
http://www.aimspress.com/journal/mbe

MBE, 20(8): 14464–14486.
DOI: 10.3934/mbe.2023647
Received: 05 March 2023
Revised: 07 June 2023
Accepted: 20 June 2023
Published: 03 July 2023

Research article

An innovative parameter optimization of Spark Streaming based on D3QN
with Gaussian process regression

Hong Zhang1, Zhenchao Xu1*, Yunxiang Wang1 and Yupeng Shen2

1 School of Cyber Security and Computer, Hebei University, Baoding, China
2 Bureau of Geophysical Prospecting, Baoding, China

* Correspondence: Email: xuzhenchao@stumail.hbu.edu.cn.

Abstract: Nowadays, Spark Streaming, a computing framework based on Spark, is widely used to
process streaming data such as social media data, IoT sensor data or web logs. Due to the extensive
utilization of streaming media data analysis, performance optimization for Spark Streaming has
gradually developed into a popular research topic. Several methods for enhancing Spark Streaming’s
performance include task scheduling, resource allocation and data skew optimization, which primarily
focus on how to manually tune the parameter configuration. However, it is indeed very challenging
and inefficient to adjust more than 200 parameters by means of continuous debugging. In this
paper, we propose an improved dueling double deep Q-network (DQN) technique for parameter
tuning, which can significantly improve the performance of Spark Streaming. This approach fuses
reinforcement learning and Gaussian process regression to cut down on the number of iterations and
speed convergence dramatically. The experimental results demonstrate that the performance of the
dueling double DQN method with Gaussian process regression can be enhanced by up to 30.24%.

Keywords: Spark Streaming; Gaussian process regression; dueling double DQN; parameter
optimization

1. Introduction

Due to big data’s phenomenal growth, the demand for real-time big data processing and related
applications is rising quickly. Storm [1], Spark Streaming [2] and Flink [3] are the most popular
computing frameworks for streaming data. With a complete ecosystem and more cutting-edge
technologies, Spark Streaming, an extension API of Spark, has become the industry standard for
processing and analyzing streaming data. It can facilitate the rapid processing of big datasets at a high
level and handle the real-time processing of billions of records. At the same time, Spark Streaming
offers a ton of flexibility, supporting a variety of data sources, including Apache Kafka and Flume,

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023647


14465

and it has a wide range of output targets, such as HDFS, HBase and BI reports. The execution process
of Spark Streaming is shown in Figure 1.

Figure 1. Execution process for Spark Streaming.

Nevertheless, Spark Streaming cannot execute at its maximum potential because of an irrational
parameter configuration. The appropriate adjustment of Spark’s parameters is thus a significant area of
research to improve Spark Streaming’s performance. Despite the fact that users can manually configure
parameters to improve the performance of applications, this is obviously incredibly inefficient and
would really be counterproductive owing to the complex influence among them. Several experts have
so far conducted research in this field by employing reinforcement learning [4–7], but relying solely
on reinforcement learning would lead to problems of incessant iterative training and poor convergence.

For such problems, we can choose appropriate methods for function approximation during the
iterative process of reinforcement learning to accelerate convergence and improve learning
effectiveness. One of them, Gaussian process regression, has a number of benefits over other
methods [8]. First off, Gaussian process regression is a non-parametric model, allowing it to flexibly
adapt to different functional forms in model selection without the requirement to predetermine the
number and types of parameters. Second, a confidence range can be specified for each predicted value
to estimate the degree of prediction uncertainty, which is crucial to making a correct judgment and
remarkably decreasing the searching space. Additionally, Gaussian process regression improves the
efficiency of parameter tuning through a combined probability distribution based on priors and data.
Since gathering data for reinforcement learning is a time and resource intensive procedure, speeding
up the tuning efficiency can dramatically increase the algorithm’s availability in real-world
applications. Finally, Gaussian process regression enables us to incorporate previous knowledge into
the modeling process, such as prior distribution and kernel function selection, to further avoid
unnecessary parameter detection.

To solve the aforementioned challenges, this paper introduces an improved dueling double deep
Q-Network (D3QN) [9, 10] strategy for Spark Streaming parameter optimization that fuses
reinforcement learning [11, 12] and Gaussian process regression [13]. When a program is running,

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14466

reinforcement learning is added to the execution process of the program. Different parameter values
are set for the program during each iteration, and then the parameter configuration is continuously
optimized according to the obtained Q value. However, this leads to the problem of too long training
times and slow convergence due to a large action space. In this paper, Gaussian process regression is
added to reinforcement learning, and the Q value obtained each time is modified by Gaussian process
regression to reduce the time of reinforcement learning training and accelerate convergence. The
following describes this paper’s main contributions:

• In this paper, we employ the batch gradient descent algorithm of the Gaussian process regression
to update the Q value of reinforcement learning. The deviation problem caused by the noise of
a single sample is avoided in this study by computing the gradient of a batch of samples in each
iteration. Moreover, the vectorization computation of the batch gradient technique can accelerate
the convergence process when training.
• In this paper, an improved D3QN-Gaussian process regression (GPR) is introduced to the Spark

Streaming program to dynamically select the optimal parameters. To determine whether to reward
or punish depending on the outcomes of each program execution, D3QN with Gaussian process
regression can perform well on small datasets and also support uncertainty measurements for
prediction.
• Experimental results on Hibench, a big data benchmark platform with various applications,

reveal the effectiveness and convergence of our improved reinforcement learning model for
Spark Streaming.

