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Abstract: With breakthroughs in the power electronics industry, the stability and rapid power 
regulation of wind power generation have been improved. Its power generation technology is 
becoming more and more mature. However, there are still weaknesses in the operation and control of 
power systems under the influence of extreme weather events, especially in real-time power dispatch. 
To optimally distribute the power of the regulation resources in a more stable manner, a wind energy 
forecasting-based power dispatch model with time-control intervals optimization is proposed. In this 
model, the outage of the wind energy under extreme weather is analyzed by an autoregressive 
integrated moving average model (ARIMA). Additionally, the other regulation resources are used to 
balance the corresponding wind power drop and power mismatch. Meanwhile, an algorithm names 
weighted mean of vectors (INFO) is employed to solve the real-time power dispatch and minimize the 
power deviation between the power command and real output. Lastly, the performance of the proposed 
optimal real-time power dispatch is executed in a simulation model with ten regulation resources. The 
simulation tests show that the combination of ARIMA and INFO can effectively improve the power 
control performance of the PD-WEF system. 
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1. Introduction  

With the overexploitation of fossil energy and uncontrolled carbon emission by humans over the 
last half-century, the average temperature of the earth has gradually increased, leading to global 
warming. Extreme weather events associated with climate change, such as hurricanes, typhoons, floods 
and heat waves, have affected people’s lives. At the same time, they also affect and harm the operation 
and corresponding control of the power system, like generation, transmission and distribution [1]. 
Thanks to advances in the power electronics industry, the stability of new energy generation [2] and 
the ability to rapidly regulate power have improved. Consequently, more and more wind turbines [3] 
and photovoltaics [4] are involved in the real-time power balance as the regulation resource. These 
new sources of energy can be rapidly regulating power by the advanced control systems. At the same 
time, the new energy generation can also be equipped with appropriate storage devices for excess 
power storage [5–8]. 

However, the power generation of these renewable resources poses significant challenges due to 
their intermittent, unstable and stochastic nature [9]. To be specific, the power output of the wind 
energy is hard to predict accurately, varies quickly in the small control time, and is determined by the 
weather. Furthermore, extreme weather might cause substantial disruption and damage to turbines, 
transmission lines and other infrastructure. High wind speeds can force turbines to shut down. Severe 
rain and hail can damage blades and other components. Furthermore, lightning strikes might result in 
power disruptions. Hurricanes, tornadoes and severe storms can all have a significant influence on 
wind power output. Although the engagement of wind energy is able to help reduce the peak load, 
carbon emission and the coal cost, the wind energy can be subject to a variety of instabilities that can 
lead to power outages, reduced stability of the system and even power system collapse. Considering 
the proposed factors, the independent system operators should carefully manage the power command 
distribution, improve the regulation capacity of the system energy, and utilize the optimal control 
strategy when integrating the wind energy into the real-time power dispatch.  

Real-time power dispatch is a crucial task for ensuring the stability and reliability of power 
systems, especially with the increasing integration of new energy sources such as wind and solar 
power. Various techniques have been proposed and applied to solve this problem, such as interior 
point method [10], heuristics-based algorithm [11] and predictive-based method [12]. These methods 
are used to determine the optimal scheme of regulation resources’ outputs and reach the power balance. 
However, due to the uncertainty and variability of new energy sources, conventional methods may face 
challenges in achieving high efficiency and robustness in real-time power dispatch. Therefore, some 
recent studies have explored novel approaches or advanced control strategies that can better cope with 
these challenges. Literature [13] developed a two objectives optimization framework-based frequency 
regulation for the optimal requirement of the independent system operators. In addition, a heuristic-
based optimal algorithm combined with an ideal point-based decision-making method was designed 
to effectively and efficiently obtain the Pareto set of the real-time dispatch and select an optimum 
dispatch scheme for the high penetration of the new energy. Furthermore, for the high utilization of the 
photovoltaics (PV) energy, [14] constructed a two-layer optimal model. To be specific, a swarm 
reinforcement learning [15] was employed to solve the maximum power point [16] tracking-based PV 
array configuration [17]. Besides, an interior point was employed to quickly acquire the optimal power 
dispatch after the previous reconstruction scheme selection. Finally, a reinforcement learning-based 
method in [18] was employed to solve the curse of dimension for the dispatch with the participation 
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of new energy resources.  
For wind energy participation, it is important not only to develop optimal strategies to coordinate 

regulation resources, but also to evaluate power fluctuations in wind energy due to weather changes 
with more accurate control. There are many references that utilize the effective forecasting method to 
analyze the extreme weather’s influence on the generation of wind energy and the stability of the power 
system. Literature [19] implemented a machine learning-based forecasting method that analyzed the 
historical series of wind energy using three approaches: gated recurrent unit (GRU), long short-term 
memory (LSTM) and recurrent neural network (RNN). Through the statistical experiments, this 
reference compared three machine learning approaches, and the gate reference unit performed best 
than the long short-term memory and recurrent neural network. The prediction-based method is more 
suitable for extracting extremely nonlinear and complex data from the input data set in real-time, 
improving the power system's ability to sense wind energy data, reducing the risk of the system and 
improving the efficiency of power system operation. In another study [20], a wind energy forecasting 
model based on the wind speed data was conducted to analyze the power output change. Additionally, 
five machine learning techniques were designed to solve the forecasting process and analyze their 
performances. In the simulation result, the random forest based method performed best. Literature [21] 
formulated an improved weather research and forecasting model. Besides, a genetic algorithm was 
employed to execute the optimization of the forecasting model, and a random forest model was trained 
to select the important parameters of error minimization for the independent system operators. Finally, 
in literature [22], a novel convolution-based LSTM was proposed to extract the spatial and temporal 
features of the wind power and daily wind speed. Additionally, a support vector machine was combined 
to process the output of the network and executed the classified task for wind energy.  

In addition to forecasting wind power generation, another important aspect of wind energy 
participation is to develop effective control strategies for coordinating regulation resources and 
optimizing power dispatch. Some studies have proposed novel methods that combine forecasting 
techniques and optimization algorithms to achieve this goal. Study [23] presented a predictive control 
framework-based automatic generation control dispatch for the maximum profit of the generating 
company. Meanwhile, this study effectively evaluated the regulation command at the future time 
control interval through the adaptive factor-based smoothing spline for the co-optimization between 
multiple control intervals. In literature [24], a transfer learning-based power dispatch scheme 
forecasting framework for the low economic requirement and high regulation performance. In this 
reference, an artificial neural network was designed to learn and transfer the optimal knowledge, and 
a fast interior point method was used to remove the predictive scheme from the infeasible zone to the 
feasible zone. These studies demonstrated that integrating forecasting methods and optimization 
techniques could improve the efficiency and reliability of a power system. 

