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1. Introduction

The predator-prey model is one of the hotspots in biomathematics. For example, Yavuz and Sene
[1] considered a fractional predator-prey model with harvesting rate, Chatterjee and Pal [2] studied
a predator-prey model for the optimal control of fish harvesting through the imposition of a tax and
Ghosh et al. [3] presented a three-component model consisting of one prey and two predator species
using imprecise biological parameters as interval numbers and applied a functional parametric form
in the proposed prey-predator system. Because of its important role in the ecosystem, the food chain
model has been extensively studied [4-8]. Specifically, the classical four-species food chain model can
be expressed as follows:

dox; (1) = x1(7)
dxa (1) = x2(2)
dx3(7) = x3(2)
dxs(7) = x4(2)

ri —anxi(t) — apx(t)] dt,
=1y + ax xi(t) — anx,(t) — ax;xsz(H)] de, (L.D)

=13 + anxy(t) — a3 xz(t) — azxs()] de,

—14 + a3 x3(1) — asxs(1)] dt,

—_ —— —
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where x;(t), x,(f), x3(¢) and x4(¢) represent the densities of prey, primary predator, intermediate predator
and top predator at time ¢, respectively. r; is the growth rate of prey, r,, r; and r, are the death rates of
primary predator, intermediate predator and top predator, respectively. a;; and a;; (i < j) are the capture
rates and food conversion rates, respectively. a;; are the intraspecific competition rates of species i. All
parameters in system (1.1) are positive constants.

In ecology, biology, physics, engineering and other areas of applied sciences, continuous-time
models, fractional-order models as well as discrete-time models have been widely adopted [9, 10].
However, “time delays occur so often that to ignore them is to ignore reality” [11, 12], and in the
models of population dynamics, the delay differential equations are much more realistic [13—-15]. We
know that systems with discrete time delays and those with continuously distributed time delays do
not contain each other but systems with S-type distributed time delays contain both. Introducing
S-type distributed time delays into system (1.1) yields

dx1(®) = x1(0) [r1 — D11 (x1)(@) — Di2(x2)(1)] dt,

dxa (1) = x2(2) [=r2 + D1 (x1)(#) = Doa(x2)(1) — Dias(x3)(1)] dt,
dxs(1) = x3(0) [=r3 + Da(x2)(#) — D33(x3)(1) — D3a(xa)()] d,
dxg(t) = x4(0) [—r4 + D3 (x3)(1) — Daa(x4)(D)] dt,

(1.2)

where D;i(x)(1) = a;ixi(t) + [ xi(t +6)du;i(6). [ xi(t + 6)du;(6) are Lebesgue-Stieltjes integrals,
T;; > 0 are time delays, u;;(6) ai‘e nondecreasing bo{mded variation functions defined on [-7,0], T =
max {Tji}-

On the other hand, the deterministic system has its limitation in mathematical modeling of
ecosystems since the parameters involved in the system are unable to capture the influence of
environmental noises [16, 17]. Introducing Gaussian white noises into the corresponding deterministic
model is one common way to characterize environmental noises [18-25]. As we all know, Gaussian
white noise &(f) is a stationary and ergodic stochastic process with (£(r)) = 0 and
(E(DE(s)) = a?6(t — s), where o2 is the noise intensity [26]. The readers can refer to [27-34] for more
related works. In this paper, we assume that r; are affected by Gaussian white noises, i.e.,
r—> 4+ o Wi, —ry < —ry + 0o Wa(t), —r3 < —r3 + o3 Wi(t) and —ry — —rq + 04 Wy(r). Then,
system (1.2) becomes

dx1 () = x1(0) [r1 — D11(x)(@) — D12(x2)(H] dt + o1 x1 (AW (D),

dxa(2) = x2(8) [=r2 + Do (x1)(1) = Do (x2)(2) — D3 (x3)(D)] A + 72x2(1)dWa (1),
dxs (1) = x3(0) [=r3 + D32(x2)(1) — D33(x3)(1) — D3a(xa)(H)] ds + 0303()dW5(2),
dxs(t) = x4(0) [=rs + D43 (x3)(1) — Daa(x4)(D)] dt + o4 x4(1)dW4(2),

(1.3)

where W;(¢) are mutually independent standard Wiener processes defined on a complete probability
space (Q, ¥, P) satisfying the usual statistical properties, namely (dW;(z)) = 0 and (dW;(1)dW;(s)) =
6ij6(l — S)dl [35]

Besides, population system may be affected by telephone noises which can cause the system to
switch from one environmental regime to another [36—38]. So, telephone noises should be taken into

Mathematical Biosciences and Engineering Volume 21, Issue 1, 186-213.



188

consideration in system (1.3), resulting the following model:

dx; (1) = x1(2) [r1(p(8)) — D11 (x)(1) = D12(x2)()] dt + o1 (p(1))x1 (AW, (1),
dxy(2) = x2(2) [=72(0(8)) + D1 (x1)(1) = Do (x2)(t) — Do3(x3)(1)] dt + 2 (p()x2(£)dW,(2),
dx3 (1) = x3(8) [=73(p(1) + D32 (x2)(1) = D33(x3)(1) = D34 (x4)(1)] At + 73(0(1)x3()AW3(2),
dxs(t) = x4(t) [=r2(p(1)) + Da3(x3)(1) — Daa(xa)(D)] dt + o4 (p(1))x4(HAW4 (),
where p(¢) is a continuous time Markov chain with finite state space S = {1, 2, ..., S}, which describes
the telephone noises.
Moreover, the behaviour of real biological species, in different ecosystems, is affected by Lévy

noises [39]. Lévy processes are characterized by stationary independent increments [40]. Assume that
L(t) (t > 0) 1s a Lévy process, using the decomposition [41]

2t t nt (n—1t
Ll— —L(—)+---+ L(—)—L ,

n n n n
one can observe that the probability distribution of L(f) is infinitely divisible. The most general
expression for the characteristic function of L(¢) is

(1.4)

L) = L(%) ;

(k) = exp {iku — lok|* [1 — iBsgn(k)®@]},

where sgn(k) is the sign function with

3 tan(ra/2), for all a # 1,
~\-@/mloglkl, foralla=1,

where a € (0,2] is the stability parameter, o is the scale parameter, o is the noise intensity, u € R
is the location parameter and 8 € [—1, 1] is the skewness parameter [39]. In addition, Lévy noises are
statistically independent with zero mean. Now, let us further improve system (1.4) by considering Lévy
noises. Some scholars pointed out that Lévy noises can be used to describe some sudden environmental
perturbations, for instance, earthquakes and hurricanes [42—47]. In the context of an epidemic situation,
random jumps could refer to sudden and significant increases in the number of cases or spread of the
disease that occur unpredictably [48]. System (1.4) with Lévy noises can be expressed as follows:

dx (1) = x1(O[(r1(p(1)) = D11 (x1)(1) — Dr2(x2)(1)) df + Sy (2, p())],

dxa (1) = x2(O[(=r2(0(D) + D21 (x1)(1) — Daa(x2)(2) — D3(x3)(1)) At + Sa(t, p(1)],
dx3(2) = x3(D[(=r3(0(0) + D32(x2)(1) = D33(x3)(1) — D3a(xa)(1)) dt + S5 (2, p(1))],
dxs (1) = x4(O[(—r4(0(1)) + D3(x3)(1) — Daa(x4)(2)) dt + Su(2, p(1))],

