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Abstract: N6-methyladenosine (m6A) is a crucial RNA modification involved in various biological 
activities. Computational methods have been developed for the detection of m6A sites in 
Saccharomyces cerevisiae at base-resolution due to their cost-effectiveness and efficiency. However, 
the generalization of these methods has been hindered by limited base-resolution datasets. Additionally, 
RMBase contains a vast number of low-resolution m6A sites for Saccharomyces cerevisiae, and base-
resolution sites are often inferred from these low-resolution results through post-calibration. We 
propose MTTLm6A, a multi-task transfer learning approach for base-resolution mRNA m6A site 
prediction based on an improved transformer. First, the RNA sequences are encoded by using one-hot 
encoding. Then, we construct a multi-task model that combines a convolutional neural network with a 
multi-head-attention deep framework. This model not only detects low-resolution m6A sites, it also 
assigns reasonable probabilities to the predicted sites. Finally, we employ transfer learning to predict 
base-resolution m6A sites based on the low-resolution m6A sites. Experimental results on 
Saccharomyces cerevisiae m6A and Homo sapiens m1A data demonstrate that MTTLm6A respectively 
achieved area under the receiver operating characteristic (AUROC) values of 77.13% and 92.9%, 
outperforming the state-of-the-art models. At the same time, it shows that the model has strong 
generalization ability. To enhance user convenience, we have made a user-friendly web server for 
MTTLm6A publicly available at http://47.242.23.141/MTTLm6A/index.php. 

Keywords: RNA modification site; multi-task learning; transfer learning; natural language processing; 
deep learning 
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1. Introduction 

It has been demonstrated that more than 170 types of RNA modifications are reported within a 
diverse set of RNAs [1], including m6A, adenosine to inosine (A-to-I) deamination, cytosine to uracil 
(C-to-U) deamination, N1-methyladenosine (m1A), 5-methylcytosine (m5C), pseudouridylation (Ψ), 
and ribose 2’O-methylation [2], etc. There is a growing list of RNA modifications found in both coding 
and non-coding RNAs, significantly influencing their biological functions [3]. These modifications 
frequently result in changes to RNA stability, folding, interactions, translation, localization, and 
subsequent processing, thereby impacting their biological function [4,5]. However, insights into the 
molecular machineries responsible for the deposition and removal, as well as recognition and 
interpretation, of  these modifications within the cell are available for only a few modifications [6]. 
Even for those modifications for which writers, erasers, and readers have been identified [7], such as 
m6A [8], we have limited knowledge about their regulation, their cooperation or competition with other 
RNA modification and processing events, and how they become deregulated in disease [9]. Therefore, 
the accurate identification of m6A sites is a crucial step in understanding the mechanisms underlying 
these biological phenomena [9]. 

To date, several experimental methods have been developed to localize the m6A site. High-
throughput sequencing technologies have been successfully applied to detect m6A sites in various 
species, including Saccharomyces cerevisiae [10], Homo sapiens [11,12], Arabidopsis thaliana [13], 
and mouse [14]. However, it is important to note that most high-throughput sequencing techniques 
cannot quickly obtain and precisely pinpoint the exact location of the m6A site [15]. The m6A motif 
‘RRACH’ is often used to further narrow the location of the m6A site to a basic resolution within the 
peak detected with the m6A signal. Other experimental techniques, such as miCLIP-seq [16], can 
identify m6A sites at the single nucleotide resolution level. However, these methods rely on m6A-
specific antibodies, exhibit poor reproducibility are long and involve complex procedures [17], making 
them unsuitable for large-scale genomic data analysis. Hence, there is a strong motivation to explore 
computational methods that can accurately and efficiently identify methylation sites. 

Researchers have developed a variety of computational methods to predict RNA modification 
sites, which serve as invaluable complements to experimental approaches [18]. These methods 
approach RNA methylation identification as a binary prediction task [19], training machine learning 
models to differentiate between truly methylated and unmethylated sites. By leveraging these 
computational methods, we can quickly predict whether this sequence contains RNA methylation sites. 
The traditional computational method involves extracting a comprehensive set of hand-designed 
features from biological sequences [20]. These features are then fed into classical shallow classification 
algorithms [21], such as a support vector machine [22], often utilizing a linear kernel. However, the 
selection of these features is typically an empirical process, relying on trial and error [23]. Moreover, 
the feature selection itself is highly task-dependent, necessitating additional research for each new 
predictive task [24]. 

It is evident that analyzing biological sequences and interpreting the underlying biological 
information pose significant challenges in the realization of biological breakthrough discoveries. 
Recently, the application of natural language processing (NLP) in sequence analysis has garnered 
considerable attention within the realm of biological sequence processing [25]. This approach 
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considers biological sequences as sentences [21,26], while k-mer subsequences are akin to words [25,27]; 
NLP has emerged as a valuable approach for unraveling the structure and function encoded within 
these sequences [28,29]. In contrast to traditional machine learning methods, deep learning (DL) 
techniques offer an end-to-end design [30]. The input sentence undergoes a series of feature extraction 
layers, with the deep layers of the network automatically learning features that are relevant to the task 
through backpropagation [31]. The journey from raw data to the ultimate output entails the extraction 
of features derived directly from the input data, honing in on the crucial aspects for the final 
identification or prediction tasks. This intricate process involves sifting through the raw information, 
meticulously selecting the most pertinent characteristics, and transforming them into more meaningful 
representations. These extracted features serve as the bedrock of the entire analytical process, 
empowering the algorithms and models to discern patterns and relationships, which is essential for 
achieving accurate and insightful conclusions. Through this transformative journey, the system gains 
the ability to decipher complex information and deliver informed decisions, ultimately driving 
successful outcomes [32]. For example, EDLm6Apred [32] applies bidirectional long short-term 
memory (BiLSTM) to predict m6A site through the use of word2vec [33], RNA word embedding [34] 
and one-hot [35] encoding. However, long short-term, BiLSTM and recurrent neural networks do not 
allow parallel computation [36], which results in long training times [37]. Convolutional neural 
network (CNN) has the ability to achieve parallel computation [38] and learn local dependencies [39]. 
For example, in the case of m6A-word2vec [40], a CNN is employed to identify m6A sites by extracting 
features based on word2vec. Similarly, Deeppromise [41] utilizes a CNN to identify m1A and m6A 
sites, extracting features through integrated enhanced nucleic acid composition [42,43], one-hot 
encoding, and RNA word embedding. However, these CNN structures primarily focus on contextual 
relationships among neighboring bases [44], without taking into account the dependencies over long 
distances within the sequence [45]. To address this limitation, DeepM6ASeq [46] combines the 
strengths of CNNs and BiLSTM by incorporating two layers of a CNN and one layer of BiLSTM to 
predict m6A sites. While this approach can be effective, it may extract redundant features that can 
interfere with prediction performance [47]. To quantify the degree of word-to-word dependency, the 
attention mechanism comes into play. By applying the attention mechanism, it becomes possible to 
capture the specific words that significantly impact the classification results. MultiRM [48], on the 
other hand, employs a BiLSTM layer and a Bahdanau attention [49] layer to identify various types of 
RNA modification sites and extract features based on word2vec encoding. In this case, Bahdanau 
attention calculates the attention weights for two words in different sentences. However, since Google 
introduced the transformer model in 2018, self-attention has been recognized as a special case of the 
attention mechanism [50,51]. The Transformer model, based entirely on self-attention mechanisms, 
has become the most widely used architecture in NLP representation learning, as demonstrated by its 
adoption in various applications [52]. Among them, Plant6mA [53], a transformer encoder, can be 
employed to identify whether the input sequence contains an m6A site. However, in the context of the 
transformer model, positional encoding plays a vital role, as other key components of the model are 
completely invariant to the order of the sequence. The original transformer employs absolute positional 
encoding, assigning each position a unique embedding vector [50]. By adding the positional 
embedding to the word embedding, the model affords valuable insights into the contextual 
representations of words at different positions. In addition to absolute positional encoding, Shaw et 
al. [54] and Raffel et al. [55]. have introduced relative positional encoding. This innovative technique 
incorporates carefully designed bias terms within the self-attention module, enabling the encoding of 
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the distance between any two positions. However, it has been demonstrated by Ke et al. [56] that the 
additional operation applied to positional encoding and word embeddings in absolute positional 
encoding can introduce mixed correlations and unnecessary randomness in the attention mechanism. 
This may limit the expressive power of the model, potentially impacting its performance. Furthermore, 
the feed-forward networks within the transformer structure struggle to effectively capture contextual 
information. Since position-wise feed-forward networks process each position independently, they lack 
the capacity to adequately capture global contextual information. Consequently, the model may face 
difficulties in accurately comprehending long-term dependencies or recognizing global patterns within 
the sequence.  

