fusion

Standard approaches to panoramic image stitching usually necessitate that the images align in a
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horizontal or vertical sequence. However, intraoral endoscopic images inherently correspond to the
curvature of the dental arch, necessitating specialized methods during the image fusion stage. As
depicted in Figure 7, we have formulated a wavelet transform and weighted fusion algorithm based on
dental arch arrangement intraoral endoscopic images specifically crafted for images arrayed along the
dental arch, which alleviates issues arising from suboptimal or incorrect stitching when the images are
not horizontally or vertically aligned.

Figure 7. Relationship between dental arch line and intraoral endoscopic image position.

Let I; stand for the collection of images awaiting stitching, and H;; signify the homography
matrix that corresponds to the source image /; and its target image I;. In the preprocessing phase of
the images, a unique identifier, denoted as T and constrained within the interval (0,1), is assigned to
each image. Specifically, T; serves as the identifier for image I;.

As delineated in Algorithm Table 2, the initial procedure is to obtain the source image's bias
matrix. The technique involves transforming the corner points of the source image through dot
multiplication with the homography matrix. Following this transformation, the smallest values of the
x and y coordinates of these transformed corners serve as the biasoffset. The resultant bias matrix,
termed as biasmatrix, is elaborated upon in Eq (10) and (11).

bias = min((x;, y;)H) (10)

1 0 bias[0]

biasmatrix = [0 1 bias[l]l (11)
0 0 1

Here, (x;,y;) refers to the coordinates of the four corners of the source imagel;, where i is an
integer between 0 and 3. The final homography matrix for the source image is obtained by matrix
multiplication between the bias matrix and the original homography matrix. This leads to the
transformed coordinates (Xoyt, Your) = Hijbiasmatrixl; for the resultant source image [y,

After the transformation, we use image labels T;and T; to ascertain whether the set of images to
be stitched pertains to the left or right half jaw teeth. Concretely, whenT; = T; = 1, the set of images
correspond to the left half jaw teeth and their area of overlap is in the upper-left corner of the target
image. Based on the coordinates post-transformation, image pairs are meticulously aligned. The
aligned images are then fused using a wavelet transformation fusion technique. To ensure the
seamlessness of the stitched images, a weighted fusion strategy is executed, featuring a fade-in, fade-
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out weighted matrix.

Algorithm 2 Wavelet transform and weighted fusion algorithm based on dental arch arrangement

intraoral endoscopic images

Inputs: Images set Iy, I,....I,,Source image [; and target image I;,mutually matched feature
points P;, Pjand position markers T;and T;, weighted matrix width 6

Output: Stitching result image [¢gy¢

1: bias = 0;

2:for i=1->n-1 do

3: j=i+1;

4. if T, ==T; ==1 then /I Determine whether it is the left half of the jaw

5: H;; = FindHomography(P;, P;);

6: bias = |min(x;, y)|;

7: biasmatrix = [[1,0, bias[0]], [0, 1, bias[1]],[0,0,1]]; //Build bias matrix
&: Iiefr = biasmatrix « Hy; = I3

9: hj, w; = I;.shape();

10: Liese[bias[0]: bias[0] + hj][bias[1]: bias[1] + w;] = I};

11: waveletfusion(); //Perform wavelet fusion

12: Hyeigne = getweightmatrix (6, bias); // Create weighted matrix

13: Liert = liept * Hyeigne + 1 * (1 — Hyeigne); // Weighted fusion processing seams
14:  end if