(1.5)

where S; (¢, (1)) = o;(o(t))dW;(t) + fzy,-(,u, p(t))ﬁ(dt, du), N is a Poisson counting measure with
characteristic measure A on a measurable subset Z of [0,+oc0), where A(Z) < +oco and
]V(dt, du) = N(dt,du) — A(dw)de, y; (u, p(t)) > —1 (u € Z) are bounded functions (j = 1,2,3,4).
Finally, environmental pollution caused by agriculture, industries and other human activities has
become a big challenge that is commonly concerned by international society. For example, with the
rapid development of industrial and agricultural production, some chemical plants and other industries
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often periodically discharge sewage or other pollutants into rivers, soil and air [49]. These pollutants
can cause direct damage to ecosystems, such as species extinction, desertification and the greenhouse
effect. Hence, we extend system (1.5) into the following form:

dx; () = x1(®) [(r1(0(®) = r11C10(2) = D11 (x1)(1) = D12(x2)(1)) dt + Sy (2, p(1))]
dxa (1) = x2(8) [(=r2(0(1)) = 1 Ca0(8) + Doy (x1)(1) = Daa(x2)(1) — Doz (x3)(1)) dt + Sa(t, p(1))] ,
dox3 (1) = x3(8) [(=r3(0(1) = r33C30(8) + D3a(x2)(1) = D33(x3)(1) — D34 (x4)(1)) dt + S3(t, p(1))] , £ 4 ny
dxs(t) = x4(0) [(=ra(p(1)) = raaCao(t) + D3 (x3)(1) = Daa(x4)(1)) dt + Sa(t, p(1))] ’
dCi(t) = [kiC.(t) — (gi + m)Cip(1)] dt,
dC.(t) = —hC(t)dt,
Axi(t) =0, ACyo(t) =0, AC,(t) =b, t =ny,ne Z" (i =1,2,3,4),
(1.6)

where Ax;(t) = x; (t")—x;(t), AC;o(t) = Cyp (t7)—Cjo(t) and AC,(t) = C, (t")—C,(t). For other parameters
in system (1.6), see Table 1.

To the best of our knowledge to date, results about a stochastic hybrid delay four-species food chain
model with jumps have not been reported. So, in this paper we investigate the dynamics of a stochastic
hybrid delay four-species food chain model with jumps in an impulsive polluted environment. The
organization of this paper is as follows: In Section 2, some basic preliminaries are presented. In
Section 3, the sufficient and necessary conditions for stochastic persistence in mean and extinction of
each species are obtained. In Section 4, some numerical examples are provided to illustrate our main
results. Finally, we conclude the paper with a brief conclusion and discussion in Section 5.

Table 1. Definition of some parameters in system (1.6).

Parameter Definition

Cio(1) the toxicant concentration in the organism of species 7 at time ¢
C.() the toxicant concentration in the environment at time ¢

Fii the dose-response rate of species i to the organismal toxicant
k; the toxin uptake rate per unit biomass

gi the organismal net ingestion rate of toxin

m; the organismal deportation rate of toxin

h the rate of toxin loss in the environment

Yy the period of the impulsive toxicant input

b the toxicant input amount at every time

2. Preliminaries

We have four fundamental assumptions for system (1.6).

Assumption 1. W (t), W, (1), W5(¢), Wy(2), p(t) and N are mutually independent. p(t), taking values in
S ={1,2,...,8}, is irreducible with one unique stationary distribution n = (7,1, ..., Ts )T.

Assumption 2. r;(i) > 0, ajx > 0 and there exist y;’f(i) > v (i) > =1 such that y;.(i) < y;j(u,i) < y}'f(i)
(we?Z),Vies, j,k=1,2,3,4.

Mathematical Biosciences and Engineering Volume 21, Issue 1, 186-213.



190

Remark 1. Assumption 2 implies that the intensities of Lévy jumps are not too big to ensure that the
solution will not explode in finite time.

Assumption 3. 0 < k; < gi+m; (i=1,2,3,4),0<b<1-e™

Remark 2. Assumption 3 means 0 < Cy(t) < 1 and 0 < C.(t) < 1, which must be satisfied to be
realistic because Cyy(t) and C,(t) are concentrations of the toxicant (i = 1,2,3,4).

Assumption 4. A»A33Au |Al|E] > ApAsAysAndu Bl + AnAnAsAgs AR

Lemma 1. [50,51] C;(t) involved in system (1.6) satisfies

! k;b
lim ! | Co(s)ds= ——— =K; (i=1,2,3,4).
o LE s = ey N U )

3. Persistence in mean and extinction
Denote
0
k;b
Ai':ai'+f dw;(0), K= ————,
o _m”J 7 (g +m)y

bi(:

f%(,u) In(1 + 1 (u, )] A(dp),

j“nw> In(l + ;G2 )] Adw) (=2.3.4),
Z
Y, = Zﬂ,bl(z)—rlll(l, s = Zﬂ,b () —ri;K; (j = 2.3,4),

A A A
B =%, By=%+ B, By=3;+ —-B,, By =34+ B,
Aqg A Ass

A A 0 0

_ _|FAy An Axp 0
=|-An An Axn|, A= :

0 —Aw A 0 -An Axn Ay

1

Ay A12)
A= ,
(—Azl Ap

Denote £? = (£1,%,)", £ = (21,25, %)", £ = (£1,%,,%3,%,)". Denote A; is A with column j
replaced by £ (j = 1,2); E; is E with column j replaced by £ (j = 1,2, 3); A; is A with column j
replaced by X (j = 1,2, 3,4).

1 |l

Theorem 1. For any initial condition ¢ € C ([—T, 0], Rﬁ), system (1.6) has a unique global solution

(x1 (1), x2(2), x3(0), x2(0))" € R? on t € R, a.s. Moreover, for any constant p > 0, there exists Ki(p) > 0
such that sup, | E [x/(0)] < Ki(p) (i = 1,2,3,4).

Proof. The proof is rather standard and hence is omitted (see e.g., [52]). m|

Lemma 2. [53] Suppose Z(t) € C(Q2 X [0, +00),R,) and lim,_, o, @ =0.
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191

(1) If there exists constant 6y > 0 such that for t > 1,

InZ(z) < 6t - 6y f Z(s)ds + o(1),
0

then )
o
lim sup ! f Z(s)ds < — a.s. (0=>0);
t—+00 0 60
lim Z(t) =0 a.s. 0<0).
f—+00

(it) If there exist constants 6 > 0 and 6y > 0 such that for t > 1,

InZ(t) > 6t — oy f Z(s)ds + o(1),
0

then
! 5

liminf 7! f Z(s)ds > 5 as.
0

f—+00 0

Lemma 3. If |Ay] > 0, then |Aj| > 0 (j = 1,2,3).

