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Abstract: Protein-protein interaction (PPI) analysis based on mathematical modeling is an efficient
means of identifying hub proteins, corresponding enzymes and many underlying structures. In this
paper, a method for the analysis of PPI is introduced and used to analyze protein interactions of diseases
such as Parkinson’s, COVID-19 and diabetes melitus. A directed hypergraph is used to represent
PPI interactions. A novel directed hypergraph depth-first search algorithm is introduced to find the
longest paths. The minor hypergraph reduces the dimension of the directed hypergraph, representing
the longest paths and results in the unimodular hypergraph. The property of unimodular hypergraph
clusters influential proteins and enzymes that are related thereby providing potential avenues for
disease treatment.

Keywords: directed hypergraph; unimodular hypergraph; path; depth first search; protein protein
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1. Introduction

The protein-protein interaction (PPI) network represents the biological interactions between
proteins [1], in which the nodes represent proteins and the edges represent interactions between
proteins [2]. PPI is a vital tool in the identification of influential proteins and the cellular and molecular
functions of proteins [3,4]. Identifying essential proteins may give a new perception in drug discovery
for diseases and have control in signaling pathways, gene expressions and others. The proteins have
different types of interactions between themselves. Direct or binary interactions and indirect (n-ary)
or pathway interactions are a few of them [5]. There are various perspectives, such as experimental
and computational, that can be utilized to analyze PPI and thereby to predict the influential proteins.
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However, PPI networks are intricate and hence computational analysis is more expensive [6].

Figure 1. Graphical abstract.

Traditional experiments are efficient in analyzing biological networks. However, these methods
reasonably consume a long running time and more cost. Thus, the researchers employ computational
models to analyze biological networks [7–12].

The graph is an effective tool for analysing biological networks, identifying patterns, significant
components and many more. However, analyzing multi-way interactions of biological networks using
graphs is difficult since graphs represent binary relations. Hypergraphs are the generalization of graphs
that represent the n-ary relations and effectively analyze the multi-way interactions of biological
networks. Additionally, compared to graph methods, hypergraphs have a lower computational
complexity. For instance, using hypergraphs, Klimm et al. [13] predicted essential genes from a
multi-protein network and established that the hypergraphs are more efficient for analzing multi-protein
networks (complex networks) than pairwise graphs. Feng et al. [14] identified critical genes for
pathogenic viral responses using hypergraph and infers that hypergraph potentially predicts the
essential genes for complex biological networks.

In complex biological network analysis, exploring pathways or indirect interactions is challenging.
Investigating the indirect or pathway interactions helps determine the nature of biological networks.
Traversal algorithms efficiently identify pathway interactions. Depth-first search (DFS), a robust
algorithm, is one of the traversal algorithms that significantly identifies the pathway interactions.
Here, the directed hypergraph DFS has been constructed to obtain the pathway interaction between
proteins. A minor hypergraph, an induced hypergraph, reduces the complexity of the analysis of
pathway interactions by reducing dimension.

Some induced hypergraphs (obtained by dimensionality reduction using minor hypergraphs) are
unimodular. The unimodular property of a hypergraph provides better classifications and clusters for
data. For instance, Swaminathan et al. [15,16] used unimodular hypergraphs for DNA sequencing, and
Madhu et al. [17] applied them to the multi-objective optimization problem for disease classification.

In this work, PPI networks for three diseases, Parkinson’s, COVID-19 and diabetes mellitus, are
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constructed as directed hypergraphs, and the pathway interactions between the host proteins are
obtained using directed hypergraph DFS. Then, the recursive application of the minor hypergraph
algorithm reduces the dimension further and results in a unimodular matrix.

Section 2 reviews some related work, Section 3 presents the proposed method, Section 4 presents
the results and discussion and the final section delivers concluding remarks.

2. Related works

This section discusses previous works on three diseases: Parkinson’s disease, COVID-19 and
diabetes mellitus and their associated enzymes.

2.1. Parkinson’s and its enzymes

Typically, Parkinson’s disease is an age-related disorder of brain functioning, a kind of neurological
disorder. It progressively affects the nervous system and the nerve’s controlled body parts. The tremors,
slowed movement, rigid muscles, imbalanced posture and balance, loss of automatic movement and
speech and writing changes are some symptoms of Parkinson’s. It causes various brain disorder
problems and leads to death if the nervous system does not work properly.

Kim et al. [18] reviewed the literature on treating neurological disease (ND), specifically
Alzheimer’s and Parkinson’s, and they inferred that asparagine endopeptidase, neprilysin,
amyloid-degrading and insulin-degrading enzymes efficiently treat ND. They notably concluded that
the amyloid-degrading enzymes potentially have a vital role in treating ND. Goldstein et al. [19]
investigated the role of regulatory enzyme tyrosine hydroxylase (TH) in stimulating L-DOPA collection
and hypothesized that modulating TH levels could reduce the dopamine deficit and increase striatal
L-DOPA levels. It provides a new strategy to treat Parkinson’s disease. Rasch et al. [20] reviewed
articles related to the role of TH and infers from clinical research that L-DOPA offered the best
prospects for treating Parkinson’s disease that concurred with Goldstein’s [19] opinion.

Nakano et al. [21] analyzed Parkinson’s disease using mouse models and performed two types
of adenosine triphosphate (ATP) enzyme regulation. They suggested that maintaining the ATP level
would be an efficient treatment for Parkinson’s disease. Angelopoulou et al. [22] analyzed COVID-19
and Parkinson’s disease and found that ACE2 was a crucial enzyme for both diseases. They also
identified essential features of Parkinson’s that are related to ACE2.

