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Abstract: A dose-effect relationship analysis of traditional Chinese Medicine (TCM) is crucial to the 
modernization of TCM. However, due to the complex and nonlinear nature of TCM data, such as 
multicollinearity, it can be challenging to conduct a dose-effect relationship analysis. Partial least 
squares can be applied to multicollinearity data, but its internally extracted principal components 
cannot adequately express the nonlinear characteristics of TCM data. To address this issue, this paper 
proposes an analytical model based on a deep Boltzmann machine (DBM) and partial least squares. 
The model uses the DBM to extract nonlinear features from the feature space, replaces the 
components in partial least squares, and performs a multiple linear regression. Ultimately, this model 
is suitable for analyzing the dose-effect relationship of TCM. The model was evaluated using 
experimental data from Ma Xing Shi Gan Decoction and datasets from the UCI Machine Learning 
Repository. The experimental results demonstrate that the prediction accuracy of the model based on 
the DBM and partial least squares method is on average 10% higher than that of existing methods. 

Keywords: deep Boltzmann machine; deep learning; partial least squares; traditional Chinese 
medicine; drug dose-effect relationships 
 

1. Introduction 

Traditional medicine has a rich history spanning thousands of years, resulting in a vast and 
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complex collection of data, including numerous laws and experiences. However, manually inducing 
insights from this data may not accurately reflect its scientific, objective, and comprehensive nature. 
Therefore, finding ways to leverage the benefits of technology in the modern era to excavate and 
discover insights from this data has become a pressing issue [1,2]. Traditional Chinese Medicine 
(TCM) is considered a treasure, and is known for its unique approach of using multiple herb 
components to target multiple aspects of diseases. However, conducting TCM research presents 
significant data-related challenges and analytical difficulties that must be carefully considered 
and explored [3,4]. 

In TCM research, experimental data often involves multiple dependent and independent 
variables, as well as nonlinearity, due to the individualized treatment approaches in TCM. As a result, 
there may be issues with multicollinearity among the data variables. Because of the small sample 
size and the nonlinear distribution of the characteristics of the medicinal properties and efficacy of 
TCM, the application of small-sample nonlinear data sets is very common [5]. At the same time, 
noise and outliers in TCM data also puts the robustness of the model to the test due to errors in 
instrumentation, operational errors during data collection, etc. [6]. Therefore, the analysis and mining 
of TCM data require higher technical tools and a more comprehensive view of the data; the rapid 
development of machine learning and artificial intelligence technologies provide us with powerful 
tools [7–9]. Using these tools, the potential patterns in TCM data can be better mined and discovered, 
providing a more scientific basis and support for the clinical application of TCM, as well as speeding 
up the TCM research and development (R&D) process and reducing costs and risks. 

In such a context, the dose-effect relationship analysis of TCM using machine learning methods 
has become one of the current hot spots and difficulties in the field of TCM research [10]. In order to 
analyze the dose-effect relationship of TCM, overcoming the multicollinearity among variables and 
fully expressing the nonlinear characteristics of TCM data are the keys to obtaining more accurate 
analysis results [11–13]. 

Partial least squares (PLS) is a widely adopted multivariate statistical analysis method that 
enables linear regression modeling of multiple dependent variables on multiple independent 
variables [14–16]. It is particularly useful in cases where there is multicollinearity among the 
variables or where the number of samples is less than the number of variables. PLS can effectively 
address these challenges and provide reliable results in such situations. However, the principal 
component extraction of PLS is a linear dimensionality reduction method, which cannot fully express 
the nonlinear characteristics of TCM data. 

Traditional methods for reducing the dimensionality of nonlinear data include kernel feature 
mapping (KFM), kernel independent component analysis (KICA), and kernel principal component 
analysis (KPCA). Qin et al. [17] proposed a novel approach that combines intrinsic dimension 
estimation with PLS to map the data into a high-dimensional linear space using kernel functions. 
This method has the advantage of avoiding the need to select principal components and can 
effectively capture the nonlinear features in the data. However, choosing the appropriate kernel 
functions can be challenging. 

With the development of deep learning, neural networks have shown great advantages in 
nonlinear feature extraction, and many scholars have started to incorporate neural networks into PLS. 
Zhou [18] proposed to combine a fuzzy neural network with PLS to achieve nonlinear feature 
representation while avoiding the problem of principal component selection. However, the results of 
this model may be sensitive to the choice of the affiliation function. Zhu et al. [19] combined a 
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restricted Boltzmann machine with a PLS method (RBM-PLS), thus avoiding the problem of 
principal component selection; however, the results may be sensitive to the choice of initial values. 
Xiong et al. [20] combined a deep confidence network with a PLS method (DBN-PLS) from the 
original data to extract nonlinear features and avoid the need to select the number of principal 
components. However, inappropriate parameter selection may cause the model to converge to a 
locally optimal solution. 

The current research focuses on establishing a suitable model for the dose-effect analysis of 
TCM and improving the accuracy of the dose-effect analysis [21–23]. In this paper, we propose a 
model suitable for analyzing small sample nonlinear data sets based on deep Boltzmann machine 
(DBM) and PLS (DBM-PLS) for the dose-effect relationship analysis model of TCM. By combining 
the nonlinear feature representation capability of the DBM and the data dimensionality reduction 
capability of PLS, DBM-PLS can more fully exploit the nonlinear features in the data. This method 
has a strong nonlinear modeling capability and high prediction accuracy, which helps to understand 
and analyze the dose-effect relationship of TCM more accurately and further promotes the research 
and development of the dose-effect relationship of TCM. 

