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Abstract: Crustaceans exhibit discontinuous growth as they shed hard shells periodically.
Fundamentally, the growth of crustaceans is typically assessed through two key components, length
increase after molting (LI) and time intervals between consecutive molts (TI). In this article, we
propose a unified likelihood approach that combines a generalized additive model and a Cox
proportional hazard model to estimate the parameters of LI and TI separately in crustaceans. This
approach captures the observed discontinuity in individuals, providing a comprehensive understanding
of crustacean growth patterns. Our study focuses on 75 ornate rock lobsters (Panulirus ornatus) off the
Torres Strait in northeastern Australia. Through a simulation study, we demonstrate the effectiveness
of the proposed models in characterizing the discontinuity with a continuous growth curve at the
population level.
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1. Introduction

Panulirus ornatus is commonly found in the shallow coastal waters of the Indo-Pacific region
including the coasts of Australia, Indonesia, Malaysia and Papua New Guinea [1, 2]. It typically
inhabits coral reefs, rocky reefs and coastal waters with abundant hiding places such as crevices and
caves where it can find shelter during the day [3]. Meanwhile, Panulirus ornatus is known for its
sociable nature, often forming groups or colonies. They can be spotted in large groups of up to 50
individuals, especially during their juvenile stages. However, as they mature into adulthood, they tend
to prefer solitude and may display territorial behavior, occasionally resulting in intraspecific
aggression [4]. The optimal water temperature range for Panulirus ornatus is between 25 and 29
degrees Celsius, although they possess moderate tolerance for temperatures beyond this range [5]. As
juvenile lobsters grow, they periodically molt their exoskeletons to accommodate their increasing
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size [6]. To assess the growth and alleviate stress on the lobsters, measurements were taken of the
carapace lengths of the shed exoskeletons. The carapace length of lobsters can vary based on factors
such as age and gender. Although, adult lobsters generally have a carapace length ranging from 15 to
20 centimeters.

In fisheries research, modeling animal growth is essential for stock assessment and effective
management [7]. Growth models are a fundamental aspect of modeling growth rates,
age-at-recruitment or length-at-age. While growth in finfish and some invertebrates can generally be
modeled as a continuous process, growth in crustaceans is discontinuous due to the molting process.
Therefore, the validity of continuous growth models has been questioned especially for crustacean
species [8]. As all individuals have exact molting times (T I) and increments (LI) from each molting
throughout the study [9], it is relatively straightforward to estimate the size-at-age of animals as we
observe their growth during the entire molting process. However, traditional models do not account
for the stepwise growth trajectories of individual crustaceans which can result in difficulties in
estimating the molt process such as missing ageing information when the shell sheds off during
molting [10].

1.1. Modeling length increments LI and time intermolts TI

The distinct growth trajectories resulting from molting make it challenging to determine the growth
rate of these organisms accurately. The objective of this paper is to address this issue by characterizing
both stochastic components LI and TI through a unified likelihood approach. We demonstrate that both
components are conditionally independent given premolt length and the length of time between molt
intervals which allows us to quantify the growth parameters of LI and T I separately.

Each individual has its own unique genes that can affect its metabolism and may experience
different environmental conditions such as food availability [11] which can influence their actual
growth rate. Therefore, a suitable growth model should consider both individual and environmental
variability [12]. We must consider the nature of the data and the goals of the analysis before choosing
a specific modeling approach. Hence, we propose using a generalized additive model (GAM) in the
analysis of LI. It allows for the modeling of a nonlinear relationship and captures complex growth
patterns, making it suitable for a better understanding of the growth dynamics of Panulirus ornatus.

To model the growth of individuals’ T I, we apply a semiparametric method, specifically the Cox
proportional hazard model (CPHM). The misspecification of distribution assumptions may result in
biased estimation and misleading conclusions. For this reason, a semiparametric approach would be
more robust as there is no assumption made about the distribution of survival times [13]. For instance,
[14] provided a comprehensive review of survival data analysis for biological studies which supports
the use of a semiparametric approach. By using both the GAM and CPHM, the study provides a
comprehensive analysis of the growth patterns in Panulirus ornatus. The GAM allows for the modeling
of continuous growth curves, accommodates nonlinear growth patterns and captures the overall growth
trajectory of the population.