15:  if T, ==T; ==0 then

16: Get Iig5¢in the same way

17:  end if

18: end for

19: Similarly, merge ljor; and Lyjgpeinto Iregys

20: return Lpgyr

4. Experiments

We conducted the experiments on a hardware setup featuring a 64-bit Windows 10 operating
system and an AMD Ryzen 9 5900HX with Radeon Graphics, clocked at 3.30 GHz. The programming
is built on PyCharm, which is seamlessly integrated with Anaconda and running in a Python 3.6
environment. The implementation leverages libraries like PyTorch and OpenCV-Python. The set
parameters are as follows: A SuperPoint detection threshold of 0.007, attention iteration Lfixed at 16,
Time-Weighting with default settings, a RANSAC regularization term A set to 1, a confidence value
& 0of 0.995, an error cutoff ¢ at 10, a minimum sample size m of 4 and a weighted matrix width 6
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marked at 50. The hyperparameter settings employed in the proposed method of this paper are as
follows: The learning rate is set at 0.0001, the Batch Size at 64 and the number of Epochs at 150. The
model features 102 layers in the hidden layer, with ReLu as the activation function. The Sinkhorn
iteration count is set to 150. For the convolutional layer, the kernel size is configured to (1,) and the
stride to (1,). Batch normalization momentum is set at 0.1, with epsilon at 0.00001, and the Stochastic
Gradient Descent (SGD) is used as the optimizer. Regularization employs Dropout with a dropout rate
of 38.1%, and the weights are initialized randomly. These parameter settings are based on
recommended values from relevant literature and best practices in existing research. Parameter
settings for comparison methods follow either default configurations or recommendations cited in
relevant studies.

Figure 8. Intraoral endoscopic device A3M
4.1. Dataset construction

In this paper, we establish a specialized intraoral camera dataset, named ICPA, for capturing
localized image samples of lower jaw teeth using an A3M model intraoral endoscope. As illustrated in
Figure 8, the endoscope lens employed in this dataset features a diameter of 1.2 cm and a viewing
angle of 60 degrees. To maximize the richness of the captured image content, a focal length of
approximately 1.5 cm is maintained. Utilizing a stationary camera setup, the ICPA dataset captures
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images of both the upper and lower jaws, accumulating a total of roughly 400 adjacent image pairs
across 16 mouths, all collected from real oral environment. For a set of 10 half-jaw images, we consider
that there are 9 pairs of adjacent images with individual image dimensions being 480x640 pixels. The
feature points of the images in the data set range from approximately 400 to 600, and the pairs of
matching feature points range from approximately 60 to 180 pairs. The sample size of the data set is
shown in Table 1. The images encompass common oral features such as crowded dentition, mandibular
deviation, sparse tooth arrangement and dental malformations like prognathism, as well as prevalent
oral diseases including dental caries, plaque, mouth ulcers and gingival bleeding. During the model
training phase, we augmented the 400-pair dataset using techniques like rotation, brightness
adjustment and random noise addition, expanding the data to approximately 1600 pairs. Concerning
image overlap rate, a lower overlap rate can challenge the algorithm's ability to precisely match feature
points, impacting the stitching's accuracy and overall quality. Conversely, a higher overlap rate, while
providing more matching points and enhancing stitching precision, also increases the data collection
time and cost. In practical dental diagnostics, due to the necessity of processing a large volume of cases
rapidly, diagnostic images typically have a lower overlap rate. To emulate this reality, our study
maintained an overlap rate of about 35% for image pairs, with an average of 10 images per half-jaw
and a minimum overlap area of 25%, averaging around 35%. This setup ensures that the dataset
accurately reflects the image processing requirements of real clinical diagnosis and enhances the
feasibility and applicability of our research findings in future practical diagnostic applications.

Table 1. Number of samples in ICPA dataset.

Average number of The average number of Average number of  Proportion of feature
feature points in the feature point pairs that unmatched feature  point pairs that match
data set match each other point pairs each other
486 160 326 32%

Moreover, excessive exposure in images compromises the clarity of edges and finer details. As
depicted in Figure 9, the histogram of a well-exposed dental image maintains a balanced distribution,
whereas in an overexposed version, the predominance of high-luminance pixels skews the grayscale
histogram to the right. To rectify this imbalance, we implement the ACE (Automatic Color
Equalization) algorithm to harmonize the color profile of the dataset. This method not only adjusts the
brightness, hue and contrast of images but also takes into account local and nonlinear characteristics,
aligning with the Gray World Theory and White Patch Assumption frameworks. A comparative
analysis of the dataset pre- and post-ACE algorithm application is presented in Figure 10.
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Figure 9. Grayscale histogram comparison between normal and overexposed tooth images.

original

ACE

Figure 10. Comparison of the data set before and after passing the ACE algorithm.