The rest of this paper is organized as follows. In Section 2, the DBM-PLS model architecture 
and its underlying methodology are described in detail. The experimental data set description and 
preprocessing methods are given in Section 3. The evaluation criteria and model configurations are 
given in Section 4, and the results of the comparison of different models are analyzed. Finally, 
conclusions are drawn in Section 5. 

2. Materials and methods 

2.1. PLS 

PLS combines a principal component analysis (PCA), a canonical correlation analysis (CCA), 
and a multiple linear regression (MLR), and is a regression modeling method of multiple dependent 
variables on multiple independent variables [14–16]. Compared with an ordinary least squares 
regression, PLS is particularly effective when there is either multicollinearity among variables or the 
number of samples is less than the number of variables, and it is easy to explain the regression 
coefficients of each variable [24]. 

The basic idea of PLS is to extract the principal components from the independent variable 𝑋 and 
the dependent variable 𝑌 to reflect the combined variable information of the original variables [25]. 
Specifically, PLS first extracts the first principal components 𝑡ଵ  and 𝑢ଵ  in the independent and 
dependent variables such that the principal component variances 𝑉𝑎𝑟ሺ𝑡ଵሻ → 𝑚𝑎𝑥, 𝑉𝑎𝑟ሺ𝑢ଵሻ → 𝑚𝑎𝑥, 
and the correlation 𝑉𝑎𝑟ሺ𝑢ଵሻ → 𝑚𝑎𝑥 . Next, a linear regression model of the independent and 
dependent variable components is built using 𝑡ଵ and 𝑢ଵ, and the residual matrix is calculated. The 
residual matrix is then subjected to a principal component extraction to obtain the second principal 
components 𝑡ଶ and 𝑢ଶ, and the above steps are iteratively repeated. The number of extracted principal 
components is determined by cross-validation, and the final PLS regression model is established [26]. 

2.2. DBM 

The DBM is a deep learning model, constructed based on the restricted Boltzmann machine 
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(RBM) [27,28]. In essence, DBM is a special kind of neural network that forms abstract high-level 
feature representations by combining the underlying features [29]. 

Specifically, the DBM can be viewed as a stack of multiple RBMs. Each RBM consists of a 
visual layer and a hidden layer, where the neurons in the visual layer are used for input data and the 
neurons in the hidden layer are used for feature learning [30]. It is worth noting that neurons between 
the same layers are not connected, while neurons between different layers are fully connected and 
independent of each other [28,29]. To construct a DBM model for feature extraction, we assume 𝑁 
hidden layers, with 𝑣  and ℎ  representing the visual layer neurons and hidden layer neurons, 
respectively. The model construction involves randomly initializing the parameters 𝜃 of each RBM 
and unsupervised pre-training of the first RBM using the contrast scattering algorithm to obtain its 
parameters. Then, the hidden layer of each RBM is utilized as the visual layer of the next layer, and 
the pre-training of the subsequent RBM continues. This process is repeated until the last layer, and 
the parameters of the entire DBM are obtained. Following pre-training, the DBM is fine-tuned using 
the back-propagation method. Figure 1 depicts the structure of the DBM model with 𝑁 hidden layers. 

 

Figure 1. Structure diagram of DBM with 𝑁 hidden layers. 

Since the DBM consists of a stack of multiple RBMs, the main process of training the DBM is 
to train the RBM [31]. Let 𝑛 be the number of neurons in the visual layer and 𝑚 be the number of 
neurons in the hidden layer. Denote the state vector of neurons in the visual layer as 𝑣 and the state 
vector of neurons in the hidden layer as ℎ. Equation (1) represents the energy of the RBM for a given 
set of state vectors: 

 𝐸ሺ𝑣, ℎ| 𝜃ሻ ൌ െ∑ 𝑎௜𝑣௜
௡
௜ୀଵ െ ∑ ∑ 𝜔௜௝ℎ௝𝑣௜

௠
௝ୀଵ

௡
௜ୀଵ െ ∑ 𝑏௝

௠
௝ୀଵ ℎ௝, (1) 
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where the model parameters are 𝜃 ൌ ൛𝑎௜ , 𝑏௝ ,𝜔௜௝ൟ, 𝑎௜ is the bias of neuron 𝑖 in the visual layer, 𝑏௝ is 
the bias of neuron 𝑗 in the hidden layer, and 𝑤௜௝ is the weight between neuron 𝑖 in the visual layer 
and neuron 𝑗 in the hidden layer. Using the energy function, we can express the joint probability 
distribution of 𝑣 and ℎ as Eq (2): 

 𝑝ሺ𝑣,ℎ| 𝜃ሻ ൌ ௘షಶቀ𝑣,ℎቚ𝜃ቁ

௓ሺఏሻ
, (2) 

where 𝑍ሺ𝜃ሻ ൌ ∑ 𝑒ିா൫𝑣,ℎห𝜃൯
௩,௛  is the normalization factor. Eqs (3) and (4) describe the conditional 

probability of each visual layer neuron and hidden layer neuron being activated, based on the 
energy function: 

 𝑝ሺ𝑣௜ ൌ 1|ℎሻ ൌ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑൫𝑎௜ ൅ ∑ 𝑤௜௝ℎ௝௝ ൯, (3) 

 𝑝ሺℎ௜ ൌ 1|𝑣ሻ ൌ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑൫𝑏௝ ൅ ∑ 𝑤௜௝𝑣௜௜ ൯, (4) 

where 𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ𝑥ሻ ൌ ଵ

ଵା௘షೣ
. 