On the other hand, the CPHM is particularly useful when dealing with censored data where the exact
event time is unknown or only partially observed. These censored observations can be incorporated
into the model, providing more accurate estimates of growth rates and survival probabilities. The study
employs simulation techniques to evaluate the models’ performance and assess the impact of various
factors on growth patterns. Simulation allows for different growth scenarios and investigates the effects
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of specific variables on the growth trajectory and discontinuities in the population. Therefore, it can
provide valuable insights into the underlying mechanisms and factors influencing growth in Panulirus
ornatus.

The contribution of this paper is to characterize the discontinuous trajectories of lobster data
through two stochastic processes, moult increments and time intermoults. However, both stochastic
processes need to be modeled separately to determine their respective growth parameters. For
modeling moult increments, we consider a Generalized Additive Model, while we use a
semiparametric approach namely Cox Proportional Hazard Model to estimate the time intermoult.
Once the estimated parameters are obtained, we combine the two models through simulation to
explicitly infer the growth rate. This allows us to estimate the individual discontinuous growth
patterns as a continuous smooth curve at the population level for lobsters. Understanding the growth
patterns and discontinuities in crustaceans like Panulirus ornatus has important implications for their
management and conservation. By using a combined GAM and CPHM approach, the study provides
a robust framework for predicting and analyzing growth patterns, allowing for better-informed
decisions in aquaculture, fisheries and conservation efforts. This knowledge can aid in optimizing
rearing conditions, implementing appropriate harvesting strategies and monitoring population
dynamics more effectively.

2. Materials and methods

2.1. Data

2.1.1. Rearing ornate rock lobsters (Panulirus ornatus)

There are two fundamental approaches to estimating the growth data of lobsters, the tag-recapture
method [15] and the tank data setting. For this study, we focus on tank data where all the samples are
reared in the aquarium and their growth processes are observed directly. Implementing a new
experimental research design in laboratory settings can be expensive due to limitations in data
collection or ongoing monitoring efforts such as ensuring food supply, close monitoring and cleansing
the bottom of aquariums to investigate long-term trends or patterns in lobster populations. In such
cases, utilizing reared data provided by the Commonwealth Scientific and Industrial Research
Organization (CSIRO) can offer a cost-effective alternative. A dataset of 75 ornate rock lobsters
including 39 females and 36 males was previously collected from Cairns, Australia between 1995 and
1999. The time intervals for molting ranged from 45 to 260 days for lobsters reared in tanks with
water temperatures ranging from 25 to 30 degrees Celsius. All lobsters were measured for their
carapace length which ranged from 7.9 to 158.3 mm.

The samples will be housed in a controlled environment in the laboratory with appropriate water
quality parameters such as temperature, salinity and pH maintained at optimal levels for lobster growth.
On a daily basis, the lobsters will be provided with a suitable diet that mimics their natural diet typically
consisting of frozen penaeid prawns or frozen bivalve molluscs. The juveniles were randomly assigned
to twelve separate aquaria each with a varying density ranging from 1–10, a capacity of 108 liters and
dimensions of 60 cm x 60 cm x 30 cm (length x width x depth). The aquaria were supplied with filtered
sea water at a rate of 4.5 liters per hour. Six groups of juveniles were reared at a temperature range of
25–30 ◦C and each tank was oxygenated and equipped with two concrete-block shelters placed on a

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14487–14501.



14490

bed of loose sand.
The juvenile lobsters will be regularly monitored and each molting event will be recorded. This

will involve visually observing the lobsters during the molting process which is a vulnerable time for
lobsters as they shed their old exoskeleton and harden their new exoskeleton. The molt increment
which is the difference in size between the old and new exoskeleton will be measured and recorded for
each lobster. This will provide information about the growth rate of the lobsters during each molt cycle.
From February 1995 to June 1999, juvenile Panulirus ornatus were collected at Cairns, Australia and
their carapace lengths were measured (initial size range: 7.9–158.3 mm CL).

In addition, the intermolt time which is the duration between two consecutive molts will be
recorded for each lobster. This can be determined by tracking the time elapsed between successive
molt events. The intermolt time can vary depending on various factors such as lobster size,
temperature and nutrition. Studying it can provide insights into the growth and development of
lobsters in a laboratory setting.

