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Abstract: In this work, we examine an adaptive and event-triggered distributed controller for non-
linear multi-agent systems (MASs). Second, we present a fuzzy adaptive event-triggered distributed
control approach using a Lyapunov-based filter and the backstepping recursion technique. Next, the
controller and adaptive rule presented guarantee that all tracking errors between the leader and the
follower converge in a limited area close to the origin. According to the Lyapunov stability theory, this
demonstrates that all other signals inside the closed loop are assured to be semi-globally, uniformly
and finally constrained. Finally, simulation tests are conducted to illustrate the effectiveness of the
control mechanism.
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1. Introduction

In nature, many organisms can accomplish many complex and routine tasks through the division of
labor in groups and group cooperation. Examples include the cooperative division of labor in pigeon
and goose flocks, the wolf pack effect and the migration of fish populations in formation. How each
organism cooperates with each other to divide labor has attracted scholars in many fields of study to
explore [1]. Without internal information exchange and centralized control from the outside world,
these organisms can only accomplish what they cannot do autonomously through division of labor and
cooperation with their peers. By studying the behavior of division of labor and cooperation among
these organisms, the scholar step by step proposed the concept of multi-agent systems (MASs) [2–5],
MASs are collections of multiple intelligence intended to turn huge, complicated systems into small,
manageable, communicable and coordinate able systems [6–8]. In practical applications, both the
computation of an intelligent body’s own processor and the communication between intelligent bodies
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consume energy, and the energy consumption of communication is generally much greater than that of
computation [9]. In this context, considering how to reduce the performance requirements of MASs
becomes an important research topic [10–12]. Because the communication energy consumption of the
system is large and most of the existing work requires uninterrupted communication. This has led to
the introduction of a periodic sampling mechanism to limit the communication frequency between the
intelligence, which effectively reduces the energy consumption. Astrom and the other scholars have
proposed a special sampling mechanism, event-triggered control [13–17].

The notion of event triggering is fundamental in contemporary industrial 1999 saw the introduction
of event-triggered control by Astrom and Arzen [18]. Traditional time-triggered control schemes de-
mand regular sampling even when the system is working properly, which may increase both energy
consumption and network congestion with the progress of communication. Furthermore, will only the
control job will be executed if a parameter or status error has occurred. In an event-triggered control
system, control tasks will only be executed when an error of a system parameter or system indicator
surpasses a certain threshold [19]. In recent years, these benefits have sparked the interest of academics
in event-triggered control. Thus, several approaches [20–23] have been developed to address these is-
sues in event-triggered control. These results give essential theoretical guidance for the research and
implementation of an event-triggered distributed control approach in MASs [24–29]. Event-triggered
control can decide when to trigger a control action based on changes in the system state or error, and in
combination with fuzzy control, it can be controlled using fuzzy logic at the time of triggering, which
reduces computational overhead and improves the efficiency of the control system.

Fuzzy control is a method for regulating items for which accurate mathematical models are difficult
to develop [30–32]. This method of control is based on fuzzy logic, which resembles the way humans
think. In lieu of developing a mathematical model, fuzzy control may make choices in real time us-
ing the system’s actual input and output data in combination with the knowledge of trained operators.
However, there are a number of intrinsic disadvantages to fuzzy control: First, they are less accurate;
second, they cannot adapt effectively to novel conditions; and third, they are susceptible to oscillation
phenomena [33–36]. Adaptive control is the solution provided by fuzzy control. Researchers may be
able to make even greater progress by combining fuzzy control with adaptive control. The 1979 re-
search article titled “Language Self-Organizing Controller” published discoveries that opened the path
for the creation of fuzzy adaptive control. In 1982, a revolutionary method to fuzzy adaptive control
employing fuzzy control rules that permitted self-adjustment was introduced. In 1993, researchers
investigated the approximation accuracy of the fuzzy system as a function approximation [37–40], in-
tegrating the learning ability of the adaptive method with the universal approximation capability of the
fuzzy logic system to create a fuzzy adaptive controller. These findings have paved the way for further
research in the area of fuzzy adaptive control. Since then, several scientists have created fuzzy adaptive
controllers that use the universal approximation provided by fuzzy logic. A finite-time L2 gain asyn-
chronous control strategy based on the T-S fuzzy model approach is proposed in [41], which provides
a new perspective and methodology for dealing with continuous-time control problems and acceler-
ates the development of fuzzy adaptive control systems. Based on the above this paper can reduce the
computation and execution frequency of the control system by introducing a relative threshold event
triggering strategy. This is particularly important in systems where fuzzy adaptive distributed control
involves a large number of computations and iterations. Therefore, the introduction of event-triggered
control accelerates the development of fuzzy adaptive control systems.
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In the first section, we examine the current state and future direction of the fields of MASs, the
event-triggered distributed control and the fuzzy adaptive control. The second section of the article
presents the fundamental theory of fuzzy adaptive event-triggered distributed control for nonlinear
systems, including graph theory theorems, issue descriptions and fuzzy logic system principles. Using
the backstepping approach and the given Lyapunov function, an adaptive event-triggered distributed
controller is constructed in the third section. The findings of the stability study conducted in the
fourth section indicate that the adaptive event-triggered distributed controller can keep the system
stable. In the fifth segment, numerical simulation studies are utilized to validate the performance of the
distributed controller.