When the DBM is trained and the parameters 𝜃 ൌ ൛𝑎௜ , 𝑏௝ ,𝜔௜௝ൟ are known, the original data is 
preprocessed to obtain 𝑉 ൌ ሺ𝑣ଵ, 𝑣ଶ, … , 𝑣௡ሻ, which maps the visual layer data to the hidden layer data 
𝐻 ൌ ሺℎଵ,ℎଶ, … , ℎ௠ሻ, thus converting the original data into another nonlinear representation, and 
further using the hidden layer data 𝐻 ൌ ሺℎଵ,ℎଶ, … , ℎ௠ሻ  as an input to form a deeper nonlinear 
representation of the data by propagating it layer by layer [32]. 

2.3. Model construction based on DBM and PLS 

When using PLS for multivariate regression modeling, it is common to first extract the principal 
components of the dataset using PCA to reduce the dimensionality of the variables and eliminate 
redundant information [26]. However, PCA can only extract linear features in the dataset and cannot 
adequately represent nonlinear features, such as features common in TCM datasets. 

To overcome this problem, DBM can be used to extract new features from the dataset. Feature 
extraction by DBM can be divided into two phases: pre-training and parameter tuning. In the pre-
training phase, the RBM and the basic structure of the DBM are trained on the data, layer by layer. 
The first step of the pre-training process is to input the normalized dataset into the underlying RBM 
and train it with predefined parameters (denoted as 𝜃 ) to obtain the first layer of the feature 
representation of the dataset (denoted as ℎଵ). Then, ℎଵ is used as the input to the next layer of RBM, 
which is again trained with predefined parameters to obtain the more abstract feature representation 
ℎଶ. Through continuous iterations, the feature representations of all layers (denoted as ℎே) can be 
obtained, where ℎே integrates different features abstracted from each layer of RBM. These features 
are deeper and more complex nonlinear representations of the original data, which can more fully 
represent the nonlinear features in the TCM dataset. 

In the parameter tuning phase, the parameters of the DBM are tuned and optimized to obtain an 
improved performance. A nonlinear representation of the features is obtained by training and 
combined with CCA and MLR in PLS to build the prediction model. A cross-validation approach is 
used to evaluate the predictive power of the model, and model selection and parameter tuning are 
performed to obtain the best predictive performance. 
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In summary, by combining DBM and PLS methods, nonlinear features in TCM datasets can be 
better handled to obtain more accurate prediction models. The DBM-PLS method proposed in this 
paper is based on this theory, using DBM to extract nonlinear features in TCM datasets and 
combining PLS for regression modeling. Meanwhile, the deep learning model is optimized by a 
backpropagation algorithm to further improve the predictive capability of the model. Finally, the 
validation test data are used to evaluate the performance and prediction accuracy of the model. 

In this paper, we study a multivariate data set involving an independent variable 𝑋  and a 
dependent variable 𝑌, where 𝑋 is a matrix with 𝑛 rows and 𝑝 columns and 𝑌 is a matrix with 𝑛 rows 
and 𝑞 columns. 

The specific construction process of the model is as follows: 
1) Data preprocessing: the independent variable 𝑋 and the dependent variable 𝑌 are normalized 

to obtain 𝐸଴ ൌ ሺ𝑒ଵ, 𝑒ଶ, … 𝑒௣ሻ and 𝐹଴ ൌ ሺ𝑓ଵ,𝑓ଶ, … 𝑓௤ሻ. 
2) The independent variable 𝐸଴ undergoes DBM processing with the following steps: 
A. In DBM, the size of the visual layer, denoted by the variable 𝑝, is determined based on the 

independent variable 𝐸଴, which consists of 𝑝 components ሺ𝑒ଵ, 𝑒ଶ, … 𝑒௣ሻ. The primary objective of this 
layer is to reduce the dimensionality of the input features. To achieve this, the number of neurons in the 
hidden layer, denoted by 𝑝ଵ, is usually set to be smaller than that of the visual layer (i.e., 𝑝ଵ ൏ 𝑝). This 
helps to extract and represent the essential information from the input in a more compact form. 

B. The initialization parameters 𝜃 ൌ ሼ𝑎௜ , 𝑏௝ ,𝑤௜௝ሽ in DBM are randomly assigned. The biases of 
the visual and hidden layers are represented by vectors 𝑎 ൌ ሼ𝑎ଵ,𝑎ଶ, … ,𝑎௣ሽ and 𝑏 ൌ ሼ𝑏ଵ, 𝑏ଶ, … , 𝑏௣ሽ, 
respectively. The weight matrix 𝑊 ൌ ሼ𝑤௜௝|0 ൑ 𝑖 ൑ 𝑝, 0 ൑ 𝑗 ൑ 𝑝ଵሽ connects the visual and hidden 
layers and contains weights 𝑤௜௝. Random initialization of these parameters ensures that the DBM 
starts with a diverse range of values, allowing it to explore and learn a wide variety of features 
and representations. 