As m6A is the most prevalent modification observed in mammals, numerous methods have been 
developed to predict m6A sites in Saccharomyces cerevisiae. However, these methods [57–61] have 
primarily relied on a small dataset consisting of only 1307 m6A sites, as derived from base-resolution 
sequencing. Unfortunately, the limited size of this dataset has hindered the full utilization of the 
advantages offered by DL methods [62]. However, RMBase [63,64] and m6A-Atlas [65] respectively 
document over 60,000 low-resolution and 10,000 high-resolution m6A sites in Saccharomyces 
cerevisiae. Regarding the relatively novel m1A site prediction, it also encounters the above problems. 
Many methods for predicting m1A are primarily based on a smaller dataset containing only 707 human 
m1A sites with base-resolution sequencing. Correspondingly, RMBase has records of more than 2000 
low-resolution human m1A sites. Huang et al. [66] proposed WeakRM, the first weakly supervised 
learning framework for predicting RNA modifications from low-resolution epitranscriptome datasets, 
such as those generated from acRIP-seq and hMeRIP-seq. Astonishingly, these extensive datasets have 
not been fully leveraged for the development of computational methods in this context. In most 
scenarios, our primary concern revolves around achieving optimal performance on one task, which 
requires the training of a single model or an ensemble of models to perform our desired task, as well 
as the fine-tuning and optimization of models. Through this process, we continuously iterate and refine 
these models until they reach a point where their performance plateaus. While this approach often 
yields acceptable results, by focusing on a single task, it tends to overlook valuable information that 
could potentially enhance our desired metrics. Specifically, that information comes from the training 
signals derived from related tasks. By leveraging shared representations among these related tasks, we 
can empower our model to generalize better and improve its performance on the original task. 

The corresponding the number of supporting experiments or studies (NSES) [63] information for 
the methylation sites in RMBase may be the key information mentioned above that is ignored. 
Intuitively, the larger the number of experimental identifications of a methylation site, the greater our 
confidence in considering it as a genuine methylation site. Currently, the exploration of multi-task 
prediction for methylation sites incorporating the NSES information is still in its early stages. An 
example of such an algorithm is MTDeepM6A-2S [67], which entails the use of the NSES information 
in the construction of a multi-task model based on a combination of a CNN and BiLSTM deep 
framework. This model was designed for the prediction of base-resolution m6A sites. However, one 
limitation of the BiLSTM component lies in its sequential nature, where computations are executed 
step-by-step. As a result, the computational speed tends to be slower, and it becomes challenging to 
capture distant dependencies and global contextual information within the sequence. These factors can 
potentially limit the model’s ability to effectively understand long-range relationships and extract 
comprehensive contextual features. Therefore, it is essential to assign relatively large attention weights 
to the vital information. While MTDeepM6A-2S represents a significant advancement in incorporating 
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NSES information into the multi-task prediction of methylation sites, there is still room for further 
improvement. Addressing the limitations associated with the sequential computations of BiLSTM and 
enhancing the capture of remote dependencies and global contextual information remain important 
areas for future research in this field. 

To address the limitations of existing models, we drew inspiration from the multi-stage post-
calibration determinations used for high-resolution m6A site identification and the concept of multi-
task learning. As a result, we propose A multi-task transfer learning approach for base-resolution 
mRNA m6A site prediction based on an improved transformer (MTTLm6A). In the initial stage, known 
as the source domain-stage, by using the NSES information for multi-task learning, we have improved 
the performance of the model in terms of the ability to detect low-resolution m6A sites by optimizing 
the transformer model structure, specifically, the structure applies the double multi-head-attention 
(multi-head-attention+multi-head-attention) mechanism, which assigns relatively large attention 
weights to the critical information to intensify it. In the target domain-stage, considering the similarity 
between the classification tasks in both stages, we have transferred the weights of specific layers and 
deep networks from the model trained in the source domain-stage to the model in the target domain-
stage to predict m6A sites at base-resolution. Experimental results on Saccharomyces cerevisiae m6A 
and Homo sapiens m1A data demonstrate that MTTLm6A achieves area under the receiver operating 
characteristic (AUROC) values of 77.13% and 92.9%, outperforming the state-of-the-art models. At 
the same time, it shows that the model has strong generalization ability. To enhance user convenience, 
we have made a user-friendly web server for MTTLm6A publicly available at 
http://47.242.23.141/MTTLm6A/index.php. 

2. Materials and methods 

2.1. Benchmark datasets 

We extracted datasets of two major types of RNA modification sites, including m1A and m6A, 
from the RMBase v2.0. For the m1A sites, we collected low-resolution m1A sites of Homo sapiens 
from the extensive database RMBase v2.0, in which 2574 m1A sites have been recorded. The RNA 
segments with upstream and downstream nucleotides were obtained from the genome. Negative sites 
(non-modified nucleotides) were randomly selected from the unmodified bases of the same transcript 
containing the positive sites. The negative samples were down-sampled and cut short to match the 
number and size of the positive samples. To avoid overfitting, CD-HIT [68] was used with a threshold 
of 0.7 to remove redundant segments. The redundancies of positive and negative samples were 
removed. Thus, we got 1987 positive samples and 2249 negative samples. To obtain a balanced dataset, 
1987 negative samples were randomly selected to build the final dataset. For the second-stage model, 
we collected base-resolution m1A sites of Homo sapiens from DeepPromise [69] as positive samples. 
Consequently, 593 training samples and 114 test samples were obtained. Because the second-stage  
model is used to identify base-resolution m1A sites from low-resolution m1A sites, we used the low-
resolution m1A sites recorded in RMBase 2.0 as negative samples in the current study. Therefore, based 
on the above 1987 positive samples, 707 (593 + 114) positive samples were randomly assigned to the 
second-stage as negative samples; and the remaining samples were divided into training sets and 
independent test sets at a ratio of 4:1 for the first stage model.  