In this paper, the problem of optimal power dispatch for wind energy participation under extreme 
weather conditions is considered. Unlike previous studies that focused on either wind power 
forecasting or power dispatch optimization separately, a novel integrated model that combines both 
aspects to achieve higher efficiency and reliability is proposed. The power dispatch model based on 
wind energy forecasting (PD-WEF) consists of two components: a wind power forecasting 
component and a power dispatch optimization component. For the wind power forecasting 
component, literature [25] propose an autoregressive integrated moving average model (ARIMA) [26] 
with a power limiter to improve the prediction of the stochastic power output for a noisy wind farm. 
In [27], three models (traditional ARIMA, wavelet-ARIMA and artificial network) are compared for 
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this task. The results show that the artificial network has the best performance, but it requires more 
historical data and training time than the other models. For power dispatch, the algorithm should 
optimize the power dispatch scheme to the dispatch units within 4s. Therefore, a fast and simple 
ARIMA model is used to predict the next time interval’s power command for the optimization. 
Meanwhile, for the power dispatch optimization component, a weighted mean of vectors (INFO) 
algorithm [28] based on two-control interval optimization is designed to optimally allocate the power 
of the regulation resources in extreme weather. INFO is a heuristic-based algorithm that balances 
exploration and exploitation in a weighted mean manner to optimize complex problems more 
accurately and rapidly. INFO has three main steps: updating policy, combination of vectors and 
improved local search. These steps are based on a novel weighted mean rule using a wavelet function, 
which can enhance the convergence speed and optimal performance of the algorithm. The following 
are the main contribution of this work: 

1) Compared with previous work, this work presents a two time-control intervals model for PD-
WEF. It includes the historical weather experience learning, current time-control interval power 
scheme optimal and future time-control interval prediction. 

2) The ARIMA is employed to learn the historical weather series and predict the next power output 
of the wind energy at the next time-control interval when suffering weather change. The ARIMA can 
quickly obtain the forecasting power output of the wind energy for the current optimal operation. 

3) The INFO algorithm is employed to rapidly obtain the power dispatch scheme by considering 
the power deviation between the power input and output of the regulation resource at the current time-
control interval and the next time-control interval. The proposed two-control interval optimization with 
ARIMA can help improve the search ability of the algorithm and the control performance of PD-WEF. 

The rest of this work is organized as follows. Section 2 describes the mathematical model of two-
control interval optimization for PD-WEF. Section 3 describes the specific implementation of ARIMA-
INFO algorithm for PD-WEF. Section 4 performs the simulation experiments and discusses the 
experimental results. Finally, Section 5 concludes the work. 

2. Mathematical model of PD-WEF 

2.1. Influence of extreme weather on power generation 

The energy industry is constantly evolving and new sources of energy are being developed to 
meet the demand for clean, reliable and cost-effective energy. One of the newest developments in the 
energy industry is the development of renewable energy sources such as wind, solar and geothermal. 
These sources of energy are becoming increasingly popular due to their environmental benefits and 
potential for cost savings. Additionally, these sources of energy are becoming more efficient and cost-
effective due to advances in technology. As new sources of energy continue to be developed and refined, 
they will become more viable options for businesses and consumers.  

The extreme weather includes heat, cold and wind. The high temperatures can reduce the 
efficiency of the power system and cause power outages due to the increased demand and the 
equipment failure. In cold weather, Pipes will freeze and equipment might fail, leading to power 
outages. Strong winds can cause damage to power lines and other equipment. These influences may 
cause a variety of problems such as voltage instability, frequency instability and harmonic instability. 
In this work, the influence of extreme weather on the wind turbine and the impact on the system 
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frequency stability will be analyzed. The following Figure 1 show the influence of extreme weather 
on wind power generation. If the power of wind turbines can be controlled and collected well, the wind 
turbines can help reduce the peak load of the power system. While extreme weather events can have a 
significant effect on the control policy and regulation performance of the wind turbine. In typhoon 
weather, excessive wind speed may cause displacement of the bearing seat inside or the breakage of 
the blades. Lighting can cause damage to power lines and other equipment, resulting in outages. When 
the low temperature or the freeze weather occurs, the blade of the turbine will freeze and the 
performance of the power regulation will be sharply reduced. 

Lightning Typhoon Freeze

Weather 
monitoring 

Protective control Wind power drop Power outage
 

Figure 1. Influence of extreme weather on wind power generation. 

2.2. PD-WEF framework 

In this paper, the power outage of wind turbines under extreme is seen as a power disturbance. 
The other regulation resources (coal-fire, hydro unit, liquefied natural gas (LNG) and photovoltaic 
(PV)) are employed to balance the load disturbance and the wind power outage disturbance. The 
control policy and optimal framework of PD-WEF are given in the following Figure 2. The 
disturbances include the extreme weather influences, load disturbances and other disturbances. It 
should be noted that the power fluctuations of wind energy and solar power are considered in other 
disturbances. The influence of extreme weather on solar power is neglected in PD-WEF. When the 
power system is subjected to the extreme weather, the protective control of the wind turbine will be 
responded and the power output of the turbine will be dropped. Then, the system should allocate more 
active power to balance the load disturbance and wind power drop. The controller will collect the tie-
line power mismatch and the area frequency deviation, then send the power command to the dispatch 
center. The algorithm will be employed to distribute the command to each regulation resource. Lastly, 
the system will continue to execute the above step until the load disturbance is balanced.  
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Figure 2. Framework of PD-WEF. 