C. The DBM takes the independent variable 𝐸଴ ൌ ሺ𝑒ଵ, 𝑒ଶ, … 𝑒௣ሻ as an input to the visual layer. 
The DBM is trained layer by layer using an RBM. In this training process, the hidden layer of the 
previous RBM becomes the visual layer of the next RBM, and the output of the previous RBM is 
used as the input of the next RBM, continuing until the final layer is reached. This layer-wise 
training approach helps to avoid the problem of vanishing gradients and enables the DBM to learn 
complex hierarchical representations of the input data. 

D. The final layer of the DBM, denoted by 𝑇 ൌ ሼ𝑡ଵ, 𝑡ଶ, … , 𝑡௞ሽ, produces 𝑘 principal components 
that are extracted from the independent variables. These principal components can then be used in 
PLS analysis to model the relationship between the input variables and the output variables. By using 
the principal components extracted from the DBM as inputs for PLS, we can obtain a more compact 
and informative representation of the input data, which can improve the accuracy and interpretability 
of the PLS model. 

3) The principal components extracted by the DBM in step 2 are used as inputs to the PLS 
external model, and an MLR analysis is performed jointly with 𝐹଴. The coefficients generated from 
this analysis are used to construct an MLR equation for 𝑌 relative to 𝑋. 

4) We determine whether the model accuracy is appropriate by evaluating four metrics, namely 
root mean square error (RMSE), mean absolute error (MAE), mean squared percentage error 
(MSPE), and coefficient of determination (R2). If the model accuracy is appropriate, the algorithm 
will be terminated. Otherwise, the hyperparameters of the model are adjusted and the process is 
iterated until the accuracy requirements are met. This iterative approach allows the model to improve 
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its performance over time and reach the appropriate level of accuracy. 
Algorithm 1 outlines the two components of the proposed DBM-PLS model: nonlinear feature 

extraction using DBM and regression using PLS. The DBM is capable of automatically extracting 
nonlinear features from the original data using its interlayer transfer property. Then, these features 
are used for regression using PLS. The proposed model combines the benefits of PLS, which can 
address issues such as multicollinearity in TCM data, while also addressing the problem of PLS’s 
limited ability to capture the nonlinear characteristics of TCM data. 

Algorithm 1. The model algorithm based on DBM and PLS 
Input: TCM experimental data set (𝐷); 
Output: DBM-PLS equation. 
Step 1: Normalized preprocessing of D to obtain (𝐸଴,𝐹଴) 
Step 2: DBM processing 

Initialization of model parameter 𝜃 ൌ ሼ𝑎௜ , 𝑏௝ ,𝑤௜௝ሽ 
𝐿𝑎𝑦𝑒𝑟𝑠𝑖𝑧𝑒 ൌ 1 
ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟𝑠_𝑠𝑖𝑧𝑒𝑠 ൌ ሾ8,4,8ሿ 
Set a threshold for precision and accuracy conditions for the RBM loop 
While the precision condition is not met for the number of RBM layer sizes 

While the accuracy condition is not met for the number 𝐿𝑎𝑦𝑒𝑟𝑠𝑖𝑧𝑒 of neurons in each 
layer 

For each layer z in 𝐿𝑎𝑦𝑒𝑟𝑠𝑖𝑧𝑒 
Calculate the probability of the hidden layer neurons being activated, 𝑃௭ሺℎ௜|𝑣௜ሻ 
Extract a sample using Gibbs sampling: 𝑣௜ାଵ~𝑃௭ሺ𝑣௜ାଵ|ℎ௜ሻ 
Using the activated hidden layer neurons probability 𝑃௭ሺ𝑣௜ାଵ|ℎ௜ሻ , reconstruct the 

visual layer. 
Extract a sample using Gibbs sampling: 𝑣௜ାଵ~𝑃௭ሺ𝑣௜ାଵ|ℎ௜ሻ 
Calculate the probability of activating hidden layer neurons 𝑃௭ሺℎ௜ାଵ|𝑣௜ାଵሻ using the 

sample 𝑣௜ାଵ extracted through Gibbs sampling. 
Update the weights: 𝑏௜ ← 𝑏௜ ൅ 𝜆ሺ𝑣௜ െ 𝑣௜ାଵሻ 

Step 3: PLS external regression model 
Extract eigenvalues 𝑇 ൌ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑ሺ𝐸௢ ൈ 𝑤௧ ൅ 𝑎௧ሻ from DBM model 
In the PLS external model, 𝑇 is used as input to the MLR and the regression analysis is 

performed jointly with 𝐹଴ to obtain the standardized regression coefficients 
Standardize regression coefficients and de-normalize to obtain the DBM-PLS equation 

Step 4: End 

Furthermore, the proposed model obtains the regression equations of the original variables through 
the use of CCA and MLR. The model is validated using test data and hyperparameters are adjusted to 
improve its performance. The overall objective of the DBM-PLS model is to adapt to small sample 
nonlinear data sets and to improve the accuracy of predicting quantitative-effective relationships in 
TCM. Figure 2 depicts the overall structure of the DBM-PLS model. 
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Figure 2. Overall structure of DBM-PLS model. 