For the m6A sites, the dataset was derived from the low-resolution m6A sites previously described 
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by Wang et al. [67]. This dataset contains a total of 24,669 m6A sites. Within these segments, two 
distinct central motif patterns exist, i.e., AAC and GAC. Notably, the existing methods for predicting 
m6A sites in Saccharomyces cerevisiae were developed by using the Met2614 dataset [57], which only 
includes the GAC central motif. To ensure a comprehensive analysis, we divided the original RNA 
segments into two parts: one containing segments with the GAC central motif and the other containing 
segments with the AAC central motif. The number of segments with the AAC central motif was 13,732, 
while the number of segments with the GAC central motif was 10,937. The ratio of positive to negative 
samples in both datasets was 1:1. Subsequently, the datasets were randomly split into benchmark and 
independent test datasets at a 4:1 ratio. This resulted in the AAC benchmark dataset containing 10,985 
positive and negative samples, and the independent test dataset containing 2747 positive and negative 
samples. Similarly, the GAC benchmark dataset consisted of 8749 positive and negative samples, and 
the independent test dataset contained 2188 positive and negative samples. Referring to the 
experimental results in Chen’s [69] and Wang’s [67] paper, the sizes of the optimal window were 
respectively set as 101nt and 601nt for m1A and m6A sites. 

Furthermore, in RMBase v2.0, the NSES value associated with each m6A site recorded in the 
database was used as the target for a regression task. The NSES indicates the number of experimental 
confirmations for the corresponding adenine being modified [63]. In simpler terms, a higher NSES 
value suggests a higher level of certainty regarding the authenticity of the m6A modification at that 
specific site. The distribution of NSES within the m6A dataset is depicted in Figure 1. 

(a) (b) 

(c) (d) 

Figure 1. Histograms of NSES on the m6A datasets. (a) AAC_BM, (b) GAC_BM, (c) 
AAC_IND, (d) GAC_IND. 
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For the target domain-stage model, the positive samples were obtained from the base-resolution 
m6A sites of Saccharomyces cerevisiae from m6A-Atlas [65]; 4689 m6A sites were obtained, and they 
are all with GAC in the central motif. On the other hand, the negative samples were selected from the 
low-resolution m6A sites with GAC in the central motif, as recorded in RMBase v2.0. The ratio of 
positive to negative samples in both datasets was set at 1:1 to ensure a balanced training environment. 
Similar to the source domain-stage model, the datasets were randomly divided into benchmark datasets 
and independent test datasets at a 4:1 ratio. The statistics of the datasets are shown in Table 1. 

Table 1. Statistics of the benchmark and independent test datasets. 

Site Species Stage Datasets Window size Number of positive Number of negative

m6A Saccharomyces 

cerevisiae 

the source domain-stage AAC_BM 601 10,985 10,985 

 AAC_IND 601 2747 2747 

 GAC_BM 601 8749 8749 

 GAC_IND 601 2188 2188 

 the target domain-stage GAC_hr_BM 601 3751 3751 

 GAC_hr_IND 601 938 938 

m1A Homo sapiens the source domain-stage BM 101 1024 1024 

 IND 101 256 256 

 the target domain-stage hr_BM 101 593 593 

 hr_IND 101 114 114 

BM benchmark; IND independent 

2.2. Encoding of RNA segments 

In the development of highly accurate computational methods, the features of sequence data play 

a crucial role. Suppose that we have raw data  0 1

Mm

m
R x


 , where M is the number of sequences and 

each 0lmx    is an RNA sequence. Each entry 0, 1, 2,3, 4,...,m
ix i l   at position i takes its value 

from the alphabet  , , , ,A U C G N  from a sequence of constant length l0. 

One widely used and effective encoding method is one-hot encoding, which provides a simple 
yet powerful approach to representing the RNA sequences. In this method, the four nucleotides (A, U, 
C, G) are encoded as binary vectors: A = (1, 0, 0, 0), U = (0, 1, 0, 0), C = (0, 0, 1, 0), G = (0, 0, 0, 1), 

and N = (0, 0, 0, 0), representing unknown or ambiguous positions. After that,  0 1

Mm

m
R x


 , where 

each 0 4lmx    is an RNA sequence. By applying this encoding scheme, a sequence of 601 
nucleotides is transformed into a matrix of 601  4. 

2.3. Deep network and transfer learning 

We have devised a multi-task transfer learning approach for base-resolution mRNA m6A site 
prediction based on an improved transformer. The structure of the model is shown in Figure 2, and it 
is divided into the target source stage and the target domain-stage. The details are as follows. 

The conventional approaches employed for the prediction of RNA m6A sites have primarily relied 
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on single-task learning methods for classification. In contrast, we have adopted a novel multi-task 
architecture in the construction of the source domain model. Our aim is to enhance the classification 
results and realize a reasonable confidence value. To achieve this, we constructed a regression task by 
using the invaluable NSES information retrieved from RMBase v2.0. This regression task allows us to 
assign a confidence score to the classification results, thereby enhancing their interpretability and 
overall reliability. The feature encoding sequences were fed into the CNN layer in order to capture 
sequence patterns or motifs; the mathematical formulation of the CNN model is given below: 

1 1

,
0 0

( ) ( )
D N

f
jf dn j d n

d n

Conv R ReLU W R
 


 

                           (1) 

where R denotes the input matrix, f represents the index of the kernel, and j represents the index of the 
output position; each filter fW  is a D N weight matrix, where D  is the filter size, and N  is the 
input channels; 0 4

0, - +1l l d l l f     . 

Since convolution contains the order of the sequence, to avoid the occurrence of mixed 
correlations that may arise if the model is connected to a positional encoding layer in the transformer, 
we intentionally omit the positional encoding layer and directly link it to the multi-head-attention 
mechanism, the calculation of attention in this module can be divided into three steps. 

In the first step, linearly transform the output matrix X of the CNN layer and divide it into three 
matrices, as follows 

, ,q k vQ XW K XW V XW                             (2) 

where 0, - +1l dX l l f  ; then, three learnable matrices, ,  and q k vW W W  are used to project X into 

different spaces. Usually, the matrix size of each of the three matrices is kd d , where dk is a hyper-
parameter. 

In the second step, the scaled dot product attention can be calculated by using the following 
equations: 

,
T

m n m nA Q K                                   (3) 

( , , ) ( )
k

A
Attention Q K V softmax V

d
                       (4) 

where mQ is the query vector for the m-th token and nK  is the key vector representation of the nth 

token. The Softmax function is applied along the last dimension. Instead of using one group of 
, ,q k vW W W , using several groups will enhance the ability of self-attention. 