The remainder of this paper is structured as follows. In Section 2, we describe the theoretical
concepts of reinforcement learning and summarize the related work. In Section 3, we discuss the design
of the enhanced reinforcement learning model D3QN for the deep Q-Network (DQN) and introduce
the Gaussian process regression method. On this basis, we propose an improved D3QN-GPR model
that combines Gaussian process regression with D3QN to solve parameter configuration problems. The
experimental results are analyzed in Section 4. Finally, in Section 5, the paper is concluded and future
work is discussed.

2. Background

In this section, we first describe the theoretical concept and the execution of reinforcement learning
in this part. Then, a summary of the present Spark Streaming research hotspots is presented.

2.1. Reinforcement learning

One of the machine learning techniques, reinforcement learning [14], is distinguished by its
interactive learning approach [15]. It is used to define and address the problem of how an agent can
optimize its object or achieve a specific goal by using learning strategies while interacting with the
environment.

In reinforcement learning, the agent learns through a trial-and-error process. It starts with little
or no prior knowledge about the environment and gradually improves its decision-making abilities
through interactions. The agent explores the environment, takes actions, receives feedback in the form

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14467

of rewards or penalties and adjusts its future actions based on this feedback. The goal is to find an
optimal policy that maximizes the cumulative reward during iterations.

The reinforcement learning process involves four key components:

• State Space (S ): It represents the set of possible states that the agent can occupy. Each state
captures relevant information about the environment at a specific time.
• Action Space (A): It denotes the set of possible actions that the agent can take. An action is

chosen based on the current state and is aimed at influencing the future states of the environment.
• State Transition Function (P): It defines the probability distribution of transitioning from one state

to another based on the agent’s actions. Given the current state and action, the state transition
function provides the next state.
• Reward Function (R): It assigns a numerical reward or penalty to the agent based on the outcome

of its action in a particular state. The reward function guides the agent towards desired behaviors
and goals.

The reinforcement learning process can be summarized as follows:

• Step 1: the agent observes the current state of the environment, denoted as S t ∈ S , at time t.
• Step 2: based on the current state, the agent selects an action At ∈ A according to a specific policy.
• Step 3: the action affects the environment, resulting in a transition to a new state S t+1 based on

the state transition function P.
• Step 4: the environment provides a reward Rt to the agent based on the outcome of the action.
• Step 5: the agent updates its knowledge and adjusts its future actions based on the received reward

and the observed state transition.
• Step 6: the aforementioned steps are executed repeatedly until the agent receives the optimal

objective or completes its intended goal.

Through this iterative process of exploration and exploitation, a reinforcement learning agent can
learn an effective strategy to make better decisions in complex and dynamic environments. The
execution flow chart of reinforcement learning is illustrated in Figure 2.

Figure 2. Reinforcement learning process.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14468

2.2. Related work

A generic distributed streaming data computing framework is Spark Streaming. Because this
computer platform has become more widely used, its performance has come under increasing
scrutiny. A popular area of research is how to improve Spark Streaming’s performance. Currently,
schedule optimization, parameter optimization and data skew processing are the key components of
Spark Streaming optimization.

Scheduling optimization refers to the Spark Streaming framework’s dynamic scheduling of tasks in
accordance with various job requirements in order to boost performance. Lin et al. [16] proposed a
method of modeling and simulation to predict the response time of Spark Streaming programs; they
configured the parameters to address the issue of resource over provisioning and poor performance.
This allowed stream processing system throughput and resource requirements to be determined in
advance. The drizzle system was created by Venkataraman et al. [17] optimized the scheduling of flow
processing workload and other control plane operations for high throughput and minimal delay. It is
nonetheless restricted to the infrequent changes in workload and cluster characteristics. On the Spark
Streaming system, Ajila and Majumdar [18] implemented the data-driven priority scheduler prototype.
Users can give input data items a priority this way. The scheduler ensures that higher priority data
items take precedence over lower priority data items, minimizing delays for high priority data items
and lessening the effects of resource limitations. Cheng et al. [4] used the online parameter adjustment
problem of Spark Streaming as a reinforcement learning process to accomplish adaptive parameter
configuration of the workload, although the issue of reinforcement learning’s delayed convergence is
still present. To increase the effectiveness of resource allocation Petrov et al. [19] suggested an adaptive
performance model that may dynamically grow the Spark Streaming platform on AWS. Without taking
into account throughput, another crucial element of the streaming computing framework, this model
increases and decreases the system’s resources in accordance with the length of the processing delay.
Li et al. [20] used the proposed sparse regularized ADMM algorithm and the non-intrusive method,
adding a new DStream transformation to the current Spark flow framework to support flexible micro
batches, realizing the optimization of scheduling tasks only by altering the application workflow. On
the basis of the Spark Streaming architecture, Zhao et al. [21] developed a traffic flow controller based
on a grey prediction model, which is used for the batch interval dynamic adjustment layer and the flow
prediction-orientated prediction layer in Spark Streaming. This meets the application throughput needs
and reduces end-to-end delay. A dynamic resource allocation mechanism for many applications was
proposed by Liu et al. [22]. It lowers the delay of Spark Streaming and increases the usage of cluster
resources by controlling the allocation of dynamic resources by adding application global variables.

Many systems must take into account the optimization direction known as parameter optimization.
Users typically utilize the default parameter configuration for the Spark Streaming computing
framework, which saves time. However, using the default configuration hinders performance,
especially when many apps have varied setup requirements. Additionally, there are specific
correlations between each of the more than 200 factors that make up Spark Streaming. However,
manual parameter tuning frequently relies on expert experience, which has several drawbacks. As a
result, automating parameter configuration is a key component of improving Spark Streaming speed.