2.2. COVID-19 and its enzymes

COVID-19 is a virus from the family of Severe Acute Respiratory Syndrome (SARS). COVID-19
causes cold, cough, fever and tiredness at the beginning stage. Later, it becomes complicated, affect
the weaker body parts and organs and lead to diseases, organ failure and death. Also, COVID-19
predominantly affects the lungs.

Estrada et al. [23] analyzed a PPI of COVID-19 and concluded that some COVID-19 patients
might be affected by Parkinson’s disease. Jia et al. [24] inspected the human viral-host PPI of
COVID-19 using two tensor-decomposition models (CP-N3 and ComplEx-N3) and a knowledge graph
(constructed from biomedical information). They predicted the links between viruses and antiviral drug
attributes. Guo et al. [25] analyzed the PPI of COVID-19 using the concept of core decomposition and
dense graphs. They initially took the PPI of an affected person and developed it using a bio mine
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database [26] for analysis and obtained some of the gene hypotheses of humans for predicting further
clarification for detecting the drug for COVID-19.

Hasan et al. [27] analyzed blood cells of COVID-19 affected people to obtain hub proteins. Also,
they discovered hub proteins to develop therapeutic drugs for COVID-19 using gene ontology. Li et al.
[28] found that ACE2, a cytokine-related enzyme, could be a receptor for SARS-COV-2, potentially the
first receptor that helps the SARS-COV-2 viral protein to enter the human body. They also constructed
a PPI of COVID-19 and identified hub genes involved in viral cytokine activity; these were beneficial
for drug discovery in a biological laboratory. Messina et al. [29] analyzed a PPI of viral and human
proteins involved in COVID-19 and presented a pathogenic mechanism for COVID-19 host protein
interactions.

2.3. Diabetes and its enzymes

Diabetes mellitus is the metabolism of heterogeneous disturbances in which chronic
hyperglycaemia is the key. The impaired insulin action or secretion or both is the cause of diabetes
mellitus. Some of the symptoms are unexpected weight loss, frequent urination, blurry vision, feeling
tired all the time and many infections. Various types of diseases like coronary, neurological and organ
damage are the causes of diabetes. Types 1 and 2 are the most common types of diabetes.

Noroozi et al. [30] analyzed a sample of 9991 adults and inferred that the liver enzymes
alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and
γ-glutamyl-transferase (GGT) were related to higher odds of diabetes. Chen et al. [31] sampled
132,377 adults and found that the enzymes GGT, ALT, ALP and AST were associated with high-risk
factors for type II diabetes. Ross et al. [32] characterized serological biomarkers related to the exocrine
pancreas, analyzed their role and found three pancreas enzymes, amylase, lipase and trypsinogen,
which are potential risk factors for type I diabetes in serological biomarkers of pancreas volume.
Al-Kouh et al. [33] studied eight male Wistar rats with high glucose levels and induced diabetes
to evaluate the potential of angiotensin-converting enzyme (ACE) and angiotensin-II receptor in the
renin-angiotensin system (RAS) for the prevention of heart ischaemia/reperfusion injury. They found
that the RAS protected the heart from diabetes and that glucose transporter type 4 pathways protected
against cytokine-related diseases.

3. Proposed method

In this work, we analyze PPI networks of diseases using our proposed method, which consists of
the following steps:

• Construction of a directed hypergraph for PPI.
• Finding the pathway interaction of proteins using directed hypergraph DFS.
• Construction of a path-directed hypergraph and its corresponding matrix using the pathway

interactions.
• Dimensionality reduction of the matrix of the path-directed hypergraph using the properties of

minor hypergraphs.
• Clustering of proteins using the unimodular matrix.

The algorithm of the proposed method is given in the Algorithm 1.
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Algorithm 1: Unimodular Clustering
INPUT: PPI Network

OUTPUT: Clusters
1: Procedure: CDHG(PPI Network) (Algorithm 2)
2: Procedure: DHG DFS (DHG, s, seen = ϕ, path = ϕ) (Algorithm 3)
3: Procedure: CPM(paths) (Algorithm 5)
4: Procedure: DR(PDHG) (Algorithm 6)
5: Procedure: Clustering (Algorithm 7)

3.1. Directed hypergraph construction

If there is a PPI between the viral or host proteins vi, i = {1,2,⋯, s; s ∈ N} and human proteins

{h j ∣ j = 1,2,⋯, r; r ∈ N},

then the hyperedge of a directed hypergraph (DHG)

E(DHG) = (T(E(DHG)), H(E(DHG)))

is constructed, where
T(E(DHG)) = {vi}

and
H(E(DHG)) = {h j ∣ j = 1,2,⋯, r; r ∈ N}.

The PPI network of the host (viral) and the corresponding host-human proteins of diseases are
constructed as a directed hypergraph using the Algorithm 2.

Definition 3.1. [Minimal hypergraph] [34] The directed hypergraph DHMG (hyperedges are either in
B-arc or F-arc) with ∣E(DHMG)∣ = nm, and there is no DHM′G with ∣E(DHM′G)∣ = n′m < nm, is said to be
minimal hypergraph.

Theorem 1. [34] If DHG = (VDHG ,EDHG) is a directed hypergraph with ∣VDHG ∣ = n, then there exists
a minimal hypergraph DHBMG = (VDHG ,EHBMG) such that every directed hyperedge EHBMG of HBMG is
B-hyperarc or HBMG is a B-hypergraph. Also, there exist a minimal hypergraph HFMG = (VDHG ,EHFMG)

such that every hyperedge EHFMG of HFMG is F-hyperarc or HFMG is an F-hypergraph.