3. Experimental data and pre-processing 

3.1. Description of experimental data 

This study utilized experimental data primarily sourced from Ma Xing Shi Gan Decoction 
(MXD) trials for relieving asthma (MXD-R) and defervescence (MXD-D) conducted in the key 
laboratory of the Jiangxi University of Chinese Medicine. Additionally, the Parkinson’s 
telemonitoring (PT) and physicochemical properties of protein tertiary structure (PPPTS) datasets 
from the UCI standard dataset [33,34] were incorporated. Table 1 provides detailed information and 
characteristics of each dataset. 

In the experiment of the dose-effect relationship study of MXD, the effects of the active 
ingredients of 13 different doses of drugs in rat plasma on pharmacological indices were investigated. 
Each group of 10 rats were treated with a certain concentration of the drug ratios of MXD. The blood 
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concentration and pharmacological indexes of each rat were measured, and the average blood 
concentration and average pharmacological indexes of each group of 10 rats were used as the final 
experimental data. The main active components in rat plasma were used as independent variables, 
namely Ephedrine (E), Pseudoephedrine (PE), Methylephedrine (ME), Amygdalin (A), Prunasin (P), 
Liquiritin (L), Liquiritigenin (LG), and Glycyrrhetinic Acid (GA). The dependent variables were the 
pharmacological indices examined, in the case of the data from the relieve asthma experiment, the 
asthma incubation period (AIP) and the duration of asthma (DA), and in the data from the 
defervescence experiment, the Prostaglandin E2 (PGE2), TRI temperature index, and the 6-h fever 
suppression rate. Some of the experimental data are shown in Table 2. 

The PT and PPPTS datasets were selected from the UCI standard dataset for the medium 
sample dataset and the large sample dataset, respectively. For a detailed description, please refer to 
the website: https://archive.ics.uci.edu/ml/index.php. 

Table 1. Data set description. 

Data set name Number of samples Number of independent variables Number of dependent variables 

MXD-R 13 8 2 

MXD-D 13 8 3 

PT 5875 16 2 

PPPTS 45730 9 1 

Table 2. The experimental data set of MXD for relieving asthma. 

Blood  
Pharmacological indicators 

Concentrations (ng/ml) 
E PE ME A P L LG GA AIP (s) DA (min) 

25.4 26.9 8.76 92.28 93.35 3.59 0.47 3.97 64.2 8.05 

18.3 25.7 2.02 9.97 35.45 32.22 5.46 32.21 89.78 7.9 

33 69.9 4.64 0.39 0.27 46.06 7.03 48.48 62.88 7.48 

18.9 35.5 1.07 1.04 0.66 15.31 5.34 14.83 54.43 7.37 

… … … … … … … … … … 

3.2. Data standardization preprocessing 

Data standardization is a necessary task when data mining. There may be order-of-magnitude 
differences in different datasets that can affect the results of the data analysis [35,36]. In order to 
eliminate data bias and to improve data consistency, the above statistics are standardized. The raw 
data were standardized using the Z-score method, which is also known as standard deviation 
standardization, and ensures that all indicators are on the same scale. The Z-score method used in 
this study ensures that the processed data have a mean of 0 and a variance of 1. The transformation 
function is represented by Eq (5): 

 𝑥∗ ൌ ௫ିఓ

ఙ
  (5) 
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where 𝜇 ൌ ଵ

௡
∑ 𝑥௜
௡
௜ୀଵ  denotes the mean value of each feature in data 𝑋 and 𝜎 ൌ ට ଵ

௡ିଵ
∑ ሺ𝑥௜ െ 𝜇ሻଶ௡
௜ୀଵ , 

denotes the standard deviation of each feature in data 𝑋. 
Experimental data on the efficacy of MXD in relieving asthma were standardized, and the 

standardized results are shown in Table 3. 

Table 3. Standardization processing results. 

Blood  
concentrations 

Pharmacological indicators 

E PE ME A P L LG GA AIP DA 

−0.616 −0.661 −0.561 1.743 3.115 −1.005 −1.223 −0.962 −0.619 0.454 

−0.632 −0.664 −0.655 −0.330 0.812 1.196 0.914 0.984 1.466 0.231 

−0.599 −0.546 −0.619 −0.571 −0.587 2.260 1.586 2.105 −0.727 −0.403 

−0.631 −0.638 −0.668 −0.555 −0.572 −0.104 0.861 −0.214 −1.415 −0.575 

… … … … … … … … … … 

4. Experiment and result analysis 

4.1. Evaluation criteria and model configuration 

To validate the feasibility and effectiveness of the DBM-PLS model, we compared it with a 
Lasso regression, a XGBoost regression, the original PLS method, the PLS with fused restricted 
Boltzmann machines (RBM-PLS) method, and the PLS with fused deep belief network (DBN-PLS) 
method. To obtain more accurate estimates of model performance, we trained and tested each method 
using the same data set. We evaluated these models by examining the RMSE, MAE, MSPE, and R2. 
These four evaluation criteria can be represented by Eqs (6)–(9): 