In the third step, when several groups are used, it is called multi-head self-attention; the 
calculation can be formulated as follows: 

           , ,h h h h h hq k vQ XW K XW V XW                    (5) 

       ( , , )h h h hhead Attention Q K V                     (6) 

     1 2( , , ) ( , , ..., )i oMultiHead Q K V Concat head head head W       (7) 

where i is the number of heads and the superscript h represents the head index. Usually dk  n = d, 
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which means that the output of      1 2, ,..., ihead head head 
    will be of size l d  . Also note that

o d dW  , which is a learnable parameter. 
Furthermore, to more effectively capture contextual information, we deliberately replaced the 

feed-forward layer in the transformer structure with the multi-head-attention mechanism layer. This 
choice empowers the model to assign greater attention weight to key information, thereby reinforcing 
its significance. At the heart of the source domain-stage lies the primary objective of classifying low-
resolution m6A sites and accurately distinguishing them from non-m6A sites. This pivotal step forms 
the foundation for analyses and investigations in the subsequent target domain-stage. 

Building upon the multi-task model training obtained in the source domain-stage, we progress to 
the target domain-stage. In this stage, we employ a transfer learning strategy to train the target domain-
stage model and focus on identifying both base-resolution m6A sites and low-resolution m6A sites. 

2.3.1. Deep learning for building the source domain-stage model 

During the source domain-stage, our model takes RNA segment sequences and the NSES 
information as input; the RNA segment sequences are then transformed into numerical matrices by the 
one-hot encoding process, as shown in Figure 2. These numerical matrices are then fed into the deep 
network, which consists of a CNN and double-multi-head-attention, referred to as CNN+MM. 

The CNN uses a 1D convolutional layer to extract local features from the input matrices. To 
optimize the hyperparameters, we employed a grid-search strategy. In this stage, we used 16 
convolutional kernels, each with a size of 10. Subsequently, the output of the CNN stage is normalized 
with a group normalization layer, where the number of groups was set to 4. The multi-head-attention 
stage consists of two multi-head-attention networks. One attention mechanism has two heads, with 
each head having a size of 8 (d_model = 8). The other attention mechanism has four heads, with each 
head having a size of 16 (d_model = 16). To promote effective information flow, we incorporated a 
dropout layer and a residual connection around each of the two sub-layers. The dropout rate was set at 
0.1 to reduce overfitting, and layer normalization was applied subsequently. Following the multi-head-
attention stage, an AveragePooling1D layer is applied to reduce the dimensionality of the extracted 
features. The kernel size of the 1D pooling layer was set to 15. Subsequently, the data were flattened 
into a 1D form by using a flattening layer. This is followed by a dropout layer and a fully connected 
layer. The dropout rate was set at 0.6, and the fully connected layer was set to comprise 64 neurons 
activated by the exponential linear unit (ELU) function. 

The output layer of our model consisted of two outputs, catering to the classification and 
regression tasks, respectively. The estimated loss is made up of classification loss and regression loss. 
The following calculation is then used to get the total loss: 

multitask classification regressionloss loss loss                     (8) 

where classificationloss  is the classification loss, regressionloss  is the regression loss, and   can be set 

arbitrarily according to specific circumstances. For the classification task, the Softmax activation 
function was employed, and the categorical cross-entropy was specified as the loss function. For the 
regression task, the activation function ELU was used, with the log-cosh employed as the loss function. 
Therefore, the overall loss function for the entire multi-task model can be expressed as follows: 

1 1

1
( log (1 ) log(1 )) log(cosh( ))

N N
class class class class regression regression

multitask i i i i i i
i i

loss y p y p y p
N


 

           (9) 
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Figure 2. The diagram of the model. The source domain-stage model is used to 
discriminate low-resolution m6A sites from non-m6A sites, and the target domain-stage 
model is used to identify high-resolution m6A sites from low-resolution m6A sites. 
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where N denotes the total number of samples in the dataset and class
iy  and class

ip  denote the true label 

and prediction probability of the ith sample of the classification task, respectively. Similarly, regression
iy  

and regression
ip  denoted the true label and prediction probability of the ith sample of the regression task, 

respectively. The total loss function is optimized by using a grid search with the weight parameter   
set to 0.6. This loss function leverages the label information from the regression task to potentially 
enhance the prediction accuracy of the classification task. 

Finally, the stochastic gradient descent (SGD) optimization algorithm is used with the momentum 
set to 0.95 and a learning rate of 0.01. SGD is a widely adopted optimization algorithm known for its 
effectiveness in iteratively adjusting the model's parameters during the training process to minimize 
the loss function. 

2.3.2. Transfer learning for the construction of the target domain-stage model 

To construct the target domain-stage model, we used transfer learning by transferring the feature 
extraction layers from the source domain-stage model. This approach was motivated by the similarity 
between the classification tasks in both stages. 

During the transfer learning process, we initialized the parameters of the target domain-stage 
model by using the feature extraction layers from the source domain-stage model. This initialization 
includes all layers except the output layer, ensuring that the model starts with valuable learned 
representations. By inheriting the corresponding weights, we have provided a strong foundation for 
the target domain model. 

Subsequently, we optimized all of the weights of the target domain-stage model during training 
without freezing any layers. This allowed the model to adapt and refine its parameters based on the 
target domain’s specific characteristics and data. By performing transfer learning in this way, we aimed 
to capitalize on the knowledge and patterns learned in the source domain, ultimately enhancing the 
performance and generalization of the model on the target domain’s classification tasks. 

2.3.3. Evaluation indicators 

In this study, we comprehensively evaluated the performance of our prediction model by using 
eight commonly used classification metrics. These metrics include the accuracy (Acc), sensitivity 
(Sen), precision (Pre), Matthews correlation coefficient (MCC), specificity (Sp), and F1 score (F1). 
The formulas for these metrics are respectively as follows: 
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Additionally, we used the AUROC curve and the area under the precision-recall curve (AUPRC) 
to visually assess the overall performance of our model. These metrics provide insights into the 
model’s ability to discriminate between different classes and the precision-recall trade-off, respectively. 
Time (s) indicates the training time of the model per epoch. By considering both the quantitative 
metrics and the visual evaluation, we gain a comprehensive understanding of the predictive capabilities 
of our model. 

To evaluate the regression task, we used the Pearson correlation coefficient (PCC) as the index. 
The PCC measures the similarity between the predicted target values (X) and the actual target values 
(Y) of the samples. It is calculated as follows: 

cov( , )

X Y

X Y
PCC

 
                             (16) 

Here, cov( , )X Y   represents the covariance between X and Y, and X   and Y   represent the 

standard deviations of X and Y, respectively. The PCC ranges from –1 to 1, where a value of 0 indicates 
no correlation. 