In order to dynamically plan batch processing processes in Spark Streaming and automatically
alter parameters to optimize performance and decrease energy consumption, Cheng et al. [23]
proposed the A-scheduler scheduling method. The Monkeyking system, developed by Du et al. [5],

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14469

can optimize parameter configuration by implementing reinforcement learning after adjusting
parameters using historical data and new execution outcome data. The DQN convergence problem
has not been resolved, though, and the system’s training period is excessively long. Before streaming
media applications were ever deployed, Prasad and Agarwal [24] proposed a linear regression model
that could predict how well they would work based on a particular parameter combination. They just
pay attention to the block interval, batch processing and data processing parallelism factors. Kordelas
et al. [6] proposed an enhanced solution, known as KORDI (knowledge based orchestrated resource
distribution), aimed at optimizing the allocation of Spark resources for streaming, but it is only
applicable to real-time applications of SARIMAX models. Deep reinforcement learning-based
parameter optimization for Spark Streaming was proposed by Liu et al. [7] By integrating the weight
state space transfer method and the reinforcement learning method, this method enhances
performance. However, without taking into account the throughput of the stream computing
architecture, the primary objective of this paper is to decrease latency.

Big data processing systems frequently encounter the issue of data skew. It leads to task pileup
and negatively impacts system performance if it is not handled properly. The Spark stream structure
similarly struggles with the issue of skewed data. A brand-new partitioning technique called SP-
partitioner was put out by Liu et al. [25] It balances the workload of activities and solves the issue of
data skew that arises when applications are in the shuffle stage. This approach decreases the average
processing time of a batch of data while simultaneously enhancing its performance at various levels.
An improved range divider (ImRP), put out by Fu et al. [26], develops a partitioning scheme using
the intermediate data distribution determined by the prior batch of processing as opposed to pre-run
sampling. This partitioning strategy can equalize the burden across tasks and lessen the skew of jobs
in Spark Streaming.

3. Methods

In the first part of this section, we develop a reinforcement learning model based on the features of
the Spark Streaming program. Then, we describe the theory of Gaussian process regression, discuss
how to use it for regression analysis and provide examples of when it can be effectively used for
reinforcement learning. Finally, we implement the D3QN-GPR model by integrating these two.

3.1. Reinforcement learning model design

There are several implementation strategies for reinforcement learning in various contexts. In cases
where the state space and action space are straightforward and low-dimensional, the Q-learning [27]
approach can be used to store the behavior value function Q in a table. This enables the implementation
of the reinforcement learning experiment. However, when dealing with complex and high-dimensional
state and action spaces, this strategy can lead to a dimension catastrophe. To address this issue, Mnih
et al. [28] proposed the DQN technique, which combines deep learning and reinforcement learning.
In this approach, the Q table is approximated using a deep neural network [29], denoted as Q(s, a; θ),
where θ represents the parameters of the neural network. The state vector is input to the neural network,
which outputs the value function for each action, thus resolving the aforementioned challenges.

However, the direct combination of deep learning and reinforcement learning in the DQN method
introduces new issues:

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14470

• The basis for training a neural network is the assumption that the training data are independent
and uniformly distributed, and that there is a high degree of correlation between the sequential
data collected through agent interaction, which makes network training susceptible to instability.
• DQN network parameter θ is constantly updating, creating Q(s, a) and maxQ(s′, a′) with the same

network results amid the constant changing of the neural network’s time sequence difference
target, which is detrimental to the algorithm’s ability to converge.
• Early in the training process, the model is not stable enough and the value function estimation

is inaccurate. By using maxQ(s′, a′), the model overestimates the expected return of an action,
leading the agent to choose the incorrect action and discover the best course of action.

The D3QN algorithm, an enhanced version of the DQN algorithm, is the reinforcement learning
technique we selected. The method fixes the following issues in light of the aforementioned issues:

• The experience replay mechanism is used to sequentially store each experience gained from
interacting with the environment in the experience pool. The model randomly selects a certain
batch of data from the experience pool when it has accumulated to a specified number in order to
train the neural network. Random extraction experience breaks data correlation and enhances
generalization performance. Additionally, it enhances the stability of network training.
• The estimation network QE(s, a; θ) and target value network QT (s, a; θ′) are built as two neural

networks with the same structure. To choose actions and parameters, the estimating network
is used. They are updated frequently; the target network is used to determine the time interval
between the target value y and the target value. Every second or so, the parameter θ′ is fixed
and changed with the most recent valuation network parameters. This is how the target value y is
determined:

y = r + γQT (s′, argmaxa′QE(s′, a′; θ); ); θ′) (3.1)

The evaluation network’s relatively stable QE convergence objective y is made when θ′ remains
constant throughout time, which promotes convergence. The target value network’s and the
estimation network’s maximum value functions’ activities are not always identical. It is possible
to prevent the model from choosing the overestimated suboptimal action and successfully
address the overestimation issue of the DQN algorithm by using QE to generate the action and
QT to determine the target value.
• The neural network’s structure has been improved, and its output has been split into two portions.

The state value function V(s; θ, µ), which represents the quality of each state, is one component.
The dominance function A(s, a; θ, ω), which separates right from wrong behavior in a certain
state, is the other component.

Q(s, a; θ, µ, ω) = V(s; θ, µ) + A(s, a; θ, ω) (3.2)

Finally, the target value of the D3QN model is as follows:

y = r + γQT (s′, argmaxa′QE(s′, a′; θ); ); θ′, µ′, ω′) (3.3)

The following network parameters should be updated with the mean square error as the loss
function:

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14471

L(θ, µ, ω) = E[(Y − QE(s, a; θ, µ, ω))2] (3.4)

This paper’s parameter optimization problem can be reformulated as the reinforcement learning
problem of pursuing precise objective. The Spark Streaming program interacts with the environment
where the parameter configuration is chosen by calculating performance in order to select the parameter
configuration with the best performance while it is running. We utilized the D3QN technique because
the parameter space is discrete and enormous.