 𝑅𝑀𝑆𝐸 ൌ ට∑ ሺ௬೔ି௬ො೔ሻమ
ಿ
೔సభ

ே
  (6) 

 𝑀𝐴𝐸 ൌ ଵ

ே
∑ |𝑦ො௜ െ 𝑦௜|
ே
௜ୀଵ   (7) 

 𝑀𝑆𝑃𝐸 ൌ ଵ଴଴%

ே
∑ ሺ௬೔ି௬

ො೔
௬೔

ሻଶே
௜ୀଵ   (8) 

 𝑅ଶ ൌ 1 െ
∑ ሺ௬೔ି௬ො೔ሻమ
ಿ
೔సభ

∑ ሺ௬೔ି௬തሻమ
ಿ
೔సభ

  (9) 

where 𝑁 is the number of test samples and 𝑦௜ and 𝑦ො௜ are the observed and predicted values, respectively. 
In the subsequent experiments, we first divided the four datasets into a training set and a test set, 

where the test set accounts for 20% of the total. Second, we used the grid search cross-validation 
method on the training set for model training and fine-tuning, and we used RMSE as the evaluation 
function of grid search. Finally, we used the test set to evaluate the model performance. 

The structure of the DBM-PLS and DBN-PLS models used in the experiments are set as follows. 
We set the number of layers of DBM and DBN to 3. The pre-training phase uses the contrastive 
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divergence algorithm and the fine-tuning phase uses the BP algorithm. For different datasets, we 
used a grid search to determine the number of nodes in the hidden layer (num_hidden1 and 
num_hidden2), the number of pre-training iterations (pretrain_epochs), the pre-training learning rate 
(pretrain_lr), the number of fine-tuning iterations (train_epochs), and the fine-tuning learning rate 
(train_lr). To prevent model overfitting, we added L2 regularization to control the complexity of the 
model to avoid the overfitting problem, and the size of the L2 regularization term (alpha) is also 
determined by the grid search. 

The other models in the experiment are set up as follows. We implemented Lasso and PLS 
regression models using Scikit-learn and determine the size of the regularization term (alpha) for 
Lasso regression and the number of principal components (n_components) for PLS by grid search. 
We implemented the XGBoost model using xgboost, and we determined the number of base learners 
(n_estimators) and the maximum depth of the tree (max_depth) by grid search. We added L2 
regularization to avoid model overfitting, and the alpha size is also determined by grid search We 
used TensorFlow to implement the RBM-PLS model, and used the contrastive divergence algorithm 
for the pre-training and fine-tuning phases. We used a grid search to determine the sizes of 
num_hidden1, pretrain_epochs, pretrain_lr, train_epochs, train_lr, and L2 regularization terms (alpha) 
of the RBM. The parameter grids for all models, the specific parameters after grid search, and the 
cross-validation folds (cv) on different data sets are shown in Tables 4 and 5. 

Table 4. Model parameters in the experiment. 

Model Data name n_components max_depth n_estimators alpha cv 

Parametric 

Grid 

MXD-R arrange (1, 9, 1) arrange (2, 9, 1) arange (10, 200, 1) [0, 0.1, 1]  

MXD-D arrange (1, 9, 1) arange (2, 9, 1) arange (10, 200, 1) [0, 0.1, 1]  

PT arrange (1, 17, 1) arange (2, 11, 1) arange (10, 400, 1) [0, 0.1, 1]  

PPPTS arange (1, 10, 1) arange (2, 11, 1) arange (10, 400, 1) [0, 0.1, 1]  

Lasso 

MXD-R    1 10 

MXD-D    1 10 

PT    0.1 5 

PPPTS    0.1 5 

XGBoost 

MXD-R  3 50 0.1 10 

MXD-D  5 100 0.1 10 

PT  5 50 1 5 

PPPTS  7 200 0.1 5 

PLS 

MXD-R 1    10 

MXD-D 1    10 

PT 7    5 

PPPTS 9    5 
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Table 5. Model parameters in the experiment. 

Model 
Data 
name 

num_ 

hidden1 

num_ 

hidden2 

pretrain_ 

epochs 

pretrain_ 

lr 

train_ 

epochs 

train_ 

lr 
alpha cv 

Paramet- 

ric Grid 

MXD-R 
arange 
(2, 9, 1) 

arange 
(2, 9, 1) 

arange  
(10,1000,1) 

[0.01,0.1] 
arange  
(10,200,1) 

[0.01,0.1] [0.01,0.1,1]  

MXD-D 
arange 
(2, 9, 1) 

arange 
(2, 9, 1) 

arange  
(10,1000,1) 

[0.01,0.1] 
arange  
(10,200,1) 

[0.01,0.1] [0.01,0.1,1]  

PT 
arange 
(2,17,1) 

arange 
(2,17,1) 

arange  
(10,1000,1) 

[0.01,0.1] 
arange  
(10,200,1) 

[0.01,0.1] [0.01,0.1,1]  

PPPTS 
arange 
(2,10,1) 

arange 
(2,10,1) 

arange  
(10,1000,1) 