4.2. Image matching comparison analysis
4.2.1. Image matching algorithm comparison

As delineated in Eq (12) to (14), the principal metrics for evaluating feature matching encompass
the Matching Score (Ms), Precision (P) and Recall (R). In this context, n and m represent the

number of feature points in the two images to be matched. The min(n, m) denotes the smaller value
between n and m. TP (True Positives) refers to the feature point pairs that are correctly matched.
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Conversely, FP (False Positives) signifies the feature point pairs that are incorrectly matched.
Lastly,FN (False Negatives) pertains to the feature point pairs that should have been matched but were
not. TN (True Negatives) represents pairs of feature points that are considered not to match each other.

Ms = (12)
TP
P= TP+FP (13)
TP
R = TP+FN (14)

Correctly matched point pairs are identified based on annotated feature-matching pairs in the
dataset, used to ascertain the ground-truth homography matrix H. Utilizing H, feature points are
projected into the coordinate space of a corresponding image, where distances to another set of feature
points are computed. A pair of feature points with the minimum distance is deemed to be a correct
match. Given the potential for errors in manual annotation, a distance threshold y is established, set
at 5 in this study, constraining the distance between correctly matched feature point pairs to be within
a 5-pixel range.

We evaluate five comparative algorithms: ORB, GMS [26], PointCN [27], OANet [28] and
SuperGlue. Experimental trials were undertaken on a test set, and the average results were computed.
Data from Table 1 illustrates that the methodology proposed herein outstripped competing approaches,
with improvements of 4.5%, 6.3% and 10.6% in Ms, P and R metrics, respectively. The novel approach
amalgamates self-attention with cross-attention to elevate feature point matching specificity and
escalate the chances of match success. Additionally, outlier elimination is achieved in each Sinkhorn
iteration through the application of the RANSAC algorithm, ensuring the accuracy of feature point
matching and consequently yielding a higher recall rate vis-a-vis other methods.

When considering matching methodologies that leverage homography estimation, the yardstick
for assessment is the Frobenius norm. The Frobenius norm of an arbitrary matrix A can be computed
as illustrated in Eq (15).

1Allr = X% X lay]? (15)

Herein, ||A||r stands for the Frobenius norm of matrixA. The variables m and n correspond
to the number of rows and columns in the matrix, respectively, while a;; denotes the element located
at the i -th row and j -th column. In the evaluation of discrepancies between two homography
matrices, the Frobenius norm serves as a widely-accepted metric. The experimental protocol involves
computing the Label homography matrix using labeled feature point pairs and then calculating the
absolute difference between its Frobenius norm and that of the estimated homography matrix. A lower
value suggests a higher degree of similarity between the estimated and Label homography matrices.

The methods employed for comparative analysis are HomographyNet[29], VFISNet and UDIS.
As evidenced by Table 2, our technique demonstrates a 31% reduction in the Frobenius norm
difference, thereby drawing us closer to the Label. It is noteworthy that higher accuracy and recall
rates, under the condition of a consistent Label, lead to a homography matrix that is increasingly
congruent with the Label's homography matrix. Hence, the homography matrix derived from our
proposed method exhibits a closer alignment with the Label.
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Table 2. Feature matching comparison.

Difference in absolute

method type Methods Ms P(%) R(%) value of ||A|[
ORB 11.9 10.8 2.6
. GMS 10.7 33.0 7.8
Matching PointCN 19.5 56.2 23.6
based on /
feature points OANet 23.8 65.0 40.9
SuperGlue 314 78.3 67.8
Ours 35.9 84.6 78.4
Based on HomographyNet 113.68
homography VFISNet / 84.47
matrix UDIS 72.59
estimation Ours 49.60

Considering the imbalance present in the dataset, this method incorporates the G-mean and
Precision-Recall Area Under Curve (PR-AUC) metrics to provide a more nuanced evaluation. G-mean
as delineated in Eq (16). The PR-AUC represents the area under the Precision-Recall (PR) curve,
which illustrates the relationship between Precision and Recall for the model at various thresholds. In
comparison to other metrics, the PR-AUC serves as a more valuable performance indicator,
particularly when dealing with imbalanced datasets. Specific indicators are shown in Table 3.