From the Theorem 1, the maximum possible number of hyperedges equals the number of nodes
(n) of the directed hypergraph. So, the maximum number of iterations required for every node is n, a
parameter.

3.2. Paths

DFS is a widely used traversal algorithm to obtain the longest paths for the nodes in a network,
which performs an exhaustive node search until reaching the required source. It uses the stack for
appending the visited nodes and terminates its process when no new elements exist as non-visited
nodes or when the stack is empty.
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Algorithm 2: Construction of directed hypergraph (CDHG)
INPUT: PPI Network

OUTPUT: Directed hypergraph (DHG)

1: for every vi (viral or host protein) in PPI do
2: for every h j ≠ vi (human protein) in PPI do
3: if vi has a PPI with h j then
4: Construct E(DHG) of DHG with T(E(DHG)) = vi and add h j to H(E(DHG))

5: else
6: Continue
7: end if
8: end for
9: end for

10: Return DHG.

In this paper, the DHG DFS algorithm is designed to obtain the paths. Each viral or host protein
is the origin of a path in which the disease’s viral (or host) and human proteins represent the source
and destination, respectively. The directed hypergraph obtained using Algorithm 2 is an input for the
DHG DFS Algorithm 3 to get the pathway interactions for viral or host proteins.

The directed hypergraph DFS procedure works as follows and the parameter used in DHG DFS is
the length of the path. Here, the length of the path is 1,000,000:

a) Take a viral or host protein as a root node.
b) Perform deep searching for the relevant human proteins using a directed hypergraph from the

viral or host protein.
c) Mark all human proteins as ”seen” when they have been visited.
d) Terminate the search process when there is no new human protein to visit.

Algorithm 3: Directed Hypergraph Depth First Search (DHG DFS )
INPUT: DHG DFS (DHG, s, seen,nrpath)

OUTPUT: Paths of nodes
1: nrpath = {s}, seen = {}
2: DHG DFS R(DHG, s, seen,nrpath)

3: Return paths

3.3. Pathway matrix

The pathway matrix is constructed with the following steps:

i) Row elements are viral or host proteins;
ii) Column elements are human proteins that are involved in pathway interactions.
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Algorithm 4: Recursive DHG DFS
INPUT: DHG DFS R(DHG, s, seen,nrpath)

OUTPUT: Paths
1: paths = Φ
2: Add the node s to seen
3: for every neighbour nr of s in DHG do
4: if nr ∉ seen then
5: Add the nodes in path and nr to nrpath

6: Add nrpath to the paths set
7: DHG DFS (DHG,nr, seen,nrpath)

8: end if
9: end for

10: Return paths

Assume an interaction exists between the viral or host protein and human proteins based on pathway
interactions obtained using Algorithm 2. The enzymes that correspond to the human protein’s diseases
are then taken. Thus, the procedure for assigning matrix entries to viral or host and human proteins
is defined based on the following and the procedure for obtaining matrix, and its corresponding
hypergraph is given in Algorithm 5:

PDHG[vih j] =

⎧⎪⎪
⎨
⎪⎪⎩

1, if h j involved in at least one enzyme related to diseases,
0, otherwise.

3.4. Dimensionality reduction

The dimensionality of the path-directed hypergraph or pathway interaction matrix is reduced using
minor hypergraphs. Here are some preliminary definitions and properties of minor hypergraphs.

The hyperedge e ∈ E(DHG) is said to be a subhyperedge if there exists a hyperedge e′ ∈ E(DHG)

such that e ⊆ e′. If e ⊂ e′, then e is a proper subhyperedge [35].
For a hypergraph DHG, the hypergraph obtained from DHG by contracting an hyperedge

{vx, vy, vz, . . .} ∈ E(DHG) is the hypergraph DHG/e or DH′G with V(DHG/e) = V(DHG) ∖

{vx, vy, vz, . . .} ∪ {vxyz...} and

E(DHG/e) = {h ∈ E(DHG)∣h ∩ {vx, vy, vz, . . .} = ψ}

∪{(h ∖ e) ∪ {vxyz...}∣h ∈ E(DHG),h ∩ e = ϕ}

In other words, vxy is the new contracted vertex, and every hyperedge containing either x or y is set
to contain vxy.

Let DHG be a hypergraph. Then, the minor of DHG, denoted DH′G (DH′G ⪯ DHG), can be obtained
using the following set of operations [35]:

i) Removal of a vertex.
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Algorithm 5: Construction of Pathway Matrix (CPM)
INPUT: paths

OUTPUT: PDHG

1: for vi in viral or host protein do
2: for h j in human protein do
3: tmp = Number of enzymes related to proteins h j

4: if tmp ≥ 1 then
5: PDHG[vih j] = 1
6: else if tmp == 0 then
7: PDHG[vih j] = 0
8: end if
9: end for

10: if PDHG[vih j] = 1 then
11: PDHG = CDHG(vih j)

12: end if
13: end for
14: Return PDHG

ii) Contraction of the vertices that share a common hyperedge.
iii) Addition of a hyperedge with contracted vertices.
iv) Removal of proper subhyperedges.