[0.01,0.1] 
arange  
(10,200,1) 

[0.01,0.1] [0.01,0.1,1]  

RBM-

PLS 

MXD-R 8  265 0.1 90 0.1 0.1 10 

MXD-D 8  160 0.1 105 0.1 0.1 10 

PT 16  676 0.1 78 0.1 0.01 5 

PPPTS 9  788 0.1 93 0.1 0.01 5 

DBN-

PLS 

MXD-R 5 8 104 0.1 31 0.1 0.1 10 

MXD-D 4 8 139 0.1 23 0.1 0.1 10 

PT 12 16 724 0.1 101 0.1 0.01 5 

PPPTS 6 9 847 0.1 114 0.1 0.01 5 

DBM-

PLS 

MXD-R 7 8 218 0.1 61 0.1 0.1 10 

MXD-D 6 8 197 0.1 53 0.1 0.1 10 

PT 14 16 571 0.1 122 0.1 0.01 5 

PPPTS 7 9 821 0.1 89 0.1 0.01 5 

4.2. Analysis of experimental results 

During the experiments, we used four sets of experimental data to compare and validate the 
models. We used the grid search cross-validation method to search for the best parameters of the 
model for model optimization on each data set and compared the effects of the six methods on each 
data set. The experimental results are shown in Table 6. 

Based on the experimental results in Table 6, we can observe that the DBM-PLS model overall 
outperforms the other models on the four data sets. The effect is more significant when the data 
feature space is nonlinearly structured and there is multicollinearity among the features. The specific 
analysis is as follows: 

1) Compared to the non-PLS model, the DBM-PLS showed an average improvement of 58.01% 
in RMSE, 56.51% in MAE, 54.44% in MSPE, and 238.58% in R2 compared to the Lasso regression 
and XGBoost. The Lasso regression tends to select one of the relevant features and ignore other 
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highly relevant features. It may either lead to oversimplification of the model or loss of important 
information and is relatively weak in handling data with multicollinearity. The XGBoost model is 
based on the integration of decision trees, each of which has its own rules and paths, leading to 
complexity in the interpretation of the overall model. In contrast, DBM-PLS combines the nonlinear 
feature extraction capability of DBM and the data dimensionality reduction capability of PLS to 
better capture complex patterns and associations in the data, while reducing redundant features and 
improving the model interpretation. 

2) Compared to the PLS model, DBM-PLS showed an average improvement of 23.48% in 
RMSE, 16.38% in MAE, 1.54% in MSPE, and 54.79% in R2 compared to PLS. Because PLS is a 
linear regression method, when there are complex nonlinear relationships in the data, PLS may not 
be able to capture these patterns, resulting in a degraded model performance. In contrast, the DBM-
PLS model makes use of the powerful nonlinear feature extraction capability of DBM to extract 
nonlinear features from the feature space, which makes up for the weak nonlinear modeling 
capability of the PLS model. 

Table 6. Comparison of experimental results. 

Data name Evaluation criterion Lasso XGBoost PLS RBM-PLS DBN-PLS DBM-PLS 

MXD-R 

RMSE 8.6891 8.0023 0.8446 0.8169 0.7757 0.6796 

MAE 5.1385 5.9201 0.5277 0.6042 0.4514 0.4196 

MSPE (%) 1.826 2.48 0.168 0.1302 0.1501 0.0882 

R² 0.2189 0.1748 0.1904 0.5584 0.7654 0.8468 

MXD-D 

RMSE 4.6809 8.4201 0.8186 0.8371 0.6878 0.6245 

MAE 2.7462 5.4861 0.5528 0.531 0.4571 0.3861 

MSPE (%) 5.9886 40.7278 0.6717 0.5529 0.7271 0.2069 

R² 0.2344 0.0068 0.5154 0.7461 0.8491 0.9004 

PT 

RMSE 9.5013 7.8411 12.6896 13.7871 10.7623 9.6851 

MAE 7.8078 6.1914 8.4432 9.704 7.7634 7.2998 

MSPE (%) 44.3284 29.3454 33.8978 41.9103 43.0811 36.305 

R² 0.2776 0.2912 0.9081 0.8806 0.9263 0.9471 

PPPTS 

RMSE 5.1781 4.3577 1.1657 1.0154 0.9671 0.8854 

MAE 4.3562 3.1418 1.0809 0.9863 0.8573 0.7612 

MSPE (%) 80.0358 94.1851 33.4995 32.2665 28.8689 30.5812 

R² 0.2778 0.4958 0.5477 0.6102 0.5853 0.6517 

3) Comparing the improved PLS model, DBM-PLS showed an average improvement of 18.91% 
in RMSE, 15.98% in MAE, 9.01% in MSPE, and 13.36% in R2 compared with RBM-PLS and DBN-
PLS. All three models use neural networks to extract nonlinear features to make up for the weak 
nonlinear modeling ability of PLS. RBM-PLS uses RBM to extract nonlinear features; RBM is a 
shallow model, and the nonlinear feature extraction ability of a single RBM is relatively weak and 
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cannot extract the high-level features of the data. DBN-PLS uses DBN to extract nonlinear features 
and can extract high-level features of the data. Compared with DBN, each layer of DBM can learn 
feature representations of data independently, though DBN can only learn feature representations 
between neighboring layers. Therefore, DBM can learn higher-level and more abstract feature 
representations. This enables DBM to better capture nonlinear and complex relationships in the data 
and improve the effectiveness of feature extraction. 