When designing event triggering rules, it is necessary to select appropriate parameters, such as
threshold value and trigger interval, which have a great impact on the stability and performance of the
system. However, the event triggering mechanism proposed in this paper based on the relative threshold
strategy provides an effective way to solve the problem. Moreover, in most distributed systems, the
communication load may become a significant bottleneck, leading to delays, packet loss and other
problems that may degrade the system performance. In this context, we propose an event-triggered
distributed controller based on a relative threshold policy that reduces the amount of communication
required between multiple agents, thereby increasing the efficiency of the overall system and reducing
the computational burden. The use of a fuzzy logic system with filters further enhances the controller’s
ability to handle complex and nonlinear system dynamics, making it suitable for a wide range of
applications. In addition to confirming the feasibility and effectiveness of the control mechanism,
Lyapunov’s stability theorem proves that all closed-loop system signals are semi-global, uniform and
ultimately bounded.

2. System descriptions and preliminaries

2.1. Graph theory

In this part, the communication relationships between agents are described. The following is the
introduction of the relevant knowledge: the Laplacian matrix is G = E − D, directed communication
topology ζ = (ε, δ, E) shows the communication information between agent i and j. δ = (1, 2, · · · ,M)
are represented as a set of M nodes. The set of edges between nodes are δ ⊆ ε × ε. Each agent
in the graph can be represented by a node. There is no self-loop in topology ei,i = 0, ∀i ∈ ε. The
node i to j of edge is (i, j) ∈ δ, indicating that node i is said to be adjacent to j. The set of adjacent
edges i is Mi = { j ∈ ε|(i, j) ∈ δ, i , j}. The adjacency matrix is designed as E =

(
ei, j

)
∈ RMi×Mi . If

(i, j) ∈ δ, the weight ei, j > 0. Or else, the weight ei, j = 0. Then the entry of node i is di =
∑

j∈Mi
ei, j,

D = diag {d1, d2, · · · , dMi

}
is the diagonal matrix. Since only part of the agent in MASs can receive

the tracking signal directly, the output of the leader can be seen as the output of the given tracking
signal leader.

Among them, four lemmas and one assumption are given in this paper.

Lemma 1 [16]. If directed graph ζ is defined as a tree, after that there is the directional path from
the root node to all the other nodes. If this root of the spanning tree is node 0, then G + E is a non-
singular matrix.
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2.2. Problem formulation

We examine a system with followers, each of which may be characterized as a class of n-order tight
feedback systems with unknown parameters:

ẋi,m =xi,m+1 + fi,m(x̄i,m) + wi,m(t)
ẋi,ni =ui + fi,ni(x̄i) + wi,ni(t)

y =x1

(2.1)

To facilitate derivation, where i = 1, · · · ,Ni, fi,1(xi), fi,ni(xi) stand for unknown non-linear functions,
wi,ni(t), wi,1(t) stand for unknown external disturbance, x̄i = [xi,1, xi,2, · · · , xi,ni]

T ∈ Rn
i indicates system

states, y ∈ Ri and ui ∈ Ri are the system’s input and output. fi,m(x̄i,m) and fi,ni(xi) are respectively
abbreviated as fi,m and fi,ni .

The control objectives of this paper are as follows:

1) the follower’s output signal is in a finite neighborhood of the leader’s output signal.
2) in the closed loop system, an adaptive event triggering controller limits all signals.