There are different types of directed hyperedges based on pathway matrix, as follows:

i. Take a viral or host protein (vi) as the ’head’ of the hyperedge, and human proteins (h js) as the
’tail’, with PDHG[vih j] = 1.

ii. Take the ’head’ to be viral or host proteins (vis) and the ’tail’ to be human protein h j, with
PDHG[vih j] = 1.

The standard elementary operations of matrices are

• Interchange any two rows (columns).
• Subtracting or adding any row (column) from another.
• Multiply the scalar -1 with any row (column).

Consider a unimodular matrix C = (ci j) with m rows and n columns, then define the following
operations to obtain the dimensionality reduced unimodular matrices:

• Interchange any column with zero in an ascending manner.
• Delete the columns with zeros from the matrix.
• If there is a column ci1, with the leading element as non-zero, then make all c j1 = 0 using

elementary operations.
• Delete the column ci1 and reduce the dimensionality of the matrix with dimension m × (n − 1).
• Make all the columns ck1 > 0, k = 1,2, . . . ,m, separately as a reduced matrices.
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Raghavachari [36] proved Theorem 2 concerning the above operations.

Theorem 2. The given matrix C = (ci j) with m rows and n columns is totally unimodular if and only if
each of the above defined reduced matrices are totally unimodular.

Suppose that the viral or host proteins vi, v j have interactions with the human proteins {ha,hb,hc}

and {hd,he,h f} respectively. Then, the elementary row (column) operations between the rows
(columns) of the proteins vi, v j in the interaction matrix may lead to an erroneous interaction between
proteins. Thus, the following set of operations are defined to overcome this:

• Apply the logical operator OR between any two rows (ri) (columns (ci)) and (r j) (c j), if ri ∨ r j = ri

or ri ∨ r j = r j (for columns ci ∨ c j = ci or ci ∨ c j = c j).
• Make the identical rows (ri) (columns (ci)) and (r j) ((c j)) as zero rows (r0) (columns (c0)) by using

the logical operator XOR between rows (columns) (i.e.,) ri⊕ r j = r0 (for columns ci⊕ c j = c0).
• Delete the zero rows (r0) (columns (c0)).
• Suppose there are no new rows (columns) that satisfy ri ∨ r j = ri or ri ∨ r j = r j (for columns

ci ∨ c j = ci or ci ∨ c j = c j). Then make all distinct rows (rk) (columns (ck)) as a reduced matrices
with dimension s × t, where s < m and t < n.

Table 1. Equivalent minor and matrix operations.

Minor hypergraph operations Equivalent operations on matrices
Removal of a vertex Removal of zero rows (columns)
Contraction of the vertices that share a common hyperedge Logical operator OR between rows (columns)
Addition of a hyperedge with contracted vertices Logical operator XOR between rows (columns)
Removal of proper subhyperedges Logical operator OR between rows (columns)

Theorem 3. Let A = (ai j) be a matrix with m rows and n columns. If (ai j) = 0 or +1, for i ∈ {1,2, . . . ,m}
and j ∈ {1,2, . . . ,n}. Then, the dimensionality reduced matrix AR = (ri j) with dimension s < m rows
and t < n columns, obtained using the above operations is totally unimodular.

Example for reduction of hyperedges

The following example shows the reduction of directed hyperedges using minor hypergraph
operations where the distinct hyperedges are highlighted using different colors in the Figures 2–5.
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Figure 2. Given directed hypergraph. Figure 3. f ∨ i and f ⊕ i.

Figure 4. a ∨ d and a⊕d. Figure 5. f i ∨ j and f i⊕ j.

f g h i j k
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⎢
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⎥
⎥
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a 0 1 0 1 1 0
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3.4.1. Dimensionality reduction based on hyperedges

The following minor hypergraph properties are developed to reduce the length of the directed
hyperedges.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 325–345.



335

The dimensionality reduction of hyperedge has two subcategories: Removing the hyperedges which
have the same head/tail, and the other is the removal of subhyperedge.

3.4.1.1. Blending hyperedges with same head/tail
If there are any two hyperedges ei, e j that have the same head/tail, then blend the hyperedges ei, e j

as ei j (i.e., blend their head/tail).
3.4.1.2. Blending subhyperedge
For any two hyperedges ei, e j wı̀th ei is the subhyperedge of the hyperedge e j, blend the hyperedges

ei, e j in the following way:

i) Combine the head/tail of the hyperedges.
ii) Combine the remaining nodes of the hyperedges using the minor hypergraph operations.

The resultant hypergraph with reduced hyperedges in the form of matrix is a unimodular that does
not require any optimization.

The procedure to obtain the hypergraph in the reduced dimension is presented in Algorithm 6.

Algorithm 6: Dimensionality Reduction (DR)
INPUT: PDHG

OUTPUT: Dimensionality-reduced Pathway Matrix
1: for ei ∈ E(PDHG) do
2: for e j ∈ E(PDHG) do
3: if ei ⊂ e j then
4: Merge ei and e j as ei j

5: Add ei j to E(PDHG)

6: Remove ei and e j from E(PDHG)

7: else if e j and ei having same H(E(PDHG)/T(E(PDHG) then
8: Merge ei and e j as ei j

9: end if
10: end for
11: end for
12: Form the Dimensionality-reduced pathway matrix using PDHG

13: Return Dimensionality-reduced Pathway Matrix

3.5. Unimodular matrix

The matrix that results from the dimensionality reduction procedure is unimodular. We use the
properties of this unimodular matrix to cluster disease-related proteins. Some definitions and properties
of unimodular hypergraphs are given below.

For any square sub-matrix of a given matrix, if the determinant value is −1,0, or +1, the matrix is
said to be a totally unimodular matrix.

