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Abstract: In this paper, we studied the stability of traveling wave solutions of a two-species Lotka-
Volterra competition model in the form of a coupled system of reaction diffusion equations with non-
local intraspecific and interspecific competitions in space at times. First, the uniform upper bounds for
the solutions of the model was proved. By using the anti-weighted method and the energy estimates,
the asymptotic stability of traveling waves with large wave speeds of the system was established.

Keywords: Traveling waves; nonlocal; stability; energy estimates; global boundedness

1. Introduction

This paper is motivated by the following biological question: How do diffusion and nonlocal in-
traspecific and interspecific competitions affect the competition outcomes of two competing species?
It is well known that if we introduced the spatial dispersal into the Lotka-Volterra competition model,
traveling wave solutions are possible. Such solutions effected a smooth transition between two steady
states of the space independent system, [1-7], but for the models that involve nonlocality, the study of
traveling waves is challenging and the properties of the traveling waves becomes more complex. Gour-
ley and Ruan [8] proposed a two-species competition model described by a reaction diffusion system
with nonlocal terms. By using linear chain techniques and geometric singular perturbation theory, the
existence of traveling waves under some conditions were proved. Some other results about the trav-
eling waves of the Lotka-Volterra system or the similar equations with nonlocal terms can be referred
to [9-13].

In this paper we consider the following Lotka-Volterra competition-diffusion system with nonlocal
effects [13]:

Up — gy = u(l = (@1 * u) — ai(ga = v)),
Vi = Ve = V(L = (@3 % V) — ax (s * u)), (1.1)
u(0, x) = uo(x), v(0, 1) = vo(x),
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with
i *u = fqﬁl-(x —u(y, t)dy, i=1,2,3,4.
R

Here the functions u(x, t) and v(x,?) denote the densities of two competing species with respect to
location x and time ¢, respectively. The positive parameter r is the relative growth rate of species v to
species u. We assume that the kernels ¢;(i = 1, 2, 3, 4) are bounded functions and satisfy the following
properties, for all x € R,

(K1) ¢(x) 2 0 and [ ¢;(x)dx = 1;

(K2) [0 ¢i(y)ePdy < oo for any A € (0, max{1, Vr});

(K3) essinf_s5 ¢; > 0, for some 6 > 0.

We propose system (1.1) as an extension of the existing two-species reaction diffusion competition
models [1-5]. For these two species, the terms —u(¢; * u),i = 1,3 represent intraspecific competition
for resources. These two terms involve a convolution in space that arises because of the fact that the
animals are moving (by diffusion) and have, therefore, not been at the same point in space at times.
Thus, intraspecific competition for resources depends not simply on population density at one point
in space, but on a weighted average involving values at all points in space. The terms a;u(¢, * v) and
av(¢4 * u), with a; and a, positive constants, describe the interspecific competition between these two
species for resources, which also involve a convolution in space at times. In this paper, we study the
weak competition case with 0 < a;,a; < 1. Itis well known in this case that we have (u, v)(t) — (u*,v")
as t — oo in the region {u, v > 0}.

We are interested in traveling waves of (1.1) in the form of u(t, x) = ¢(x + ct), v(t, x) = Y(x + ct)
which satisfies

{ cpe = dee = ¢(1 = (p1 * @) = ar($2 = Y)),
g = Yee = rp(1 = (3 * ) — ax(da * P)),
where € = x + ct,t > 0,x € R.

Han et al. [13] proved the existence of traveling wave solutions of the system (1.1) connecting
the origin to some positive steady state with some minimal wave speed. Besides the existence and
uniqueness of traveling waves, the stability of traveling waves is also a central question in the study
of traveling waves. In contrast to the studies on the existence on the traveling waves of the nonlocal
Lotka-Volterra system, the study about the stability is very minor. Lin and Ruan [14] proved the
asymptotic behavior of traveling waves about a Lotka-Volterra competition system with distributed
delays by using Schauder’s fixed point theorem, and in [1, 14], the delay does not need to be sufficiently
small. In addition, if u = 0 or v = 0, the system (1.1) is the Fisher-KPP equation with a nonlocal term
in [7,15-17]. Recently, there has been some great progress on traveling waves of the nonlocal Fisher-
KPP equation

U — Uy, = pu(l —p*u), xekR. (1.2)

Hamel and Ryzhik [16] proved uniform upper bounds for the solutions of the Cauchy problem of (1.2).
After that, Tian et al. [17] proved the asymptotic stability of traveling waves for the system (1.2) with
large wave speeds.

Inspired by [13, 15-17], in this paper we study the stability of traveling wave solutions of sys-
tem (1.1), which describes the scenario when both intraspecific competition and interspecific competi-
tion are nonlocal with respect to space. The main mathematical challenge when studying the traveling
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waves for system (1.1) is that solutions do not obey the maximum principle and the comparison prin-
ciple cannot be applied to the system. However, we can consider the stability of the zero solution of
a perturbation equation about the traveling wave solution and use the anti-weighted method and the
energy estimates to reach the expected one. Mei et al. [18] has applied this method in the Nicholsons
blowies equation with diffusion, as did [17] in the Fisher-KPP equation with the nonlocal term. For
this method, the key step is to establish priori estimates for solutions. Therefore, before presenting
the main theorem in this paper, we first give some important preliminaries for the Cauchy problem of
system (1.1).

We organize the paper in the following. In section two, we give a global bound of the solutions and
some important properties of traveling waves of the system (1.1). The results on the global existence
and uniqueness of the perturbation equations about traveling waves are presented in section three. The
uniform boundedness for the perturbation equations is given in section four. In section five, we prove
the main theorem about the asymptotic stability of traveling waves for the system (1.1). We conclude
with a discussion section containing summarization and implications on our findings.

2. Global bounds of the solutions for system (1.1)

In this section, we first consider the global bounds of the solutions for system (1.1), then give some
auxiliary statements of traveling waves of system (1.1).

Theorem 2.1. Assume that the kernel functions ¢;,i = 1,2, 3,4 satisfy (K1) — (K3). For every r > 0
and every nonnegative initial functions uy, vy € L°(R) N L>(R), the solution (u(t, x), v(t, x)) of (1.1) is
globally bounded in time. For all t > 0, x € R, u and v satisfy the following estimates

0 S u(t’ x) S Mu(p 0 S V(t, x) S MVoa

where
M,, := emax{l, Collug||;~, Co(ess (ilg’(fs)%(X))_]},

M,, := ¢ max{1. Collvol.~. Coless inf ds(x))™).

where Cy is a constant independent of ug, vy.

Proof. By standard parabolic estimates, the solution (u,v) is classical in (0, +c0) X R and we claim
that u(t, x), v(t, x) are nonnegative for every ¢ > 0, x € R. Indeed, if the claim is false, without loss of
generality, we assume that for ¢ € (0, T'] where T is some fixed constant, there exist constants K, € > 0
such that inf u(T, x) = —ee*” and

—ee® < u(t, x) < 0, —eeX < v(t, x).
From the system (1.1), for ¢ € (0, T], it gives
u— Au=u(l — ¢y xu— ¢y xv) > u(l + 2eeXT).