Designing the action space (A), state space (S ), state transfer function (P) and reward function (R)
is crucial for building a reinforcement learning model. In this paper, we focus on the Spark Streaming
parameter optimization problem and implement the following approach. The operation of parameter
values is referred to as the action space. The action space can be designed as A = [A0, A1, A2],
corresponding to “raise 1”, “unchanged” and “drop 1,” respectively, depending on the value and
change of the Spark Streaming parameter. The parameter configuration combination of the
parameters that must be optimized is referred to as the state space. There is a range of values for each
parameter. The state space of the model is formed by selecting a value from each parameter’s value
range to create a combination of parameter configurations. The state space is denoted by the
expression S = {S 0, S 1, ...S k, ..., S n}, where S k denotes a set of parameter configurations. The
changing of various parameter configurations is referred to as a state transition. But because there are
so many parameters and their range of values is so wide, there are a great number of conceivable
parameter combinations, which slows down the agent’s exploration process. This work suggests using
the Gaussian process regression in conjunction with the parameter space transition to speed up
convergence. In the current state S , the reward function refers to the immediate benefit that can be
gained after executing action A. The reward function is built in the manner described below:

r =
new per − old per

old per
(3.5)

In Eq (3.5), new per represents the system’s performance in the current state S after applying action
A, while old per represents the system’s performance in state S before applying action. The reward is
denoted by r to reflect the proportional performance changing. Performance improvement is indicated
by a positive reward, whereas performance deterioration is represented as a negative reward. Due to it
adaptively varying, the reward function has a more powerful incentive effect on modeling optimization.

3.2. Gaussian process

The Gaussian process [8], commonly referred to as the normal stochastic process, is a “Bayesian”
[30] regression procedure that uses incremental learning. It alludes to the random process that may be
observed at any given time t and whose random variables adhere to the Gaussian distribution.

The Gaussian process is uniquely determined by the mean function and the covariance function.
In the field of machine learning, the machine learning method developed by combining the Gaussian
random process and Bayesian learning theory is called a Gaussian process, which satisfies such a
random process: the distributions of the set of benevolent finite variables are Gaussian distributions,
that is, for any integer n ≥ 1 and any group of random variables x, the joint probability distribution of
the process state f (x) at its corresponding time t obeys the n-dimensional Gaussian distribution. All

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14472

of the statistical characteristics of a Gaussian process are completely determined by its mean function
m(t) and covariance function k(t, t′). Its definition is as follows:

f (t) ∼ GP[m(t), k(t, t′)] (3.6)

When dealing with difficult issues like high dimensionality and nonlinearity, the Gaussian process
works well. The Gaussian process model also has fewer parameters and is simpler to converge than
approaches like neural networks, support vector machines [31] and others.

3.3. Gaussian process regression

A non-parametric model called Gaussian process regression uses the Gaussian process before
performing a regression analysis on the data. It is a technique used in supervised learning in the field
of machine learning to approximate functions. Using the sample data, this method aims to capture the
distribution of the full value function. A Gaussian process can be created to represent a function
distribution from the viewpoint of function space, and Bayesian inference can be executed directly in
function space.

A brief explanation of how to apply the Gaussian process regression model is provided in this
section. Consider a training sample dataset with the formula D = {(xi, yi), i = 1, 2, ..., n}, where xi is
the d-dimensional input vector and yi is the 1-dimensional output. We must now estimate the new xi’s
associated output yi in accordance with the sample dataset D. We take into account the model below:

yi = f (xi) + ε (3.7)

where xi is the input variable, f is the real output value of the function, and ε is noise. Generally, we
assume that the noise follows the distribution

ε ∼ N(0, σ2
n) (3.8)

y is the observation target value affected by noise and its prior distribution is

y ∼ N(0,K + σ2
nI) (3.9)

where k is an n×n order symmetric positive definite covariance matrix, and the term Ki j in the matrix
measures the correlation between xi and yi.

The purpose of the Gaussian process regression model is to determine f . We may express the
noise factor more simply by converting it to the covariance function. Since the independent noise error
accounts for the difference between the real curve and the observed value, we may define the noise
error using the covariance function, as illustrated below:

k(x, x′) = σ2
f exp[

−(x − x′)2

2l2 ] + σ2
nδ(x, x′) (3.10)

Among them, l, σ f , σn are the hyperparameters of the function, which have a great influence on the
result. The optimal hyperparameter can be obtained using the maximum likelihood method. δ(x, x′)
is the Kronecker function. Only when x = x′ is the function value equal to 1, otherwise the function
value is 0.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14473

In the research of this paper, we can utilize the Gaussian process regression approach to analyze the
performance obtained by the interaction between the execution of the Spark streaming program and
the environment in reinforcement learning, so as to accelerate the convergence speed of reinforcement
learning.

3.4. D3QN-GPR model design

The D3QN-GPR model combines the D3QN and the Gaussian process regression methods for
reinforcement learning. The Gaussian process has the following benefits for reinforcement learning:

• In contrast to reinforcement learning, which explores the state space directly, state space
exploration in the learning process can be guided by the probability distribution of the target
value.
• The covariance matrix can be constructed by using an incremental approach, which is better for

cutting down on calculations and making full use of the results of those calculations.