Proof. Compute
Aus |Agl — Az |As3] = [(A33A44 + A3sAs3) |A] + A1 A3 ARAL] 2.

Az |Az| = Az3 |Az] + Asg |A4] — [(A33A4s + A34A43) |A| + A11A23A3A 4] Zs.
Az |A1] = A |Ag] + Aoz |A3] — [A11A4s (AnAsz + Ap3As) + AzsAss |A] + A12A21A33A44] 2.

Noting that X; < 0 (j = 2, 3,4), we obtain the desired assertion. O

First, let us consider the following auxiliary system:

dXi(1) = X1 (1) [(r1(o(1)) = ri1Cio(t) = D (X)) dt + Si (2, p(1))]

dXo(t) = Xa(t) [(=r2(p(1)) = rnCag(t) + Do (X1)(1) — Da(X2)(1)) dt + Sy(1, p(1))] ,
dX3(t) = X3(t) [(=r3(0(1)) = r33C30(1) + D3p(X)(1) — D33(X3)(1)) dt + Ss(1, p(1))] , t 4 my

dX4(t) = Xu(0) [(=ra(p(t)) = 144Cao(t) + Daz(X3)(1) — Daa(X4)(1)) dt + Sa(t, p(1))], " (3.
dCio(1) = [k;Ce(t) — (gi + m;j)Cio(1)] dt,

dC.,(t) = —hC.(r)dt,

AX;(t) =0, ACip(t) =0, AC.(t) =b, t =ny,neZ" (i =1,2,3,4).

Lemma 4. System (3.1) satisfies Table 2, where
t ! ! t
XT(c0) = lim ¢! (f Xl(s)ds,sz(s)ds,f X3(s)ds,f X4(s)ds).
=0 0 0 0 0
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Table 2. Stochastic persistence in mean and extinction of system (3.1).

B,

XT(e0)

>0
<0

(R
A1 Ay’ A3z’ Ay
B By B

A’ Axn’ Az’

)

Proof. Consider the following stochastic hybrid delay logistic model with Lévy jump in an impulsive

polluted environment:

dX, (1) = X,(®) [(r1(p(8)) = hy = 11 C1o(t) = D1 (X)(®) dt + S (1, p(1))]
dCio(t) = [kiCe(t) — (g1 + my) Cip(1)] dt,
dC.(tr) = —hC.(t)dt,
AX (1) =0, ACyo(t) =0, AC.(t) =b, t =ny, neN,.
Thanks to Lemma 1 and Lemma 2.3 in [54], system (3.2) satisfies

tlim X =0 a.s. (B1 <0);
— 400

f
B
lim 77! f Xi(s)ds = A—l as. (B =0).
0

—+00 11

By It6’s formula, we compute

=T 1 (X))
e ' T (X))@ = Toa(X2)(2)
0 =21 a0 [ X |20
T 13(X3)(1) — T 4a(Xa)(1)

+ o(t),

where
In X, (?)
In X5(7)

le(s)ds

B sz(s)ds
In X3(7) | f XA =1 x s |

In X,(1) [ Xu(s)ds
Ay 0 0 0 1
—A21 A22 0 O _ 1
O —A32 A33 O s O(t) - O(t) 1 ’
—Ayz Ay

0 0 1
0 0 0 t
T 5i(Xi)(0) = f f Xi(s)dsdu;i(6) — f f Xi(s)dsdp ;;(0).
—Tji 0 =T Vi

InX(7) =

A():

+60

t # ny, (32)

(3.3)

(3.4)

Case (1) : By < 0. Based on Eq (3.3), lim,_, . X;(¢#) = 0 a.s. Therefore, for Ve € (0,1) and # > 1,

InX,() < (X, +€) — azzf Xo(s)ds.
0

Mathematical Biosciences and Engineering Volume
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Since X, < 0, then lim,_, ;. X>(#) = 0 a.s. Similarly, lim,,.., X;(r) = O a.s. (j = 3,4).
Case (2) : By > 0. Then,

!
B
lim 7! f Xi(s)ds = — a.s. (3.5)
o A

—+00 11

Consider the following auxiliary function:
dXa(1) = X,(0) [(=r2(p(0)) = raCan(t) + Dar(X1)(®) = anXa()) dt + Sa(t, p(1))|

Then X,(¢) < m) a.s. By It6’s formula, we get

!
In X,(¢) = Byt — azzf )?;(?)ds + o(1).
0

In view of Lemma 2, we obtain: -
If By >0, B, <0, then lim,_, .., X»(¢) = 0 a.s.
If B] > 0, 32 > 0, then

!
— B
lim 7! f Xo(s)ds = 2 4.
0

1—+00 6122

Therefore, for arbitrary { > 0, we have

t—+o00

t
lim ¢! f Xi(s)ds =0 a.s. (i=1,2). (3.6)
¢
According to system (3.4) and Eq (3.6), we obtain

!
In X,(t) = Bt — Ay, f Xo(s)ds + o(p).
0

Thanks to Lemma 2, we deduce:
If B >0, B, <0, then lim,,,., X;(f) = 0 a.s. (j =2,3,4).
If B >0, B, >0, then

: ! B,
lim 77! f Xo(s)ds = — a.s.
t—+00 0 A22
Case (3) : By 2 0, B, > 0. Consider the following SDE:

dX5(1) = X3(1) [(—"3(/0(0) = 133C30(1) + D3 (Xo)(1) — 033@)) dr + S3(EP(I))] .

Then X5(¢) < )Z_;(;) a.s. By It6’s formula, we get

!
In X5(7) = Bst — as f X5(3)ds + o(p).
0
In the light of Lemma 2, we obtain:

If B, >0, B, >0, By <0, then lim,_,,.. X3(r) = 0 a.s.
IfB] > 0, Bz > O, B3 > 0, then

!
o~ B
lim 7! f X0s)ds = — a.s.
0

—+00 a33

Mathematical Biosciences and Engineering Volume 21, Issue 1, 186-213.
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Hence, for arbitrary ¢ > 0,
!

lim ¢! f Xi(s)ds =0 a.s. (i=1,2,3).

—+00 —¢
Thanks to system (3.4) and Eq (3.7), we obtan

!
In X3(t) = B3t — Ax; f X3(s)ds + o(1).
0

Based on Lemma 2, we obtain:

If Bi >0,B, >0, B3 <0, then lim,, ., X;(t) = O a.s. (j = 3,4).
IfB] > 0, Bz > O, Bg > 0, then

! B3
lim ¢! f X3(s)ds = — a.s.
t—+o00 0 A33

Case (4) : By >0, B, > 0, B; > 0. Consider the following SDE:

(3.7)

dXy(1) = X4 [(=ra(p(®) = raaCaot) + Ds(Xa)(1) = agaXa(D)) d + Sa(t,p(1)].