3. Results 

3.1. Comparison with other different learning models based on benchmark dataset 

By applying different values of the loss weight   of the regression task (i.e.,   = 
[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]), various models, including CNN, CNN+BiLSTM (CN-
N+BiL), CNN+transformer (CNN+TF), CNN+multi-head-attention+feed-forward (CNN+MF), and 
CNN+multi-head-attention+multi-head-attention (CNN+MM) models, were evaluated by using 5-fold 
cross-validation based on a benchmark dataset. Among them, the CNN+MF model directly connects 
the multi-head-attention mechanism layer and the feed-forward layer without connecting the positional 
encoding layer. On the other hand, the CNN+MM model replaces the feed-forward layer with the 
multi-head-attention mechanism layer based on the CNN+MF architecture. The optimal performance 
and the corresponding loss weight value of each model are shown in Table 2 and Figure 3. The results 
show that the CNN+MM model achieved the highest AUROC and AUPRC scores for both GAC_BM 
and AAC_BM datasets. The specific analysis is as follows: 

First, comparing CNN+TF with the CNN, the AUROC scores of CNN+TF were 1.93% and 2.07% 
higher on AAC_BM and GAC_BM, respectively, and the AUPRC scores of CNN+TF were 1.53% 
and 1.72% higher than the values for the CNN. These findings highlight the ability of the CNN+TF 
model to capture deep semantics from RNA sequences, surpassing the performance of the CNN alone. 

Additionally, a comparison was made between the CNN+MF and CNN+TF models. The AUROC 
scores of CNN+MF were 0.68% and 0.32% higher than those for the CNN+TF on AAC_BM and 
GAC_BM, respectively, and the AUPRC scores of CNN+MF were 0.92% and 0.34% higher on 
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AAC_BM and GAC_BM, respectively. This reason may be attributed to the mixed correlations 
between positional encoding and word embeddings in the CNN+TF model, which introduce 
unnecessary randomness to the attention mechanism and limit the model’s expressiveness. Therefore, 
CNN+MF affords performance improvement, since the CNN+MF model directly connects the multi-
head-attention mechanism layer without connecting the positional encoding layer. 

Table 2. Performance of different models trained by using their respective best value  
in a 5-fold cross-validation test. Values in bold indicate the best performance. 

Datasets Classifiers AUROC ACC 

(%) 

Sen 

(%) 

Pre 

(%) 

MCC 

(%) 

Spe 

(%) 

F-1 

(%) 

AUPRC PCC Time 

(s) 

AAC_BM CNN (  = 1) 0.8507 77.64 78.58 77.13 55.40 76.69 77.85 0.8382 0.5844 1 

CNN+BiL (  

= 1) 

0.8767 79.97 82.61 78.47 60.10 77.33 80.49 0.8607 0.6137 136 

CNN+TF (  

= 1) 

0.8700 79.01 84.65 76.08 58.54 73.38 80.13 0.8535 0.5986 4 

CNN+MF (  

= 1) 

0.8768 79.75 83.99 77.43 59.77 75.51 80.58 0.8627 0.6040 4 

CNN+MM (  

= 0.6) 

0.8793 79.57 80.94 79.06 59.98 78.56 79.99 0.8636 0.6140 25 

GAC_BM CNN (  = 

0.4) 

0.8506 76.95 77.24 76.80 54.66 76.66 77.02 0.8394 0.5923 1 

CNN+BiL (  

= 1) 

0.8742 79.61 85.46 76.51 59.71 73.75 80.74 0.8595 0.6199 108 

CNN+TF (  

= 0.4) 

0.8713 79.46 80.94 78.61 59.04 77.97 79.76 0.8566 0.6005 4 

CNN+MF (  

= 1) 

0.8745 79.61 81.19 78.70 59.35 78.03 79.93 0.8600 0.6112 4 

CNN+MM (  

= 0.6) 

0.8772 79.06 78.69 79.28 58.48 79.43 79.80 0.8635 0.6156 20 

Times: Running time per epoch for model training 

Third, the study compared the performance of the CNN+MM and CNN+MF models. The 
AUROC scores of CNN+MM were 0.25% and 0.27% higher than the CNN+MF on AAC_BM and 
GAC_BM, respectively, and the AUPRC scores of CNN+MM were 0.09% and 0.35% higher on 
AAC_BM and GAC_BM, respectively. This disparity could be attributed to the ineffective capture of 
contextual information by the feed-forward networks in the transformer structure, as feed-forward 
networks lack the ability to effectively capture global contextual information, resulting in a less 
accurate understanding of long-term dependencies or global patterns in the sequence. The CNN+MM 
model replaces the feed-forward layer with the multi-head-attention mechanism layer based on the 
CNN+MF architecture. This modification allows the model to capture more complex and fine-grained 
features within the input sequence. 

Fourth, a comparison was made between the CNN+MM and CNN+BiL models. The AUROC 
scores of CNN+MM were 0.26% and 0.3% higher than those for CNN+BiL on AAC_BM and 
GAC_BM, respectively, while the AUPRC scores of CNN+MM were 0.29% and 0.39% higher on 
AAC_BM and GAC_BM, respectively. The improved performance of CNN+MM may be attributed 


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to the inclusion of multi-head-attention, which excels at capturing long-range dependencies and global 
contextual information. This allows the model to better understand relationships and important 
semantic connections within the input sequence. Furthermore, the experimental results demonstrate 
that CNN+BiL has a significantly longer training time per epoch than CNN+MM; particularly, it is 
five times longer than that of CNN+MM, likely due to the parallel computation of the CNN and multi-
head-attention, which enables simultaneous processing of multiple input elements or subtasks. In 
contrast, BiLSTM’s sequential nature, where computations are performed step-by-step, may result in 
slower computations than parallelizable operations. 

Finally, in the case of the regression task, there is little difference between CNN+MM and 
CNN+BiL; specifically, the PCCs of CNN+MM and CNN+BiL differ by 0.03 and –0.43 on AAC_BM 
and GAC_BM, respectively. Interestingly, although the loss weight ratio between the classification 
task and the regression task of the CNN+MM model was 1:0.6, it had little effect on the correlation 
coefficient of the regression. The reason may be that the CNN+MM model has a more comprehensive 
and accurate understanding of the underlying data. 

In summary, the CNN+MM classifier effectively captures sequence details on the AAC_BM 
and GAC_BM datasets, outperforming other models in terms of AUROC and AUPRC on the 
classification task. 

 
(a)                                  (b) 

 
(c)                                 (d) 

Figure 3. Performance of the different models through 5-fold cross-validation. (a) 
AUROC for AAC_BM, (b) AUPRC for AAC_BM, (c)AUROC for GAC_BM, (d) 
AUPRC for GAC_BM. 
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3.2. Comparison with other different learning models based on independent dataset 

Furthermore, this section presents a comparison of prediction performance between different 
models in single-task and multi-task settings. The experimental setup involved encoding sequences 
using one-hot encoding and applying the CNN, CNN+BiL, CNN+TF, CNN+MF, and CNN+MM 
models to predict modification sites based on the independent dataset. The ratio of the classification 
loss to the regression loss affects the performance of the models, which is one of the hyper parameters. 
Only the training sets can be used while choosing the hyper parameters. Therefore, when evaluating 
the performance of various models based on independent test sets, the models must use the optimal 
loss weight value for each model as obtained from the training set; the values were obtained as shown 
in the second column of Table 2. 

As shown in Figure 4 and Table 3, except for the CNN+BiL model, the AUROC and the AUPRC 
scores for the multi-task model based on the two datasets were better than those for the single-task 
model. In addition, the multi-task model can also calculate the PCC at the same time, so the multi-task 
model is more efficient than the single-task model. 