2.3. Constraints 

In PD-WEF, to meet the demand of the power generation side and load side, the constraints and 
objectives should be formulated. The power regulation direction constraint, power balance constraint, 
regulation capacity constraint and regulation ramp constraint [29] should be considered in PD-WEF. 
The introduced power regulation direction constraint can help reduce the power regulation pressure 
and power command fluctuation. The power balance constraint can keep the power generation of 
regulation resource coordinated with the real-time power command. The regulation capacity constraint 
is the safe range of the regulation resource. Meanwhile, the generation ramp constraint (GRC) defines 
the power regulation capacity of the regulation resource in one time-control interval. During the power 
dispatch procedure, these constraints can be formulated as follow: 

 

⎩
⎪
⎨

⎪
⎧ ∆𝑃௜

୧୬(𝑘) ∙ ∆𝑃େ(𝑘) ≥ 0

∑ ∆𝑃௜
୧୬௡

௜ୀଵ (𝑘) = ∆𝑃େ(𝑘)

𝑃௜
୫୧୬(𝑘) ≤ ∆𝑃௜

୧୬(𝑘) ≤ 𝑃௜
୫ୟ୶(𝑘) 

|∆𝑃௜
୭୳୲(𝑘) − ∆𝑃௜

୭୳୲(𝑘 − 1)| ≤ ∆𝑅௜∆𝑇 

  (1) 

where ∆𝑃௜
୧୬(𝑘) is the power regulation command received by the ith PD-WEF regulation resource at 

the kth time-control interval and ∆𝑃େ(𝑘) denotes the total regulation power command generated by 
the PI controller. 𝑃௜

୫୧୬(𝑘) and 𝑃௜
୫ୟ୶(𝑘) represent the minimum and maximum of the ith PD-WEF 

regulation resource at the kth time-control interval. ∆𝑃௜
୭୳୲(𝑘) denotes the real power output generated 

by the ith PD-WEF regulation resource at kth time-control interval, ∆𝑇 represents the optimal time at 
one time-control interval and ∆𝑅௜ is the maximum regulation ramp rate of the ith PD-WEF regulation 
resource. 

The following Figure 3 shows the different types of power units with different constraints. The 
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conventional units like coal-fire, hydro unit and LNG have GRC in the dynamic process, while the 
renewable units with fast regulation of control have no GRC in the dynamic process. 

1/(1+sTd)

Time delay GRC

G(s)

Governor-Turbine Power limiter

in
iP

out
iP

 

(a) 

1/(1+sTd)

Time delay

G(s)

Governor-Turbine Power limiter

in
iP

out
iP

 

(b) 

Figure 3. Dynamic response models of power units. (a) Conventional units. (b) Renewable 
units. 

2.4. Objective function 

This paper mainly focuses on the wind power outage when the system is subjected to extreme 
weather and the real-time power dispatch. After the wind power outage and power command prediction, 
one potential optimal objective is to reduce the power deviation between the power command and real-
time power output generated by regulation resources. The objective optimization with one time-control 
intervals for the real-time power command can be given as follow: 

 𝑚𝑖𝑛𝑓 = ∑ |∆𝑃େ(𝑘) − ∑ ∆𝑃௜
୭୳୲(𝑘)௡

௜ୀଵ |ே౏
௞ୀଵ  (2) 

The objective optimization with two time-control intervals for the real-time power command and 
prediction power command is considered in this work. This can be given as follow: 

 𝑚𝑖𝑛𝑓 = ∑ |∆𝑃େ(𝑘) − ∑ ∆𝑃௜
୭୳୲(𝑘)௡

௜ୀଵ |ே౏
௞ୀଵ + |∆𝑃େ

തതത(𝑘 + 1) − ∑ ∆𝑀௜
୭୳୲(𝑘 + 1)௡

௜ୀଵ | (3) 

where ∆𝑃େ
തതത(𝑘 + 1) is the predicted power regulation command at the (𝑘 + 1)th time-control interval 

obtained by the predictive method and ∆𝑀௜
୭୳୲(𝑘 + 1) is the optimal power scheme at the (𝑘 + 1)th 

time-control interval computed by the optimal algorithm, 𝑁ୗ is the total time control intervals of the 
system in one service period. 

3. Design of ARIMA-INFO for PD-WEF 

3.1. Framework of two time-control intervals optimization 

In Figure 4, the weather influence prediction, optimal operation and dispatch scheme assessment 
are all included in the PD-WEF. The power command and wind power outage at the subsequent time-
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control period will be anticipated for the current optimization in the weather impact prediction process. 
By minimizing the power deviation between the power input command and output command at the 
two time-control intervals, the INFO will be used to quickly and optimally get the real-time power 
dispatch scheme. In the forecast procedure, the historical series of power commands and current 
weather are collected and the ARIMA approach is introduced to forecast the next time power command 
and wind power drop. The optimal processes of INFO are consisted of updating policy, combination 
of vectors and improved local search. The power commands received by all regulation resources at the 
current and future time-control interval will be seen as the optimal variables. Particularly, the optimal 
power scheme will be the current optimal variables, while the power scheme at the next time-control 
interval just used to require a higher quality scheme with consistent power deviation. 

Next step forecast
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Power scheme assement

Forecast 
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Figure 4. Framework of two time-control intervals optimization. 

3.2. Design of ARIMA 

Most conventional methods only consider how the power is distributed for the current interval 
and do not consider the effect of the next control interval with the influence of extreme weather. This 
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can lead to sub-optimal dynamic results and insufficient capacity margin. To ensure consistency for 
the next control interval, it is important to estimate the total power demand for that interval based on 
previous data. ARIMA(𝑝, 𝐷, 𝑞) [26] represents the series is differenced D times, p is the series lag 
operator and q is the series difference lag operator. The total regulation command at time interval k can 
be given as follow:  

 𝑦௞ାଵ = 𝛼଴ + 𝛼ଵ𝑥௞ + 𝛼ଶ𝑥௞ିଵ + ⋯ 𝛼௣𝑥௞ି௣ାଵ + 𝜀௞ − 𝛽ଵ𝜀௞ିଵ − 𝛽ଶ𝜀௞ିଶ − ⋯ − 𝛽௤𝜀௞ି௤   (4) 

where 𝑦௞ is the predicted total power command at the (𝑘 + 1)th control interval, 𝜀௞ represents the 
series difference at kth time interval, 𝑥௞  is historic series at kth time interval, 𝛼௜  and 𝛽௜  are the 
corresponding coefficient lag and the corresponding coefficient difference lag of i-order series. 