Then X4(7) < )Z;(?) a.s. By It6’s formula, we get

!
In X,(7) = Byt — ayy f X,(5)ds + o(7).
0

In view of Lemma 2, we obtain: -
If By >0,B,>0,B; >0, B; <0, then lim,_,,, X4(f) = 0 a.s.
If By >0,B,>0,B;>0, By, >0, then

!
—— B
lim ¢! f X,(0)ds = = a.s.
0

t—+00 agqq

Hence, for arbitrary > 0,

1—+0o

Thanks to systems (3.4) and (3.8), we deduce

t
In X4(t) = Bst — Ass f X4(s)ds + o(1).
0

Based on Lemma 2 and the arbitrariness of €, we obtain:
IfB; >0, B, >0, B3y <0, B; <0, thenlim,_, . X4(¢) =0 a.s.
IfB] > 0, BQ > 0, B3 > 0, B4 > 0, then

!
B
lim ! f X,(s)ds = — a.s.
t—+00 0 A44

The proof is complete.

Mathematical Biosciences and Engineering

!
lim t‘lf Xi(s)ds =0 a.s. (i=1,2,3,4).
=4

(3.8)

O
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Lemma 5. For system (1.6):
() limsup, . 'Inx;(t) <0as. (i=1,2,3,4).
(@) im0 X;(1) = 0 = limy 1 xj(1) = 0 a.s. (1 <P < j< 4.

Proof. From Lemma 4, system (3.1) satisfies lim,_,.., ' InX;(f) = 0 as. (i = 1,2,3,4). By the
stochastic comparison theorem, we obtain the desired assertion (i). The proof of (i) is similar to that
of Lemma 4 and here is omitted. ]

Theorem 2. Under Assumption 4 system (1.6) satisfies Table 3, where

xT(c0) = lim ¢! (f xl(s)ds,f x2(s)ds,f x_;(s)ds,f x4(s)ds).
=0 0 0 0 0

Table 3. Stochastic persistence in mean and extinction of system (1.6).

A4l = |Az| B, X (c0)
+ (liAlll léTzll IAé_sll’ |A4||)
B * (7259
— N ?H’ |x| 0, 0)
- + 2.,0,0,0)
- (0,0,0,0)

Pl"OOf. Compute |A4| < A43 |E3| < A32A43 |A2| < A21A32A43Bl. By Eq (38), for any é/ > 0,
!
lim ¢! f xi(s)ds =0 a.s. (i =1,2,3,4).
I3

t—+0o
=<

By It6’s formula, we compute
!
Inx() =X1r- Af x(s)ds + o(t). 3.9)
0
Case (1) : |A4] > 0. According to system (3.9), we compute

!
lim t_l A1 Az Asz In xy (1) + A11A3AL3 In x,(f) + Agz |A|In x3(1) + |E|In x4(1) + |A| f )C4(S)dS) = |A4].
0

t—+00
(3.10)
In view of Lemma 5 (i) and Lemma 2, we get
oo |Agl
liminf ¢ x4(s)ds > — a.s. (3.11)
t—+00 0 |A|

Based on system (3.9), we compute

t—+00

! !
lim 1| ApAg Inxi (1) — AppAgs In () — ApAss In xu(f) + Agz |Al x1(8)ds — ApA23Au f X4(S)ds)
0 0

=Ap3 |A1] — ApAyZ,.
(3.12)
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By Lemma 5 (i) and Eq (3.12), for Ve € (0, 1) and ¢ > 1,

! !
AxpAgInx () < (A43 |Aq] — A1pAx3Zs + AjpAxzAy lim sup I_l f x4(s)ds + 6) t— Ay Al f x1(s)ds.
0 0

[—+00

In view of Eq (3.11), we deduce

!
As3|ALl — ApAxnZs + ApAxzAgs limsup t™! f X4(s)ds
0

t—+o00
!
>As |A1] — ApAnZy + ApAyz Ay liminf 1! f x4(s)ds (3.13)
t—+0o0 0
A4l A4
Z‘A43 |A1| - A12A23Z4 + A12A23A44ﬁ = A43 |A| ﬁ,

where |A| > 0 and |A| > 0. From Lemma 3, we have |[A;| > 0. Based on Lemma 2 and the arbitrariness
of €, we obtain

t t
limsup ¢ f xi(s)ds <Ag; AT (A43 ALl — A1pArYy + ApAyAylimsup ! f x4(s)ds)ér;7p a.s.
0 0

t—+00 [—>+00
(3.14)
According to system (3.9), we compute

! t
lim l_l (A21A32 Inx1(t) + A11A3 Inx(2) + |A| In x3(7) + Ay |A| f x4(s)ds + |E| f )C3(S)dS) = |&3].
0 0

—+00
(3.15)
Thanks to Lemma 5 (i) and Eq (3.15), for Ve € (0,1) and > 1,
t f
|A|In x3(¢) > (|E3| — Asq |Allim sup ! f x4(s)ds — e) t—|E| f x3(s)ds.
t—+00 0 0
If t
|Z3] — Az4 |Allim sup ! f x4(s)ds > 0,
t—+00 0
then by Lemma 2 and the arbitrariness of €, we obtain
! t A )
liminf 7' f x3(s)ds > B (|53| — Az |Allimsup ™' f x4(s)ds) =17 as. (3.16)
I=+e0 0 f—+00 0

If t
|Z3] — Ass |A|limsup ! f x4(s)ds <0,
0

f—+00

since liminf,_,.o 1! [ x3(s)ds > 0, we also obtain Eq (3.16).
According to system (3.9), Eq (3.14) and Eq (3.16), for Ve € (0, 1) and > 1,

!
In Xz(f) < (22 + AQ]F;TP - A23F;';f + E) t— Ay f Xz(S)dS.
0
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On the basis of Eq (3.13), Eq (3.14) and Eq (3.16), we have

22 + Az]l—‘;ﬁm - A23F§Cn3f

A t
22 + Ay u — A3 |E|_1 |E3| — Az4 |A|lim inf l‘_1 f x4(s)ds
Al e
|Ail =1 (1= Al Az
2% + Ao = Aos B (1Bsl = Asy A7) = Ao

From Lemma 3, we have |A;| > 0. By Lemma 2 and the arbitrariness of €, we obtain

!
lim sup 7™’ f x(s)ds < Ay (Zo + Ay = Al ) 2T as.
0

—+00

By system (3.9), Eq (3.11) and Eq (3.18), for Ve € (0, 1) and > 1,

A t
In x53(¢) < (23 + A321“‘;’;p - A34% + 6) t— Az f x3(s)ds.
0

In view of Eq (3.17) and Eq (3.18), we obtain

|Aql Az |Aql A3
Y3+ Al —Ayy—— X3+ Apn—— —Ayy—— = Apiz—.
3+ Azl STV VY A BA]

(3.17)

(3.18)

(3.19)

In the light of Lemma 3, we have |A3| > 0. Thanks to Lemma 2 and the arbitrariness of €, we obtain

! ' A '
limsup ! f x3(s)ds < A3 (23 + Al — AM%) ST a.s.
t—+o00 0

By system (3.9) and Eq (3.20), for Ve € (0,1) and t > 1,

!
Inxy() < (T4 + Al + €)1 — Ay f x4(s)ds.
0

Thanks to Eq (3.19), we obtain

su |As| |A4]
24+ A43F;C3p >4+ A43ﬁ = A44ﬁ.