The comparison results, demonstrate that CNN+MM, operating under the multi-tasking 
framework, outperforms other models across various evaluation metrics such as the AUROC, AUPRC, 
PCC, ACC, and MCC. Specifically, for AAC_IND and GAC_IND sites, CNN+MM achieved AUROC 
values of 0.8888 and 0.888, respectively, exhibiting better performance than other methods. In contrast, 
CNN+BiL did not incorporate the multi-head-attention mechanism, potentially limiting their ability to 
capture global contextual information as compared to CNN+MM. CNN+MF and CNN+TF contain 
the multi-head-attention layer. However, they both contain the feed-forward layer, which lacks the 
ability to effectively capture deeper global information compared to multi-head-attention layers, 
resulting in a less accurate understanding of long-term dependencies or global patterns in the sequence. 

3.3. Comparison with other different learning models in the target domain-stage 

Considering the similarity between the two-stage classification tasks, we chose to leverage the 
feature extraction layer of the source domain-stage model to construct the target domain-stage model. 
Specifically, in the transfer learning process, we initialize the parameters of the target domain-stage 
model with the feature extraction layer (excluding the output layer) and the corresponding weights of 
the source domain-stage model. During training, we optimize all of the weights of the target domain-
stage model without freezing them. 

To evaluate the effectiveness of transfer learning compared to training from scratch, we also 
trained the same network without using the weights obtained from the source domain-stage model. 
Furthermore, to assess the performance of multi-task transfer learning against single-task fine-tuning, 
we also trained the same network indirectly through single-task transfer learning. We conducted three 
sets of comparative experiments on the GAC_hr_BM datasets, and the results of these experiments are 
shown in Table 3. 
  



287 

Mathematical Biosciences and Engineering           Volume 21, Issue 1, 272–299. 

Table 3. Evaluation results for the different models under single-task and multi-task 
conditions. Values in bold indicate the best performance. 

Datasets Task 
type 

Classifiers AUROC ACC 

(%) 

Sen 

(%) 

Pre 

(%) 

MCC 

(%) 

Spe 

(%) 

F-1 

(%) 

AUPRC PCC 

AAC 

_IND 

Single- 

task 

CNN 0.8579 78.63 81.03 77.32 57.32 76.23 79.13 0.8510  

CNN+BiL 0.8829 80.04 79.90 80.13 60.09 80.19 80.01 0.8737  

CNN+TF 0.8736 78.54 76.55 79.71 57.12 80.52 78.10 0.8642  

CNN+MF 0.8763 78.97 77.72 79.72 57.96 80.23 78.71 0.8657  

CNN+MM 0.8820 80.06 83.10 78.34 60.23 77.03 80.65 0.8724  

Multi- 

task 

CNN (  = 1) 0.8581 78.55 81.1 77.17 57.18 76.01 79.09 0.8516 0.5946

CNN+BiL (  

= 1) 

0.8801 79.75 79.1 80.15 59.51 80.41 79.62 0.8682 0.6042

CNN+TF (  

= 1) 

0.8768 80.44 83.1 78.91 60.97 77.79 80.95 0.8666 0.613 

CNN+MF (  

= 1) 

0.8816 80.12 89.35 75.42 61.29 70.88 81.80 0.8697 0.6053

CNN+MM (  

= 0.6) 

0.8888 80.97 83.72 79.36 62.03 78.23 81.48 0.8775 0.6219

GAC 

_IND 

Single- 

task 

CNN 0.8553 77.92 84.78 74.55 56.37 71.06 79.33 0.8500  

CNN+BiL 0.8767 79.97 82.45 78.55 60.01 77.48 80.45 0.8667  

CNN+TF 0.8699 77.26 92.94 70.75 57.41 61.58 80.34 0.8589  

CNN+MF 0.8635 73.29 95.67 66.09 52.09 50.91 78.18 0.8509  

CNN+MM 0.8761 80.20 84.23 77.94 60.59 76.16 80.96 0.8660  

Multi- 

task 

CNN (  = 

0.4) 

0.8560 78.28 83.45 75.63 56.87 73.11 79.35 0.8507 0.5935

CNN+BiL (  

= 1) 

0.8729 78.87 79.63 78.45 57.75 78.12 79.03 0.8665 0.6124

CNN+TF (  

= 0.4) 

0.8734 79.58 86.69 75.90 59.77 72.47 80.94 0.8622 0.6029

CNN+MF (  

= 1) 

0.8795 80.20 83.59 78.28 60.53 76.80 80.85 0.8698 0.6202

CNN+MM (  

= 0.6) 

0.8880 81.11 83.23 79.84 62.27 78.99 81.50 0.8783 0.6343
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(a)  (b)  (c)  

 

(d)  (e)  (f)  

  

(g)                           (h) 

Figure 4. Performance results for the different models under single-task and multi-task 
conditions. (a) AUROC_single_task for AAC_IND, (b) AUPRC_single_task for 
AAC_IND, (c) AUROC_multi_task for AAC_IND, (d) AUPRC_multi_task for AAC_IND, 
(e) AUROC_single_task for GAC_IND, (f) AUPRC_single_task for GAC_IND, (g) 
AUROC_multi_task for GAC_IND, (h) AUPRC_multi_task for GAC_ IND. 
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Figure 5. Performance results for the different models in terms 5-fold cross-validation 
based on the GAC_hr_BM dataset. 

Table 4. Evaluation results for the different models from the perspective of 5-fold cross-
validation based on the GAC_hr_BM dataset. 

Classifiers AUROC ACC (%) Sen (%) Pre (%) MCC (%) Spe (%) F-1 (%) AUPRC 

MTTLm6A direct 0.6750 62.33 61.69 62.49 24.81 62.97 62.09 0.6576 

MTTLm6A single 0.6957 63.74 60.28 64.77 27.69 67.21 62.44 0.6871 

MTTLm6A 0.7043 64.40 65.53 64.08 28.94 63.26 64.80 0.6938 

MTTLm6Adirect refers to the model trained directly without transfer learning; MTTLm6Asingle indicates the model trained indirectly through 

single-task transfer learning. 

As shown in Figure 5 and Table 4, the AUROC and AUPRC values for MTTLm6Asingle were 2.07% 
and 2.92% higher than those for MTTLm6Adirect. This improvement suggests that transfer learning 
enhances the model’s performance relative to training without transfer learning. The reason for this 
improvement is that transfer learning allows the model to leverage knowledge gained from related 
tasks or domains, allowing it to generalize well to unseen data. Furthermore, the performance of the 
model trained through multi-task transfer learning was significantly better than that of the model 
trained through single-task transfer learning. Specifically, the AUROC and AUPRC values for 
MTTLm6A were 0.86% and 0.68% higher than those for MTTLm6Asingle, respectively. This result can 
be attributed to the complementary information provided by the combination of classification and 
regression tasks. While the classification task focuses on predicting discrete class labels, the regression 
task aims to estimate continuous values. By jointly training the model on both tasks, MTTLm6A can 
effectively utilize the complementary information from both tasks to improve its understanding of the 
data and make more accurate predictions. 