Assumption 1. wi,ni is the unknown external disturbance, ẇi,ni(t) are bounded, such that
∣∣∣ẇi,ni(t)

∣∣∣ ≤ w̄i,ni ,
w̄i,ni is a positive constant.
Lemma 2 [16]. (Young’s inequality) Suppose x, y, c and a are the non-negative real numbers, and c, a
satisfies 1/c + 1/a = 1, then we have

xy ≤
1
c

xc +
1
a

ya

the equality sign holds when and only when mc = na.
Lemma 3 [17]. First, define x̂ = [x̂ j,1, · · · x̂ j,N]T ,

⌣

y = [y1, · · · , yM]T ,
⌣

y0 = 1M ⊗ y0, we have
∥∥∥⌣y − ⌣

y0

∥∥∥ ≤
∥x̂∥/ς(G + D) , where ς(G + D) is the least odd value of the matrix.

2.3. Fuzzy logic system

There are the fuzzy rule bases, fuzzy inference and the fuzzification operator. The defuzzification
operator is the fundamental components of a fuzzy logic system or fuzzy control. Combining several
sets of fuzzy inference rules with fuzzification, fuzzy inference synthesis and defuzzification produces
a novel flavor of fuzzy logic. The technique to fuzzy logic employed in this work is detailed below.
First, fuzzy rules are represented as follow: Rl: xi, y ∈ Rl are the system’s input and the output. If xi

is F l
i , xni is F l

n, y is Gl
i, i = 1, 2, · · · ,Ni, l = 1, 2, · · · , n. Ni is represented as the number of fuzzy logic

rules, Gl
i and F l

i are fuzzy sets. By solving fuzzy rules and using fuzzy methods to define (including
multi-point product definition reasoning, centralized weighted multi-point average method to solve
multi-point fuzzy, single point average method to solve fuzzy rules), the mathematical expression of a
fuzzy logic system is

y(x) =

∑n
l=1 ȳl
∏N+1

i=1 µFl
i
(xi)∑n

l=1

[∏N+1
i=1 µFl

i
(xi)
] (2.2)

Mathematical Biosciences and Engineering Volume 21, Issue 1, 474–493.



478

where ȳl = max µGl
i
(y), µGl

i
(y) and µFl

i
(xi) are defined as membership functions of fuzzy sets Gl

i and
F l

i , respectively.
The fuzzy basis function:

θl =

∏N+1
i=1 µFl

i
(xi)

n∑
l=1

[∏N+1
i=1 µFl

i
(xi)
] (2.3)

Let WT = [ȳ1, ȳ2, · · · , ȳN] = [W1,W2, · · · ,WN], θ(X) = [θ1(x), · · · , θN(x)]T and y(x) = WTθ(X).
Lemma 4 [16]. f (λ̄) is a continuous function defined Ψ on a compact set θ (λ̄) =

[θ1 (λ̄) , θ2 (λ̄) , · · · , θL (λ̄)]T , ξ∗ =
[
ξ1, ξ2, · · · , ξl

]T
∈ Rl, given ∀∂ > 0, the inequality holds:

ξ∗ := arg min
ξ∈Rl

{
sup
x∈Ψ

∣∣∣ f (λ̄) −WTθ (λ̄)
∣∣∣} ≤ ∂ (2.4)

3. Event-triggered distributed control

3.1. Design the event trigger controller

In this section, based on system (2.1), the adaptive dynamic surface control is designed, the error
surfaces of ith agents are represented as:

x̃i,1 =
∑

j∈Ni
ei,0(yi − y0)+ei, j(yi − y j) (3.1)

x̃i,m = xi,m − Φi,m−1 ,m = 2, 3, · · · , n (3.2)

ϑi,k = −ρi,k+ Φi,k , k = 1, · · · , n (3.3)

where y0 represents the reference signal, ρi,k indicates the virtual controller, Φi,k represents the output
of the first-order filter.
Step 1: The Lyapunov function candidate is defined as:

Vi,1 =
1
2

x̃2
i,1 +

1
2

W̃T
i,1H−1

i,1 W̃i,1 (3.4)

where Hi is given as a positive definite matrix, Ŵi is an estimate of parameter Wi.
The derivative of (3.4), it has

V̇i,1 =x̃i,1 ˙̃xi,1 + W̃T
i,1H−1

i,1 W̃i,1

=x̃i,1[(ei,0 + di)(x̃i,2 + ϑi,1 + ρi,1 +WT
i,1φi,1 + δi,1 + wi,1)

− di(x j,2 +WT
j,iθ j,1 + δ j,1 + w j,1) − ei,0ẏ0] + W̃T

i,1H−1
i,1 W̃i,1

(3.5)

where W̃i = −Ŵi+Wi.