Since u(0, x) is nonnegative, by the maximum principle, it gives that u(¢, x) > 0. This is a contra-
diction. The claim holds, which gives that u(t, x), v(z, x) satisfy

0 < u(t, x) < €'lluoll=gy, 0 =< v(t, x) < e"vollromy, (2.1)
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for every t > 0 and x € R. Let 6 > 0 be defined as in the assumption (K3) and introduce the local
average on the scale ¢, for (7, x) € [0, +00) X R,

x+§ x+3
u(t,x) = f u(t,y)dy, v(t,x) = f v(t,y)dy.
9 9

2 2

The functions i, v are of class C*((0, +00) X R), continuous in [0, +c0) X R. Furthermore, the functions
i1, v obey
v+ 9
Iy = iy = 7 u(t.y)(1 = (@1 10) = ar(ga # V)T, )dy,

V=V =T ff; v(t, (1 = (@3 % v) — ax(¢a * w))(1, y)dy,

for every (¢, x) € (0, +00) X R. Since the righthand side of the above equations belong to L*((a, b) X R)
for every 0 < a < b < +oo, the functions ||i(z, -)||.~®) and ||[7(2, -)||.~®) are continuous on [0, +0o).
Owing to the assumption (K3), there exists n7 > 0 such that

¢;>n>0 a.e. In (=9,0), (2.2)

and let M be any positive real number such that
. 1
M = min{M;, M5} > max(6lluollr=m), Sllvoll= ), 5)- (2.3)

We now show that |[u(?, )|l o®) < Mz, [[V(t, )o@ < M5 for all £ > 0, by contradiction. Assume that
this is false. Since [[i(, -)||z~(r) 1S continuous in ¢ on [0, +o0) and

1320, )l zow) < Olluollzomy < Maz,

there exists #p > 0 such that |[u(t, -)ll.~®) = M5z and ||u(t, -)||L~r) < M; for all ¢t € [0, ). Since & is
nonnegative, there exists a sequence of real numbers (x,),en such that i(ty, x,) — M; as n — +oo. We
define the translations

u,(t, x) = u(t, x + x,), i, (t, x) = u(t, x + x,)

for n € N and (¢, x) € (0, +00) X R. From standard parabolic estimates, the sequences (u,),cn and (i,,),,en
are bounded in C}, ((0, +c0) X R) for every k € N; they converge in these spaces, up to extraction of a
subsequence, to some nonnegative functions u., and i, of class C*((0, +00) X R), such that

[

x+5
Hoo = f U (t, y)dy

IS,

and S
2

(EtOO)t = (ﬁoo)xx + f 57 uoo(t9 }’)(1 - (¢1 * uoo)(t’ y) - Cl](¢2 * Voo)(t’ )’))dy

2
for every (, x) € (0, +c0) X R. The passage to the limit in the integral terms is possible due to the local
uniform convergence of u,,, v, t0 Ue, Vo 1n (0, +00) X R. Furthermore, we have

OSuooSMﬁa
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for every 0 <t <ty and x € R, and #1,(#y, 0) = M;. Therefore, we have
(ﬁm)t(IOa 0) = O’ (ﬁm)xx(tO’ O) < 0.

Hence,
J
2

f Ut )1 = (1 % 1)(13) — (B2 5 vi)E, 1)y 2 0.

2

If
(@1 * U )to, ) + ai(¢a * v )(fo, ) > 1 (2.4)

everywhere in [—6/2, 6/2], then the continuous function

U = uo(to, )1 = (@1 * teo)(f0, ) — a1(2 * veo )10, +))

would be nonpositive on [-6/2,6/2]. Since its integral over [-6/2, /2] is nonnegative, the function
U would be identically equal to zero on [—6/2,6/2]. Moreover, it follows from (2.3) that u(fy,:) = 0
on [-6/2,6/2]. Hence ii(t),0) = 0, which contradicts to the assumption that i (%), 0) = Mz > O.
Therefore, there is a real number y, € [-6/2,d/2] such that

(@1 * uo)(t0, yo) + a1(¢2 * veo)(f0, yo) < 1.

Since both functions ¢;,i = 1,2 and u.,, v., are nonnegative, from (2.1), it gives that

1 > (¢ * us)(fo, yo) + a1(d2 * v )10, ¥0) = (@1 * Ueo)(L0, Yo)

)

g 5
> f Ot yo =~y 7 f ool y)ely

[
)
- ”uoo(lo, 0) - an—l'

This contradicts to the definition (2.3).
Hence, we obtain that [|u(?, )||.~®) < My for all # > 0. Since u is nonnegative, this means that

x+06/2
0< f u(t,y)dy < Mj, (2.5

-6/2
for every t > 0 and x € R. To gain a global bound for u, we fix an arbitrary time s > 1 and then for
every x € R, by the maximum principle, it gives that
0 < u(s, x) < w(s,x),
where w is the solution of the equation
Wi = Wiy + W

with the initial condition at time s — 1 given by w(s — 1,-) = u(s — 1, -). It then follows from (2.5) that,
for every x € R,

oo oy?/4 2eM;
O<u(s,x)<e u(s—1,x—y)dy < - Z IR < +00,

e \/47'( 4n keN
which implies that u is globally bounded. Using the same method, we also prove that v is global
bounded. O
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Theorem 2.2. (see [13]) Assume that 0 < a;,a, < 1, and the kernel ¢;,i = 1,2,3,4 satisfy (KI1)-(K3),
then, for any ¢ > ¢* = max{2,2+/r}, there exists a traveling wave solution (c, $, ) to the following
system

' () = 4" (&) = rg(E)(1 = (¢3 * Y)(&) — ax(¢a * P)(E)), (2.6)

c¢’(&) = ¢"(€) = )1 = (¢1 * $)(&) — a(h2 * Y)(£)),
$(=00) = Py(=00) = 0, lims0(p(£) + Y(£)) > 0.

The uniform upper bound of the traveling waves ¢(&), y(&),Vc € (¢*, +0), are given by

-1

4( ° a0
0 <o), ¥ < max{g [I\/T%()’)d)’) ’g(IVT%(y)dy) } = M,.

Corollary 2.3. Let (¢(&), y(€)) be the traveling wave solution of the system (1.1) with ¢ > c* established
by Theorem 2.2, then |¢'(&)|, W' (€)| are also uniformly bounded.

Proof. When ¢ > max{2, 2 v/r}, the bounded solutions ¢(&), (&) satisfy

1
Ay — A4

¢ = f (€17 — BN G($)[(B1 * §) + ar($a * Y)(s)ds
¢

r
Ay — A3

W(é) = f (e — MmN ($)[(p3 * ¥) + ax(Ba * P)](s)ds,
3

where 0 < A, < 1 < A, areroots of A2 —cA+1=0and 0 < A3 < r < A4 are roots of 22 —cA+r = 0.
Hence, we have

1
A — A

¢'(&) = f (1™ — 12 NG(5)[($1 * §) + ar(pa * ¥))](s)ds
¢

.
A — A

W' (é) = f (A3 — 4, N()[(¢3 * ¥) + ax(da * $))](s)ds,
3

then we get

2

’ — ” A2(€-5) 2M1
19"(&) — Lip(E)] = | e A()(P1 * @) + ai(¢ = Y)1($)ds| < 0
3

which indicates that
8" (&) < [ p(E)] + 2M7 < My (1 + 2M)).

Using the same process, we also have

16" ()] < I +2VrM; < NrMi(1 +2M)).

O
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Finally, from above results, we can assume

0 < ¢(&),Y(&) < M, 0 < ¢/ (E)l, 1/ (€) < My := max{M (1 +2M,), rM (1 +2M))},

0<u<M,,0<v<M,,

and denote
A5+ 1+2(1 + a)M,, + aM,, +( +4a1)M1 + 21+ a))M;
Cl,uoyo = /10 ,
. ~ B+ r+r2(1 + a)M,, + aM,, + (£ + 4a)M, + (1 + a)) M|
2up,vo 5
Ao

1
Ciuowy = 40“” 1+ = [(2+Ao+2 f (e dy + a; f (e dy)M,,,
+2a;M,, + (6 + Ay + Sa)M; +2 | ¢1(y)e " dyM,
R
1
—Aoy M M M —Aoy
+a1fR¢2()’)e dyM, + 2+2 szfl’l()’)e dy @7
+01M2f‘ﬁz(y)e_loydy‘F%dle]"‘%azM1f¢4(}’)€_A°ydy},
R R
1 r
= W+ 312+ 2042 [ G0 Wy v ar [ dite Py,
+2a;, M, + (6 + Ao + Sa)M, +2 | ¢3(y)e " dyM,
+a2f¢4(y)e mdyM1+M2+ M2f¢3(y)e Aoydy

1
+a, M, f¢4()’)€ Wy + —alMl] + alMl f¢20’)€ oy},
which will be used in the next section, Ay is defined in (3.2) in the next section.
3. Global existence and uniqueness

This section is devoted to prove the global existence and uniqueness of the solutions for the Cauchy
problem (3.1).