TP TN
G — mean = X (16)
TP+FN ~ FP+TN

Table 3. Comparison of G-mean and PR-AUC indicators.

Methods G-mean PR-AUC
PointCN 0.445 0.484
OANet 0.581 0.560
SuperGlue 0.749 0.766
Ours 0.832 0.813

4.2.2. Comparison of image groups with different features

To assess the comparative advantages of our proposed methodology over existing techniques, we
conducted experiments using distinctively featured images sourced from the ICPA database, as
delineated in Figure 11. The experimental setup comprises three specific groups: The left molar region
(inclusive of the third, second and first molars), the right molar region and the anterior incisor region
(which includes lateral incisors, central incisors and canines).
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(a) Matching left molar regions (b)Matching anterior incisor regions (c)Matching right molar regions

Figure 11. Use three sets of input images in different areas to verify the image matching effect.

Figure 12 provides a comparative analysis of matching outcomes across diverse regions between
our proposed technique and extant algorithms. In the inaugural column, algorithms like GMS, PointCN
and OANet are observed to perform matches based on the reflections generated by saliva. Our method
efficaciously eradicates a substantial number of such feature-point pairs prone to reflective matching.
Given that soft tissues such as saliva and the tongue are susceptible to morphological changes during
image capture, matches based on reflections usually exhibit diminished confidence levels. In the
subsequent two columns, apparent mismatches are also discernible in other techniques. Hence, our
approach is proficient at identifying a greater number of credible feature-point matches while
effectively filtering out erroneous ones, thereby minimizing error rates.

(e)Ours

Figure 12. Matching results of GMS, PointCN, OANet, SuperGlue and the proposed
method on three different groups of dental image areas. Red rectangles circle obviously
mismatched pairs.
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To authenticate the algorithm's utility, we conducted experiments on three data sets from Figure
11, incorporating a total of 10 variations that encompass translational shifts, rotational adjustments,
perspective transformations and variations in overlap rates. Figure 13 illustrates the test dataset, and
Figure 14 delineates the matching precision of our proposed method in comparison with existing
algorithms like GMS, PointCN, OANet and SuperGlue across mandibular teeth images taken at 10
divergent angles. Remarkably, our method outperforms the other algorithms, achieving an average
accuracy rate exceeding 80%.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

(c) right molar regions

Figure 13. Examples of test images from the ICPA dataset include: (a) left molar
regions; (b) anterior incisor regions; and (c) right molar regions. Group 0 and Gr
oup 1 consist of mutually matching original images. Using the images in Group 1
as the source images, Groups 2, 3, 4 and 5 undergo translational transformations.
Groups 6 and 7 undergo rotational transformations of 90° and 180°, respectively,

while Groups 8, 9 and 10 undergo perspective transformations.

10 10 10
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(a)Matching precision rate (b)Matching precision rate (c)Matching precision rate
of left molar regions anterior incisor regions of right molar regions

Figure 14. The horizontal axis, ranging from 1 to 10, signifies the sets matched by diverse
algorithms for each image's Group 0 and its subsequent 10 groups as illustrated in Figure
11. The vertical axis furnishes a measure of the achieved matching precision rate.
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In Figure 14, an analysis of data from Groups 2 to 5 shows that all examined algorithms maintain
a consistent level of matching accuracy under translational variations. However, the data from Groups
6 and 7 reveal a marked reduction in performance for GMS and PointCN when subjected to rotational
transformations. Furthermore, in Groups 8 through 10, all three algorithms—GMS, PointCN and
OANet—suffer from decreased accuracy. SuperGlue fares poorly in feature-sparse regions like the left
(or right) molars but exhibits stable performance in feature-rich zones like the anterior incisors.
Remarkably, the method proposed in this study demonstrates stable matching accuracy across different
feature compositions.