We explain this model as follows. Assume that a set of point data (corresponding to the state
action pair in reinforcement learning) can be obtained as {(xi, ti)N

i=1}, where xi is the description value
of the sample but ti is the target value. Then ,according to the Bayesian method, we can establish a
distribution model of tN+1 for a given sample description value xN+1, that is,

P(tN+1|(xi, ti), ..., (xN , tN), xN+1) (3.11)

In the Gaussian process, the observed target value is set as tN = [t1, ..., tN]T , which usually assumes a
joint Gaussian distribution, and these target values are obtained from a real value with Gaussian noise;
then,

P(tN |xi, ..., xN ,CN) =
1
z

exp(−
1
2

(tN − µ)TC−1
N (tN − µ)) (3.12)

where µ is the average value of the target value, Cn is a covariance matrix and Z is a normalized
constant. Through the above analysis, it can be concluded that the D3QN-GPR model is feasible and
effective for optimizing Spark streaming parameters.

Table 1 shows the description of symbols in the D3QN-GPR model. Characters used in this article
are represented by symbols, while the interpretation of the previous symbol is represented by
descriptions.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14474

Table 1. Notations.

Notation Definition

θ Current Q network parameters
θ′ Parameters of target Q′ Network
A Current action
A′ Next action
S Current state
S j State of the jth time
S ′j Next state of the jth time
T Total iteration number
γ Attenuation factor
ε Exploration rate
P Target Q network parameter update frequency
m Number of samples per random sampling
D Replay buffer
R Reward
R j Reward obtained for the jth time
loss Mean square loss function
Con Optimal parameter configuration
DDT The performance of the Spark Streaming program
DDT ′ The performance of executing Gaussian process regression
Par Parameter combination
yi Target value of D3QN model
batch size Neural network hyperparametric
reset Reset function in reinforcement learning
action Selective action function in reinforcement learning
step Executive action function in reinforcement learning
push The function of storing in replay buffer
loss The function of calculate loss
GPR Gaussian process regression

The implementation process of the model is as follows. In the D3QN-GPR model, we first input
the initialized parameters, then use the agent in reinforcement learning to continuously interact with
the environment, optimize the parameter configuration of Spark Streaming according to the results of
each parameter configuration and finally output the optimized parameter configuration.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14475

Table 2. D3QN-GPR model algorithm.

Algorithm 1: D3QN-GPR model algorithm
Input:

Initialize parameters θ, θ → θ′,Q′,T, γ, ε, P,m,D
Output:

Con
1: for t = 1 to T do
2: //reset the environment and get the status S , done, initialize R
3: S , done = env.reset()
4: R = 0
5: while True do
6: //Execution times
7: step count+ = 1
8: //Select the corresponding action A under the current state S using the ε − greedy method
9: A = D3QN.action(S )

10: //Execute A to obtain s′ and R, done,Con, Par.
11: S ′,R, done,Con, Par = env.step(A)
12: //Store {S , S ′, A,R, done} in replay buffer D
13: D.push(S , S ′, A,R, done)
14: if done then
15: break
16: else
17: //Take m samples from D: {S j, S ′j, A j,R j, done j}, j = 1, 2, 3, ...,m; D, yi of the current Q

network is calculated according to Eq (3.3):
18: yi = r + γQT (S ′, argmaxA′QE(S ′, A′; θ); ); θ′, µ′, ω′)
19: //Use the mean square loss function to calculate loss
20: loss = D3QN.learn(D, batchsize, stepcount, γ)
21: end if
22: end while
23: //After a certain number of execution, the Q value is corrected by Gaussian process regression,

and the subsequent execution uses the new Q value
24: DDT ′ = GPR(Par,DDT, S )
25: //Update θ′, S ,DDT, t
26: S ← S ′

27: DDT ← DDT ′

28: t ← t + 1
29: end for
30: return Con

Figure 3 shows the execution flow chart of the D3QN-GPR model. Based on the reinforcement
learning method D3QN, the implementation flow chart adds a Gaussian process regression to modify
the Q value so as to accelerate the model convergence.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14476

In our D3QN-GPR model, we first initialize the model parameters and associated variables. Before
starting an iteration, the environment state is reset and the current state is given a cumulative reward
of 0. Then, based on the current state, we employ the ε-greedy method to choose actions within
each iteration. After the chosen action is carried out, the next state, reward, program end flag, and
other pertinent information are updated and stored in the experience replay buffer. A random batch of
samples is selected from the experience replay buffer for the agent to update in each iteration unless
the program terminates. The mean square error loss function is introduced to calculate the intended
output value for each sample and update the DQN. Then, the Q value is adjusted using Gaussian
process regression after a predetermined number of executions, and the updated Q value is applied to
subsequent executions.

Figure 3. D3QN-GPR execution flow chart.

4. Experimental evaluation

In this study, in order to assess the performance of the D3QN-GPR model, we employed HiBench
[32], a big data benchmark platform, and a distributed cluster with six nodes (one master node and five
slave nodes). The configuration of the distributed cluster environment is as follows: CentOS 8.2, Spark-
2.4.0-bin-hadoop 2.7, JDK 1.8.0 144, Hadoop 2.7.2, Kafka-2.11-2.4.0, Scala-2.11.8, Zookeeper-3.4.8.
The cluster was equipped with 64 GB of memory and an i9-10900k CPU.

HiBench is a big data benchmarking toolkit that may be used to assess how efficiently the big data
framework uses system resources in terms of speed, throughpu and utilization. The Spark framework
is just one of the numerous frameworks that it supports in the big data ecosystem. The benchmark
test for Spark Streaming apps is supported by the Spark framework. As a result, we can use the Spark

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14477

Streaming HiBench benchmark tool. A general breakdown of the six test categories in HiBench’s 19
test directions is as follows: microtest, machine learning, SQL, graphics, network search and streaming
media. Fixwindow, Repartition and WordCount are the three benchmarks that we have chosen from
the HiBench benchmark suite’s streaming media test category. The Spark Streaming framework’s
window operation performance was tested using Fixwindow. The effectiveness of data shuffle in the
streaming framework was tested using partitioning. To evaluate the effectiveness of stateful operators
in streaming frameworks, the CPU-intensive WordCount application was utilized.