Let p(t,&) = u(t,& — ct) — ¢(&), q(t, &) = v(t, & — ct) — y(€), then by (1.1) and (2.6), the perturbation
system can be written as

P: T CP¢ — Pee

=p—p(@1 % p) — p@1 x @) — ¢(d1 * p) — a1 p(¢ * q) — a1 p(2 * ¥) — a19(¢> * q), 3.1
qr T Cq¢ — qes

=1(q — q(¢3 * q) — q(@3 * ) = Y(P3 * @) — arq(Ps * p) — arq(Ps * §) — arf(ds * p)).

Define a weighted function w(¢) as the following:

w(E) = e E=x+ct, A€ (0, Vr). (3.2)
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Let
k

i = [ Wb Pds) iy = (] IEEF

—l.V()C)
i=0 dx

i

2 12
dx) .

Let || - ||c denote the supremum norm in UC(R), where u € UC(R) implies that u is continuous and
bounded. Let 0 < T < oo be a number and B be a Banach spcae. We denote by C([0, T'], B) the spcae
of the B valued continuous functions on [0, 7] with the norm

= |-
lullco,r1.8) [fer[lg’l;(] llu()l|5
Similarly, denote L([0, T'], B) as the space of the B valued L*>— functions on [0, 7] with the norm

T
2 2
[ f a2l
0

For 0 < T < oo, define u € C,i¢[0, T] as follows: u € C([0,T] X R) such that lim,_, . u(t, x) exists
uniformly in 7 € [0, 7] and lim,_, o u,(f, X) = lim,_, o U, (¢, x) = 0 uniformly in ¢ € [0, T']. Denote

X = {uo uy € HA(R) N UC(R), lim uo(x) = o}
x—+00

with the norm
M, (0) = lluolle + | Vwuol 21

We also denote
X(0,T) := {ulu € Cuir[0, T) N C([0, T), UC(R) N H}(R)) N L*([0, T), HA(R))},

with the norm ,
MUT) := S(lg};)(llu(t)llé + [ Vwu@ll7,) + f (VW) ()| ds.
te(0, 0

In particular, for any T € (0, +0), denote X(0, o0)
:= {ulu € Cunis[0,T) N C([0,T), UCR) N H,(R)) N L([0, +00), H;,(R)) N C([0, +00) X R)}.

Proposition 3.1. (Global existence) Assume that assumptions (K1)-(K3) hold and 0 < ay,a, < 1,. Let
(d(x + ct), Y(x + ct)) be a given traveling wave solution of (1.1) with speed ¢ > max{2,2r}, where
(c, @, ¥) satisfies

e’ (&) — ¢ (&) = P(E)1 = (P1 * P)(&) — ai(P2 * ¥)(E)),

' (&) =" (&) = rg(E)(1 — (93 * Y)(§) — ax(ds * $)(£)),

P(—00) = Y(—0c0) = 0,P(c0) = ki = 0,§(0)) =k > 0.

Suppose further that the positive initial value (uy, vo) satisfies max{ci uy.vy> C2.up.v0 C3uiovo> Chugve) < €
and the initial perturbation (po(x), go(x)) € Xo, where ¢ uy.vy> C2.ugv0> C3upvo Chugn, aT€ defined in (2.7).
System (3.1) has a unique global solution (p(t,¢), q(t, &)), which belongs to X(0,T) for any T > 0 and
satisfies

MT) + MX(T) < Cr(M (0) + M (0)),

where Cr > 0 is a constant depending on T.
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Proof. We first show the local existence and uniqueness of solutions of the system (3.1). It can be
proved by the well-known iteration technique. It is obvious that py, gy € X,. For 0 < 7y < 1, let

Y(O’ tO) = {paq € X(Oa tO)lp(Oa -x) = Dpo € X07 q(Oa X) = QO € XO}

Let p°(t, &), 4°(t,€) € Y(0, ty), then we define the iteration (p"*!, g"*') = 7(p", ¢") for n > 0 by

Pt +ept = pt = G g,
g +cqptt - gt = Hp", "), (3:3)

P"0,6) = po(€), ¢"1(0,€) = qo(&),

where

G(p".q") = p" = p'(¢1 = p") = p"(¢1 * ¢) — p(¢1 * p") — a1 p"(¢2 x ¢") — a1 p" (¢ * ) — a1 (2 * ¢"),
and
H(p",q") =r(q" — q"(d3 * q") — q" (3 x ) = Y(¢3 * ¢") — arq" (¢4 * P") — axp" (P4 * §)
— ay(¢s * p")).

Thus system (3.3) can be expressed in the integral form

{ P E) = [ O mpo& —mdn+ [ [ &t - s, mG(p"(s.& — 1), q"(s. € — ))dnds, o

g (1, €) = [ d(t)go(€ —mdn + [} [ O — s, H(P"(s.€ — 1), q"(s.€ — )dnds,

_ (17+Ct)2
4,

where O(t,77) = \/%me

In the following we prove that p™*', ¢"*' € Y(0, ). Since p", ¢" € Y(0, 1), then p", q" € Cunir[0, fo].
Thus, limg,. p"(t,&) and limg_ g"(t,&) exist uniformly for 1 € [0,%] and lim;_ 8§p"(t, & =
0, limg_,e 6§q”(t, &) = 0 exist uniformly in t for £ = 1,2. Note that |p"(¢,&)| < M, + M1,1q"(t,é)| <
M,, + M,, then we have

IG(P"(t,8),4" (1, ) < Ip" @, O + P, §)fR¢1(y)p"(t,§ = y)dy|

PO fR G0V E — Yy + a1, ) fR B0 (1, — )]

3.5

 alp(1.8) fR A1, € — V)] + anl(t, &) fR 6006 (1,& - )|
<11+ (1 +anMy + 21 +a)MIp" (O] +ar M| f 520061, = ).

R

Similarly,
HQ'(1,6), 4" (1,£))

< o1+ (1 +a)My, + 21 + a)Myllg" (6 ) + asM| f DI (1, & — V). (3.6)

R
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In addition, it follows from (3.4) that

}im P, )
‘ !
- f Jim @, m)pofé ~ ) + f f O~ 5,7m) lim Gp'(s,& = 1), s, & = )

R &0 0 R E—00

!
= po(e0) f @(z,m)dn + f G(p"(s,0),q"(s, 00)) f O(t - s,m)dn =: p"*(t, ),
R 0 R

and
lim "*'(1,)
= [ tim o mane = man+ [ [ 0= s lim H5. =6~ mhnds
= qo(e0) fR (2, mdn + fo H(p" (s, 00), ¢"(s, 00)) fR O(r = s,m)dn =: ¢"*' (1, ),

uniformly with respect to ¢ € [0, #y].
Meanwhile, we have

lim sup |p"*'(1,€) = p"*' (1, 00)|

&0 0<t<ty

< lim sup |f<D(t, npo(& — n)dn — fq)(f, n)po(eo)dn|

§=%04< JR R

#lim sup | f f Ot — 5. )G (P (5. € — 7). ¢ (5, € — m)dnds

£—00 01ty
- f f Ot — 5,7)G(p"(s, ), q" (s, 00))dnds| =
0 R

lim sup |¢""'(1,&) — "' (t, o)