3.3. Design of INFO 

The INFO is a weighted mean-based optimal algorithm. The implementation of INFO includes 
many random parameters and wavelet functions. It is consisted of five operations, as follows:  
1) Parameters and population initialization: Initialize the vector size or the population size 𝑁୔ , 
maximum number of optimal iterations 𝑁୘. Then the initial solution set 𝑋଴ ∈ 𝑅ேౌ×ଶ(௡ିଵ), the initial 

fitness value set 𝐹଴
௜ = 𝑓൫𝑋଴

௜ ൯ (𝑖 = 1,2, . .2𝑛 − 2)  are given by the random initialization of the 

regulation resources power. The number of the optimal variables can be seen as the number of 
regulation resources removed one of the power balance resources in Eq (1). Lastly, according to the 
sorting principle, the best, better and worst of the solution set and fitness value set are decided by the 
initial fitness value and solution set. The most important step is population initialization, it can be given 
as follows: 

 𝑋଴
ଵ(𝑖) =

⎩
⎪
⎨

⎪
⎧

∆௉ి(௞)∙௉೔శభ
ౣ౟౤

∑ ௉ೕ
ౣ౟౤೙

ೕసభ

 ,   𝑖𝑓 ∆𝑃େ(𝑘) < 0

    0    ,     𝑖𝑓 ∆𝑃େ(𝑘) = 0
∆௉ి(௞)∙௉೔శభ

ౣ౗౮

∑ ௉ೕ
ౣ౗౮೙

ೕసభ

 ,   𝑖𝑓 ∆𝑃େ(𝑘) > 0

 (𝑖 = 1,2, … 𝑛 − 1)  (5) 

 𝑋଴
ଵ(𝑖) =

⎩
⎪
⎨

⎪
⎧

∆௉ిതതതത(௞ାଵ)∙௉೔శమష೙
ౣ౟౤

∑ ௉ೕ
ౣ౟౤೙

ೕసభ

 ,   𝑖𝑓 ∆𝑃େ
തതത(𝑘 + 1) < 0

    0       ,   𝑖𝑓 ∆𝑃େ
തതത(𝑘 + 1) = 0

∆௉ిതതതത(௞ାଵ)∙௉೔శమష೙
ౣ౗౮

∑ ௉ೕ
ౣ౗౮೙

ೕసభ

 ,   𝑖𝑓 ∆𝑃େ
തതത(𝑘 + 1) > 0

 (𝑖 = 𝑛, 𝑛 + 1, … 2𝑛 − 2)  (6) 

 𝑋଴
௜ (𝑗) = ൜

∆𝑃େ(𝑘) ∙ 𝑟𝑎𝑛𝑑𝑝௜(𝑗 + 1)  , 𝑖𝑓 𝑗 < 𝑛 − 1 

∆𝑃େ
തതത(𝑘 + 1) ∙ 𝑟𝑎𝑛𝑑𝑝௜(𝑗 + 2 − 𝑛)  , else 

 (𝑖 = 2,3, … 𝑛; 𝑗 = 1,2, … 2𝑛 − 2)  (7) 

where ∆𝑃େ
തതത(𝑘 + 1) represents the predictive power command obtained by the predictive method at 

the kth time control interval, 𝑟𝑎𝑛𝑑𝑝௜ ∈ 𝑅ଵ×௡(∑ 𝑟𝑎𝑛𝑑𝑝௜
௡
௝ୀଵ (𝑗) = 1)  is a random vector with n 

dimension, which represents the proportional of the ith regulation resource for the total power 
command. 

For the fitness calculation step, the constraints of the balance regulation resource should be 
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validated. Therefore, the constraints penalty term of the balance resource for fitness calculation should 
be added as follow: 

 𝐹(𝑋௜) = ቊ
𝑓(𝑋௜),       𝑖𝑓 𝑃ଵ

௠௜௡ ≤ ∆𝑃େ(𝑘) − ∑ 𝑋௜(𝑗)௡ିଵ
௝ୀଵ ≤ 𝑃ଵ

୫ୟ୶ ∩ 𝑃ଵ
୫୧୬ ≤ ∆𝑃େ

തതത(𝑘 + 1) − ∑ 𝑋௜(𝑗)ଶ௡ିଶ
௝ୀ௡ ≤ 𝑃ଵ

୫ୟ୶

10଺ ,                                𝑒𝑙𝑠𝑒                                          
  (8) 

where 𝑓(𝑋௜)  represents the real objective value of the jth population, 𝐹൫𝑋௝൯  represents the 

calculation value of fitness function for the jth population. 
2) Updating policy: First, the updating of the rule stage mainly initializes two random parameters and 
an exploration function value, as follows: 

 𝛿 = 2𝑟𝑎𝑛𝑑𝑐ଵ × 𝛼 − 𝛼 (9) 

 𝜎 = 2𝑟𝑎𝑛𝑑𝑐ଶ × 𝛼 − 𝛼 (10) 

 𝛼 = 2𝑒ିସ௚/ே౐  (11) 

where 𝑟𝑎𝑛𝑑𝑐ଵ and 𝑟𝑎𝑛𝑑𝑐ଶ are two random numbers from 0 to 1, 𝛿 represents the scale rate for the 
wavelet function, the parameter 𝜎 is the weighted mean factor and used to regulate the position to the 
weighted mean of vectors, 𝑔 is the current iteration of the optimal operation and 𝛼 is an intermediate 
parameter. 

3) Vector combination: The vector combination is to combine the previous vectors 𝑧1௜
௚ and 𝑧2௜

௚ for 

the updating of the solution. To improve the search solution quality, a new vector will be generated, as 
follows: 

 𝑢௜
௚

= ൞

𝑋௜
௚

 ,                                  𝑖𝑓  𝑟𝑎𝑛𝑑1 > 0.5

𝑧1௜
௚

+ 𝜇ห𝑧1௜
௚

− 𝑧2௜
௚

ห, 𝑖𝑓  𝑟𝑎𝑛𝑑1 < 0.5 ∩  𝑖𝑓  𝑟𝑎𝑛𝑑2 > 0.5

𝑧2௜
௚

+ 𝜇ห𝑧1௜
௚

− 𝑧2௜
௚

ห , 𝑖𝑓  𝑟𝑎𝑛𝑑1 < 0.5 ∩  𝑖𝑓  𝑟𝑎𝑛𝑑2 < 0.5

  (12) 

where 𝑢௜
௚ is the generated vector in the combination process, and 𝜇 is a random number in the range 

of [0,0.05]. 