In the light of Lemma 2 and the arbitrariness of €, we obtain

!
lim sup ! f x4(s)ds < A;j (24 + A43Ff€;"’) a.s.

t—+o00 0

In other words, we have

ApAs3Au Al E] = A1pAs Ay AsnA |Bl — AnAzAsiAgs Al

!
lim sup ! f x4(s)ds
0

AxnAs |Al|Z] =400
_ — |A1| A12A21A2324 |E3| |A4|
<y +ApAD [+ ApA (2, + A + —Ap— |- Ayy—|.
4 434133 3 32 22( 2 21 |A| A43 |A| 23 |E| 34 |A|

(3.20)

(3.21)
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According to Eq (3.21) and Assumption 4, we obtain

!
A
limsup ¢! f x4(s)ds < A4l a.s. (3.22)
PN 0 |A|
Combining Eq (3.11) and Eq (3.22) yields
!
A
lim 7! f x4(s)ds = A4l a.s. (3.23)
—o o Al

Substituting Eq (3.22) into Eq (3.14) yields

! A A
limsup s~ f xi(s)ds <Ay Al (A43 A1l — ApAxsZy + A12A23A44M) = u (3.24)
1o 0 Al la
Substituting Eq (3.22) into Eq (3.16) yields
! A A
liminf 1! f x3(s)ds > || (|E3| — Ay |A| u) = Q. (3.25)
i 0 Al Al
Substituting Eq (3.24) and Eq (3.25) into Eq (3.18) yields
!
. _ _ | A1 [Asl) A
1 ! ds <AL (T, + Ay — —Apy— | = —. 3.26
lgfgp foxz(S)s_ 22(2 24 23|A|) A (3.26)
Substituting Eq (3.26) into Eq (3.20) yields
!
. _ _ |A,| [Agl\  |As]
1 ! ds <A (S5 +Ap— —Ayy— | = —. 3.27
ltfgfolip I) x3(s)ds < A3 ( 3 32 Al 34 Al ) Al ( )
Combining Eq (3.25) and Eq (3.27) yields
!
A
lim 7! f x3(s)ds = s a.s. (3.28)
ey Al
In view of system (3.9), we have
! !
lim 7! (ln x1(0) + Aqq f x1(s)ds +A12f )Cz(S)dS) = B;. (3.29)
t—+o00 0 0
By Eq (3.26) and Eq (3.29), for Ve € (0, 1) and t > 1,
|Az| '
Inx;(t) > |B; —An— —€|t— Ay x1(s)ds,
Al 0
where B, — Alz% = A“%. From Lemma 3, we have |A;| > 0. According to Lemma 2 and the
arbitrariness of €, we have
!
A
lim inf ¢! f x1(s)ds > A a.s. (3.30)
—+00 0 |A|
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Combining Eq (3.24) with Eq (3.30) yields

. 1 ! |A1|
lim ¢ x1(s)ds = — a.s.
t—+00 0 |A|

Substituting Eq (3.31) into system (3.9) yields

A

!
lim ¢! (1nx2(z)+A22 f xz(s)ds) :Azzm a.s.
0

t—+00
From Lemma 3, we have |A;| > 0. By Lemma 2, we obtain

. -1 ! |A2|
lim ¢ X(s)ds = — a.s.
ey Al

Case (it) : |=3] > 0 > |A4|. Thanks to Eq (3.10), we deduce

limsup# ' In (x’fz‘A”A“ (t)x’;‘IA”A‘“(I))C?43 |Al(l)xlfl(t)) <|Ag <0 a.s.

t—+00

which implies

From Lemma 5 (ii) and Eq (3.33), we obtain
Iim x4(#) = 0 a.s.
t—+00

In other words,

!
lim ! f x4(s)ds = 0 a.s.
0

t—+00

According to system (3.9), we compute

73
lim t_l (A21A32 In x1(t)+A 1Az In x(1) + |A|In x3(1) + |Z| f X3(S)dS) = |E3].
0

t—+00

Combining Lemma 5 (i) with Lemma 2 yields

1]

3l

a.s.

t—+00

A
liminf 7! f X3(s)ds2|
0

™

Based on system (3.9), we compute

t—+00

By Lemma 5 (i) and Eq (3.37), for Ve € (0, 1) and ¢ > 1,

! !
A Inx(t) < (|A1| + ApAp; lim sup ! f x3(s)ds + 6) t—1]A| f x1(s)ds.
0 0

t—+00

f t
lim 77! (A22 Inx;(t) — A Inxo(2) + |A] f x1(s)ds — A1pAn; f X3(S)dS) = |Aq].
0 0

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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On the basis of Eq (3.36), we deduce

! = E
|A1| +A12A23 lim sup t_l f .X3(S)dS > |A1| + A12A23% = |A| % > 0.
1—+00 0 =" =
In view of Lemma 2 and the arbitrariness of €, we obtain
! f A
lim sup ! f x1(s)ds < |A|™! (|A1| + A1pA; lim sup ! f X3(s)ds) =T\ as. (3.38)
t—+00 0 =400 0

According to system (3.9), Eq (3.36) and Eq (3.38), for Ve € (0, 1) and ¢ > 1,

— t
In x,(¢) < (22 + AZIT;W - A23& + 6) t— Azzf xp(s)ds. (3.39)
0

p—
=

Combining Eq (3.38) with system (3.39) yields

s |=3] - |=3] |=3] =2
o+ Ag TP — Az3ﬁ > %) + Aoy JAIT | [Aq] + A12A23ﬁ - Az3ﬁ = Azzﬁ > 0. (3.40)
In the light of Lemma 2 and the arbitrariness of €, we obtain
! =
lim sup ! f X(s)ds < A521 (22 + A TP — Ass %) a.s. 3.41)
f—+00 0 =

From system (3.9) and Eq (3.41), for Ve € (0,1) and > 1,

A = !
In x3(¢) < (23 + A—32 (22 + AZI‘I‘;‘fp — A %) + 6) t—Ass f x3(s)ds.
22 = 0

Thanks to Eq (3.40), we obtain

A = = =
23 + A—32 (22 +A21Tj€'fp —A23M) > 23 +A32Q = 1433u > 0.

2 = = =]
In the light of Lemma 2 and the arbitrariness of €, we obtain

AynA A =
21 3231 + ﬁ(AZIT;Tp—Azgu)) a.s.