2.2. Analytical approach

2.2.1. Modeling LI through generalized additive model GAM

The reason for using GAM is that the growth patterns are more intricate and are better captured by
flexible models like GAM. GAM can capture complex patterns and interactions in the data without
relying on strict assumptions about the functional form of the relationship. GAMs are particularly
effective when the relationship between the dependent and independent variables is nonlinear (as
growth paths generally are) which can be challenging for other regression techniques.

We consider a nonlinear model GAM to model length increment at molt, denoted as LI. In general,
the growth trajectory of an individual is often non-linear and may follow a more complex pattern
such as a sigmoidal curve. In such cases, a linear model may not be appropriate as it assumes a
linear relationship between the response variable and the covariates. Furthermore, the assumption of
normality of residuals may be violated when the growth trajectory is non-linear, leading to biased
estimates and incorrect statistical inferences.

Therefore, the GAM is more feasible for capturing complex nonlinear relationships between the
response variable and the covariates. The smooth functions used in GAMs can take many different
forms, including splines, polynomials and other functions. GAM is proposed for estimating parameters
of lobsters by modeling the relationship between carapace length and age using a non-linear function
such as a cubic spline. The GAM can be written in the following form:

g(E(Y)) = α + f1(X1) + f2(X2) + ... + fp(Xp) + ε, (2.1)

where g(·) is a link function, α is a y-intercept, E(Y) is the mean of the outcome Y , f1(X1) + f2(X2) +
... + fp(Xp) are smooth functions of the predictors X1, X2, ... Xp and ε is the error term.

To apply this equation to model lobster growth, we denote Y as the carapace length (L), X1 as
the age-at-molt (age), X2 as the premolt length (L−), X3 as the second order of the premolt length
[(L−)2] and X4 as the molt increments (I). The statistical approach of utilizing the GAM enables us
to explore the relationship between the carapace length of lobsters and different explanatory variables.
By capturing the effects of the independent variables on the dependent variable, we can infer the nature
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of their association in a more comprehensive manner. Mathematically, L = I+L−, the carapace lengths
L of an individual can be described explicitly given that the molt increment I and premolt length L−

are known.

2.2.2. Modeling T I through Cox proportional hazard model, CPHM

For the Cox proportional hazard model, it can be used to estimate time-to-moult data particularly
in the presence of censored observations. Regarding distribution assumptions, the Cox model does not
require explicit assumptions about the distribution of intermoult times. This flexibility allows it to be
used with data that may not follow a specific distribution.

For the growth of crustaceans, a molt is considered an event. Thus, the time intervals between two
consecutive molts denoted as T I can be deemed as “time-to-event” in survival analysis. Generally,
the nonparametric method is preferable to its counterpart since the subsequent molting times remain
unknown at the end of the experiments (due to right-censoring). The hazard function is

h(t|x) = h0(t) exp(xTβ),

where h0(t) is baseline hazard function with independent covariates, x while the exponential part
ensures the hazard function to be non-negative and time-independent. Given that the baseline hazard
function has no distributional assumption, we can opt out the parameter estimates for h0(t).

To investigate the correlation between molting time and covariates x in lobsters, we utilize a hazard
function to analyze molt time intervals in the form of

h(t|x) = h0(t) exp[β1L− + β2(L−)2 + β3T + β4D], (2.2)

where L−, (L−)2 are the first and second order of premolt length, T is the tank water temperature and
D is the density of tank lobsters. Parameter estimates in the CPHM are obtained by optimizing the
log-partial likelihood function

l(β) =
∑
δi=1

[xiβ] − log

∑
j≥i

exp(x jβ)


of which δi is an indicator function implying 1 for uncensored and 0 for censored data.

2.3. Simulation through unified likelihood approach

After obtaining all growth parameters for both stochastic components LI and T I, we derive a joint
likelihood function to combine these two processes, resulting in a population mean curve for all
lobsters.

Let lobster i has ni repeated measurements {Li j−1,∆i j, Ii j}
ni
j=1 where Li j−1 is the jth premolt length,

∆i j is the jth molt time intervals and Ii j is the jth molt increment. For instance, lobster i molted 3 times
with joint density function of

f {(Li2,∆i3, Ii3), (Li1,∆i2, Ii2), (Li0,∆i1, Ii1)}.
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In general, the joint function for i-th individual can be written as
ni∏
j=1

f (∆i j|Li j−1,∆i j−1)
ni∏
j=1

g(Ii j|Li j−1,∆i j)h(Li0).