4) Local search: To improve the exploitation and exploration ability of the proposed method, the 
combination vector will be updated according to some random operations, as follows: 

𝑢௜
௚

=

൞

𝑢௜
௚

 ,                                  𝑖𝑓  𝑟𝑎𝑛𝑑𝑛1 > 0.5

𝑋ୠୣୱ୲ + 𝑟𝑎𝑛𝑑𝑛 × (𝑀𝑅௜
௚

+ 𝑟𝑎𝑛𝑑𝑛 × (𝑋ୠୣୱ୲ − 𝑋ୟ)), 𝑖𝑓  𝑟𝑎𝑛𝑑𝑛1 < 0.5 ∩  𝑖𝑓  𝑟𝑎𝑛𝑑𝑛2 > 0.5

𝑋୬ୣ୵ + 𝑟𝑎𝑛𝑑𝑛 × (𝑀𝑅௜
௚

+ 𝑟𝑎𝑛𝑑𝑛 × (𝑣ଵ × 𝑋ୠୣୱ୲ − 𝑣ଶ × 𝑋୬ୣ୵)), 𝑖𝑓  𝑟𝑎𝑛𝑑𝑛1 < 0.5 ∩  𝑖𝑓  𝑟𝑎𝑛𝑑𝑛2 < 0.5

  (13) 

 𝑣ଵ = ൜
2 × 𝑟𝑎𝑛𝑑, 𝑖𝑓 𝑝 > 0.5

1, 𝑒𝑙𝑠𝑒
  (14) 

 𝑣ଶ = ൜
𝑟𝑎𝑛𝑑, 𝑖𝑓 𝑝 < 0.5

1, 𝑒𝑙𝑠𝑒
  (15) 
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 𝑋୬ୣ୵ = 𝜙 ×
௑౗ା௑ౘା௑ౙ

ଷ
+ (1 − 𝜙) × (𝜙 × 𝑋ୠୣ୲୲ୣ୰ + 𝜙 × 𝑋ୠୣୱ୲)  (16) 

where 𝜙 and p are the random number in the range of (0,1). 

5) Vector updating: After the proposed (2)–(4) procedure, a new vector 𝑢௜
௚ considering the best, worse 

and weighted mean rule is created for the new vector updating. Although the new vector considers the 
above factor, the constraint validation should be included in the optimal iteration, as follow: 

𝑢௜
௚(𝑗) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑢௜
௚(𝑗),     𝑖𝑓 𝑃௜

୫୧୬(𝑗 + 1) ≤ 𝑢௜
௚(𝑗) ≤ 𝑃௜

୫ୟ୶(𝑗 + 1) ∩ 1 < 𝑗 < 𝑛 − 1

𝑃௜
୫୧୬(𝑗 + 1) ,     𝑖𝑓 𝑢௜

௚(𝑗) < 𝑃௜
୫୧୬(𝑗 + 1) ∩ 1 < 𝑗 < 𝑛 − 1

𝑃௜
୫ୟ୶(𝑗 + 1) ,     𝑖𝑓 𝑢௜

௚(𝑗) > 𝑃௜
୫ୟ୶(𝑗 + 1) ∩ 1 < 𝑗 < 𝑛 − 1

𝑢௜
௚(𝑗),     𝑖𝑓 𝑃௜

୫୧୬(𝑗 + 2 − 𝑛) ≤ 𝑢௜
௚(𝑗) ≤ 𝑃௜

୫ୟ୶(𝑗 + 2 − 𝑛) ∩ 𝑛 < 𝑗 < 2𝑛 − 2

𝑃௜
୫୧୬(𝑗 + 2 − 𝑛) ,     𝑖𝑓 𝑢௜

௚(𝑗) < 𝑃௜
୫୧୬(𝑗 + 2 − 𝑛) ∩ 𝑛 < 𝑗 < 2𝑛 − 2

𝑃௜
୫ୟ୶(𝑗 + 2 − 𝑛) ,     𝑖𝑓 𝑢௜

௚(𝑗) > 𝑃௜
୫ୟ୶(𝑗 + 2 − 𝑛) ∩ 𝑛 < 𝑗 < 2𝑛 − 2

(𝑗 = 1,2 … 2𝑛 − 2)

  (17) 

Then, the updating rule is executed by the comparison of new vector fitness and current fitness, 
as follows: 

 𝑥௜
௚ାଵ

= ቊ
𝑥௜

௚
 ,     𝑖𝑓 𝐹(𝑢௜

௚
) > 𝐹(𝑥௜

௚
)

𝑢௜
௚

 ,            𝑒𝑙𝑠𝑒     
  (18) 

Lastly, until all the vectors in the current iteration are updated, the best, better and worst vector 
will be updated for the vector optimal updating at the next iteration. 
6) Repeat iteration: After a series of iteration processes from (2)–(5), the fitness function value of the 
best solution will be decreased. Additionally, the optimal process will be terminated when the current 
iteration goes beyond the maximum iteration. On the basis of the proposed optimal techniques, the 
optimum of the power dispatch scheme will be obtained. Furthermore, it will be employed for the 
power scheme evaluation. 

3.4. Calculation flow 

The whole optimal process of ARIMA-INFO for PD-WEF is presented in the following Table 1. 

4. Case studies 

4.1. Parameters settings 

In the simulation test, a PD-WEF system with ten regulation resources is implemented for the 
simulation test in order to validate the effectiveness and efficiency of the INFO. The parameters of the 
PD-WEF system implemented with four different types of regulation resources [13] are shown in 
below Table 2. Table 3 shows the transfer function of the regulatory resources [13]. Additionally, the 
total time control interval in one service period 𝑁ୗ is set to 225, and the time-control interval period 
T is set to 4 seconds (15 min). 

To select the parameters of INFO, the simulation for different parameter scenarios is conducted. 
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Furthermore, following Figure 5 shows the optimal computation times and the fitness convergence 
value. It can see that the algorithm acquires an optimum at 50, and just less than 2s. Therefore, for the 
INFO parameters setting, the number of vectors and maximum iteration are both set to 30 in the statistic 
test, and both set to 50 in the dynamic test. Additionally, the traditional genetic algorithm (GA) [30] is 
employed to be the comparison algorithm in the test. Meanwhile, the parameters of population and 
maximum iteration are set the same as INFO for the fair of convergence and performance comparison. 
Meanwhile, for the two time-control intervals framework, the ARIMA parameters are set to (2, 1, 2). 
The Lag value is the first parameter, the different order is the second parameter, and the average move 
size is the last parameter. Two optimal frameworks with one time-control interval and two time-control 
intervals are given to analyze the combination of predictive method and optimal technique. 

Table 1. The execution process of ARIMA-INFO for PD-WEF. 