If the incidence matrix of a hypergraph is totally unimodular, then the hypergraph is said to be a
unimodular hypergraph.
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Algorithm 7 presents clustering with the unimodular property.

Algorithm 7: Clustering
INPUT: Dimensionality-reduced Pathway Matrix

OUTPUT: Clusters
1: Clusters = {}
2: for i in row do
3: for j in col do
4: tmp cluster = {}
5: if PDHG[i, j] == 1 then
6: Add i, j to the tmp cluster
7: Go to jth row
8: Find the non-zero entry in jth row and add the corresponding column index k to

tmp cluster
9: if k == i then

10: break
11: else
12: Continue
13: end if
14: end if
15: end for
16: Add tmp clusters to Clusters
17: end for
18: Return Clusters

4. Results and discussion

The proposed methodology is implemented to the PPI of the following disease networks [37] using
a Google Colab TPU processor:

• Pakinson’s,
• COVID-19,
• Diabetes.

The PPI interactions of diseases are implemented using the following steps:

• The viral or host and the corresponding human protein interactions involved in diseases are
constructed as a directed hypergraph using CDHG Algorithm 2.
• The DHG DFS Algorithm 3 is applied to the directed hypergraph to obtain the pathway

interaction for every viral or host protein involved in the disorder.
• The pathway matrix of proteins is constructed using the CPM Algorithm 5.
• The dimensionality of the pathway matrix is reduced using the DM Algorithm 6.
• The resultant matrix of DM Algorithm 6 is unimodular. Thus, the proteins and their related

enzymes of diseases are clustered using the Cluster Algorithm 7.
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Table 2. Comparison of influential proteins (Count) For Parkinson’s.

Total number Number of proteins Number of proteins
Enzyme of proteins obtained using obtained using

in data-set our algorithm graph algorithm

Tyrosine Hydroxylase 3 3 2
Amyloid Degrading 4 4 3
Neprilysin 1 1 0
Insulin Degrading 4 4 3
Asparagine Endopeptidas 26 26 10
Adenosine Triphosphate 4 4 2

Figure 6. Clustering for Parkinson’s disease.

Table 5 presents the number of nodes (N(DHG)), the number hyperedges (M(DHG)) & edges
(M(G)), the path length for hypergraph (PL(DHG)) & graph (PL(G)) used in the proposed method for
implementation. The Tables 2–4 presents the number of influential proteins of the diseases obtained by
proposed method and graph algorithm. Also, the number of influential proteins of the diseases equals
to the number of proteins in the data-set from Uniprotkb database [37].

Using the proposed method, we obtained unimodular matrices for the diseases taken for this study.
The unimodular matrices and their possible clusterings are as follows:

For Parkinson’s disease, the unimodular matrix is

UParkinson = [
0 1
1 0

]

and the possible clusters are

S PI → S PII → S PI.

For COVID-19, the unimodular matrix is

UCOVID−19 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0
0 0 0 1
0 1 1 0
1 1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Table 3. Comparison of influential proteins (Count) For COVID-19.

Total number Number of proteins Number of proteins
Enzyme / of proteins in obtained using obtained using
Protein list data-set our algorithm graph algorithm

DNA Helicase 116 116 58
DNA Ligase 353 353 213
DNA Polymerase 658 658 265
DNA Primase 9 9 4
Topoisomerase 27 27 15
Alanine Transaminase 2 2 0
Alkaline 8 8 3
At II 6 6 0
Serum 87 87 46
Glucose Oxidase 149 149 77
Matrix Metalloproteinases 7 7 4
Proteolytic 123 123 75
MurA 1 1 0
MurC 1 1 0
MurE 2 2 1
MurF 4 4 4
Pancreatic Lipase 5 5 2
Pepsin 3 3 1
Lactase 1 1 1
Maltase 1 1 1
Trypsin 668 668 316
Tmprss2 41 41 13
Ace2 4 4 3
IL6 27 27 19
Cytoplasmic 1058 1058 539
Cytokines 3 3 2
Cob 2 2 0
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Table 4. Comparison of influential proteins (Count) for diabetes.

Total number Number of proteins Number of proteins
Enzyme of proteins in obtained using obtained using

data-set our algorithm graph algorithm

Alanine Transaminase 2 2 1
Alkaline Phosphatase 3 3 0
Amylase 2 2 2
Angiotensin II 3 3 3
Angiotensin Converting 3 3 3
Angiotensin Converting 2 2 2 2
Aspartate Transaminase 1 1 1
Gamma Glutamyl Transferase 2 2 1
Lipase 26 26 20
Sirtuins 2 2 2

Finally, for diabetes, the unimodular matrix is

UDiabetes =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and the possible clusters are

S DI → S DXII → S DI

S DII → S DV → S DXIII → S DII

S DVI → S DXV → S DXIV → S DVI

S DIII → S DX → S DIV → S DIX → S DVIII → S DVII → S DIII

In the case of Parkinson’s disease, the proteins identified belong to the enzyme tyrosine hydroxylase
(TH). The regulation of TH enzyme may provide a new strategy in the treatment of Parkinson’s [19,20],
and controlling the activity of the amyloid-degrading enzymes (ADE) (neprilysin, insulin-degrading
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Figure 7. Clustering for diabetes.

Table 5. Comparison of path length parameter of DHG DFS .