0 0<t<ty

< lim sup | [ ®(@,n)qo(£ —mdn — fR (2, 7)qo(o)dn|

§9%0<1<ty JR

+ lim sup | fo f Ot — 5, H((5,& — 1), ' (5.& — )ddss
R

£ 0<r<py

- fo f O(t = s,mH(p"(s,0),q"(s,00))dnds| = 0
R

Because
CD(}], Dl =0, ar]cD(n’ Dlie = 0,

we can prove that for k = 1,2

lim aLp™(1,8) = f (1, 1) lim po(& —n)dn
R E—00

(3.7

(3.8)
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+ j; t fR Ot — 5,1) lim G(p"(s,& ~m).4"(s,& ~ m)dnds
= 0, uniformly with respect to ¢ € (0, t,]. 3.9)
lim Oq" (1,6) = fR (1,1 lim go(& ~mdn
+ fo t fR Ot — 5,1) ;Lrgo H(p"(s,& = 1), q"(s,& —m))dnds

= 0, uniformly with respect to ¢ € (0, t,]. (3.10)

From (3.4)-(3.6) and the property of the heat kernel fR @(t,n)dn = 1, we have

Ip"' Dlic < llpollc + Cto sup [Ip"(Dllc + +Cty sup llg"(DIc, (3.11)
(0,101 1€(0,10]

g™ Dllc < ligolic + Cto sup lIp"(®)llc + +Cto sup llg"@)llc. (3.12)
te(0,19] 1€(0,10]

By (3.7)-(3.10), it implies that p"*!, g"*! € Cunirl0, 1o].
In the following we show p"*!, ¢"*! € C([0, 15), UC(R)) N HL.(R) N L*([0, ty), HA(R)).
Multiplying the first equation of (3.3) by wp"*! and the second equation of (3.3) by wg"*!, we have,
an+1p;1+l + cwpn+1p;+l _ an+1pgg—1
= wp"™[p" = p(¢1 x p") = (P % ¢) — (@1 P") — arp" (2 * ") — arp"(¢2 * )
—a19(¢2 * q")],

n+1 n+l n+l n+1 n+l

wg"™ gt + ewg™ gt — wa gl
= wq" " [r(q" — ¢"(P3 * ¢") — ¢"($3 * ¥) — Y(d3 * ") — a2q" (s * P") — @ p" (P4 * P)
—axy(¢s x p"))].

(3.13)

Since
n+l __n+l n+l __n+l n+l__n+l

wphp, WP De WP P

1 A C n CW’ VA n n /N n n 2
= GWE" D+ 5w e = 5w (P = {wp" P e = W P = w(pfT )

n+l _n+l1 n+l _n+l n+l n+l

wq" gt + ewq" g = wqtt g

cw

1 4
= (W@ )+ 5" ke - 5w

and {Sw(p™*)? = wp™ pE S = 0, ($w(g™ ) - wg* g IS = O because of p™*1, ¢! € H2(R).
Integrating (3.13) with respect to & over R and using the Young inequality,

n+1)2_{ n+1 n+l)§ s n+l _n+l

n 2
wg"™ g e = wg™ gt —wigEt) ),

1 /
2|w’p"+1p§+1| < zw(pn+l)§ + _(K)zw(pnu)z,
- 2w
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then integrating over [0, 7] with respect to 7, we can get

N Ol + 260 [ [ wordeds =2 [ [ wraeds
0 R
NP DI, + 20 f f w(p™ P déds - + f f 0 WP w(p™ P dds
<[ Vwp™ L OI7, + 2o f f w(p" Y2 déds + 2 f f ppitldéds
+2f fw(p””)zdfds
VPOl +2 f f wlp™ prldeds +2 f f WP P61 % pPldEds
0 R 0 R
+2 f f WP Py % Bldeds +2 f f wlp™ ¢(o * pldeds
0 R 0 R
+2a, f f WP (s * ¢NdEds + 2a, f f WP (s * WldEds
0 R
+2a, f f WP 365 ¢ )IdE
<IVwpolls + fo f WY + 3 )dds + (M, + My) f f W2(p Y
1 t
+5<p">2)d§ds+M1 f f w(2<p"“>2+5<p")2>d§ds+M1 f f w(EQ(p"™')?
0 R 0 R
o1 f B10e 0 dy(pP)déds + ay(My, + M) f f WY+ 3" )déds
+ Mya, f f WY + (p V)dE + ay My f f WP
) f P (y)e P dy(q"))déds

!
<[IVwpollz> + 2[1 + M,, + a)M,, +3(1 + al)Ml]f fW(p”H)zdfds
0

R

1[1+Muo+a1) o +2(1 +ap)M, + M, f ¢ (y)e > dy] f f w(p")’déds
R 0 R

2
radty [ oy [ [ wigriaeds
R 0 R

1
VW™ D)II7, + 2ACc, /lo)f I Vwp"™ (). ds
0

It follows that

1 _
<lIVwpoll;. + 5[1 + My, + aiM,, +2(1 + a)M, + M, f¢1()’)€ 2oy gy
R

~ f N () Pads + ar M, f (e dy f f wiq'Vdeds,
0 R 0 R
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where A(c, Ag) = cdy — /l% -1- Mu0 - Cl]MvO =31 +a))M; > 0.
Similarly, we can estimate

t
I Vwg™ DI, + 2Au(c, ﬂo)f I Nwg"™ (9)II7.ds
0
~ r —
< I Vwollz. + S+ My +axMy, +2(1 + a)My + M, f¢3(y)e 20 dy]
R
1 !
. f I NVwq" ()l + axrM, f¢4(y)€_%ydyf I Vwp" (Il ds
0 R 0

! !
< IVwqolly. + Cf VW' (9)lI7.ds + a1 M, f¢4()’)e_%deI INwp"(s)II7ds,
0 R 0

where Aj(c, Ay) = cdg — ;= 1 = M,, — aaM,, — 3(1 + a;)M, > 0.
Using 2|w’p"™ ' p | < w(p™); + () w(p™*)?, we get

!
IVwp™ (I + f INVwp (s)Iads
0

(3.14)

1
<l Vwpollps + 511+ My + @My, +2(1 +a)M, + M, f $1(y)e > dy]
R

!
f NP (S)Iads + edo = 22 = 1 = My, — ayM,, — 3(1 +ay) M|
0
A !
[ i s +a; [ gy [ wigideds,
0 R 0 R

IVwg"™  (D)II7, + fo t VW (9)I7.ds

<l Vwaoll7, + g[l + My, + axM,, + 2(1 + a))M; + M, fR $3(y)e > dy]
: fo t VW ()II7.ds + ayrM, fR $a(y)e > dy fo t INwp"(9)lI7.ds
+lcdo = 245 = 1 = My, — ax My, — 3(1 + ax) M| fo t INwg" (5)II7.ds

!
+ M, f bay)e 2 dy f WD ()Pads.
R 0

In order to prove p™*!, "' € L*([0, to]; H2(R)), we first differentiate the first equation of the system
(3.3) with respect to &, then multiply it by wpg”; that is,

n+l, n+l n+l _n+l

wp (pED e+ ewpl Pl — whepls;
13 3 ¢ &€& 1333

5w+ 15wl = S
—{wp i De — w pE P - w(pl'))

=wpt [pE = pi(d1 = p") = (@1 P)e — PG * &) — P (1 * D)
= ¢e(@1 * ") — d(p1 * p")e — a1 P+ 4") — a1p"(¢2 = ¢")¢
—a1pg(d2 =) — a1 p" (2 = )e — a19:(d2 * ¢") — a1 (2 * ¢")¢l.
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Integrating the above equation with respect to & over R, by the Young inequality, 2|w’ pgﬂ pggll <

2w(p' ) + 3> w(p!)?, then integrating over [0, 1] with respect to 7, we have
VWP 17, + 2¢0 f t f w(p)déds - 245 fo t f w(pi)d¢
IR DI + 260 f [ wioyagas -3 | t [ vag
< Vwpuells + f WL + 5 (pdEds + (M + My) f WP
b 3 EPIdEds + (M, + M) f WY + 5 fR b0 0 dy)déds
M, fo WA + 50 adeds + M | W+ 20 Pdeds