1: The PD-WEF is subjected to wind power drop or stochastic load disturbance 
2: Initialize the system parameters (regulation resources constraints in Eq (1)); 
3: FOR1 k:=1 to Ns 
4: Input the current power command, weather, constraints and the historical series; 
5: Forecast the influence of weather and power command through ARIMA by Eq (4); 
6: Initialize the INFO parameters and the population in Eqs (6) and (7); 
7: Calculate the initial the best, better and worse fitness function in Eq (8); 
8: FOR2 g:=1 to 𝑁் 
9:  FOR3 i:=1 to Np 
10:   Select three random vectors for the weighted mean rule updating; 
11:   Execute the updating rule by Eqs (9)–(11); 
12:   Execute the vector combination by Eq (12); 
13:   Execute the local search by Eqs (13)–(16); 
14:   If the new solution disobeys Eq (1) 
15:    Initialize the positions by Eq (17) according to the power capacity; 
16:   END 
17:   If 𝐹(𝑢௜

௚
) > 𝐹(𝑥௜

௚
)    

18:    Execute the vector updating by Eq (18); 
19:   END 
20:  END  
21:  Update the best, better and worse fitness function and solution for the next iteration; 
22: END  
23: END FOR 

4.2. Statistic test  

4.2.1. Convergence of one time-control interval optimization 

In this test, two power commands (∆𝑃େ = −100 MW and ∆𝑃େ = 100 MW) are conducted to 
validate the performance of the proposed algorithm. As shown in Figure 6, the proposed method can 
require a dispatch scheme with high-quality than GA. In the optimal process of Figure 6(a), the INFO 
gets the optimum at 14 iterations with a fitness value lower than 520, while the GA obtains the fitness 
value of about 570 at almost 30 iterations. This indicates that the proposed INFO can help decrease the 
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power deviation between the total power command and the total power output for PD-WEF system. 
Besides, these two figures show that the proposed method has a better convergence and search ability 
than GA in the power dispatch optimization. 

  

(a) (b) 

Figure 5. Computation and convergence of INFO at different parameters scenarios. (a) 
Optimal computation times. (b) Fitness convergence value. 

Table 2. Main Parameters of dispatch regulation resources in PD-WEF system. 

Regulation  

resource No. 
Type Tr (s) ∆𝑅௜ (MW/s) 𝑃௜

୫ୟ୶(MW) 𝑃௜
୫ୟ୶(MW) 

G1 Coal-fired 55 0.5 40 −40 

G2 Coal-fired 60 0.5 30 −30 

G3 Coal-fired 50 0.5 25 −25 

G4 LNG 15 0.3 30 −20 

G5 LNG 20 0.3 20 −30 

G6 LNG 20 0.3 15 −20 

G7 Hydro 5 2.5 15 −15 

G8 Hydro 5 2.5 10 −10 

G9 PV 1 − 5 −10 

G10 PV 1 − 10 −5 

Table 3. Transfer functions of various regulation resources. 

Regulation 

resource No. 
Regulation resource type Transfer function G(s) Parameters (s) 

G1-3 
Reheat steam resource 

1 + 𝑇ଵ𝑠

(1 + 𝑇ଶ𝑠)(1 + 𝑇ଷ𝑠)(1 + 𝑇ସ𝑠)
 

T1 = 5, T2 = 0.1, T3 = 10, T4 = 0.3 

G4-6 T1 = 0.08, T2 = 10, T3 = 5, T4 = 0.3 

G7-8 Hydro resource 
(1 − 𝑇ହ𝑠)(1 + 𝑇଻𝑠)

(1 + 𝑇଺𝑠)(1 + 𝑇 𝑠)
 T5 = 1, T6 = 0.5, T7 = 5, T8 = 0.513 

G9-10 Non-reheat steam resource, PV 
1

1 + 𝑇ଽ𝑠
 T9 = 0.01 
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(a) (b) 

Figure. 6. Convergence of different algorithms for PD-WEF system at two disturbance 
scenarios. (a) ∆𝑃େ = 100 MW. (b) ∆𝑃େ = −100 MW. 

4.2.2. Convergence of two time-control intervals optimization 

For the two time-control intervals, a power command series is conducted to analyze the convergence 
and performance of the algorithms. To present the performance of the two algorithms in the power 
tracking accuracy, the objective function can be revised according to the tracking accuracy, as follow: 

 𝑚𝑖𝑛𝑓 =
ଵ

ே౏
∑ (1 −

ห∆௉ి(௞)ି∑ ∆௉೔
౥౫౪(௞)೙

೔సభ ห

∆௉ి(௞)
)

ே౏
௞ୀଵ + 1 −

ห∆௉ిതതതത(௞ାଵ)ି∑ ∆ெ೔
౥౫౪(௞ାଵ)೙

೔సభ ห

∆௉ిതതതത(௞ାଵ)
 (19) 

The following Figure 7. shows the power command series and optimal process at three consistent 
time-control intervals. The power command series and predictive command are given in Figure 
7(a),(c),(e). These three graphs show that the proposed ARIMA can acquire a predictive power command 
at the next control interval for the optimization. The Figure 7(b),(d),(f) give the optimal process of the 
two algorithms with 50 population (or vector) and 50 iterations. The fitness value is the opposite of 
tracking accuracy. The lower fitness value represents the higher tracking accuracy. It is noticeable that 
the proposed INFO can acquire the power scheme with higher tracking accuracy based on the forecasting 
power command of ARIMA. The introduced INFO has the competence of improving the power tracking 
accuracy, which is about one time higher than that of GA in the three consistent scenarios. 

4.3. Dynamic simulation test  

4.3.1. Load step disturbance with wind power drop 

First, the power dispatch process of the two optimal methods and two optimal frameworks for 
PD-WEF system at ∆𝑃ୈ = 50 MW and wind power drop ∆𝑃୛ୋ = 5 MW is shown in Figure 8(a) 
and its data show that the optimum with a lower amplitude of regulation input command can be 
required by INFO. This demonstrates that the proposed INFO with two time-control intervals 
framework can acquire the optimal power scheme with a higher performance than the traditional GA 
technique or one time-control interval. The following Figure 8(b) shows the dynamic process of power 
command received by each regulation resource with the two control intervals framework-based INFO. 
Then, the following Figure 8(c) illustrates the proposed INFO’s superiority in reducing the power 
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tracking error between the power input command and real-time power output. At the same time, the 
real-time power deviation obtained by each algorithm is given in Figure 8(d). It shows that the 
proposed method can acquire a lower power deviation in the dynamic process of load disturbance or 
wind power drop. In Figure 8(e),(f), the proposed method can help decrease the peak value of area 
control error (ACE) and frequency deviation. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 7. PD-WEF system at consistent command scenarios based on two time-control 
intervals optimization. (a),(b) Power command series and convergence at the first time-
control interval. (c),(d) Power command series and convergence at the second time-control 
interval. (e),(f) Power command series and convergence at the third time-control interval. 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure. 8. PD-WEF system at dynamic load disturbance ∆𝑃ୈ = 50 MW and wind power 
drop ∆𝑃୛ୋ = 5 MW scenarios based on two time-control intervals optimization and one 
time-control interval optimization. (a). Load disturbance, wind power drop and real-time 
power input of different algorithms. (b) Power output of regulation resources obtained by 
INFO with two time-control intervals. (c) Total power disturbance. (d) Real-time power 
disturbance. (e) ACE. (f) Frequency deviation. 