V̇i,1 =x̃i,1[(ei,0 + di)(x̃i,2 + ϑi,1 + ρi,1 +WT
i,1φi,1 + δi,1 + wi,1)

− di(x j,2 + W̃T
j,1θ j,1 + ŴT

j,1θ j,1 + δ j,1 + w j,1) − ei,0ẏ0]

− W̃T
i,1H−1

i,1
˙̂W i,1

(3.6)
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Using the Young’s inequality, it is

x̃i,1(ei,0 + di)(ϑi,1 + δi,1 + wi,1)

≤
3
2

(ei,0 + di)2 x̃2
i,1 +

1
2
ϑ2

i,1 +
1
2
δ̄2

i,1 +
1
2

w̄2
i,1 (3.7)

− x̃i,1

∑
j∈Ni

ei, j(W̃T
j,1θ j,1 + δ j,1 + w j,1)

≤
∑
j∈Ni

ei, j

2
(W̃T

j,1W̃ j,1θ
2

j,1 + δ̄
2
j,1 + w̄2

i,1) +
3
2

∑
j∈Ni

ei, j x̃2
i,1 (3.8)

where w̄i,1 is a positive constant.
Substituting (3.7) and (3.8) into (3.6), it has

V̇i,ki =V̇i,ki−1 + x̃i,ki(x̃i,ki+1 − Φ̇i,ki−1 + ϑi,ki + ρi,ki + δi,ki + wi,ki +WT
i,ki
θi,ki)

+ ϑi,ki−1(−
ϑi,ki−1

τi,ki−1
+ ψi,ki−1) − W̃T

i,ki
H−1

i,ki

˙̂W i,ki

(3.9)

the virtual controller ρi,1 is represented as:

ρi,1 = − ŴT
i,1θi,1 −

3
2

(di + ei,0)x̃i,1 +
1

di + ei,0

×

∑
j∈Ni

ei, j(x j,2+ŴT
j,1θ j,1 −

3
2

x̃i,1) + ei,0ẏ0 − ci,1 x̃i,1

] (3.10)

where ci,1 > 0 is a design parameter, the adaptive law ˙̂W i,1 is represented as:

˙̂W i,1 = Hi,1

[
−σi,1Ŵi,1+(ei,0 + di)θi,1 x̃i,1

]
(3.11)

Substituting (3.10) and (3.11) into (3.9), it has

V̇i,1 ≤ − ci,1 x̃2
i,1 + (ei,0 + di)x̃i,1 x̃i,2 +

1
2
ϑ2

i,1 +
1
2
δ̄2

i,1 +
ω̄2

2

+
∑
j∈Ni

ei, j

2
(W̃T

j,1W̃ j,1θ
2
i,1 + δ̄

2
j,1 + w̄2

i,1) + σ1W̃T
i,1Ŵi,1 (3.12)

Step ki(ki = 2, 3, · · · , ni − 1): the virtual control signal is ρi,ki−1 , the time constant is τi,ki−1, we obtain

ρi,ki−1 = τi,ki−1Φ̇i,ki−1 + Φi,ki−1

Φi,ki−1(0) = ρi,ki−1(0)
(3.13)

Combining (3.3) and (3.12), it has

ϑ̇i,ki−1 = −ρ̇i,ki−1 −
ϑi,ki−1

τi,ki−1
= ψi,ki−1 −

ϑi,ki−1

τi,ki−1
(3.14)
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where ψi,ki−1 is continuous function. The Lyapunov function candidate is defined as follow:

Vi,ki = Vi,ki−1 +
1
2

x̃2
i,ki
+

1
2
ϑ2

i,ki−1 +
1
2

W̃T
i,ki

H−1
i,ki

W̃i,ki (3.15)

Take the derivative of both ends of (3.15), it has

V̇i,ki =V̇i,ki−1 + x̃i,ki(x̃i,ki+1 − Φ̇i,ki−1 + ϑi,ki + ρi,ki + δi,ki + wi,ki +WT
i,ki
θi,ki)

+ ϑi,ki−1(−
ϑi,ki−1

τi,ki−1
+ ψi,ki−1) − W̃T

i,ki
H−1

i,ki

˙̂W i,ki

(3.16)

Based on Young’s inequality, we get

ϑi,ki−1ψi,ki−1 ≤
1
2
ψ2

i,ki−1 +
1
2
ϑ2

i,ki−1 (3.17)

x̃i,ki(ϑi,ki + δi,ki + wi,ki)

≤
3
2

x̃2
i,ki
+

1
2
ϑ2

i,ki
+

1
2
δ̄2

i,ki
+

w̄2
i,ki

2

(3.18)