Suppose that we have a total of N lobsters. The likelihood function for individuals is
N∏

i=1

ni∏
j=1

f (∆i j|Li j−1,∆i j−1)
N∏

i=1

ni∏
j=1

g(Ii j|Li j−1,∆i j)h(Li0). (2.3)

For the first function, f (·) which refers to the CPHM as a time-to-event model Eq (2.1) while
the second function g(·) represents the GAM as a function of time (refer Eq (2.2)). Both functions
condition on premolt length and molt time intervals. Finally, a population mean can be obtained
through a simulation study.

3. Results

We propose the flexible model, GAM (refer to Eq (2.1)) for modeling molt increments. This model
allows for nonlinear relationships between predictors and the response variable, enabling us to
estimate the mean growth rate of lobsters as a function of time. Figure 1 illustrates the nonlinear
growth trajectories of both male and female lobsters. In general, male lobsters grow bigger than
females because females store more energy for reproductive purposes. As a result, the growth rate of
female lobsters slows down after the maturity stage which typically occurs around day 150.

Figure 1. Observed (+ in grey) and estimated size of lobsters over time using GAM.
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The adjusted R-squared indicates that 99.8% and 99.7%of the variance in the dependent variable is
explained by the independent variables in the model for females and males, respectively. Additionally,
both smoothing terms appear to be highly significant as their p-values are less than 0.05. This finding
implies that the association between the predictors and the response is not linear and a smoothing
function is needed to adequately capture these relationships (Table 1).

Table 1. Estimate of parameters using the generalized additive model.

Sex Significance of smooth term Edf p-value
Female age 3.274 < 2e−16

L 3.054 < 2e−16

L2 4.000 < 2e−16

I 3.833 < 2e−16

Male age 3.550 4.9e−6

L 3.454 < 2e−16

L2 3.668 < 2e−16

I 4.000 < 2e−16

As discussed earlier, to model molting time intervals, the baseline hazard function h0(t) is
categorized into male and female strata. Two survival curves can be described based on sex-specific
traits, as shown in Figure 2. The plot depicts the probability of molting times over time (in days). In
the juvenile stages of development, crustaceans typically molt several times a year while adults only
molt once a year. This is because they are growing rapidly and need to replace their exoskeleton to
accommodate their increasing size. As they mature, the rate of molting tends to decrease as they near
their terminal size and their exoskeleton becomes more resistant to damage. The figure shows that
after 100 days, female lobsters were more likely to molt than males.

Referring to CPHM as in Eq (2.2), the test is not statistically significant for each of the covariates
and the global test is also not statistically significant. Therefore, we claim that the proportional hazards
assumption is not violated through statistical test (Table 2). In [16], the assumption of hazard function
can be examined by scaled Schoenfeld residuals (see Appendix A1). Figure 3 displays a plot of scaled
Schoenfeld residuals over time, where the smooth line indicates the fitted values while the dashed
lines are ± 2 standard error around the fit. Any systematic departures from horizontal lines symbolize
non-proportional hazards [17]. From the graphical display, there is no pattern with time for all of the
covariates. Therefore, the assumption of the proportional hazard model in (2.2) is supported for the
covariates premolt length, temperature and density. We can then conclude that the premolt length L,
water temperature T and density D are the key factors of the growth rate.

By conducting simulations, we can characterize the growth trajectories of lobsters following the
steps outlined below:

First, we collect data on lobsters, including their growth patterns, survival rates and environmental
factors such as tank water temperature and premolt length that might influence their growth and
survival.

Second, we develop a GAM to model the relationship between lobster growth length and age-at-
molt. The statistical analysis is performed using the gam(·) function with the logarithm of carapace
length as a smooth function of time-to-molt. This allows us to calculate and predict carapace length
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values over time.
Third, we develop a CPHM (refer Eq (2.2)) by utilizing the S urv function to specify survival times,

events, covariates and gender stratification. The CPHM is then fitted through the constructed formula
using the coxph function to calculate the expected survival probability of lobsters with respect to time
(see Appendix A2).