4.1. Evaluating indicator

Because the streaming processing system calls for minimal delay and high throughput, we applied
the average delay/throughput as the assessment criteria during the experiment. As shown in Figure 4,
the delay of a streaming processing system is the amount of time Spark Streaming must wait before
receiving the new batch of data after processing the old batch.

Figure 4. Delay of streaming processing system.

The system’s responsiveness is impacted by the delay. Spark Streaming has strict constraints on
delay because it is a quasi-real-time streaming computing engine. High delay results in a backlog in
data processing and has a significant impact on the system’s performance. Low latency is therefore
crucial for distributed flow systems. High throughput refers to the ability of the streaming processing
system to maintain a fast rate of data generation and reception. Processing streaming data requires
high throughput processing, which is crucial. For instance, LinkedIn [33] recently stated in a blog post
that Kafka creates more than 1 trillion pieces of data per day. The time-series database at Twitter [34]
reported that it must process 2.8 billion posts every minute. In order to keep up with these rates, it
is necessary to use a distributed stream processing system whose throughput meets or exceeds the
incoming data rate. We selected the average delay and throughput as the performance metrics for

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14478

Spark Streaming based on the analysis above. As a result, once the D3QN-GPR model has chosen the
parameters, the following formula is used to assess how well the Spark Streaming execution program
performed:

DDT = delay/throughput (4.1)

where DDT represents the Spark Streaming program’s performance. By evaluating from the
perspective of DDT instead of a single standard of average latency or throughput, low latency and low
throughput, high latency and high throughput, and the complexity of the two elements are all
prevented.

4.2. Parameter Selection

In Spark Streaming, more than 200 parameters can be specified. The factors can be classified into
13 categories based on how they are used. However, not all of them, like the operating environment
and encryption, have an effect on performance. As a result, choosing optimal parameters is a step that
must be taken in the parameter optimization process. According to the previous studies of Du et al. [5],
Ye et al. [35] and the Spark Streaming Programming Guide [36], we selected the following parameters
in Table 3 to evaluate the performance of our framework:

Table 3. Selection of optimization parameters.

Notation Definition
executor.cores Set the CPU cores of per executor
executor.memory Set the memory size of per executor
driver.memory Set the Memory size of the driver process
executor.number Set the number of executors during program execution
shuffle.parallelism Set the number of parallel tasks in shuffle
map.parallelism Set Set the parallelism of the operator “map”
streaming.batchInterval Set the size interval of a batch of data streams read

To confirm the effects of the parameters in Table 3 on the effectiveness of Spark Streaming, we
employed the single variable method. To test each parameter, we did our experiments on various
Hibench benchmarks. We can determine the effect of each parameter on the performance of various
benchmark programs by changing the value of each parameter within the range of optional values
and then using the average DDT after five executions as the performance corresponding to the current
value.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14479

Figure 5. Comparison of WordCount program.

Figure 6. Comparison of Repartition program.

Figure 7. Comparison of FixWindow program.

Figures 5–7 display the best case, worst case and average effects of each parameter on the
performance of the Spark Streaming streaming system for the following HiBench benchmark

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14480

programs: WordCount, FixWindow and Repartition. Each figure shows that these seven parameters
do affect system performance differently, and that the same parameters affect the performance of
various applications differently. Because of this, the tuning parameters we chose are reasonable, and it
is possible to increase Spark Streaming performance by changing the parameter configuration.

4.3. Experimental results and analysis

In order to determine the optimized parameter configuration for each program, we first utilized the
D3QN-GPR model to run the three Hibench benchmark test programs. After that, in order to determine
the program’s ideal parameter configuration, we tested by utilizing No-Stop in the same environment.
The default parameter setting was then put up against the two other parameter configurations. For the
HiBench benchmark test, we decided to experiment with WordCount, Repartition and FixWindow. We
employed five datasets with differing flow rates in various benchmark tests. We picked the five average
DDT values for each data flow rate in order to compare the performance of these three parameter
configurations under various benchmark test procedures.

Figure 8. Comparison of WordCount program.

Figure 9. Comparison of Repartition program.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14481

Figure 10. Comparison of FixWindow program.

According to Figures 8–10, the execution performance of D3QN-GPR improved with varying
degrees for the benchmark programs WordCount, Repartition, and FixWindow, with respective
percentages of 30.24, 12.38 and 19.35%. It also improved somewhat in comparison to the No-Stop
mode, with percentages of 8.85, 6.68 and 6.14%.

Figures 11–13 show how the performance of the parameter configuration utilizing the D3QN-GPR
model significantly improved over that of the default parameter when the identical program was run.
It also provides certain speed advantages over using No-Stop optimization to get the settings needed to
run various programs. As a result, Spark Streaming can definitely perform better under various loads
when the D3QN-GPR model’s parameter configuration is optimized.

The effectiveness of the D3QN-GPR model was then assessed by contrasting the two models’ rates
of convergence during the parameter optimization process under three different loads. This was done
in order to compare the reinforcement learning method without Gaussian process regression with the
D3QN-GPR algorithm.

Figure 11. Comparison of WordCount program.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14482

Figure 12. Comparison of Repartition program.

Figure 13. Comparison of FixWindow program.

According to the findings in Figures 11–13, as compared to D3QN without Gaussian process
regression, our proposed method can increase the exploration efficiency of reinforcement learning in
interactions with the environment, accelerate the convergence of the D3QN method and shorten the
time for parameter configuration optimization.