A1Ayp Ap |E]

t—+o00

!
limsup ¢! f x3(s)ds < A3 (83 -~
0

In other words, we have

AnAsz |A| — ApAyAnAs, -1 f’ A2 Az Az ( |A4] |53|)
lim sup ¢ x3(s)ds < By — B+ —Ay—-Apn—|.
Axn|A| t—>+oop 0 ’ ’ ApAxn : Axn . A » =
(3.42)
In view of Eq (3.42) and Assumption 4, we obtain
. 1 ! |E‘3|
limsup#~ f x3(s)ds < ﬁ a.s. (3.43)
t—+00 0 =
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Combining Eq (3.36) and Eq (3.43) yields

=
|=3]

f
lim ¢! f x3(s)ds = Tsl a.s.
0 =

>+

Substituting Eq (3.44) into Eq (3.38) yields

!
limsupt_lfxl(s)dsSIAl_ (|A1|+Alzz‘123|| |I)
0

t—+00

Substituting Eq (3.45) into Eq (3.41) yields

t - E
limsup ¢! f x(s)ds < A, (22 + Ay =l = Aﬁ%) — M
0

oo =l

In view of system (3.9), we compute

! t
lim 77! (A21 Inx (1) + Ay Inxo(2) + |A] X2(8)ds + A11Ax f )C3(S)dS) = |A,|.
0 0

t—+00

By Lemma 5 (i) and Eq (3.47), for Ve € (0,1) and 7 > 1,

= !
Alllnxz(f)Z(|A2| A11A23|l l'—e)t—|A| f x(s)ds.
0

From Eq (3.40), we have |Z,| > 0 and |Z| > 0. Based on system (3.48) and Lemma 2,

¢ =
lim inf ¢! f xg(s)dszlAl_l(lAzl A11A23'“3') @a.s.
0

e &) &

Combining Eq (3.46) with Eq (3.49) yields

!
lim ¢! f xz(s)dszl
t—+00 0 |

Substituting Eq (3.50) into system (3.9) yields

[x]

2|

a.s.

[1]

!
lim t‘l(lnxl(t)+A11fx1(s)ds) Alluas
0

[—+00 | |

From Eq (3.38), we have |&;| > 0 and |Z| > 0. Therefore, by Lemma 2, we obtain

!
lim ! f x1(s)ds = il
=0 0 =

Case (iit) : |Az| > 0 > |E3|. Then lim,_, ., x4(f) = 0 a.s. Thanks to Eq (3.35), we deduce

o

a.s.

[1]

tim sup £~ In (x{2*2 (03512 (O)x4(1)) < 23] < 0 a.s.
—+00
which implies
lim sup x> (1) x)" 2 (DM@ = 0 a.s.

t—+00

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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According to Lemma 5 (ii) and Eq (3.52), we obtain

lim x53(¢) = 0 a.s. (3.53)
1—+00
In other words, we derive
t
lim ¢! f x3(s)ds = 0 a.s. (3.54)
t—+00 0
In view of Eq (3.47) and Eq (3.54), we get
!
lim ¢! (A21 Inx (1) + A1 Inxo(2) + |A|f xz(s)ds) =|A,|. (3.55)
t—+00 0
Based on Lemma 5 (i) and Lemma 2, we have
liminf £ f x(s)ds > Al (3.56)
t—+00 0 |A|
In the light of Eq (3.37) and Eq (3.54), we obtain
f
lim t_l (Azz Inx;(t) — A In xp(2) + |A] f XI(S)dS) = |A4].
t—+00 0
By Lemma 5 (i) and Lemma 2, we obtain
!
A
limsup ™' f x1(s)ds < Al a.s. (3.57)
t—-+00 0 A
Substituting Eq (3.54) and Eq (3.57) into system (3.9) yields
|A4] '
Inxy (1) < |2 + Amm +elt—Axp x(s)ds.
0
On the basis of Lemma 2 and the arbitrariness of €, we have
! A A
lim sup ! f X (s)ds < Agz‘ Yo+ Ay — sl l 2| (3.58)
t—+00 0 A IAI
Combining Eq (3.56) with Eq (3.58) yields
lim ¢! f xo(s)ds = Al (3.59)
t—+o00 0 |A|
By system (3.9) and Eq (3.59), we compute
t
o ) Al _, WA
[1_1)£I30t (11’1 Xl(t) + A jo‘ .Xl(S)dS) = —Ap— |A| =A |A| a.s.
In the light of Lemma 2, we obtain
. ' A4 1|
lim ! f x1(s)ds = (3.60)
iy A
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Case (iv) : By > 0 > |A;,|. Then

lim x;(r) =0 a.s. (i = 3,4). (3.61)
t—+00
According to Eq (3.55), we gain
limsup#'In (x/fz‘ (t)xg‘”(t)) <A <0 a.s. (3.62)

t—+00

Hence, lim sup,_,, ., x{* ()x," (t) = 0. By Lemma 5 (ii) and Eq (3.62),

lim x,(¢) = 0 a.s. (3.63)
t—+00
In other words, we derive
!
lim ¢! f x2(s)ds = 0 a.s. (3.64)
t—+00 0

Substituting Eq (3.64) into system (3.9) yields

!
In x;(¢) :Blt—Allfxl(s)ds+0(t).
0

On the basis of Lemma 2 and the arbitrariness of €, we obtain

t
B
lim ¢! f xi(s)ds = — a.s. (3.65)
t—+00 0 All
Case (v) : B; < 0. Compute
! t
lim 7! (ln xi () + A, f x1(s)ds + Alzf xz(s)ds) = B,. (3.66)
t—+00 0 0

By Eq (3.66), we have
!
lim sup ! (ln x1(t) + A f xl(s)ds) < Bj.
0

t—+0o0

In view of Lemma 2, we obtain lim,_,, x;(#) = 0 a.s. According to Lemma 5 (ii), we get
lim x;(t) =0 a.s. (j =2,3,4). (3.67)
t—+0c0

The proof is complete. O

4. Numerical examples

In this section we introduce some numerical examples to illustrate our main results. For simplicity,
we suppose that S = {1, 2}. Then system (1.6) is a hybrid system of the following two subsystems:

dxy (1) = x1(2) [(r1(1) = r11C1o(®) — D11 (x1)(1) — Dia(x)(0) dt + Sy (2, 1],
dxa(2) = x2(2) [(=r2(1) = r2aCao(1) + D21 (x1)(t) — Daa(x2)(1) — Doz (x3)(1) dt + S (2, 1],
dx3(1) = x3(8) [(=r3(1) = r33C30(1) + D32(x2)(1) — D33(x3)(1) — D3a(x4)(1)) dt + S5 (2, 1)], t % 12n,
dxa(t) = x4(1) [(=74(1) = 142C0(2) + Dsz(x3)(#) — Daa(x4)(@)) dt + S4 (2, 1)],
dCy(r) = [0.1C.(¥) — (0.1 + 0.1) Cyp(2)] dt,
dC,(tr) = =0.5C,(r)dt,
Ax;(t) =0, ACip(t) =0, AC.(t) =06, t=12n, ne N, (i=1,2,3,4),
“4.1)
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and