3.4. Comparison with state-of-the-art approaches 

Finally, MTTLm6A was compared with other state-of-the-art approaches on the GAC_hr_IND 
datasets, including m6A-word2vec, MultiRM, and MTDeepM6A-2S. To make the comparison more 
convincing, we included the MTTLm6Asingle model in the evaluation. 

As shown in Figure 6 and Table 5, the AUROC and AUPRC values for MTTLm6A were higher 
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than those obtained for the other approaches. In particular, compared to MTDeepM6A-2S, the second-
best performing model utilizing multi-task transfer learning, MTTLm6A, demonstrated an 
improvement of 0.37% in AUROC and 0.58% in AUPRC. This enhancement can be attributed to 
MTTLm6A's ability to capture long-range dependencies and global contextual information in the input 
sequence compared to MTDeepM6A-2S. 

Furthermore, the AUROC and AUPRC values for MTTLm6A were 1.14% and 0.37% higher than 
those for MTTLm6Asingle, respectively. The incorporation of multi-task learning in the MTTLm6A 
model allows for joint training on both classification and regression tasks. This integration allows the 
model to learn shared representations and extract more informative features that benefit both tasks. By 
collectively optimizing these tasks, the model achieves improved overall performance. In contrast, 
MTTLm6Asingle focuses solely on the classification task, potentially limiting its ability to capture the 
full accuracy of the data. 

Additionally, MTTLm6A surpassed MultiRM by a notable margin, exhibiting AUROC and 
AUPRC improvements of 7.66% and 8.24%, respectively. This highlights the effectiveness of 
MTTLm6A in addressing the challenges posed by small sample classification data modeling problems. 

 

Figure 6. Performance of MTTLm6A and other models based on the GAC_hr_IND dataset. 

Table 5. Comparison of the performance of different models based on the GAC_hr_IND dataset. 

Classifiers AUROC ACC (%) Sen (%) Precision (%) MCC (%) Spe (%) F-1 (%) AUPRC 

m6A-word2vec 0.6008 57.78 58.96 57.60 15.57 48.83 58.27 0.586 

MultiRM 0.6947 63.75 69.08 62.43 27.66 44.67 65.59 0.6922 

MTTLm6Asingle 0.7599 69.10 67.56 69.71 38.23 70.65 68.62 0.7709 

MTDeepM6A-2S 0.7676 70.44 66.81 72.04 40.98 74.07 69.32 0.7688 

MTTLm6A 0.7713 69.85 74.81 68.06 39.90 64.89 71.28  0.7746 

In order to evaluate the reliability of the model, the m6A-word2vec, MultiRM, MTTLm6Asingle, 
MTDeepM6A-2S, and MTTLm6A models were applied for 100 replicate experiments on the same 
independent test sets of m6A, respectively. After 100 replicates, we tested the statistical significance of 
AUROC values between different tools by using the student’s t-test [70]. The results are as shown in 
Table 6. 



291 

Mathematical Biosciences and Engineering           Volume 21, Issue 1, 272–299. 

Table 6. Statistically significant correlation matrix for the difference in the performance 
between the five selected classifiers. 

Modification type Classifiers Classifiers  

m6A-word2vec MultiRM MTTLm6Asingl MTDeepM6A-2S MTTLm6A 

m6A m6A-word2vec      

MultiRM 0     

MTTLm6Asingle 0 0    

MTDeepM6A-2S 0 0 0   

MTTLm6A 0 0 0 0  

3.5. Assessing model generalization ability 

In order to evaluate the generalization ability of the MTTLm6A model, MTTLm6A was compared 
and analyzed against m6A-word2vec, MultiRM, MTTLm6Asingle and MTDeepM6A-2S by using the 
training set and independent set of m1A sites of Homo sapiens. As shown in Table 7, the AUROC and 
AUPRC values for MTTLm6A were higher than those obtained for other approaches. In particular, 
compared to MTTLm6Asingle, the second-best performing model, MTTLm6A demonstrated an 
improvement of 1.47% in AUROC and 0.63% in AUPRC. This shows that multi-task learning is 
effective in improving model performance. In summary, the MTTLm6A model has good versatility in 
predicting different methylation sites in different species. 

Table 7. Comparison of the performance of different models based on the hr_IND dataset. 

Classifiers AUROC ACC (%) Sen (%) Precision (%) MCC (%) Spe (%) F-1 (%) AUPRC 

m6A-word2vec 0.9095 91.67 100.00 85.71 84.52 83.33 92.31 0.8722 

MultiRM 0.9126 91.23 99.12 85.61 83.50 83.33 91.87 0.8818 

MTTLm6Asingle 0.9143 90.79 98.25 85.50 82.50 83.33 91.43 0.8841 

MTDeepM6A-2S 0.894 91.23 99.12 85.61 83.50 83.33 91.87 0.8509 

MTTLm6A 0.929 91.23 99.12 85.61 83.50 83.33 91.87 0.8904 

3.6. Web server 

We have developed a user-friendly web server, accessible at 
http://47.242.23.141/MTTLm6A/index.php, to facilitate the utilization of the MTTLm6A model as a 
tool for predicting the base-resolution m6A sites. Simply type or paste the RNA sequence of interest 
into the designated input area. To receive the prediction results, kindly provide your email address in 
the corresponding box and click the “submit” button. After a brief calculation period, the prediction 
results will be presented in a clear and organized table format. This intuitive web server provides 
researchers with an efficient and convenient platform to leverage the MTTLm6A model to quickly 
predict the base-resolution m6A site. 
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4. Discussion 

To assess the impact of different loss weights on the source domain-stage model, we conducted 
an optimization process by using the grid search method with AAC_BM and GAC_BM datasets. 
Through this process, we identified an optimal weight ratio of 1:0.6. The evaluation metrics, as 
displayed in Table 8, validate the effectiveness of this weight configuration. This finding aligns with 
the conclusions drawn by Kendall et al. [71], who emphasized the importance of relative weighting in 
multi-task learning scenarios. Their research demonstrated that numerous DL applications benefit from 
incorporating multiple regression and classification objectives, but the performance of such systems 
relies heavily on the appropriate weighting assigned to each task's loss function. By determining the 
optimal loss weight ratio for our source domain-stage model, we aimed to enhance its predictive 
capabilities and ensure a balanced influence of the classification and regression tasks. This 
optimization process allows us to fully leverage the benefits of multi-task learning and maximize the 
performance of our model. 

Table 8. Performance of models trained by using different loss weights in a 5-fold cross-
validation test. Values in bold indicate the best performance. 