M f WG+ 20 [ divie  dyydzds + f W
R

#2007 [ e dydds + (i, + My f WL + 3 (e
(Mo + My) f WL + 36 [ e dydeds

va; [ W+ S deds + i, | W+ 20 Pdeds
+ai M, f IW( (P +2(¢" R¢z(y)e‘”"ya’y)dfds+a1M1 fo tW(2ﬁ§

1
+ 54 f (Ve > dy)déds

<[ Vwpeell2, + 2[1 + 2(1 + a))M,, + a1 M,, + (? + 4a1)M1
+ 30+ @) f IR ads + 311+ (1 + fR b0 dy)M,, + arM,
+(2+2a;+5 fR $1()e O dy)M,] fo [||«/ng||izds+2Mz<1+a1 + fR $1(y)e > dy)
: fo t||x/wp"||izds+2a1M2 fR $r(n)e > dy fo tnvv‘vq"nizds
+%alMlL‘/’z@)e_uodeLt||‘/V_Vq§||izd8,
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then
!
VP IR + 27a(c, do) f NP ads
0
!
<l VipaclE, + 201 +an+ [ ey [V s
R 0
1 (3.15)
P ol f 1) VA My, + arMy, + (2 + 2a; + 5 f (e dy)M, ]
R R
s !
- f I plIRadsa(y)e > dy f IV aIRads,
0 0

where

13 1
Ax(c, o) = clg — A5 —1=2(1 + a)M,, — a\M,, — (T + 4a1)M1 - 5L +anM > 0.

In addition, by a series of calculation as above, we can get

!
INwpE Ol + f I Vwpgt (9)ll7.ds
0

< Vwpeelly> +2Mr(1 + ay + fR $1(y)e > dy) fo [||‘/WPn||izdS
+ %[1 +(1+ fR o1(V)e Y dy)M,, + ay My, + (2 + 2a; + 5 fR d1(»)e > dy)M,]
- fo t | Vwpillsds + 2a, M, fR $a(y)e > dy fo t I Vwq'|I7.ds
+ %alMl fR br(y)e >V dy fo t INWaili7.ds + 2lcdo — 225 — 1 = 2(1 + a))M,, (3.16)

13 1 !
—aM, —(— +4a1)M1 - (1 +a)h| fo IVwpE ! |.ds

4
<l Vwpoellz. + 2l Vwpolly. + C fot I Vwp"l7.ds + C, fot I Vwpill7.ds
+ G5 fotll\/Wq”llizdS+ Cy fotII\/qullizdS-
Using the same process as above, we estimate ¢"*! as follows:
Vw017, + fotll\/wqggl(S)llizds
< Vwgoell7. + 2l Vwgollz. + Cs fot I Vwg"lI7.ds + Ce j: I Vwd;lij.ds (3.17)

f !
+ (7 f | Vwp'll7.ds + Cs f I Nwpglls.ds
0 0
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Combining (3.11), (3.12), (3.16), and (3.17), we have

!
||p”+1(t)||§+||\/Wp””||§{1+f I Nwp"7ds
0

<lpollz: + 1 Vwpollz + €t sup Ip" @Iz + Cr5 sup 1lg" DIl

t€(0,19] 1€(0,10]
2 2
+Cto sup || Vwp"|l; + Cty sup [[Vwg"|l;,
1e(0,19] 1€(0,10]

!
|Iq"“(t)||%+||\/v_vq”“||f,1+f I Vwg"™|I7.ds
0

<ligolle: + 1Wwaoll7: + Cz5 sup [Ip"(Dlie + Crg sup llg" (Dl

1e(0,19] te(0,0]
2 2
+ Cty sup || Vwp"|l5; + Cto sup || Vwq"|l;,:.
1€(0,19] 1€(0,t0]

(3.18)

(3.19)

The estimates (3.18)-(3.19) imply that p"*!, ¢"*' € UC(R) N H.(R) and p"*', "' € L*([0, ty), H>(R)).
In the following, we show that p™*!', ¢g"*!' € UC(R) N H!(R) is continuous with respect to ¢ € [0, 7].

As above, by a series calculations as that of (3.14),
ill\/v_VP"”(t)IIZ + 2A(c, W) Vwp"™ (DI
o 1 , Ao 1% 2
s%[l + My, + arMy, +2(1 + a)M, + M, fR ¢ Ayl Vwp" (s)lI7
sty [ 0 0V O
%II Vwg™ DII7. + 2Au(c, W)l Vwg™  (s)I7,

r 9y
<SUL+ My + asMy, +2(1 + a)My + M, f d3(ne 1 dyll Vwg(s)ll;
R

 arM, f Ba()e >yl N p ()P
R

Integrating the above inequality with respect to ¢ over [0, f], we obtain

f
d
fo = Vwp" L (D)lI}.ds

1
<UL+ My, + My, + 201+ )My + My fR‘?’l@)e_H‘)de]
! !
| f 1Vwp" (2 ds + a1 My f (e dy f INwg" (),
0 R 0
! d )
f VW Dllds
o dt
!
’ ) n
SE[I + Mvo + azMuo + 2(1 + Clz)M] + Ml f¢3(y)e—2/10)dy]f ” \/Wq (S)Ilizds
R 0

!
+ ayrM, f $s(y)e > dy f | Vwp"(9)II7.ds,
R 0

Mathematical Biosciences and Engineering Volume 21, Issue 1, 444-473.



460

which means that (p"*1)(¢), (¢"*!)'(¢) € L*([0, 1), L (R)), then we have

P, () € C10, o), Li,(R). (3.20)
Similarly,

PEL D), 4 (1) € C[0, 19), LE(R). (3.21)
Therefore, (3.20) and (3.21) imply that

P, g (@) € €10, 10), Hy(R).

In the following we prove p™*'(f), ¢"*'(t) € C([0, ty), UC(R)). Indeed, for any 0 < t; < t, < to, let
€ > 0 and choose § > O such that 0 <, — f; < 6, and

‘ fR (@(t1,17) - D1, n))dn‘ <e

Set &' = min{e, 6} and let 0 < £, — 1, < &', then, we have the following two cases.
Case l: If t; <eand 0 < 1, — 1 < ¢, then

|pn+1(tl’ é‘:) - pn+1(t2’ f)l

s’ fR O(t1,m)po€ — n)dn — fR O(12,m)po(€ — n)dn'

+ ‘ fo ‘[R(D(tl G (s, € — ), (5, £ — ))dnds

- fo fR Oty — 5. G (5. € — 0).q" (5. & — )dds

<

f (@(t1,m) — D(t2,7)po(€ — n)dn'
R

f
0

5]
+f
0 R

< éllpollc + e max IG(P", 4" + 2¢ max IG(p", 4.

ds

f Oty — 5, )G (5.€ — 7). (5. € — )dy

R

ds

Case2: If t; >eand 0 < 1, — 1 < ¢’, then
|pn+1(t17§) - an(tZ, §)|

f O(ty,m)po(€ — mdn - f O(t2, n)po(§ — n)dn‘

R R

( fo N f ) f Ot — 5, G(P" (5, — 1), ¢'(5.& — m)dnds
t—€ R

_( fo N f N f ) fR Ot - 5, MG(P"(5. € = ). (5. — ))dnds

f1—€
<éllpollc + 2e max IG(p", ¢")I + f Ot — 5,1m) — Ot — 5,m)dn
’ 0

<

+

ds max |G(p", ¢")|
ph.q"

<éllpolic + 2€ max IG(P", g") + (11 — €)e max IG(P", 4").
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Thus, we have |p™*!(t,&) — p"* (1, &) — 0 as |, — 1;| — 0. Using the same process, we also show that
lg" (11, €) — ¢" (12, €)l = O as [, — 1] — 0, so we have

ph g™ e C([0, 1)), UC(R)).