Likewise, the power dispatch process under a load step disturbance ∆𝑃ୈ = 50 MW and a higher 
amplitude of wind power drop is illustrated in Figure 9(a). The power output of all ten regulation 
resources rose from zeros to a maximum value (shown in Figure 9(b)) during the specified optimal 
procedure produced by INFO. Additionally, the two control intervals framework-based INFO approach 
can acquire the power schemes with a lower power deviation than one control intervals framework-
based method, as illustrated in Figure 9(c). This is partly because the added command of the next time 
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control interval, as opposed to one control interval, is better able to coordinate the numerous regulation 
resources. As can be seen in the subsequent Figure 9(d), the proposed INFO can track dynamic power 
more accurately. Figure 9(e),(f) show that the proposed optimization framework and method can 
similarly help reduce the peak of ACE and frequency deviation. 

  
(a) (b) 

  
(c) (d) 

  

(e) (f) 

Figure. 9. PD-WEF system at dynamic load disturbance ∆𝑃ୈ = 50 MW and wind power 
drop ∆𝑃୛ୋ = 10 MW  scenarios based on two time-control intervals optimization and 
one time-control interval optimization. (a). Load disturbance, wind power drop and real-
time power input of different algorithms. (b) Power output of regulation resources obtained 
by INFO with two time-control intervals. (c) Total power disturbance. (d) Real-time power 
disturbance. (e) ACE. (f) Frequency deviation. 

Finally, a higher amplitude of wind power drop ∆𝑃୛ୋ = 15 MW (illustrated in Figure 10(a)) is 
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conducted analysis the influence of the wind power drop. The proposed method can acquire a lower 
total power deviation (shown in Figure 10(c)) and real-time power deviation (shown in Figure 10(d)). 
However, the two control intervals framework-based GA technique show the shortcoming in the 
optimal process when the system is subjected to a higher wind power drop. This means that the 
ARIMA-based INFO technique can have a good robustness than the GA approach when the system is 
exposed to more wind power declines. In Figure 10(e),(f), it can be seen that the smaller peak value of 
ACE and frequency deviation can be obtained by the proposed algorithm. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure. 10. PD-WEF system at dynamic load disturbance ∆𝑃ୈ = 50 MW  and wind 
power drop ∆𝑃୛ୋ = 15 MW scenarios based on two time-control intervals optimization 
and one time-control interval optimization. (a). Load disturbance, wind power drop and 
real-time power input of different algorithms. (b) Power output of regulation resources 
obtained by INFO with two time-control intervals. (c) Total power disturbance. (d) Real-
time power disturbance. (e) ACE. (f) Frequency deviation. 
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Table 4. Results comparison of dynamic optimization under different disturbances scenarios. 

∆𝑃ୈ 

(MW) 

∆𝑃୛ୋ 

(MW) 

One time-control interval framework Two time-control intervals framework 

Power deviation 

(MW) 
Accuracy (%) 

Power deviation 

(MW) 
Accuracy (%) 

GA INFO GA INFO GA INFO GA INFO 

−70 
5 674.2 1281.9 60.0 57.4 559.8 316.9 61.2 62.8 

10 943.4 1830.7 59.1 55.1 720.8 373.3 60.3 62.5 

15 757.9 2651.6 59.8 52.6 758.2 414.6 60.4 62.2 

−60 
5 638.4 477.6 60.1 61.4 567.3 246.1 60.5 63.2 

10 798.1 1227.4 58.9 57.0 587.6 296.8 60.6 62.9 

15 674.6 928.1 59.7 59.1 688.2 347.1 60.1 62.4 

−50 
5 557.6 469.9 60.1 60.9 409.2 229.2 61.2 62.7 

10 534.9 505.2 60.1 60.7 535.5 222.4 60.3 63.0 

15 514.0 1103.5 60.3 57.2 604.2 272.6 60.1 62.6 

−40 
5 244.3 261.9 61.9 62.3 346.7 167.4 61.1 63.1 

10 438.2 182.7 60.3 62.9 464.9 201.2 59.8 62.9 

15 455.8 344.3 60.5 61.5 529.3 220.0 60.0 62.6 

−30 
5 306.3 157.5 60.7 62.3 272.0 127.0 60.9 63.0 

10 408.4 261.2 59.7 61.5 333.6 160.2 60.4 62.6 

15 281.2 160.4 61.3 62.7 465.9 187.4 59.6 62.5 

−20 
5 129.4 129.0 61.6 61.8 205.2 94.7 60.6 62.9 

10 151.0 151.6 61.7 61.8 296.3 117.3 59.7 62.7 

15 163.5 144.9 61.3 62.4 398.8 137.9 58.9 62.6 

20 

5 125.9 102.7 61.7 62.7 150.0 110.1 61.7 62.5 

10 158.0 149.7 61.2 61.9 193.7 145.4 61.0 62.0 

15 222.5 167.6 60.6 61.8 210.7 139.9 61.2 62.3 

30 

5 218.3 163.4 61.4 62.4 200.6 150.1 61.8 62.6 

10 217.4 194.2 61.5 62.2 221.1 161.2 61.7 62.8 

15 306.3 251.6 60.7 61.7 279.0 220.2 61.2 62.0 

40 

5 291.0 171.6 61.3 62.9 267.1 165.9 61.7 63.0 

10 306.1 247.6 61.3 62.0 302.7 201.5 61.4 62.7 

15 329.7 283.2 61.1 62.0 327.7 253.5 61.4 62.4 

50 

5 353.5 268.8 61.2 62.3 321.2 214.2 61.8 63.0 

10 382.3 323.6 61.2 61.9 377.3 284.3 61.4 62.3 

15 404.7 345.6 61.0 61.8 524.0 311.9 60.7 62.2 

60 

5 397.1 287.2 61.5 62.6 423.1 258.8 61.6 63.0 

10 456.8 332.9 61.1 62.1 512.1 314.9 61.1 62.6 

15 463.9 371.1 61.4 62.2 519.6 363.1 61.2 62.3 

70 

5 481.5 326.9 61.4 62.5 509.2 323.5 61.4 62.8 

10 523.3 422.7 61.3 62.0 582.3 382.6 61.1 62.2 

15 576.9 465.4 60.9 61.8 679.5 439.3 60.7 62.1 
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4.3.2. Data analysis at different scenarios 

Lastly, twelve load disturbances (−70 to −20MW and 20 to 70 MW) with three amplitude of wind 
power drop (5MW, 10MW and 15MW) developed to be performed to the PD-WEF system in order to 
further demonstrate the superiority of the suggested method. The optimal results of online optimization 
under various disturbance scenarios are given in Table 4. The indexes of the power deviation and 
tracking accuracy are conductive to exemplifying the high performance of INFO for PD-WF system. 
According to these statistics, the proposed ARIMA-based ANFO will perform better for the PD-WEF 
system. In all wind power drop optimization scenarios, the effect is better than other scenarios (except 
for the −40MW disturbance with 10MW wind power drop, −30MW disturbance with 15MW wind 
power drop and 20MW disturbance with 5MW wind power drop).  