5. Conclusions and future work

This study evaluates the effects of various factors on Spark streaming programs and discusses how
they may impact the performance of the technology.

In the study, we propose a D3QN-GPR model for Spark streaming performance optimization,
which speeds up the convergence of training. The D3QN with Gaussian process regression works
well on small datasets and also has the ability to offer uncertainty measurements for the prediction

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.



14483

process. In order to accelerate the computation and achieve quick convergence of reinforcement
learning, we have also introduced the batch gradient descent algorithm and vectorization calculation
of Gaussian process regression. In the experimental section, we compared our novel D3QN-GPR
parameter optimizer with other state-of-the-art technologies. The experimental results demonstrate
that the parameter optimization of the D3QN-GPR model yields significant performance
improvements as compared with the default parameter configuration. Specifically, the WordCount,
Repartition and FixWindow benchmarks achieved performance gains of 30.24, 12.38 and 19.35%,
respectively. Compared to the parameter optimization of the No-Stop model, these benchmarks
showed performance improvements of 8.85, 6.68 and 6.14%, respectively. Furthermore, the
D3QN-GPR model exhibited a significant reduction in convergence time as compared with the
reinforcement learning algorithm without Gaussian process regression. These experimental findings
provide strong evidence for the superior performance optimization and convergence time reduction
achieved by the D3QN-GPR model.

In our future work, we will consider a wide variety of factors to improve the applicability and
scalability of the setup parameters of the D3QN-GPR model. The effects of just seven parameter
combinations on Spark streaming performance were investigated in this work. We plan to introduce
more parameters and develop more cunning parameter selection strategies in our upcoming work,
referring to other works and domain knowledge.

Use of AI tools declaration

The authors declare that they have not used artificial intelligence tools in the creation of this article.

Acknowledgments

This work was supported by the Science and Technology Research Project of Hebei Higher
Education Institutions (No. QN2020133) and the Natural Science Foundation of Hebei Province of
China (No. F2019201361).

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. Apache storm. Available from: https://storm.apache.org/.

2. Apache spark streaming. Available from: https://spark.apache.org/docs/latest/streaming-
programming-guide.html.

3. Apache flink. Available from: https://flink.apache.org/.

4. D. Cheng, X. Zhou, Y. Wang, C. Jiang, Adaptive scheduling parallel jobs with dynamic
batching in spark streaming, IEEE Trans. Parallel Distrib. Syst., 29 (2018), 2672–2685.
https://doi.org/10.1109/TPDS.2018.2846234

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.

http://dx.doi.org/https://doi.org/10.1109/TPDS.2018.2846234


14484

5. H. Du, P. Han, Q. Xiang, S. Huang, Monkeyking: Adaptive parameter tuning on big data platforms
with deep reinforcement learning, Big Data, 8 (2020), 270–290.

6. A. Kordelas, T. Spyrou, S. Voulgaris, V. Megalooikonomou, N. Deligiannis, KORD-I: A
framework for real-time performance and cost optimization of apache Spark Streaming, in 2023
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
(2023), 1–3.

7. L. Liu, G. Shen, C. Guo, Y. Cui, C. Jiang, D. Wu, A spark streaming parameter optimization
method based on deep reinforcement learning, Comput. Modernization, 2021 (2021), 49–56.

8. J. Wang, An intuitive tutorial to Gaussian processes regression, preprint, arXiv:200910862.
https://doi.org/10.48550/arXiv.2009.10862

9. Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, N. Freitas, Dueling network architectures
for deep reinforcement learning, in Proceedings of Machine Learning Research, (2016), 1995–
2003.

10. H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-
learning, in Proceedings of the AAAI conference on artificial intelligence, 30 (2016).
https://doi.org/10.1609/aaai.v30i1.10295

11. E. Schulz, M. Speekenbrink, A. Krause, A tutorial on gaussian process regression:
Modelling, exploring, and exploiting functions, J. Math. Psychol., 85 (2018), 1–16.
https://doi.org/10.1016/j.jmp.2018.03.001

12. X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, et al., Deep reinforcement
learning: A survey, IEEE Trans. Neural Networks Learn. Syst., 2022 (2022).
https://doi.org/10.1109/TNNLS.2022.3207346

13. L. P. Swiler, M. Gulian, A. L. Frankel, C. Safta, J. D. Jakeman, A survey of constrained
gaussian process regression: Approaches and implementation challenges, J. Machine Learn.
Model. Comput., 1 (2020). https://doi.org/10.1615/JMachLearnModelComput.2020035155

14. R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT press, 2018.

15. Z. H. Zhou, Machine Learning, Springer Nature, 2021.

16. J. C. Lin, M. C. Lee, I. C. Yu, E. B. Johnsen, Modeling and simulation of spark streaming, in
2018 IEEE 32nd International Conference on Advanced Information Networking and Applications
(AINA), (2018), 407–413. https://doi.org/10.1109/AINA.2018.00068

17. S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi, M. J. Franklin, et al., Drizzle:
Fast and adaptable stream processing at scale, in Proceedings of the 26th Symposium on Operating
Systems Principles, (2017), 374–389. https://doi.org/10.1145/3132747.3132750

18. T. Ajila, S. Majumdar, Data driven priority scheduling on spark based stream processing, in 2018
IEEE/ACM 5th International Conference on Big Data Computin Applications and Technologies
(BDCAT), (2018), 208–210. https://doi.org/10.1109/BDCAT.2018.00034

19. M. Petrov, N. Butakov, D. Nasonov, M. Melnik, Adaptive performance model for dynamic scaling
Apache Spark Streaming, Proc. Comput. Sci., 136 (2018), 109–117.