Up to now, we proved that p™!, ¢"*! € Y(0, 1,).

Next we prove that 7 is a contraction mapping on Y(0, ty). For any p"~!,¢"!, € Y(0,t,), define
@™ g = T(p qY), (p".q") = T(p"',q""). By a series of calculations similar to (3.18)-(3.19),
there is exists C* such that

n+1 n+1

p"™, 6]”“) = (P Ny = 1P"" = P"llvou) + ||61"Jrl = q"llv0.00)
=17 (" d") = TP d" My < Collp" = P livow + 14" = ¢" llyos)
= C'oll(p", ¢") = (P". 4" Dllvo.)-
Taking 0 < 1y < &,
" g™ = (0" dMvou = 1T ") = TP 4" Dllvou

< 7", 4" = " q" Dllvon
where 0 < 7 < 1. Hence, we prove that (p"*!, g""") = T (p",q") defined by (3.3) is a contraction
mapping in Y(0, 7y) if 0 < ty < 1. By the Banach fixed point theorem, we can prove the local existence
of the solution in Y (0, fy). In addition, by the similar calculation as (3.18)-(3.19), we have

!
" DI + 11 Vwp™ I3, +f I Nwp"7ds
0

1
+||q”“(t)||%+II\/WQ"”II?,l+f I Vwg"*|I7.ds
0

1

<
1-Ct

[lpollz: + 11 Vwpollz + llgolle + | Vwgoll3, 1.

When ¢ € [1,2ty], choosing the initial data p(s, &), g(s, &) for s € [0, %] and repeating the above
procedure, we can prove that p, g € Y(ty, 2t,) uniquely exists and satisfies for ¢ € [#y, 2ty],

!
1 DI + V™ I, + f IV Rads
0

t
+ig"™ Ol + 1 Vw17, +f I Vwg™ ! |13.ds
0

= ¢+ o+ llgollz: + 2 1.
T cia iy lpolle +INwpollg: +llgolle + I Vwaolly ]

Step by step, finally, we get that u € Y(0, T) uniquely exists for any 7 > 0 and satisfies

f
P DI + IVwp™ I, +f I Vwp"™ I3 dls
0

f
+ig™ Ol + 1 Vw17, +f I Vwg"™ I3 pds
0

< Crlllpolle + I Vwpollz +1Igollz: + I Vwgoll7, 1.
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4. The uniform boundedness

In this section, we show the uniform boundedness of the solutions of system (3.1). For the global
solution of system (3.1), p,q € X(0, T) for any fixed T > 0, when the initial perturbation py, gy € Xo,
we prove u € X(0,00) by deriving the uniform boundedness. As stated before, here we adopt the
so-called anti-weighted method [17, 18]. For this, define the following transform:

p(,&) = \w@)p(t,£), qt,&) = yw(&)q(t,E),

and it yields that

Pr — Dee + (¢ = 220)Pe + (cAg — A5 — Dp

= —p(p1 * (€ p)) — p(p1 * ¢) — p(d1 * P)

—a, p(¢y * (€'%q)) — a1 p(¢y * ) — a1¢(¢2 * ),
i — Gee + (¢ = 20)Ge + (cAg — A5 — 1)

= r[—q(¢s * (e"5q)) — G(¢3 * ) — Y(P3 * )
—a2G(Ps * (€VP)) — arq($4 * B) — (s * P)).

4.1)

Theorem 4.1. Suppose that the assumptions of Proposition 3.1 hold, then the solution (p(t,&), q(t,£))

of system (3.1) belongs to X(0, 00) and there exists a positive constant C, which is independent of t such
that

IO + [VwpIE, + f NwPIEds + g + | VirglP,, + f I Viwgliads
0

0

< Clllpollz: + 1Vwpollz + llgolle + Il Vwaoll7,i1- (4.2)

Proof. The proof of this Theorem will be accomplished in the following three steps.
Step 1. We claim that the following inequality holds.

! ! f !
PO +2 [ Ipdads+ [ UplEads +1goiEs +2 [ adiuds + [ laids
0 0 0 0

< llpolle: + I Vwpollys + llgolle + 1| Vwaolly,, V1 € 10,1, (4.3)

where T > 0 is a given constant.

Multiplying the first equation of (4.1) by p and the second equation by g, then integrating them over
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R x [0, #] with respect to £ and ¢, we get
1pIE. +2 fo peiads + 2cdo— 22— 1) fo IPads
<lIpolR, +2 fo l fR P = (5) + P * ) + b fR 1) B(s, £ - Y)dyldeds
+ 2, fo t [P @+ 5621+ 5o [ 8200 a0, - nylagas
<llpoll7> +2 fo [ fR 1’ fR $1(e ) p(s, & = y)dy + X1 * §) + pd fR $1(y)e
- B, & — y)dyldeds +2a, fo t fR 7 fR 505, — y)dy

“4.4)
+ P %) + o fR 6(0e (s, & - y)dyldeds

! !
<ol + 20, +200) [ [ ipfdgas+2m, [ wieay [ [ iptacas
0 R R 0 R

! !
¥ 201(Myy + 201) f f |pI*déds + a M, f da()e " dy f f (5P +la’déds
0 R R 0 R
<llpoll7> + 2[M,, + a1 My, + 2(1 + a))M; + 2M, f¢1(y)€_}‘°ydy
R

M, f 2()e ' dy] f f pPdéds + a M, f r()e " dy f f gPdzds
R 0 R R 0 R

where we use p(t,&) < u(t,& —ct) + ¢(§) < M, + My, q(t, &) < v(t, & —ct) + Y(é) < M,, + M, and

> f f 5o f $10)e 55, € - y)dyldéds
0 R R

<om, f f 7 f ()¢ |p(s, & — y)ldydéds
0 R R

<M fo fR fR b1 (B + 15(s, & — y)D)dydéds

< 2M, f f f 1(y)e™ | pl dydéds.
0 R JR

By the similar arguments, we also have
! t
Igll7. +2 f 1Gell72ds + 2(cAo — A5 — r) f 1g117.ds
0 0

<1Goll?> + 2[M,, + axMy, + 2(1 + ax) M, + 2M, f¢3(y)e-ﬂoydy
R

ranM, f bu(y)e ™ dy] f f GPdéds + axM, f ba(y)e ' dy f f pPdeds.  (4.5)
R 0 R R 0 R
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From (4.4)-(4.5), we have
!
1BIE: + gl +2 f 1BelRads
0

! ! !
+2 f 1Gl2.ds + 2A4(c, Ao) f IAI2.ds + 2As(c, Ao) f 1112 ds
0 0 0

< [1poll72 + 1gol17..

where

ﬂ4(ca /10)

=clo—A5—1-M,, —aM,, —2(1 +a;)M, — 2M, f ¢1(0)e " dy — a) M, f ¢r(y)e " dy
R R
1
—Eale f bs(y)edy > 0

R

and

As(c, Ao)

=clg— A5 —r— M, —aM,, —2(1 + ay)M; — 2M, f $3(y)e " dy — ay M, f da(y)e ™ dy
R R

1
_EalMl f‘ﬁz(Y)e_loydy > 0.
R
Step 2. We show

s ! ! !
1Ol +2 f 1peellads + f 1pellads + 1D, +2 f Gl Pads + f 1GelPads
0 0 0 0

< lIpolle + 1Vwpoll2 + llgolle + Il Vwgoll2,, (4.6)
and " ‘N
— 2 - 2
— ds + — d
fo dsllpg(S)lle s fo dsllqg(S)lle s
< lIpolle: + 1 ¥Vwpollz + llgolle: + 1 Vwgoll7,, Vi € [0, T1, 4.7)

where 7' > 0 is a given constant and C is a positive constant which is independent of 7.
Differentiating the equations of (4.1) with respect to & and multiplying the first equation of (4.1) by
Pe and the second equation by g, we get