4.3. Image fusion comparison

In the phase dedicated to image fusion, we address a core limitation: Conventional panoramic
image stitching demands either a vertical or horizontal positional relationship between images, a
constraint not well-suited for intraoral endoscopic image pairs. The principal metrics evaluated are the
mean gradient and standard deviation. Higher values in these metrics translate to better preservation
of image details and smoother, more natural transitions in the fused image. As evidenced in Table 4,
the methodology we propose achieves optimal levels in both these key metrics. This approach employs
wavelet transformations for the fusion process and uses a weighted, fade-in, fade-out technique to
seamlessly blend image seams. Consequently, relative to traditional approaches, our method yields
superior fusion outcomes, preserving a greater extent of image details and facilitating smoother, more
natural transitions.

Table 4. Comparison of fusion algorithms.

Fusion methods Average gradient Standard deviation
Based on maximum value 6.65 58.71
Based on minimum value 4.73 49.15
Average weighted 7.45 50.29
Laplacian pyramid 9.332 51.36
Wavelet transform fusion 9.66 53.75
Ours 11.23 58.78

4.4. ablation study

In the ablation experiment, we chiefly examine the impact on the quality of image stitching
involving either two or multiple images. The reliability of feature point pairs is gauged by their
confidence scores, with higher scores indicating a greater likelihood of correct matching. These
confidence levels are color-coded, ranging from blue for high confidence to red for low, with
intermediary values represented by green and yellow. To enhance visual clarity, a lower mean
confidence score will result in a reduced peak value, causing the overall image to take on more yellow
or red tones. As indicated in Figure 15, the removal of the Time-Weighting-enhanced self-attention
mechanism precipitates a decline in the ability to effectively aggregate feature points, and a
corresponding reduction in matched feature point pairs. With the implementation of Time-Weighting,
there is an approximate 16% boost in the quantity of feature point pairs. Conversely, the absence of
the RANSAC algorithm leads to generally lower confidence scores for feature point pairs, manifesting
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in conspicuously red and yellow connecting lines.

Matches: 95

Image pairs to be stitched No Time-Weighting

Matches: 108 3 Matches: 116

Ours No RANSAC

Figure 15. ablation study effect of dual image stitching.

As illustrated in Figure 16, we employ the same methodology for representing confidence levels
in the context of multi-image stitching. Our results reveal that the proposed approach significantly
improves the stitching outcome, augmenting the quantity of feature point pairs by an estimated 20%.
While integrating the RANSAC method leads to a marginal reduction in the number of feature point
pairs, it simultaneously enhances the overall confidence level of the matches.

Matches: 113

Image pairs to be stitched No Time-Weighting

Matches: 136 i Matches: 148

Ours No RANSAC

Figure 16. Ablation study effect of multiple image stitching.
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4.5. Analysis of the stitching effect of half-jaw panorama

As depicted in Figure 17, we present examples of semi-jaw data captured from an intraoral
endoscope, consisting of three distinct dental photo sets: 10 images in set A, 8 in set A and 12 in set C.
The image-capturing process is prone to variations in perspective due to camera shake when held by
hand, leading to inconsistent overlap areas and positions between images. Current stitching algorithms
generally focus on dual-image stitching, progressing step-by-step to create a panoramic image through
iterative dual-image combinations. However, this approach is fraught with challenges, including the
accumulation of deformation errors during the multi-image stitching, resulting in incomplete oral
panoramic imagery in some instances.

(c) Images set C

Figure 17. Data examples.