dC.(r) = —-0.5C,(r)dt,

Ax;i(t) =0, ACjp(t) =0, AC.(1) =0.6, t =12n, ne N, (i =1,2,3,4),

dxi (1) = x1(8) [(r1(2) = r11C1o(1) — D11 (x1)(1) — Dia(x) (1)) dt + Sy (2,2)],
dxa(1) = x2(8) [(=12(2) — rCoo(1) + D1 (x1)(1) — Do (x2)(1) — Diaz(x3)(1)) dr + S> (1, 2)],
dxs(t) = x3(2) [(—=r3(2) = r33C30(1) + D32(x2)(1) — D33(x3)(1) — D34 (x4)(1)) dt + S5 (2,2)],
dxg (1) = x4(8) [(=74(2) = r44C0(1) + Da3(x3)(1) — Dag(x4)(1)) dt + Sy (2,2)],
dCi() = [0.1C. (1) — (0.1 + 0.1) Cyp(2)] dt,

t # 12n,

4.2)

with initial conditions x;(0) = 2e%, x,(0) = 1.5¢%, x3(0) = 0.8e’ x4(0) = 0.5¢? and € [-1n 2,0].
Letr; =0.3,7;; =In2, u;(6) = ,uj,-eg, vi(u, i) = y;(i) and A(Z) = 1, see Table 4. Denote

ap  an

az axn
O asn
0 0

Param(i) =

0

ans
ass
ass

0 wun Hi2

0 uy poo pn
ayy 0 uzn 33
ag 0 0 3

H34
Ha4

o1(i)
02(1)
o3(0)
o4(0)

Y100
Y2()
Y@ |
ya(i)

Then system (1.6) may be regarded as the result of regime switching between subsystems (4.1) and
(4.2) with the following estimated parameters, respectively,

02 01 O 0O 02 01 O 0 0.1 0.1
Param(1) = 05 03 01 O 02 01 01 O 0.1 0.1
0O 04 03 02 O 02 02 02 01 o1}
0 0O 04 03 O 0O 01 02 01 0.1
02 01 O 0O 02 01 O 0 12 02
Param(2) = 05 03 01 O 02 01 01 0 02 02 .
0O 04 03 02 O 02 02 02 02 02
0 0O 04 03 O 0O 01 02 02 02
Table 4. Source of some parameter values in system (1.6).
Parameter Value Source
k; 0.1 [55]
8i 0.1 [55]
m; 0.1 [55]
h 0.5 [55]
vy 12 [55]
b 0.6 [55]
Tji In2 [56]
A(Z2) 1 [56]

Compute |A| = 0.066525, |E| = 0.1005 and |A| = 0.195. Denote

T = (1), 72D, y3(1), (1), FG) = (), 2(), 130 4 (D) (G = 1,2).
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4.1. The effects of Markovian switching on the persistence in mean and extinction

Let T(1) = (0.9,0.5,0.3,0.2). Compute

|A1] = 0.1384, [A;| =0.1113,

|Az] = 0.0614, |A4| = 0.0317 > 0.

Based on Theorem 2, all species in subsystem (4.1) are persistent in mean and

lim

t—+00

1fxl(s)ds—

0

1j‘xz(s)ds=
0

1j‘)@(s)dS—
0

1j‘x‘;(s)dS—
0

Let ¥(2) = (0.6,0.3,0.2,0.1). Then B,
(4.2) are extinctive.
Case 1 : (m,m;) = (0.8,0.2). Compute

lim

t—+00

lim

t—+00

lim

t—+00

|Aq]

=2.0811 a.s.
|A]
% =1.6731 a.s.
Al 4.3)
3
=0.9226 a.s.
|A]
|Ag]
=0.4762 a.s.
|A]

—0.1527 < 0. From Theorem 2, all species in subsystem

|A1] = 0.1096, |Ay| = 0.0779, |Az| = 0.0390, |A4] = 0.0090 > 0.
By Theorem 2, all species in system (1.6) are persistent in mean and
. ! A4
lim t_lf x1(s)ds = = 1.6469 a.s
0y 1Al
!
lim ¢! f xa(s)ds = 8] _ 1.1709 a.s
e o Al
lim 7! f x3(s)ds = —> = 0.5870 a.s
ey Al
lim ¢! f xa(s)ds = 4201346 s
ooy 1Al
Case 2 : (1, m;) = (0.6,0.4). Compute
|Agl = —0.0138 < 0, |E¢] = 0.1205, |E,| = 0.0700, |E5] =0.0132 > 0.
From Theorem 2, x;(¢), x,(¢) and x3(¢) are persistent in mean, while x4() is extinctive and
. ' 1Z4]
lim ¢! f x1(s)ds = =1.1988 a.s.
t—+00 0 |,=‘|
! =
lim 7! f x(s)ds = 'l“jl' = 0.6965 a.s. (4.5)
t—+00 0 =
. ' I=5]
lim 7! f x3(s)ds = — = 0.1309 a.s.
t—+00 0 |,=‘|
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Case 3 : (71, m;) = (0.5,0.5). Compute
|Z25] = —0.0137 < 0, |A¢] = 0.1923, |A,| = 0.0852 > 0.

Thanks to Theorem 2, x;(f) and x,(¢) are persistent in mean, while x3() and x4(¢) are extinctive and

!
A
lim t_lf x1(s)ds = u =0.9860 a.s.
t—+00 0 |A| (4 6)
. 1 ! |A2| .
lim 1~ f X(s)ds = — =0.4368 a.s.
t—+o0 0 |A|
Case 4 : (1, m) = (0.3,0.7). Compute
|A;| = —0.0279 < 0, B; =0.1557 > 0.
Based on Theorem 2, x,(¢) is persistent in mean, while x,(#), x3(¢) and x4(¢) are extinctive and
! B]
lim ¢! f xi(s)ds = — = 0.5191 a.s. 4.7)
t—+o0 0 A]]

Case 5 : (m,m) = (0.1,0.9). Compute B; = —0.0499 < 0. On the basis of Theorem 2, all species
in system (1.6) are extinctive.

4.2. The effects of Lévy jumps on the persistence in mean and extinction

Let T(1) = (0.7,0.5,0.3,0.2). We study the effects of Lévy jumps on the persistence in mean and
extinction of system (4.1) by changing the values of y;(1) and setting the remaining parameters of the
examples to be the same as those in system (4.1). Denote I, = {-0.3,0.4}, a4 € I4; I35 = {-0.6,1.1},
az el I, = {—0.9, 19}, ar € I = {—0.8, 17}, a; € 1.

4.2.1. The effects of y;(1) on the persistence in mean and extinction of system (4.1)

Case 1: Let?(l) = (0.1,0.1,0.1, @g). Then |A4] < 0, |23 = 0.0606 > 0. According to Theorem 2,
x1(1), x»(t) and x3(¢) are persistent in mean, while x4(¢) is extinctive.