Pe(Pe)i — PePeee + (¢ — 2A0)Pepee + (cAog — A5 — 1) ey

= Pe[—Pe(dr * (€5 P)) — Py * (€V4P))e — Pe(pr * @) — P(d1 * B)e — Pe(hy * )
—P(1 * P)e — a1Pe(d1 * (€%G)) — a1 p(p1 * (€™5G))g — a1 pe(a * )

—a1p(¢a * Y)e — a1Pe(da * q) — a1(da * §)¢]

4e(3e): — Gedece + (€ — 240)qeGee + (cAo — Ay — 1)Gede

= r[=Ge(¢s * (")) — (g3 * (€' q))¢ — Ge(p3 * ) — G(¢3 * W) — Y3 % §)
—Y($3 * §)e — a2Ge(Ps * (€"%P)) — arq(ds * (€' )¢ — a2Ge(Ps * P)

—@2q(Ps * @) — arhe(Pa * P) — arh(Py * P)e]-

4.8)
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Since

Pe(Pe)i — PePece + (€ = 240)PePee + (cdo — Ay — 1) pepe

1
= {=P2h — [(PePeoe — D)l + (¢ = 2001 pgle + (cAo — A5 — Dp;

2

Ge(3e): — GeGece + (€ — 240)GeGee + (cAo — A — )G

1
= {Eflé}z — [(Geqee)e — C_Iég)] +(c - 2/10){Q§}§ +(cdo — A5 — T)C_]é,

integrating the first equation of (4.8) with respect to &£ over R, we have

d
Ll + 20peels + 2cdo — 43~ DB
<2 fR P21 * (P +2 fR Pep(d1 * (€ P)elde +2 fR P2 * e
2 fR Pep(1 * B)eldé +2 fR Pede(dn * PIdE +2 fR Ped(d1 * P)elde

+2a, fR P2 * ) + 2 fR Pep(@1 * (UEQ)eldE + 2a, fR P2 » Wlde

+2a, f Pep(d1 * W)eldE + 2a, f Pede(d) * DIdE +2a, f Peb(d * DM,
R R R
Next, integrating (4.9) with respect to ¢ over [0, 7], we have

! !
1Pell7. + 2f || Pecllzads + 2(cg — A5 — 1)f |1 Pell7ds
0 0

4.9)
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<ABOIE, +2 f f P21 * (¢ p)déds +2 f f Pep(d1 * (" p))eldeds

2 f f P2 = Bdéds +2 f f Pep(b1 * B)cldeds +2 f f Pedeld = Pldéds

2 f f Ped(ds * Peldids + 2an] f f P22 * (q)\déds
0 R 0 R

. f f Bep(ds * (€ ))eldéds + f f 5262 * W)\deds]
0 R 0 R

+ 2611[f f|l5§13(¢2 ¥ )eldéds + f f|ﬁ§¢§(¢2 * q)|déds
0 R 0 R

!
+ f f 1Ped(d * Deldéds]
0 R
! !
O, +2(M,, + My) f f \Peldeds + 200(My + M) f f \Ppeldéds
0 R 0 R
! !
2 f f PeD f B1)EED pi(s, & — y)dyldéds + 2M, f f \pePdeds
0 R R 0 R
A ! !
oM, f f \pepldeds + 2M, f f Belér * pldeds + 2M, f f Peé1 * Peldéds
0 R 0 R 0 R
!
+2a,(M,, + M) f f |\pel*déds
0 R

' !
+2a, f f \Pep f B2()EENGe(s. & — Vdyldéds + 2a M f f \pePdeds
0 R R 0 R

! t
w20, [ [ ipeptagas-+ 2ty [ [ 1petor qacas
0 R 0 R

!
+2a1M1f f|ﬁ§(¢2*(?)§|d§d5
0o Jr

! !
<O + 20, + ) [ [ IpiPaas + aotot, + ) [ [+ padeds
0 R 0 R

! !
w20, M) [ 600y [ [ pfagds o [ [ ipetazas
R 0 R 0 R
! !
i 1
e, [ [ @4 phagas s i, [ oo ay [ [+ pudeds
0 R R 0 R
! ! !
+2M, f f |\pelPdéds + 2a,(M,,, + M) f f |\pelPdéds + ajdo(M,, + M) f f (p°
0 R 0 R 0 R
!
+ pp)déds + ay(M,, + My) f $r(y)e " dy f f (P; + qz)déds
R 0 R
! !
1
+2a; M, f f |\pel*déds + a; M, f $2(y)e " dy f f (5P; +24°)dédss
0 JR R 0 JR 2"
' ! _ 1 _ ! _ B
sty [ geay [ [+ siagas+amn | [ e apeds

SO + 12+ da+2 [ 6100y +ar [ ax0)edy, + 2010,
Mathematical Biosciences and EngmeerlR Volume 21, Issue 1, 444-473.
+(6+ Ao+ Sa)M; +2 | ¢1(y)e ™ dyM, + a f br(v)e " dyM,
R R



467

1 t
+ My + M, f ¢1(y)€_ﬂ°ydy+“1M2f P2)e 7 dy ]f f pedéds
R R 0 R

!
+ [AM,, + M, +2M2f¢1@)€_loydy+201M2ffﬁz()’)e_ﬂoydy]f fpzdfds
R R 0 R

t
+2a1M2fqﬁz(y)e_’l‘)ydyffdfds+a1M1f f(jﬁdfds.
R R 0 JrR

Similarly, we also have

1Gell7> + 2 fol 1Geell7>ds + 2(cAg — A5 — 1) fol 1Gell72ds
< 1GOOI, + r[(2 + A9 + 2 fR $3(n)eVdy + a fR $s(n)e Y dy)M,, + 2a;M,,,
+(6 + A + Sax)M; + 2fR¢3()’)€_A°ydyM1 +ap fR¢4(Y)€_A°yd)’M1
+M, + %Mz fR $3(y)e dy + a; M, fR da(y)e "V dy] fo t fR gzdéds

!
+r{AoM,, + My + 2M, f b(y)e " dy + 2a,M, f ba(y)e "V dy] f f g’ déds
R R 0 R

! !
+2ra, M, f Pa(y)e " dy f f prdéds + ra, M, f f prdéds.
R 0 R 0 R

From (4.10) and (4.11), it follows

t t
1Pl + 2f || Pecllds + 2Aq(c, ﬂo)f || pellds
0 0

! !

+1¢ll7 +2f 1Geell7.ds + 2A5(c, ﬂo)f ¢l d's
0 0

< ||13§(0)||iz + ||6?g(0)||iz + [AoM,, + M5 + 2M, f¢1(y)e”°ydy
R
!
2ty [ o000y + 2000ty [ orevan [ [ paeas
R R 0o Jr

+ridoM,, + My +2M; f¢3()’)€_ﬂ°ydy + 2a, M, f¢4(y)e‘”°ydy
R R

2a, M. !
202 [ [ [ qaeds
r R 0 JR

< IpO)II7. + 1g=(O)II7. + CIBO)IIZ. + CligO)II7,

(4.10)

(4.11)
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where

1
As(c, ) =clog—A5— 1 - 5[(2 + Ao+ 2 f 1()e " dy + a f¢2(y)€_/l°yd)’)Muo +2a,M,,
R R

+(6 + Ay + Sa)M, +2 f &1 (y)e OV dyM, + a; f $>(y)e " dyM,
R R

1
+M, + §M2 fqﬁl(y)e‘”"ydy + alef%(y)e_ﬂoydy + %ale] >0,
R R

and

Az(c, o) = clog— A5 — 7 — %[(2 + g +2 f $:(ne " dy + a, f G1(y)e " dy)M,, + 2a,M,,,

R R

+(6 + Ao + Sax)M; +2 f ¢:3(0)e " dyM, + ay f Gs(y)e " dyM,
R R

1 1
+M, + =M, f ¢3(y)€_/loydy + a, M, f ¢4(y)€_/10ydy + —a;M,] >0,
2 R R 2r

Similarly, inequality (4.7) holds by (4.4), (4.5), and (4.9). The details are omitted for simplicity.
Step 3. We show that

Ip@)lle + lg@llc < ClIpOIZ. + llgeO. + IipO)I7. + g1, Yz € [0,T],

where C is a positive constant which is independent of 7.
Indeed, due to p, g € C,i¢[0, T'], we find that

flirglm p(t,&) = p(t, 00) = pi(2), flirglw q(t,&) = q(t, 00) =t q1(1)
exists uniformly for ¢ € [0, T]. Let us take the limit to (3.1) as & — oo, then

pi(0) = (1 = 2k — a1k)pi (1) — pi(t) — a1 p1(D)p2(t) — arky pa (1),
Py(0) = r(1 = 2ky — acky) pa (1) — rp3(1) — rax pa()p1 (1) — razk, pi (1), (4.12)
p1(0) = p2(0) = 0.