Combining (3.17) and (3.18) into (3.16), we can obtain

V̇i,ki ≤V̇i,ki−1 + x̃i,ki(x̃i,ki+1 + ρi,ki +WT
i,ki
θi,ki − Φ̇i,ki−1)

−
ϑ2

i,ki−1

τi,ki−1
+

1
2
ψ2

i,ki−1 +
1
2
ϑ2

i,ki−1 +
3
2

x̃2
i,ki
+

1
2
ϑ2

i,ki

+
1
2
δ̄2

i,ki
− W̃T

i,ki
H−1

i,ki

˙̂W i,ki +
w̄2

i,ki

2

(3.19)

Based on (3.19), the virtual controller ρi,ki:

ρi,ki = − ci,ki x̃i,ki −
3
2

x̃i,ki − ŴT
i,ki
θi,ki

− ℓi,ki−1 x̃i,ki−1 + Φ̇i,ki−1

(3.20)

the adaptive law Ŵi,ki is:
˙̂W i,ki = Hi,ki(θi,ki x̃i,ki − σi,kiŴi,ki) (3.21)

where ci,ki > 0 is designed as a design parameter.

Define ℓi,ki =

{
ei,0 + di, ki = 1
1, ki , 1

, we obtain

V̇i,ki ≤ −

ki∑
α=1

ci,α x̃2
i,α +
∑
j∈Ni

ei, j

2
(W̃T

j,1W̃ j,1θ
2

j,1 + δ̄
2
j,1 + w̄2

i,ki
)

−

ki∑
α=1

ϑ2
i,α(

1
τi,α
− 1) + x̃i,ki x̃i,ki+1 +

1
2

ki∑
α=1

δ̄2
i,α

+
1
2

ki−1∑
α=1

ψ2
i,α +

1
2
ϑ2

i,ki
+

ki∑
α=1

σαW̃T
i,αŴi,α +

1
2

ki∑
α=1

w̄2
i,ki

(3.22)
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Step ni: the virtual control signal is ρi,ni−1, the time constant is τi,ni−1, it has

ρi,ni−1 = τi,ni−1Φ̇i,ni−1 + Φi,ni−1

ρi,ni−1(0) = Φi,ni−1(0)
(3.23)

ϑ̇i,ni−1 = −
ϑi,ni−1

τi,ni−1
− ρ̇i,ni−1 = −

ϑi,ni−1

τi,ni−1
+ ψi,ni−1 (3.24)

where ψi,ni−1 is devised as a continuous function.
The Lyapunov function candidate is defined as follow:

Vi,ni = Vi,ni−1 +
1
2

x̃2
i,ni
+

1
2
ϑ2

i,ni−1 +
1
2

W̃T
i,ni

H−1
i,ni

W̃i,ni (3.25)

Take the derivative of both ends of (3.25)

V̇i,ni =V̇i,ni−1 + x̃i,ni
˙̃xi,ni + ϑi,ni−1ϑ̇i,ni−1 + W̃T

i,ni
H−1

i,ni
˙̃W i,ni

=V̇i,ni−1 + x̃i,ni(u +WT
i,ni
θi,ni + δi,ni − Φ̇i,ni−1+wi,ni)

+ ϑi,ni−1(−
ϑi,k−1

τi,k−1
+ ψi,k−1) − W̃T

i,ni
H−1

i,ni

˙̂W i,ni

(3.26)

The control signal ϖi is desired as follow:

ϖi = − (1 + Υi)[ρi,ni tanh(
x̃i,niρi,ni

℘i
)

+ m̄i tanh(
x̃i,nim̄i

℘i
)]

(3.27)

where virtual controller ρi,ni will be given later, m̄i > mi/(1 − Υi), ϖi is a positive design parameter,
0 < Υi < 1, mi > 0.

We adopt an event-triggered control method based on relative threshold strategy, which is designed
as follows ui = ϖi(Ti,r), ∀Ti ∈ [Ti,r,Ti,r+1),

Ti,r+1 = inf {t ∈ Ri ∥Ti (t)| ≥ Υi |ui| + mi} ,Ti,1 = 0
(3.28)

Remark 1: The relative threshold strategy is a method of dynamically adjusting the threshold value
according to the amplitude of ui. By correlating with the amplitude of the control signal ui, a suitable
threshold can be determined according to the stability and control performance requirements of the sys-
tem. When the amplitude of ui is large, the system may be in an unstable or highly perturbed situation,
and the use of a larger threshold can avoid frequent triggering events and reduce the communication
load. When the system is stable, the amplitude of ui is usually small. At this point, we can choose a
smaller threshold value to obtain more accurate control performance.