Disease N(DHG) M(DHG) M(G) PL(DHG) PL(G)

Parkinson’s 2442 126 3752 1,000,000 75,000
COVID-19 3402 306 6978 1,000,000 84,500
Diabetes Mellitus 5038 238 5650 1,000,000 10,000

enzymes, asparagine endopeptidase) could be a crucial role in the treatment of Parkinson’s [18]. Also,
the algorithm yields the proteins that are components of the enzyme ATP, the maintenance level of
ATC, would give the therapeutic strategy for Parkinson’s [21]. From the Table 2 some influential
proteins were obtained in the Neprilysin enzyme for Parkinson’s disease. Moreover, Neprilysin is one
of the enzymes involved in the aggregation control of amyloidogenic proteins to cure Parkinson’s [18].
However, the graph algorithm does not yields these proteins.

For COVID-19, we obtained the proteins that are the components of enzymes Tmprss2, Ace2,
liver-related enzymes (IL6, cytoplasmic enzymes, cytokines), the diabetes-mellitus-related enzymes
(alanine transaminase, alkaline, At II, serum, glucose oxidase), digestive-system-related enzymes
(pancreatic lipase, pepsin, lactase, maltase, trypsin), and blood-pressure-related enzymes (matrix
metalloproteinases). The enzymes Tmprss2 and Ace2 are the hosts for COVID-19 [38]. The
liver-related enzymes may lead to liver injury, diabetes and digestive-related enzymes may increase the
risk level of COVID-19, and the blood-pressure-related enzymes may aggregate COVID-19 infection
[39].

Also, the proteins involved in DNA replication (DNA helicase, DNA ligase, DNA polymerase,
DNA primase, topoisomerase), stroke-related enzymes (proteolytic enzymes) and tuberculosis-related
enzymes (mura, Murc, Mure, Murf) are obtained using the proposed method. Sathyanarayanan et
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al. [34] analyzed the PPI of COVID-19 and identified influential proteins and corresponding enzymes.
The present algorithm identifies the same set of enzymes, with more proteins and other enzymes
related to common diseases. Therefore, based on the enzymes, a person affected by COVID-19 may
be overwhelmed by the new disease. Thus, clustering hub proteins for COVID-19 is not possible
because many intersecting hub proteins are obtained in the enzymes (or clusters). From Table 3, some
significant proteins of enzymes Alanine Transaminase, AT-II, MurA and MurC are obtained, but these
influential proteins and hence the enzymes are not obtained from the graph algorithm.

For diabetes, we obtain proteins that belong to the enzymes alanine transaminase (ALT), ALP,
aspartate transaminase (AST), GGT, sirtuins and the pancreas enzymes (amylase, lipase), as well as
the receptor angiotensin-II. These enzymes are risk factors for type I and type II diabetes. The enzymes
ALT, ALP, AST and GGT are the factors of diabetes with increased odds. The normal level of these
enzymes has a good response in drugs [30, 31]. The pancreas enzymes serve as biomarkers for type I
diabetes. These enzymes may prevent diabetes in the initial stage [32]. The enzyme sirtuins are used in
pathogenesis and treating diabetes mellitus [40,41]. These enzymes are risk factors for type I and type
II diabetes [33]. Therefore, these enzymes have a crucial role in treating diabetes. From Table 4, there
are no significant proteins in the enzyme ALT by the graph algorithm, but some influential proteins
are obtained using the proposed methodology. The proteins in this enzyme are related to the increased
odds of diabetes and are used in the drug for diabetes [30].

5. Conclusions

In this work, directed hypergraphs and their unimodular properties are being exploited to analyze the
PPI of Parkinson’s disease, COVID-19 and diabetes mellitus. Here, the pathway network of PPI was
obtained using the novel-directed hypergraph depth-first search. The pathway network consists of the
most extended possible pathway interactions of PPI. Thus, the complexity of pathway network analysis
is a challenge. The minor hypergraph reduces the pathway network dimension and complexity. Hence,
the logical operations on the matrices approach to implement the properties of the minor hypergraph
for dimensionality reduction are introduced. These logical operations have a significant advantage
over elementary operations on matrices. Finally, the properties of unimodular hypergraph identifies
the influential enzymes based on the clusters of proteins related to the diseases. It leads to a new
prospect to treat the diseases or to identify the pattern and characteristics of diseases in the analysis.
Also, the results obtained were verified by comparing the literature on the diseases as presented in
Section 4. Furthermore, the proposed methodology outperforms the graph algorithms that are limited
in the path length. The future scope is to predict more interaction features of pathway network analysis
using biological experimental and / or mathematical modeling, and extending path lengths that could
handle MB’s and GB’s of data.

Use of AI tools declaration

The authors declare that have not used Artificial Intelligence (AI) tools in the creation of this article.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 325–345.



342

Acknowledgments

The authors would like to acknowledge SASTRA Deemed University for supporting this research
work.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. J. De Las Rivas, C. Fontanillo, Protein–protein interactions essentials: key concepts to
building and analyzing interactome networks, PLoS Comput. Biol., 6 (2010), e1000807.
https://doi.org/10.1371/journal.pcbi.1000807

2. D. Kurzbach, Network representation of protein interactions: Theory of graph description and
analysis, Protein Sci., 25 (2016), 1617–1627. https://doi.org/10.1002/pro.2963

3. K. Raman, Construction and analysis of protein–protein interaction networks, Autom. Exp., 2
(2010), 1–11. https://doi.org/10.1186/1759-4499-2-2