By the theory of order differential equations, we have

p1(t) = p2(t) = 0.

Thus we can get, for any given €, > 0, there exists a large number &y(&) > 1 independent of ¢ € [0, +00)
such that
Ip(t, 6| < &, 1g(1,6)| < &, & € [£o, ).

Therefore,

sup |p(t, &) < € < CllIpeO)I2, + g7, + [IpO)II7, + lig(O)lI7, 1,
£€léo,)

; S&lp )Iq(t, &) < & < ClpeO)I2 + llgeO)II7. + lpO)II72 + llg(O)II7. 1.
E€150,0
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For & € (=00, &), \/W(&) = e7¢ > ¢~0% _and the Sobolev inequality H'(R) < C(R), we obtain

sp ptol< sup |LND

)
fe(~co0.do) fe(—ooiy) | €710

P, f)‘ = sup | @p(t. )

£€(=00,80)

< ClINwpOllan,
YW(&)

e—éo

< CllNwg@)llpn-

sup g, &) < sup
£€(—00,£0) £€(—00,&))

att §>| — e qup | VW@ E)

£€(=00.60)

From (4.6), we have

Ip@)llc + llg@)lle < CUIPLOI + GO, + 15O, + 1g(O)II7. 1.

The proof of this theorem is finished.
5. The main theorem

In this section, the stability of all traveling wave solutions with sufficiently large wave speed of
system (1.1) is proved.

Theorem 5.1. Under the assumptions of Proposition 3.1, we have

lim sup |u(t, x) — ¢(x + ct)] =0, limsup|v(z, x) — Y (x + ct)| = 0. 5.1

=00 (R 1= R

Proof. From Theorem 4.1, we have

Ip@llc + llg®lic + IVwp®Iz, + I VwgOlZ, +j; II\/WP(I)IIf,zdS+f0 I Vwq(@)ll3.ds
+ft|i||(9 (Vwp)($)ll7.lds + ft|i||a (Vw)(9)l7.1ds
0 ds ¢ P L 0 ds ¢ d L

< ClIPOG: + 1O, + PO +llgO)IE], 7 € [0, 00). (5.2)

Set
P(t) = 10:(Nwp)l72, Q@) = 18 Vwg(D)I]7..
By (5.2), we get

0 < P(1), Q1) < CLIBO)IZ, + 1GO)I5, + lpOlIE + g1, ¢ € [0, ),
ﬁ P(S)ds,f0 O(s)ds < CUIPO)Iz + 1GO)I7, + IO + llgO)Iz], £ € [0, o),
fo IP'(S)Ids,f0 10" (9)lds < CUIPONE, + GO, + IpOIE + gL, ¢ € [0, ),
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which implies that
lim P(r) = 0,i.e. lim ||p¢ll7, = 0; lim Q(¢) = 0, i.e. lim [|Gll7, = 0. (5.3)
t—o00 : —o00 11— ;

>0

Using the interpolation inequality, we get
1p@llc < ClIPOILIBON ., gDl < Cllgl;llg:Il; .
Since ||p(t)|l;2, ||g(2)||;> are bounded, from (5.3), it holds
1im [IF(0)lle = lim g(Dlc = 0. (54)
In the following we focus on the long time behavior of p(t, &), g(t, €). Since |p(t, o0)| = |g(t, o0)| = 0,
then
Ip(t, 00)| = |g(t, )| < min{e™, e}, 1€ (0, 00). (5.5)
By system ( 3.1), it holds

p(t.€) = e [ Ot mpo(€ - mdn+ [} e kd(r - s, p)[2p
—p($1 * p) — p(@1 * @) — d(¢1 * p) — arp(P2 * q) — a1p(d2 * ) — a1d(da * q)ldndss,

q(1,€) = e ¥ [ Ot pgolé —mdn + [) €T kd(t - s,p)ridq
—q(93 * q) — q(¢3 * ) — Y(P3 * q) — a2q(Ps * p) — Arq(Ps * §) — ap(¢4 * p)ldnds.

(5.6)

Multiplying the first equation of (5.6) by e, where 0 < 7 < min{1/2, r/2}, by the property of the heat
kernel and the expression (5.5), we have

f
1 1=s 3
flim ep(t, )l < e f (1, 1) Elim Ipo(§ — mldn + & f e TRt - 5,1) é}im 5P
E—o0 R E—oo 0 —00

—p(@1 % p) — p(@1 * §) — ¢(d1 * p) — a1 p(¢2 * q) — a1 p(P2 * ¥) — a1p(¢2 * @)ldnds

A !
sEe”fe‘é(’_s)e_sds+26”fe‘é(’_s)e_zsds
2 0 0
11

=2. ?z-“/?-f)f[l — e V/H] 4 272 %[1 —e <0, >0, (5.7)
It follows from (5.7) that, there exists a number ¢ > 1 such that

sup |p(t,&) < Ce™, t>0,
£€[f,00)

then we have,

lim sup |p(t, )] = 0.

179 £e[{,00)

Mathematical Biosciences and Engineering Volume 21, Issue 1, 444-473.



471

For & € (=0, (), since \\w(&) = e ¢ > ¢~¢ from (5.4), it holds that

Yw(é)
oz P

lim sup |p(t,é)| < l1m sup
2% fe(-0,0) ® fe(~e0.0)

e lim sup |\w(@)p(t, &) =0

[—00 fe( 00{

Similarly, we obtain
lim sup |g(¢,&)] =0

t—00 £€(—00,00)

The proof is completed.
6. Discussion

This paper was motivated by the biological question of how diffusion and nonlocal intraspecific
and interspecific competitions affect the competition outcomes of two competing species. This may
provide us with insights of how species learn to compete and point out species evolution directions.
The model (1.1) is a two-species Lotka-Volterra competition model in the form of a coupled system of
reaction diffusion equations with nonlocal intraspecific and interspecific competitions in space at times.
Han et al. [13] has proved the existence of traveling wave solutions of the system (1.1) connecting
the origin to some positive steady state with some minimal wave speed. Following their steps, we
studied the stability of these traveling wave solutions. The main mathematical challenge to study
the traveling waves for system (1.1) was that solutions do not obey the maximum principle and the
comparison principle cannot be applied to the system. We considered the stability of the zero solution
of a perturbation equation about the traveling wave solution and used the anti-weighted method and the
energy estimates to reach the expected one. The stability of traveling wave solutions with large enough
wave speed of system (1.1) was proved.

The existence, stability, and wave speed of traveling wave solutions could help us to understand for
phenomenons such as the movement of the hybrid zone. Hybrid zones are locations where hybrids
between species, subspecies, or races are found. Climate change has been implicated as driving shifts
of hybridizing species’ range limits. However, Hunter et al. [19] found that fitness is also linked to both
climatic conditions and movement of hybrid zones. These Lotka-Volterra competition models with
advection, diffusion, and nonlocal effects can be used to describe the dynamics of species’ range [20]
and estimate the movement of the hybrid zone under different assumptions.
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