Let 7(1) = (0.1,0.1,0.1,0.1). Then |A4] = 0.0047 > 0. By Theorem 2, all species in system (4.1)
are persistent in mean. See Table 5.

Table 5. Changes of y4(1) when (1) = y,(1) = y3(1) = 0.1.

yi(1) y2(1) y3(1) v4(l) x"(c0)
0.1 0.1 0.1 a4 (1.6852,1.1316,0.6027,0)
0.1 0.1 0.1 0.1 (1.6805,1.1410,0.5618,0.0703)

Case 2 : Let?(l) = (0.1,0.1, a3, a4). Then |E3| < 0, |A,| = 0.2478 > 0. Based on Theorem 2, x;(¢)
and x,(¢) are persistent in mean, while x3(¢) and x,(¢) are extinctive. See Table 6.

Case 3 : Let7(l) = (0.1, ay, a3, a4). Then |A,| < 0, B; = 0.6753 > 0. From Theorem 2, x;(¢) is
persistent in mean, while x,(f), x3(#) and x4(f) are extinctive. See Table 7.

Case 4 : Let7(1) = (a1, @3, a3, @4). Then B; < 0. Thanks to Theorem 2, all species are extinctive.
See Table 8.
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Table 6. Changes of y3(1) when (1) = y,(1) = 0.1 and y4(1) € 1.

y1(D) Y2(D) y3(D) ya() x!(c0)

0.1 0.1 ;3 el (1.6157,1.2707,0,0)

0.1 0.1 0.1 el (1.6852,1.1316,0.6027, 0)
Table 7. Changes of y,(1) when y(1) = 0.1, y3(1) € I and y4(1) € I,.

Y1 (D) y2(1) y3(1) ya(1) x!(0)

0.1 1) €l; el (2.2510,0,0,0)

0.1 0.1 e €ly (1.6157,1.2707,0,0)

4.2.2. The effects of y;(1) on the persistence in mean and extinction of system (4.1)

Case 1 :Lety;(1) = —0.8. Then B; = —0.1294 < 0. According to Theorem 2, all species in system
(4.1) are extinctive.

Let y,(1) = —0.7. Then |A,| = —0.0518 < 0, B; = 0.1760 > 0. By Theorem 2, x;(¢) is persistent in
mean, while x,(7), x3(¢) and x4(¢) are extinctive and

!
B
lim 1~ f x(s)ds = — = 0.5868 a.s. (4.8)
t—+00 0 All

Let (1) = =0.6. Then |E3| = —0.0329 < 0, |A;| = 0.0608 > 0. Based on Theorem 2, x,(¢) and
X,(t) are persistent in mean, while x3(¢) and x4(¢) are extinctive and

1

A

lim ¢! f x(ods = 2 _ 10564 as.
t—+00 0 |A|

4.9)

1
A
lim t‘lf xa(s)ds = 22103119 as.
t—+00 0 |A|

Let y;(1) = —0.3. Then |A4] = —0.0023 < 0, |=3] = 0.0450 > 0. In view of Theorem 2, x;(), x,(t)
and x3(¢) are persistent in mean, while x4(¢) is extinctive and

! =
lim 1! f x1(s)ds = ll:lll = 1.5740 a.s.
t—+00 0 =
! o)
lim 77! f x(s)ds = ||:2|| = 1.0074 a.s. (4.10)
t—+00 0 =N
! o)
lim ¢! f x3(s)ds = '“_3| = 0.4476 a.s.
t—+00 0 |,=‘|
Table 8. Changes of y;(1) when y,(1) € I, y3(1) € Iy and y4(1) € I4.
y1(D) y2(1) y3(1) ya(1) X' ()
03] el el; el (0, 0,0, 0)
0.1 el € l; €ly (2.2510,0,0,0)
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Let y;(1) = —=0.1. Then |A4] = 0.0046 > 0. From Theorem 2, all species are persistent in mean and

lim ! f xl(s)ds—l 116792 as.
0 |A

t—+00

!
lim t_lfxz(s)ds—l A _ 11302 as.
G Al (4.11)

!
lim ! f x3(s)ds = As] =0.5606 a.s.
fm oo o Al

!
A
lim ! f x4(s)ds = Asl_ 0.0690 a.s.
t—+co 0 |A|

Case 2 : Let y;(1) = 0.2. Then |A4] = 0.0029 > 0. Thanks to Theorem 2, all species are persistent
in mean and

!
A
lim ! f a(ds = 2=y 6545 as.
v o Al

lim ! f x(s)ds = — Azl 1065 aus.
0 |A

t—+00

(4.12)

lim ¢! f x3(s)ds = l 3 =0.5384 a.s.
f—+00 0 |A|

lim t_lf x4(s)ds = l al_ =0.0440 a.s.
>ty Al

Let y;(1) = 0.6. Then |[A4] = —0.0122 < 0, |E3| = 0.0230 > 0. On the basis of Theorem 2, x;(?),
x,(1) and x3(¢) are persistent in mean, while x,(¢) is extinctive and

! =
lim t_lfxl(s)ds_ IS _ 1.4172 a.s.
0

—+00 |

ﬁ

! =
lim ! f x(s)ds = '“_' =0.8323 a.s. (4.13)
t—+00 0 |,=‘|
! =
lim 77! f x3(s)ds = sl _ =0.2287 a.s.
t—+o0 0 |E|

Let y1(1) = 0.9. Then |Z;3] = —0.0155 < 0, |A,| = 0.0957 > 0. By Theorem 2, x,(¢) and x,(¢) are
persistent in mean, while x3(¢) and x4(#) are extinctive and

t
lim z-lf x1(s)ds = H = 1.1608 a.s.
t—+00
0 Ay (4.14)
lim 7! f xp(s)ds = —> = 0.4908 a.s.
t—+00 0 |A|

Let y;(1) = 1.3. Then |A;| = —0.0297 < 0, B; = 0.2129 > 0. From Theorem 2, x,(¢) is persistent in
mean, while x,(7), x3(¢) and x4(f) are extinctive and

!
B
lim "' f x(s)ds = - = 07097 a.s. (4.15)
0

t—+00 11

Let y;(1) = 1.7. Then B, = —0.0267 < 0. In view of Theorem 2, all species are extinctive.
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5. Discussion and conclusions

This paper concerns the dynamics of a stochastic hybrid delay food chain model with jumps in
an impulsive polluted environment. Theorem 2 establishes sufficient and necessary conditions for
persistence in mean and extinction of each species. Our results reveal that the stochastic dynamics of
the system is closely correlated with both time delays and environmental noises.

Some interesting topics deserve further investigation, for instance, it is meaningful to consider the
optimal harvesting problem of the stochastic hybrid delay food chain model with Lévy noises in an
impulsive polluted environment. One may also propose some more realistic systems, such as
considering the generalized functional response and the influences of impulsive perturbations. We
will leave investigation of these problems to the future.
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