According to the above formula, we can get
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x̃i,niui =
x̃i,ni(ϖi − εi,2mi)

1 + εi,1Υi

≤
x̃i,niϖi

1 + Υi
+

∣∣∣x̃i,nimi

∣∣∣
1 − Υi

≤
x̃i,niϖi

1 + Υi
+
∣∣∣x̃i,nim̄i

∣∣∣ (3.29)

According to (3.28), ui ≥ 0, ui =
(
ϖi − εi,2mi

)
/
(
1 + εi,1Υi

)
, when ui < 0,

ui =
(
ϖi − εi,2mi

)
/
(
1 − εi,1Υi

)
, time-varying functions εi,1(t) satisfies

∣∣∣εi,1(t)
∣∣∣ ≤ 1, where

εi,2(t) = sign(ui) × εi,1(t).

According to Lemma 2, we can get

ϑi,ni−1ψi,ni−1 ≤
1
2
ψ2

i,ni−1 +
1
2
ϑ2

i,ni−1 (3.30)

x̃i,ni(δi,ni + wi,ni) ≤ x̃2
i,ni
+

1
2
δ̄2

i,ni
+

1
2

w̄2
i,ni

(3.31)

By substituting (3.29)–(3.31) into (3.26), we can get

V̇i,ni ≤V̇i,ni−1 + x̃i,ni(
ϖi

1 + Υi
+WT

i,ni
θi,ni + x̃i,ni − Φ̇i,ni−1)

+
∣∣∣x̃i,nim̄i

∣∣∣ − W̃T
i,ni

H−1
i,ni

˙̂W i,ni +
1
2
δ̄2

i,ni
+

1
2

w̄2
i,ni
+

1
2
ψ2

i,ni−1

− ϑ2
i,ni−1(

1
τi,β
− 1)

(3.32)

where the tanh(·) function has the following property

0 ≤ |z| − z tanh(
z
℘

) ≤ 0.2785℘ (3.33)

where ℘ > 0 and z ∈ R, we can get

x̃i,niϖi

1 + Υi
=
∣∣∣x̃i,niρi,ni

∣∣∣ − x̃i,niρi,ni tanh(
x̃i,niρi,ni

℘i
)

+
∣∣∣x̃i,nim̄i

∣∣∣ − x̃i,nim̄i tanh(
x̃i,nim̄i

℘i
)

−
∣∣∣x̃i,niρi,ni

∣∣∣ − ∣∣∣x̃i,nim̄i

∣∣∣
≤0.557Vi + x̃i,niρi,ni −

∣∣∣x̃i,nim̄i

∣∣∣
(3.34)

the virtual controller is ρi,ni:

ρi,ni = − ci,ni x̃i,ni − x̃i,ni−1 − x̃i,ni +
1

2(1 + Υi)
x̃i,ni

− ŴT
i,ni
θi,ni + Φ̇i,ni−1 (3.35)
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According to the above formula, the adaptive law ˙̂W i,ni is devised as:

˙̂W i,ni = Hi,ni(θi,ni x̃i,ni − σi,niŴi,ni) (3.36)

Combined with the above formula, we can obtain

V̇i,ni ≤ −

ni∑
α=1

ci,α x̃2
i,α +

1
2

ni−1∑
α=1

ψ2
i,α +

1
2

ni∑
α=1

w̄2
i,ni
−

ni−1∑
α=1

ϑ2
i,α(

1
τi,α
− 1)

+

ni∑
α=1

σαW̃T
i,αŴi,α +

1
2

ni∑
α=1

δ̄2
i,α + 0.557Vi +

1
2(1 + Υi)

x̃i,ni

+
∑
j∈Ni

ei, j

2
(W̃T

j,1W̃ j,1θ
2
j,1 + δ̄

2
j,1)

(3.37)

3.2. Stabilization analysis

Theorem 1. For MASs (2.1), when assumption 1 is satisfied, the closed-loop system is stabilized
by the adaptive law (3.36), the events designed by Eqs (3.27), (3.28) and (3.35) to trigger the
distributed controller and select appropriate design parameters ci,1, · · · , ci,kI , · · · , ci,ni , τi,kI−1, · · · , τi,ni−1,
σi,1, · · · , σi,kI , · · · , σi,ni , Hi,1, · · · ,Hi,kI , · · · ,Hi,ni , Υi, δi, mi, m̄i. Ensure that all signals on the system are
bounded. The errors converge is in a small neighborhood.