20. W. Li, D. Niu, Y. Liu, S. Liu, B. Li, Wide-area spark streaming: Automated routing and batch
sizing, IEEE Trans. Parallel Distrib. Syst., 30 (2018), 1434–1448.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.

http://dx.doi.org/https://doi.org/10.48550/arXiv.2009.10862
http://dx.doi.org/https://doi.org/10.1609/aaai.v30i1.10295
http://dx.doi.org/https://doi.org/10.1016/j.jmp.2018.03.001
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2022.3207346
http://dx.doi.org/https://doi.org/10.1615/JMachLearnModelComput.2020035155
http://dx.doi.org/https://doi.org/10.1109/AINA.2018.00068
http://dx.doi.org/https://doi.org/10.1145/3132747.3132750
http://dx.doi.org/https://doi.org/10.1109/BDCAT.2018.00034


14485

21. H. Zhao, L. B. Yao, Z. X. Zeng, D. H. Li, J. L. Xie, W. L. Zhu, et al., An edge
streaming data processing framework for autonomous driving, Connect. Sci., 33 (2021), 173–200.
https://doi.org/10.1080/09540091.2020.1782840

22. B. Liu, X. Tan, W. Cao, Dynamic resource allocation strategy in spark streaming, J. Comput. Appl.,
37 (2017), 1574. https://doi.org/10.11772/j.issn.1001-9081.2017.06.1574

23. D. Cheng, Y. Chen, X. Zhou, D. Gmach, D. Milojicic, Adaptive scheduling of parallel jobs in spark
streaming, in IEEE INFOCOM 2017-IEEE Conference on Computer Communications, (2017), 1–
9. https://doi.org/10.1109/INFOCOM.2017.8057206

24. B. R. Prasad, S. Agarwal, Performance analysis and optimization of spark streaming applications
through effective control parameters tuning, in Progress in Intelligent Computing Techniques:
Theory, Practice, and Applications, Springer, (2018), 99–110. https://doi.org/10.1007/978-981-
10-3376-6 11

25. G. Liu, X. Zhu, J. Wang, D. Guo, W. Bao, H. Guo, SP-Partitioner: A novel partition method to
handle intermediate data skew in spark streaming, Future Gener. Comput. Syst., 86 (2018), 1054–
1063. https://doi.org/10.1016/j.future.2017.07.014

26. Z. Fu, Z. Tang, L. Yang, K. Li, K. Li, Imrp: A predictive partition method for data
skew alleviation in spark streaming environment, Parallel Comput., 100 (2020), 102699.
https://doi.org/10.1016/j.parco.2020.102699

27. J. Clifton, E. Laber, Q-learning: Theory and applications, Ann. Rev. Stat. Appl., 7 (2020), 279–301.
https://doi.org/10.1146/annurev-statistics-031219-041220

28. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, et al.,
Human-level control through deep reinforcement learning, Nature, 518 (2015), 529–533.
https://doi.org/10.1038/nature14236

29. W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, K. R. Müller, Explaining deep neural
networks and beyond: A review of methods and applications, Proc. IEEE, 109 (2021),247–278.
https://doi.org/10.1109/JPROC.2021.3060483

30. M. G. Titelbaum, Fundamentals of Bayesian Epistemology 2: Arguments, Challenges,
Alternatives, Oxford University Press, 2022.

31. B. Gaye, D. Zhang, A. Wulamu, Improvement of support vector machine algorithm in big data
background, Math. Prob. Eng., 2021 (2021), 1–9. https://doi.org/10.1155/2021/5594899

32. N. Ihde, P. Marten, A. Eleliemy, G. Poerwawinata, P. Silva, I. Tolovski, et al., A survey of big data,
high performance computing, and machine learning benchmarks, in Performance Evaluation and
Benchmarking: 13th TPC Technology Conference, (2021), 98–118. https://doi.org/10.1007/978-3-
030-94437-7 7

33. Datanami, Kafka Tops 1 Trillion Messages Per Day at LinkedIn. Available from:
https://goo.gl/cY7VOz.

34. Observability at twitter: Technical overview. Available from: https://goo.gl/wAHi2I.

35. Q. Ye, W. Liu, C. Q. Wu, Nostop: A novel configuration optimization scheme for Spark Streaming,
in 50th International Conference on Parallel Processing, (2021), 1–10.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.

http://dx.doi.org/https://doi.org/10.1080/09540091.2020.1782840
http://dx.doi.org/https://doi.org/10.11772/j.issn.1001-9081.2017.06.1574
http://dx.doi.org/https://doi.org/10.1109/INFOCOM.2017.8057206
http://dx.doi.org/https://doi.org/10.1007/978-981-10-3376-6_11
http://dx.doi.org/https://doi.org/10.1007/978-981-10-3376-6_11
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.07.014
http://dx.doi.org/https://doi.org/10.1016/j.parco.2020.102699
http://dx.doi.org/https://doi.org/10.1146/annurev-statistics-031219-041220
http://dx.doi.org/https://doi.org/10.1038/nature14236
http://dx.doi.org/https://doi.org/10.1109/JPROC.2021.3060483
http://dx.doi.org/https://doi.org/10.1155/2021/5594899
http://dx.doi.org/https://doi.org/10.1007/978-3-030-94437-7_7
http://dx.doi.org/https://doi.org/10.1007/978-3-030-94437-7_7


14486

36. Spark tuning guide. Available from: https://spark.apache.org/docs/latest/streaming-programming-
guide.html#deploying-applications.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14464–14486.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Background
	Reinforcement learning
	Related work

	Methods
	Reinforcement learning model design
	Gaussian process
	Gaussian process regression
	D3QN-GPR model design

	Experimental evaluation
	Evaluating indicator
	Parameter Selection
	Experimental results and analysis

	Conclusions and future work