4. B. H. Junker, F. Schreiber, Analysis of Biological Networks, John Wiley & Sons, 2011.

5. D. Petrey, H. Zhao, S. J. Trudeau, D. Murray, B. Honig, PrePPI: A structure informed
proteome-wide database of protein-protein interactions, J. Mol. Biol., 435 (2023), 168052.
https://doi.org/10.1016/j.jmb.2023.168052

6. D. Vella, S. Marini, F. Vitali, D. D. Silvestre, G. Mauri, R. Bellazzi, MTGO: PPI network
analysis via topological and functional module identification, Sci. Rep., 8 (2018), 5499.
https://doi.org/10.1038/s41598-018-23672-0

7. F. Sun, J. Sun, Q. Zhao, A deep learning method for predicting metabolite–disease associations
via graph neural network, Brief. Bioinf., 23 (2022), bbac266. https://doi.org/10.1093/bib/bbac266

8. W. Wang, L. Zhang, J. Sun, Q. Zhao, J. Shuai, Predicting the potential human lncRNA–miRNA
interactions based on graph convolution network with conditional random field, Brief. Bioinf., 23
(2022), bbac463. https://doi.org/10.1093/bib/bbac463

9. H. Gao, J. Sun, Y. Wang, Y. Lu, L. Liu, Q. Zhao, et al., Predicting metabolite–disease associations
based on auto-encoder and non-negative matrix factorization, Brief. Bioinf., 24 (2022), bbad259.
https://doi.org/10.1093/bib/bbad259

10. Z. Chen, L. Zhang, J. Sun, R. Meng, S. Yin, Q. Zhao, DCAMCP: A deep learning model based on
capsule network and attention mechanism for molecular carcinogenicity prediction, J. Cell. Mol.
Med., 27 (2023), 3117–3126. https://doi.org/10.1111/jcmm.17889

11. R. Meng, S. Yin, J. Sun, H. Hu, Q. Zhao, scAAGA: Single cell data analysis framework
using asymmetric autoencoder with gene attention, Comput. Biol. Med., 165 (2023), 107414.
https://doi.org/10.1016/j.compbiomed.2023.107414

Mathematical Biosciences and Engineering Volume 21, Issue 1, 325–345.

http://dx.doi.org/https://doi.org/10.1371/journal.pcbi.1000807
http://dx.doi.org/https://doi.org/10.1002/pro.2963
http://dx.doi.org/https://doi.org/10.1186/1759-4499-2-2
http://dx.doi.org/https://doi.org/10.1016/j.jmb.2023.168052
http://dx.doi.org/https://doi.org/10.1038/s41598-018-23672-0
http://dx.doi.org/https://doi.org/10.1093/bib/bbac266
http://dx.doi.org/https://doi.org/10.1093/bib/bbac463
http://dx.doi.org/https://doi.org/10.1093/bib/bbad259
http://dx.doi.org/https://doi.org/10.1111/jcmm.17889
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2023.107414


343

12. T. Wang, J. Sun, Q. Zhao, Investigating cardiotoxicity related with hERG channel blockers using
molecular fingerprints and graph attention mechanism, Comput. Biol. Med., 153 (2023), 106464.
https://doi.org/10.1016/j.compbiomed.2022.106464

13. F. Klimm, C. M. Deane, G. Reinert, Hypergraphs for predicting essential genes using multiprotein
complex data, J. Complex Networks, 9 (2021). https://doi.org/10.1093/comnet/cnaa028

14. S. Feng, E. Heath, B. Jefferson, C. Joslyn, H. Kvinge, H. D. Mitchell, et al., Hypergraph models of
biological networks to identify genes critical to pathogenic viral response, BMC Bioinf., 22 (2021),
1–21. https://doi.org/10.1186/s12859-021-04197-2

15. V. Swaminathan, R. Gangothri, K. Kannan, Unimodular hypergraph for DNA sequencing:
A polynomial time algorithm, Proc. Natl. Acad. Sci. India-Phys. Sci., 90 (2020), 49–56.
https://doi.org/10.1007/s40010-018-0561-z

16. V. Swaminathan, R. Gangothri, V. Abhishek, B. S. Reddy, K. Kannan, A novel hypergraph-based
genetic algorithm (hgga) built on unimodular and anti-homomorphism properties for DNA
sequencing by hybridization, Interdiscip. Sci. Comput. Life Sci., 11 (2019), 397–411.
https://doi.org/10.1007/s12539-017-0267-y

17. M. R. Nallui, K. Kannan, X. Z. Gao, D. S. Roy, Multiobjective hybrid monarch butterfly
optimization for imbalanced disease classification problem, Int. J. Mach. Learn. Cybern., 11
(2020), 1423–1451. https://doi.org/10.1007/s13042-019-01047-9

18. N. Kim, H. J. Lee, Target enzymes considered for the treatment of Alzheimer’s disease and
Parkinson’s disease, BioMed. Res. Int., 2020 (2020). https://doi.org/10.1155/2020/2010728

19. M. Goldstein, A. Lieberman, The role of the regulatory enzymes of catecholamine synthesis in
Parkinson’s disease, Neurology, 42 (1992), 8–12. http://europepmc.org/abstract/MED/1350074

20. W. D. Rausch, F. Wang, K. Radad, From the tyrosine hydroxylase hypothesis of Parkinson’s
disease to modern strategies: a short historical overview, J. Neural Transm., 129 (2022), 487–495.
https://doi.org/10.1007/s00702-022-02488-3