Finally, we combine the GAM and CPH models to create a joint model as shown in Eq (2.3) that can
capture the complex relationship between lobster growth and survival. This can be achieved using a
unified likelihood approach where the parameters of both functions are estimated simultaneously. The
predicted carapace length values from the GAM model are then updated into the CPHM. The mean
population of males and females is displayed in a nonlinear smooth curve as shown in Figure 4.

Figure 2. Survival curves for male and female lobsters.

Table 2. Parameter estimates of Cox proportional hazard model.

Parameters rho chisq p-value
L 0.057 0.949 0.330
L2 -0.034 0.321 0.571
T 0.012 0.049 0.824
D -0.026 0.174 0.677
GLOBAL NA 1.844 0.764
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Figure 3. Scaled Schoenfeld residuals over time (days) for different covariates.
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Figure 4. Simulated data and predicted growth curves (dashed and solid lines) over time by
unified likelihood approach.

4. Conclusions

In practice, molt increments, as well as molt time intervals, occur concurrently throughout the
molting process. Therefore, the discontinuous growth of crustaceans during the molting process
complicates growth estimations. We applied a GAM for molt increment analysis and a CPHM to
estimate the molt time intervals in lobsters. GAM is known for being a non-parametric smooth
function that is robust to outliers in the data, making it a flexible tool for data analysis. It is a type of
statistical model that can capture complex data patterns that may not be captured by a simple
parametric model. Both GAM and CPHM account for individual and environmental variability to
characterize individual stochastic growth trajectories in crustaceans.

In reality, we cannot guarantee which type of distribution fits the data well. Additionally, the molting
time of lobsters is often considered as censored data because the exact time of molting is not always
observed. CPHM can handle censored data by using maximum likelihood estimation to estimate the
hazard function which describes the instantaneous probability of an event occurring at any given time,
given that it has not occurred yet. A semi-parametric approach is treated as an alternative assumption
since it is less restricted by any violated assumptions. As a result, this statistical framework can produce
more robust outcomes compared to a parametric approach.

We have proposed a joint likelihood function to quantify the growth parameters for both stochastic
components in crustaceans. This allows us not only to describe the discontinuous growth paths but
also to mathematically characterize the population mean growth curve for lobster data in this case.
We claim that both LI and T I are conditionally independent which means that the parameters in each
function can be estimated separately. Through a simulation study, we can integrate both discontinuous
functions to yield a smooth, continuous growth function for crustaceans.
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Characterizing growth trajectories of lobsters can contribute to our understanding of crustacean
biology and ecology. Not only it can provide valuable data for studying various aspects of lobster
physiology, behavior and life history, but it can also serve as a foundation for further research on
population dynamics, species interactions and ecosystem dynamics. By accurately estimating the
lobsters’ growth parameters can aid in the effective management of lobster fisheries. Knowledge of
molt increments LI and molt intervals T I can provide insights into the growth rates of lobsters and
help determine optimal harvesting strategies such as setting appropriate size limits or determining
seasonal closures to ensure sustainable harvest practices.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The author is grateful to the Referees for their valuable hints. We would also like to thank the
Commonwealth Scientific and Industrial Research Organisation (CSIRO) for providing the data on the
ornate spiny lobster tank.

Conflict of interest

The author declares there is no conflict of interest.

References

1. R. Wahyudin, A. Hakim, Y. Qonita, M. Boer, A. Farajallah, A. Mashar, et al., Lobster diversity
of Palabuhanratu Bay, South Java, Indonesia with new distribution record of Panulirus ornatus, P.
polyphagus and Parribacus antarcticus, Aquacult. Aquarium, Conserv. Legis., 10 (2017), 308–327.

2. A. Indarjo, G. Salim, T. I. Maryanto, L. A. Linting, M. Firdaus, Growth patterns and mortality of
lobster Panulirus ornatus from the catch of bottom gill net fishers in the western waters of Tarakan
Island, HAYATI J. Biosci., 30 (2023), 532–542. http://dx.doi.org/10.4308/hjb.30.3.532-542
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Appendix

A1. Source code for schoenfeld residuals test

library (survival)
attach (lobster)
intcox < − coxph (Surv (START, STOP, STATUS) PL + PL2 + DENSITY + TEMP)
summary (intcox)
cox.zph (intcox)
plot (cox.zph (intcox))