Datasets Weight ratio AUROC ACC (%) Sen (%) Pre (%) MCC (%) Spe (%) F-1 (%) AUPRC PCC 

AAC_BM 1:0.1 0.8753  79.3 80.59 78.56 59.05 78.01 79.56 0.8579 0.5894 

1:0.2 0.8745  77.95 74.85 79.80 56.9 81.05 77.25 0.8586 0.6019 

1:0.3 0.8788 78.74 77.67 79.36 58.38 79.81 78.51 0.8615 0.6093 

1:0.4 0.8734 76.56 70.76 80.05 54.77 82.36 75.12 0.8574 0.6126 

1:0.5 0.8745 78.16 77.85 78.34 57.62 78.48 78.10 0.8590 0.6078 

1:0.6 0.8793 79.57 80.94 79.06 59.98 78.56 79.99 0.8636 0.614 

1:0.7 0.8754 77.6 73.8 79.86 56.65 81.39 76.71 0.8587 0.6108 

1:0.8 0.8753 78.04 76.7 78.81 56.98 79.38 77.74 0.8592 0.6218 

1:0.9 0.8749 77.85 75.95 78.94 56.95 79.74 77.42 0.8584 0.6124 

1:1.0 0.8756 78.66 77.96 79.06 58.11 79.36 78.51 0.8595 0.5996 

GAC_BM 1:0.1 0.8746 79.62 81.97 78.30 59.59 77.28 80.09 0.8584 0.6011 

1:0.2 0.8771 79.65 80.76 78.88 59.54 77.54 80.29 0.8612 0.6033 

1:0.3 0.8761 79.58 80.27 79.18 59.56 78.9 79.72  0.8627 0.6095 

1:0.4 0.8764 79.21 83.78 76.77 59.31 74.65 80.12 0.8634 0.6144  

1:0.5 0.8746 78.62 82.57 76.52 58.25 74.67 79.43 0.8605 0.6136 

1:0.6 0.8772 79.06 78.69 79.28 58.48 79.43 79.80 0.8635 0.6156 

1:0.7 0.8733 78.8 77.89 79.33 57.94 79.71 78.61 0.8584 0.6187 

1:0.8 0.8753 79.1 81.77 77.63 58.93 76.44 79.65 0.8589 0.6150 

1:0.9 0.8766 79.60 80.99 78.8 59.39 78.21 79.88 0.8613 0.6218 

1:1.0 0.8756 78.66 77.96 79.06 58.11 79.36 78.51 0.8595 0.6220 

To evaluate the effectiveness of our multi-task learning architecture, we conducted two separate 
experiments: single-task learning for the classification task and single-task learning for the regression 
task. Both experiments used the CNN+MM network. Table 9 presents the cross-validation results of 
the single-task classification model and the multi-task model based on two different benchmark 
datasets. Our findings reveal that, in the case of multi-task learning, the AUROC values for the 
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classification task were 0.8794 and 0.8772 for AAC_BM and GAC_BM, respectively. In comparison, 
the AUROC values for the classification task in single-task learning were 0.8774 and 0.8769 for 
AAC_BM and GAC_BM, respectively. Therefore, the performance of the multi-task classification 
model surpassed that of the single-task classification model for both AAC_BM and GAC_BM. The 
reason may be that multiple related tasks help to regularize each other and a more robust representation 
can be learned; thus, multi-task learning is usually believed to improve network performance. These 
results align with a study by Ruder [72], which emphasizes that multi-task learning allows the model 
to focus its attention on relevant features, as other tasks provide additional evidence for determining 
the relevance or irrelevance of those features. By adopting a multi-task learning approach, our model 
benefits from the shared representation and complementary information across tasks, leading to 
improved classification performance. Specifically, the model adds NSES information, which helps 
identify poor-quality methylation sites. These findings underscore the effectiveness of our multi-task 
learning architecture in enhancing model performance and feature relevance assessment. 

Table 9. Performance comparison between the single-task classification models and the 
multi-task classification models based on AAC_BM, and GAC_BM, respectively. Values 
in bold indicate the best performance. 

Datasets task (Weight-ratio) AUROC ACC (%) Sen (%) Pre (%) MCC (%) Spe (%) F-1 (%) AUPRC

AAC_BM single-task 0.8774 78 74.71 79.97 57.33 81.29 77.25 0.8613 

multi-task 

(1:0.6) 

0.8794 79.57 80.94 79.06 59.98 78.56 79.99 0.8636 

GAC_BM single-task 0.8769 79.76 79.61 79.85 59.7 79.91 79.73 0.8613 

multi-task 

(1:0.6) 

0.8772 79.06 78.69 79.28 58.48 79.43 79.80 0.8635 

Table 10 presents the PCC results for the cross-validation of the single-task regression model and 
the multi-task model on AAC_BM and GAC_BM. The results indicate that the multi-task model slightly 
outperforms the single-task regression model on both datasets. Specifically, the correlation coefficients 
for the regression task were 0.614 and 0.6156 for multi-task learning, while they were 0.6042 and 0.6 for 
single-task learning for AAC_BM and GAC_BM, respectively. Interestingly, despite the loss weight 
ratio between the classification and regression tasks of the CNN+MM model in the source domain-
stage being 1:0.6, the impact on the correlation coefficients of the regressions is minimal. This suggests 
that the improved performance of our multi-task model relative to the single-task regression model can 
be attributed to several factors, including the utilization of complementary information, shared feature 
representation, regularization techniques, and knowledge transfer between tasks. By leveraging multi-
task learning, our model benefits from the synergistic effects of multiple tasks, leading to enhanced 
PCCs. This highlights the advantages of incorporating related tasks and sharing representations, 
ultimately resulting in a more comprehensive and accurate understanding of the underlying data. By 
considering the interplay between tasks and the complementary nature of their information, we can 
leverage multi-task learning to further improve the performance of our model and achieve superior 
results across a range of metrics. 
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Table 10. PCC results for cross-validation of single-task regression model and multi-task 
model on AAC_BM and GAC_BM. Values in bold indicate the best performance. 

Datasets PCC for multi-task regression models PCC for single-task regression models 

AAC_BM 0.614 0.6042  

GAC_BM 0.6156 0.6 

In summary, our results demonstrate that the multi-task learning approach outperforms single-
task learning on all four tasks on both the AAC_BM and GAC_BM datasets. Furthermore, the multi-
task learning framework offers an added advantage of increased efficiency compared to the single-task 
model. By simultaneously addressing multiple tasks, the model can accomplish more with fewer 
resources and reduced computational overhead. In conclusion, our findings highlight the superiority 
of the multi-task model over the single-task model. 

5. Conclusions 

The contribution of this paper lies in the development of a novel predictor called MTTLm6A, 
which utilizes a multi-task learning and transfer learning approach based on an improved transformer 
architecture to identify base-resolution mRNA m6A sites. Experimental results on Saccharomyces 
cerevisiae m6A and Homo sapiens m1A data demonstrate that MTTLm6A respectively achieved 
AUROC values of 77.13% and 92.9%, outperforming the state-of-the-art models. At the same time, it 
shows that the model has strong generalization ability. But the model has a limitation, which is that 
source domain-stage training requires samples with NSES information, which is a necessary condition 
for multi-task learning. 

Furthermore, considering that multi-task learning tends to benefit from an increasing number of 
tasks, we intend to delve deeper into the characteristics of methylation parameters. By incorporating 
more effective tasks into the learning framework, we will extract more base-resolution methylation 
sequences from low-resolution methylation sequences of different species by using the MTTLm6A 
model for scientific research. 

In conclusion, the development of MTTLm6A, its promising performance, and future research 
directions contribute to the advancement of computational methods for the identification of methylation 
sites, demonstrating its potential for broader application and further refinement in the future. 
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