21. M. Nakano, H. Imamura, N. Sasaoka, M. Yamamoto, N. Uemura, T. Shudo, et
al., ATP maintenance via two types of ATP regulators mitigates pathological
phenotypes in mouse models of Parkinson’s disease, EBioMedicine, 22 (2017), 225–241.
https://doi.org/10.1016/j.ebiom.2017.07.024

22. E. Angelopoulou, E. Karlafti, V. E. Georgakopoulou, P. Papalexis, S. G. Papageorgiou, T. Tegos, et
al., Exploring the role of ACE2 as a connecting link between COVID-19 and Parkinson’s disease,
Life, 13 (2023), 536. https://doi.org/10.3390/life13020536

23. E. Estrada, Cascading from SARS-CoV-2 to parkinson’s disease through protein-protein
interactions, Viruses, 13 (2021), 897. https://doi.org/10.3390/v13050897

24. T. Jia, Y. Yang, X. Lu, Q. Zhu, K. Yang, X. Zhou, Link prediction based on tensor
decomposition for the knowledge graph of COVID-19 antiviral drug, Data Intell., (2022), 1–12.
https://doi.org/10.1162/dint a 00117

25. Y. Guo, F. Esfahani, X. Shao, V. Srinivasan, A. Thomo, L. Xing, et al., Integrative COVID-19
biological network inference with probabilistic core decomposition, Brief. Bioinf., 23 (2022),
bbab455. https://doi.org/10.1093/bib/bbab455

Mathematical Biosciences and Engineering Volume 21, Issue 1, 325–345.

http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2022.106464
http://dx.doi.org/https://doi.org/10.1093/comnet/cnaa028
http://dx.doi.org/https://doi.org/10.1186/s12859-021-04197-2
http://dx.doi.org/https://doi.org/10.1007/s40010-018-0561-z
http://dx.doi.org/https://doi.org/10.1007/s12539-017-0267-y
http://dx.doi.org/https://doi.org/10.1007/s13042-019-01047-9
http://dx.doi.org/https://doi.org/10.1155/2020/2010728
http://dx.doi.org/http://europepmc.org/abstract/MED/1350074
http://dx.doi.org/https://doi.org/10.1007/s00702-022-02488-3
http://dx.doi.org/https://doi.org/10.1016/j.ebiom.2017.07.024
http://dx.doi.org/https://doi.org/10.3390/life13020536
http://dx.doi.org/https://doi.org/10.3390/v13050897
http://dx.doi.org/https://doi.org/10.1162/dint_a_00117
http://dx.doi.org/https://doi.org/10.1093/bib/bbab455


344

26. B. S. Kamel, C. R. Voolstra, M. Medina, BioMine-DB: A database for metazoan biomineralization
proteins, Biol. Mater. Sci., (2016), 1–9. https://doi.org/10.7287/peerj.preprints.1983v2

27. M. I. Hasan, M. H. Rahman, M. B. Islam, M. Z. Islam, M. A. Hossain, M. A. Moni,
Systems Biology and Bioinformatics approach to Identify blood based signatures molecules
and drug targets of patient with COVID-19, Inf. Med. Unlocked, 28 (2022), 100840.
https://doi.org/10.1016/j.imu.2021.100840

28. G. Li, X. He, L. Zhang, Q. Ran, J. Wang, A. Xiong, et al., Assessing ACE2 expression
patterns in lung tissues in the pathogenesis of COVID-19, J. Autoimmun., 112 (2020), 102463.
https://doi.org/10.1016/j.jaut.2020.102463

29. F. Messina, E. Giombini, C. Montaldo, A. A. Sharma, A. Zoccoli, R. P. Sekaly, et al., Looking for
pathways related to COVID-19: confirmation of pathogenic mechanisms by SARS-CoV-2–host
interactome, Cell Death Dis., 12 (2021), 1–10. https://doi.org/10.1038/s41419-021-03881-8

30. M. N. Karimabad, P. Khalili, F. Ayoobi, A. Esmaeili-Nadimi, C. L. Vecchia, Z. Jamali, Serum liver
enzymes and diabetes from the Rafsanjan cohort study, BMC Endocr. Disord., 22 (2022), 1–12.
https://doi.org/10.1186/s12902-022-01042-2

31. S. C. C. Chen, S. P. Tsai, J. Y. Jhao, W. K. Jiang, C. K. Tsao, L. Y. Chang, Liver fat, hepatic
enzymes, alkaline phosphatase and the risk of incident type 2 diabetes: a prospective study of
132,377 adults, Sci. Rep., 7 (2017), 4649. https://doi.org/10.1038/s41598-017-04631-7

32. J. J. Ross, C. H. Wasserfall, R. Bacher, D. J. Perry, K. McGrail, A. L. Posgai, et al., Exocrine
pancreatic enzymes are a serological biomarker for type 1 diabetes staging and pancreas size,
Diabetes, 70 (2021), 944–954. https://doi.org/10.2337/db20-0995

33. A. Al-Kouh, F. Babiker, M. Al-Bader, Renin-angiotensin system antagonism protects the
diabetic heart from ischemia/reperfusion injury in variable hyperglycemia duration settings
by a glucose transporter type 4-mediated pathway, Pharmaceuticals, 16 (2023), 238.
https://doi.org/10.3390/ph16020238

34. G. Sathyanarayanan, S. Supriya, N. S. Ranjan, N. Janmenjoy, V. Swaminathan, Central hubs
prediction for bio networks by directed hypergraph-GA with validation to COVID-19 PPI, Pattern
Recognit. Lett., 153 (2022), 246–253. https://doi.org/10.1016/j.patrec.2021.12.015
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