Combining the performance of the DBM-PLS model on each data set, the DBM-PLS model 
outperforms the other five models in general, indicating that the DBM-PLS model has the best 
adaptability to data with nonlinearity and the presence of multicollinearity. This is because the DBM-
PLS model uses DBM to extract nonlinear features in the high-dimensional feature space to capture 
nonlinear relationships and complex patterns in the data. At the same time, it combines the data 
dimensionality reduction capability of PLS to reduce the dimensionality of the feature space and 
eliminate the influence of multicollinearity among features, thus improving the predictive power and 
interpretability of the model. 

To visualize the performance of the DBM-PLS model, we plotted bar charts reflecting RMSE, 
MAE, MSPE, and R2. Since the RMSE, MAE, and MSPE magnitudes are different for each data set, 
the results are mapped to the same magnitude for comparison purposes, as shown in Figure 3. 

 

Figure 3. Model evaluation visualization results. (a) Comparison of RMSE of six models. 
(b) Comparison of MAE of six models. (c) Comparison of MSPE of six models. (d) 
Comparison of R2 of six models. 

As can be seen in Figure 3, the DBM-PLS model overall outperforms the other models overall 
on the four data sets. This is attributed to the powerful nonlinear modeling capability of DBM and 
the data dimensionality reduction capability of PLS. The deep structure of DBM enables it to learn 
deeper abstract feature representations. PLS can effectively reduce the data dimensionality and 



14409 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14395–14413. 

maintain the important features of the data after dimensionality reduction to retain the main 
information and solve the multicollinearity problem. 

To examine the learning process of the DBM-PLS model, Figure 4 shows the descent process of 
RMSE on the MXD-R and MXD-D datasets, where the horizontal axis indicates the training epoch 
and the vertical axis indicates the RMSE. As can be seen in the figure, the RMSE drops sharply at 
the beginning and then gradually slows down to a lower minimum value of the loss function. 

In summary, the DBM-PLS model shows good adaptability in dealing with small sample 
nonlinear data sets, can effectively capture nonlinear features in TCM data, and can reduce the 
effects of multicollinearity among features. Therefore, the DBM-PLS model can help us understand 
and analyze the dose-effect relationship of TCM more accurately and provide strong support for 
TCM research. 

 

Figure 4. Descent of RMSE in DBM-PLS learning process. 

5. Conclusions 

Machine learning-based computational methods have many advantages in the dose-effect 
prediction of TCM, which can support and help in clinical drug use and TCM R&D. There are four 
main advantages. 

1) Dose optimization: Traditional trial methods require significant time and resources to test the 
effects of various herbal doses. In contrast, machine learning-based computational methods can 
quickly screen a large number of dose combinations, thereby reducing trial costs and time. 

2) Dose-effect law mining: Machine learning models can handle large-scale Chinese medicine 
data sets, including information on chemical composition, pharmacological effects, and clinical trial 
results of herbs. By analyzing these multidimensional data, the potential patterns and interactions of 
herbal dosage effects can be revealed. 

3) Individualized prediction: Machine learning models can predict and evaluate the effects of 
herbal medicines at different doses based on individual characteristics and drug data. This provides 
valuable information to support individualized herbal medicine use and helps doctors and researchers 
make more accurate decisions. 

4) Reduce trial and error costs: Machine learning models can provide accurate predictions and 
assessments of herbal dose effects, thereby reducing the number and cost of trials and clinical trials. 
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By screening out promising dose combinations in advance, the risk of unnecessary trials and R&D 
failures can be reduced. 

This study presents a novel model based on DBM and PLS for analyzing dose-effect 
relationships in TCM. The proposed model integrates the strengths of DBM in nonlinear feature 
extraction and PLS in data dimensionality reduction. This is particularly suitable for small sample 
nonlinear datasets in TCM and has a high capability for nonlinear modeling and prediction accuracy. 
To validate the model’s performance, we conducted experiments and obtained significant results. The 
experimental results demonstrate that the DBM-PLS model outperforms existing methods with an 
average prediction accuracy improvement of 10%. 

Despite its effectiveness, the DBM-PLS model still faces some challenges that requires further 
consideration. The first issue is model selection, which involves determining the optimal number of 
layers, neurons per layer, learning rate, momentum, and number of epochs. These parameters have a 
significant impact on the performance of the model. We used an automated grid search 
hyperparameter optimization technique to search the parameter space to find the best combination. 
This approach can impose a large burden on computational resources, especially when the parameter 
space is large or multiple iterations of experiments are required. Therefore, for the dose-effect 
relationship analysis of TCM, some more efficient and intelligent model selection methods need to 
be developed to search for the optimal model. Secondly, in practical dose-effect relationship analysis 
of TCM, noise, and outliers in TCM data need to be addressed to improve data quality. Therefore, 
pre-processing methods need to be developed to enhance the robustness and prediction accuracy of 
the model. By addressing these challenges, the DBM-PLS model can be further improved and used 
effectively in the analysis of TCM dose-effect relationships. 
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