Compared with GA, the average power deviation decrease at different load disturbance scenarios 
with ARIMA-INFO are 52.91, 57.60, 54.76, 45.76, 50.89, 21.61, 19.22, 28.39, 33.43, 29.33, 29.20 and 
27.85%. Besides, the average accuracy increase with the ARIMA-INFO at different load disturbance 
scenarios are 4.64, 5.20, 4.20, 3.10, 3.42, 1.88, 1.72, 2.06, 2.34, 2.16, 2.09 and 1.90%. Without the 
ARIMA for two time-control intervals framework, the INFO shows a weakness in the decrease of 
power deviation than GA. With the introduction of ARIMA, the INFO improve the competent of power 
deviation reduction by about 50.00% and the accuracy increase by about 2.42%, while the GA decrease 
the competence of power deviation reduction about 2.99%. These demonstrate that the combination of 
ARIMA and INFO can effectively improve the control performance of PD-WEF system. Furthermore, 
the two time-control intervals framework is more suitable for INFO than GA algorithm. 

5. Conclusions 

In conclusion, three contributions made in this paper are presented as follows: 
1) The introduced ARIMA can effectively explore the feature of power command series and 

quickly acquire the power command at the next control interval for the power dispatch optimization.  
2) The introduction of INFO can accelerate the convergence speed and improve the search ability 

compared with the traditional GA method when solving the PD-WEF with two time-control intervals 
framework or one time-control interval framework. It can coordinate the regulation resource and 
reduce the power tracking error. When the system is subjected to more wind power, the ARIMA-based 
INFO strategy can be more robust than the GA approach.  

3) The conducted load disturbance dynamic tests with wind power drop show that the ARIMA-
based INFO can effectively and efficiently acquire a high-quality power scheme for PD-WEF system. 
It can effectively increase the power tracking accuracy, decrease the power tracking error and improve 
the control performance of the PD-WEF system. Additionally, the ARIMA is more applicable for INFO 
than the GA algorithm. 

Future study will construct the system deployed with more wind regulation resources and more 
regulation styles. Additionally, more predictive methods will be considered for the improvement of 
predictive accuracy. Furthermore, the combination of optimization and deep learning technique will 
be considered to increase power tracking accuracy. 
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Appendix 

Different from the traditional operation that moves the current solution towards the global optimal 
solution or local optimal solution, the INFO used three random vectors to compute the weighted mean 
of vectors for the position updating of the current vector. The mean rule is formulated as follows: 

 𝑀𝑅௜
௚

= 𝑟 × 𝑊𝑀1௜
௚

+ (1 − 𝑟) × 𝑊𝑀2௜
௚

 (𝑖 = 1,2, … 𝑁୔; 𝑔 = 1,2 … , 𝑁୘)  (A1) 

𝑊𝑀1௜
௚

= 𝛿 ×
௪భ

భ(௑౗ି௑ౘ)ା௪మ
భ(௑౗ି௑ౙ)ା௪య

భ(௑ౘି௑ౙ)

ఌା∑ ௪ೕ
భయ

ೕసభ

+ 𝜀 × 𝑟𝑎𝑛𝑑(𝑖 = 1,2, … 𝑁୔; 𝑔 = 1,2 … , 𝑁୘) (A2) 

 𝑊𝑀2௜
௚

= 𝛿 ×
௪భ

మ(௑ౘ౛౩౪ି௑ౘ౛౪౪౛౨)ା௪మ
మ(௑ౘ౛౩౪ି௑౭౥౨౩౛)ା௪య

మ(௑ౘ౛౪౪౛౨ି௑౭౥౨౩౛)

ఌା∑ ௪ೕ
మయ
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+ 𝜀 × 𝑟𝑎𝑛𝑑 (A3) 

 𝑊𝐹1(𝐴, 𝐵) = cos (𝐴 − 𝐵 + 𝜋) × 𝑒
ିቚ

ಲషಳ

ട
ቚ (A4) 

 𝑊𝐹2(𝐴, 𝐵) = cos (𝐴 − 𝐵 + 𝜋) × 𝑒
ିฬ

ಲషಳ

ಷ൫೉ౘ౛౩౪൯
ฬ
 (A5) 

 𝑤ଵ
ଵ = 𝑊𝐹1൫𝐹(𝑋ୟ), 𝐹(𝑋ୠ)൯,  𝑤ଶ

ଵ = 𝑊𝐹1(𝐹(𝑋ୟ), 𝐹(𝑋ୡ), ), 𝑤ଷ
ଵ = 𝑊𝐹1൫𝐹(𝑋ୠ), 𝐹(𝑋ୡ)൯ (A6) 

𝑤ଵ
ଶ = 𝑊𝐹2൫𝐹(𝑋ୠୣୱ୲), 𝐹(𝑋ୠୣ୲୲ୣ୰)൯,  𝑤ଶ

ଶ = 𝑊𝐹2(𝐹(𝑋ୠୣୱ୲), 𝐹(𝑋୵୭୰ୱୣ), ), 𝑤ଷ
ଶ = 𝑊𝐹2൫𝐹(𝑋ୠୣ୲୲ୣ୰), 𝐹(𝑋୵୭୰ୱୣ)൯(A7) 

where MR represents the mean rule value, 𝑋ୟ, 𝑋ୠ, and 𝑋ୡ represents three random vectors, 𝜛 is 
the maximum fitness value of the three random vectors, 𝑋ୠୣୱ୲, 𝑋ୠୣ୲୲ୣ୰, and 𝑋୵୭୰ୱୣ denotes the best 
vector, better vector, and worse vector at the current iteration, respectively, 𝑊𝐹1  and 𝑊𝐹2 
represents the two wavelet functions, r is the random number in the range [0.1, 0.5], 𝑤 is the wavelet 
function values that help search the space globally. 

Then the mean-based rule can be used to determine two regulate vectors for the following solution 
updating, as follow: 
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where randn and rand are the random numbers. 
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