Proof of the Theorem 1. We choose the following Lyapunov function

V =
Ni∑

i=1

Vi,ni

=

Ni∑
i=1

ni∑
α=1

1
2

x̃2
i,α+

Ni∑
i=1

ni−1∑
α=1

1
2
ϑ2

i,α

+

Ni∑
i=1

ni∑
α=1

1
2

W̃i,αH−1
i W̃i,α

(3.38)

According to the inequalities

Ni∑
i=1

ni∑
α=1

σiW̃T
i,αŴi,α

≤ −

Ni∑
i=1

ni∑
α=1

σi

2
W̃T

i,αW̃i,α +WT
i,αWi,α

(3.39)

Ni∑
i=1

∑
j∈Ni

ei, j

2
(W̃T

j,1W̃ j,1θ
2
j,1 + δ̄

2
j,1)

=

Ni∑
j=1

Ni∑
i=1

ei, j

2
(W̃T

i,1W̃i,1θ
2
i,1 + δ̄

2
i,1)

(3.40)
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Thus, V̇ is derived in the following form:

V̇ ≤ −
Ni∑

i=1

ni∑
α=1

ci,α x̃2
i,α +

Ni∑
i=1

0.557Vi +
1
2

Ni∑
i=1

ni∑
α=1

δ̄2
i,α

−

Ni∑
i=1

ni−1∑
α=1

(
1
τi,α
− 1)ϑ2

i,α +

Ni∑
i=1

1
2(1 + Υi)

x̃i,ni

+

Ni∑
i=1

Ni∑
α=1

δ̄2
i,1 +

Ni∑
i=1

ni∑
α=1

σi

2
WT

i,αWi,α +
1
2

Ni∑
i=1

ni−1∑
α=1

ψ2
i,α

+
1
2

Ni∑
i=1

ni∑
α=1

w̄2
i,α −

Ni∑
i=1

σi −
Ni∑
j=1

e j,1θ
2
i,1

2λmax(H−1
i )

ni∑
β=1

W̃T
i,αH−1

i W̃i,α

(3.41)

where ci,β > 0, α = 1, · · · , n, 1/τi,α − 1 > 0, 1/[2(1 + Υi)] > 0, σi −
∑Ni

j=1 e j,1θ
2
i,1 > 0. The maximum

eigen-value of the matrix is expressed as Φmax(�). On a bounded compact set Ai,k,
∣∣∣ψi,k

∣∣∣ has a maximum.
According to the above formula, it has

D̄ =
1
2

Ni∑
i=1

ni∑
α=1

w̄2
i,α +

Ni∑
i=1

0.557Vi+

Ni∑
i=1

ni∑
α=1

σi

2
WT

i,αWi,α

+
1
2

Ni∑
i=1

ni∑
α=1

δ̄2
i,1+

1
2

Ni∑
i=1

ni−1∑
α=1

E2
i,α (3.42)

Select C = min

2ci,ni ,
2
τi,α
− 2, 1

1+Υi
,
σi−

Ni∑
j=1

e j,iθ
2
i,1

Φmax(H−1i )

.
Therefore, (3.41) is rewritten as V̇(t) ≤ −CV(t) + D̄ .
Besides, we get that

1
2

x̃2
i,1 ≤ V(t) ≤ e−CtV(0) +

D̄
C

(1 − e−Ct) (3.43)

According to (3.1), it has

x̃i,1 =
∑
j∈Ni

ei, j[(yi−y j) − (y j − y0)] + ei,0(yi − y0) (3.44)

From Lemma 1, we get that lim
t→∞
∥ȳ − ȳ0∥ ≤

1
ζ(E+D)

√
2D̄
C .

The parameters are then adjusted until the tracking error settles inside a small area close to the
origin. Zeno behavior in the context of event triggering control is the occurrence of an infinite number
of triggers in a finite amount of time. Due to the planned event trigger condition, which is indicated
by an increase in event trigger frequency and a decrease in trigger interval, the controller is unable to
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modify the trigger before a certain time period [42–44]. The subsequent data reveals that the suggested
control mechanism to prevent Zeno behavior needs a minimum time interval.

d
dt
|oi| = sign(oi)

d(oi)
dt
≤ |ϖ̇i| (3.45)

Because ϖi is differentiability and the independent variable of ϖ̇i is a bounded closed-loop signal.
Then, there must be a positive constant Wi making |ϖ̇i| ≤ Wi. Because oi(ti,r) = 0 and lim

t→ti,r+1
|oi(t)| > mi,

this trigger time interval must be greater than mi/θi, avoiding the Zeno behavior.