A2. Simulation source code

# Create empty data frame to store simulated data
simdata < − data.frame ()
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# Generate 100 unique lobsters
uniquelobsters < − paste 0 (“Lobster”, 1:100)

# Loop over each unique lobster
for (lobster in uniquelobsters)
num.measures < − sample (2:7, 1)

# Randomly assign a sex to the lobster (1 for female, 2 for male)
sex < − sample (c (1, 2), 1)

# Generate repeated measurements for each variable
density < − rnorm (num.measures, mean = 2, sd = 1)
lobster sex < − rep (sex, num.measures)
cl < − sort (runif (num.measures, 20, 300))
inc < − sort (runif (num.measures, 10, 100))
pl < − cl − inc
int < − rnorm (num.measures, mean = 60, sd = 20)
nint < − cumsum (int)
pl2 < − pl*pl

# Create a column with the lobster label
lobster label < − rep (lobster, num.measures)

# Combine the generated data into a data frame
data < − data.frame (LOBSTER = lobster label, INC = inc, DENSITY = density, SEX = lobster sex,
CL = cl, PL = pl, PL2 = pl2, INT = nint, STATUS = status, START = int)

# Append the lobster data to the simulated data frame
simdata < − rbind (simdata, data)

# Reset row names of the simulated data frame
row.names(simdata) < − NULL

# Load required libraries
library (plyr)
library (mgcv)

# Separate the data into female and male lobsters
female < − subset (simdata, SEX == 1)
male < − subset (simdata, SEX == 2)
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# Plot the relationship between CL and INT for female lobsters
plot (simdata $ INT), simdata $ CL, type = “n”, xlab = “Age (days)”, ylab = “Carapace length (mm)”)
CLcount 1 < − count (female $ CL, “LOBSTER”)
data 1 < − unique (female $ LOBSTER)

for (i in 1:length (data 1))
{

sub < − t (matrix (NA, nr = CLcount 1 $ freq [i], nc = 2))
sub < − subset (female, LOBSTER == data 1 [i], select = c (“CL”, “INT”))
lines (sort (sub [, 2]), sub [, 1], col = “pink”)
}

CLcount 2 < − count (male $ CL, “LOBSTER”)
data 2 < − unique (male $ LOBSTER)

for (i in 1:length (data 2))
{

sub < − t (matrix (NA, nr = CLcount2 $ freq [i], nc = 2))
sub < − subset (male, LOBSTER == data 2 [i], select = c (“CL”, “INT”))
lines (sort (sub [, 2]), sub [, 1], col = “light blue”)
}

# Fit the survival Cox model
cox model < − coxph (Surv (START, STATUS) PL + PL2 + INT+ DENSITY, data = female)

# Obtain the survival probabilities
newdata < − data.frame (PL = female $ PL, PL2 = female $ PL2, INT = female $ INT, DENSITY =
female $ DENSITY)
fit < − survfit (cox model, newdata = newdata)

# Calculate estimated survival time for females (SEX == 1)
subset < − female $ SEX == 1
time < − fit $ time [subset]

# Fit the survival time into the gamma function
gam model < − gam (log (female $ CL) s (time) + s (female $ PL) + s (female $ INC) + s (female $
PL2), data = female)
smooth < − exp (predict (gam model))

# Prediction line
lines (lowess (female $ INT, smooth, f = 0.85), lwd = 3, lty = 1, col = 2)
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# Fit the survival Cox model
cox model < − coxph (Surv (START, STATUS) ∼ PL + PL2 + INT+ DENSITY, data = male)

# Obtain the survival probabilities
newdata < − data.frame (PL = male $ PL, PL2 = male $ PL2, INT = male $ INT, DENSITY = male $
DENSITY)
fit < − survfit (cox model, newdata = newdata)

# Calculate estimated survival time for females (SEX == 1)
subset < − male $ SEX == 2
time < − fit $ time [subset]

# Fit the survival time into the gamma function
gam model < − gam (log (male $ CL) ∼ s (time) + s (male $ PL) + s (male $ INC) + s (male $ PL2),
data = male)
smooth < − exp (predict (gam model))

# Prediction line
lines (lowess (male $ INT, smooth, f = 0.8), lwd = 3, lty = 4, col = 1)
legend (300, 100, c (“males”, “females”), col = c (1, 2), lty = c (4, 1), lwd = 3:3)
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