As delineated in Figure 18, we employed a comparative analysis featuring ORB, GMS, PointCN,
OANet, SuperGlue and our proposed algorithm. Blue rectangles highlight areas of misalignment and
ghosting artifacts; green rectangles point out conspicuous distortions; while red rectangles signify
incorrect stitching outcomes. ORB, GMS and PointCN tend to yield flawed results, including
misalignments that prevent the creation of a complete stitched image. OANet and SuperGlue, on the
other hand, do produce panoramic images but suffer from varying degrees of distortion and errors.
According to the metrics compiled in Table 5, our proposed approach achieves optimal results in terms
of both average feature matching and accuracy. In contrast, both ORB and GMS fail to correctly stitch
over half of the total image set, and PointCN often yields incomplete panoramic images due to cumulative
errors. OANet and SuperGlue manage to generate panoramas, albeit with diminished accuracy.
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Image set A (10pictures) (a) ORB (b)GMS

(c)PointCN (d)OANet

(a) ORB (b)GMS (c)PointCN (d)OANet (e)SuperGlue

Image set B(8pictures)
(a) ORB (b)GMS

Image set C(12pictures)

Figure 18. Stitching effect of panoramas from three image sets.

Table 5. Stitching evaluation index statistics.

average
. . . successfully average
incorrect  ghosting conspicuous Generate . feature
methods o . . . stitched . accuracy
stitching  artifacts  distortions panorama matching
images (%) . (%)
pair
ORB v N, J X 20 16.3 10.1
GMS v N, J X 26.6 26.4 23.1
PointCN V N, J X 43.3 43.7 59.7
OANet V ~ ~ 100 62.2 63.1
SuperGlue J N, 100 89.5 79.3
Ours ~ 100 108.4 86.2

As depicted in Figure 19, the proposed method begins the stitching process with images labeled
starting with “a”, representing the left side of the dental arch. The approach employs a two-sided
sequential stitching strategy: First from one side and then the other, culminating in a fusion of these
left and right stitched images. The end result accomplishes a comprehensive semi-jaw panoramic view
of the teeth, meticulously preserving the content details from the original images. Moreover, each
stitched image exhibits a distortion level that is within an acceptable range, devoid of discernible
ghosting or artifacts.
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(a) Stitching process of image set A

j-h f-h e-h a-h

(b) Stitching process of image set B
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(c) Stitching process of image set C

Figure 19. Schematic diagram of the Stitching process.
5. Conclusions

In this paper, we study the splicing problem of intraoral endoscopic images and explore the impact
of Time-Weighting combined with the attention mechanism on the number of feature point matches.
In addition, the feature point pair matching mechanism of the Sinkhorn and RANSAC combination is
clarified. To accomplish seamless Stitching of intraoral endoscopic visuals, a wavelet transform and
weighted fusion algorithm based on dental arch alignment intraoral endoscopic images was designed.
Experimental results show that the integration of Time-Weighting and attention mechanisms
substantially augments the volume of feature point matches, whereas the accuracy of feature point pair
matching can be improved by the combination of Sinkhorn and RANSAC. The algorithm this paper
introduce excels in both quantitative metrics and visual aesthetics.

The proposed method currently has the following limitations: 1) Due to the use of point light
sources in intraoral endoscopes, the images captured often exhibit uneven brightness, with higher
luminance at the center and lower at the edges. This results in an unnatural brightness transition at the
seams post-stitching. 2) The process of stitching involves distortion and stretching of the source images,
leading to irregular boundaries in the final composite, which are not in line with typical visual
perceptions and display modes of imaging devices.

Future research directions include: 1) Developing a global brightness optimization method [30]
specifically for panoramic image stitching to ensure a natural luminance transition and mitigate abrupt
brightness changes. 2) Devising a method to rectify the stitched panoramic intraoral endoscopic images
into a rectangular format, meeting the visual expectations of humans and the display formats of
imaging devices.

Furthermore, the dataset constructed by the proposed method is currently not extensive and fails
to cover all possible oral features, such as periodontitis and dental cancer. Therefore, future work
involves expanding the dataset, and collaborating with dental hospitals and other medical institutions
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to increase the diversity and quantity of samples. This will ensure a more comprehensive coverage of

potential features in intraoral endoscopic images, enhancing the representativeness of the dataset and
the520esearchh.
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