4. Simulation study

This section proves that the suggested control algorithm is effective. The system is comprised of a
leader and four successively numbered followers: 0, 1, 2, 3 and 4. Figure 1 depicts a boss and four
subordinates. Each follower’s system dynamics equations are defined as follow:

ẋi,1 = xi,2 + x2
i,1 sin(xi,1) + wi,1

ẋi,2 = ui + xi,2 sin(xi,1) + wi,2

y = xi,1, i = 1, · · · , 4 (4.1)

where xi,1, xi,2 are the states of systems, wi,1 = xi,1 sin(xi,2) cos(t), wi,2 = 1 + xi,1xi,2sin2(t), the output
signal of leader is y0 = 0.5 sin(t).

Figure 1. Communication topology.

From Figure 1, the weight adjacency matrix E and Laplacian matrix G of the tracker are:

E =


0 1 0 0
1 0 1 1
0 0 0 0
0 0 1 0

 , G =


1 −1 0 0
−1 3 −1 −1
0 0 0 0
0 0 −1 1


In the simulation, select the design constants for the entire control scheme ξi,1 = 55, ξi,2 = 65,

σi,1 = σi,2 = 10, Hi,1 = 0.4, Hi,2 = 0.1, ℘i,1 = ℘i,2 = 2.6, τi,1 = τi,2 = 0.1, Υi = 0.29,
ci,1 = 80, ci,2 = 100. The state initial value design constants are chosen as x1 = [0, 0]T ,
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x2 = [0, 0]T , x3 = [0, 0]T , x4 = [0, 0]T . The membership functions of fuzzy sets are chosen as fol-
lows µF1

j
= exp

[
−
(
xi,m + 2

)2/4 ] , µF2
j
= exp

[
−
(
xi,m + 1.5

)2/4 ], µF3
j
= exp

[
−
(
xi,m + 0.5

)2/4 ] , µF4
j
=

exp
[
−
(
xi,m − 0.5

)2/4 ], µF5
j
= exp

[
−
(
xi,m − 1.5

)2/4 ] , µF6
j
= exp

[
−
(
xi,m − 2

)2/4 ].
Remark 2: A distributed tracking algorithm based on event triggering and adaptive fuzzy control for

uncertain nonlinear multi-intelligent body systems is proposed. The algorithm has high requirements
on the continuity of control signals, and the system’s event-based triggering and sampling may result in
incoherent control signals, thus affecting the control effect [45]. In this paper, by introducing a relative
threshold strategy, the system can set an error threshold between neighboring intelligence and trigger
only when the error exceeds the threshold, thus reducing the number of event triggers. This ensures
that the system can update the control signal in time, which improves the control accuracy and stability,
and reduces the computational burden of the system.

Figure 2. Leader’s signal and follower’s output.

Figure 3. The changing trajectory of θ̂1.
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Figure 4. The changing trajectory of θ̂2.

Figure 5. The trajectory of the error.

Figure 6. Event trigger distributed controller.
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Figure 7. The interval at which an event is triggered.

Figure 8. The interval at which an event is triggered.

Figure 9. The interval at which an event is triggered.
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Figure 10. The interval at which an event is triggered.

Figures 2–10 illustrate the simulation results. The signal route and final output are presented in
Figure 2. Figures 3 and 4 depict the outcomes of a simulated application of the adaptive rule. The
image clearly demonstrates the superior quality of the simulation results. The region to which the
tracking error tends to converge is seen in Figure 5. The event-triggered control is preferable to the
time-triggered control, as shown in Figure 6. This study provides a strategy for distributed control that
uses fuzzy events to drastically reduce the amount of communication infrastructure needed. Figure 10
illustrates the control input event firing interval, which demonstrates that there was no Zeno behavior.
Consequently, numerical simulation is used to validate the efficacy of the suggested control mechanism.

5. Conclusions

For a category of nonlinear MASs, a non-strict feedback fuzzy adaptive event-triggered distributed
control approach is given. On the basis of the described function and using Lyapunov stability theory
and the universal approximation of a fuzzy logic system, a technique for output feedback control is
given. This work offers an adaptive event-triggered distributed controller that gets updates only when
an event happens to prevent wasting precious communication resources. Simulation is done to test the
efficacy of the management plan. The results of this research can be applied not only to the specific
system described in the current paper, but can also be generalized to other nonlinear systems with
output or state constraints, and can therefore be discussed and investigated in the next step.
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