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Abstract: In the absence of pharmaceutical interventions, social distancing and lockdown have been
key options for controlling new or reemerging respiratory infectious disease outbreaks. The timely
implementation of these interventions is vital for effectively controlling and safeguarding the
economy.Motivated by the COVID-19 pandemic, we evaluated whether, when, and to what level
lockdowns are necessary to minimize epidemic and economic burdens of new disease outbreaks. We
formulated the question as a sequential decision-making Markov Decision Process and solved it using
deep Q-network algorithm. We evaluated the question under two objective functions: a 2-objective
function to minimize economic burden and hospital capacity violations, suitable for diseases with
severe health risks but with minimal death, and a 3-objective function that additionally minimizes the
number of deaths, suitable for diseases that have high risk of mortality.A key feature of the model is
that we evaluated the above questions in the context of two-geographical jurisdictions that interact
through travel but make autonomous and independent decisions, evaluating under cross-jurisdictional
cooperation and non-cooperation. In the 2-objective function under cross-jurisdictional cooperation,
the optimal policy was to aim for shutdowns at 50 and 25% per day. Though this policy avoided
hospital capacity violations, the shutdowns extended until a large proportion of the population reached
herd immunity. Delays in initiating this optimal policy or non-cooperation from an outside jurisdiction
required shutdowns at a higher level of 75% per day, thus adding to economic burdens. In the 3-
objective function, the optimal policy under cross-jurisdictional cooperation was to aim for shutdowns
of up to 75% per day to prevent deaths by reducing infected cases. This optimal policy continued for
the entire duration of the simulation, suggesting that, until pharmaceutical interventions such as
treatment or vaccines become available, contact reductions through physical distancing would be
necessary to minimize deaths. Deviating from this policy increased the number of shutdowns and led
to several deaths.In summary, we present a decision-analytic methodology for identifying optimal
lockdown strategy under the context of interactions between jurisdictions that make autonomous and
independent decisions. The numerical analysis outcomes are intuitive and, as expected, serve as proof
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of the feasibility of such a model. Our sensitivity analysis demonstrates that the optimal policy exhibits
robustness to minor alterations in the transmission rate, yet shows sensitivity to more substantial
deviations. This finding underscores the dynamic nature of epidemic parameters, thereby emphasizing
the necessity for models trained across a diverse range of values to ensure effective policy-making.

Keywords: decision-making in epidemics; COVID-19; deep reinforcement learning; artificial
intelligence in public health; non-pharmaceutical intervention; jurisdictional decision-making

1. Introduction

Timely implementations of pharmaceutical and non-pharmaceutical interventions (NPI) are critical
for effective control of new infectious disease outbreaks. Delay in response causes enormous disease and
economic burdens, as seen during the COVID-19 outbreak caused by the SARS-Cov?2 virus [1].

In the event of new respiratory infectious disease outbreaks, when pharmaceutical interventions
are unavailable, NPIs are the only options, as was the case with COVID-19. Effective NPI options
include facemask-use and social distancing [2]. Social distancing could include physical distancing
(e.g., by 3 ft or 6 ft) or partial lockdowns. While facemasks and physical distancing could be the most
economically feasible options, lockdowns may be necessary for highly contagious viruses such as the
SARS-Cov2. While locking-down early in the pandemic would be suitable for reducing disease burden,
it may unnecessarily add to the economic burden. On the other hand, delaying the lockdown or
improper phasing of lockdowns can significantly amplify both economic and disease burdens [3].

In this context, through timely implementation of lockdowns, governmental public health
agencies play a key role in effective containment of new outbreaks. Furthermore, though public health
decisions are autonomous to each jurisdiction, e.g., in the United States, local COVID-19 prevention
guidelines were determined by individual states [4], the epidemic can be influenced by outside
jurisdictions through travel.

The objective of our work is to a) Propose a reinforcement learning (RL) model designed
specifically for the sequential analyses of epidemic decisions. b) Investigate jurisdiction-specific
decisions within the context of multi-jurisdictional interactions, and subsequently conduct numerical
analyses that aim to demonstrate the significance of these jurisdictional interactions.

A methodology that can help determine whether and when a lockdown is necessary, to what level,
and how to phase out a lockdown would be a critical part of a pandemic preparedness plan. While
surveillance systems to help identify new outbreaks would be a crucial part of this preparedness plan,
because of the delay in diagnosis of cases, informing decisions only based on data collected through
these systems will not be sufficient. Surveillance data combined with epidemic projections through the
use of dynamic mathematical models can help identify optimal control policies, including whether a
partial shutdown will be necessary [4,5]. In this study, we formulated the question of whether and
when a lockdown is necessary, to what level, and how to phase out a lockdown as a sequential decision-
making problem using Markov decision process (MDP) and solved using Deep Q-network (DQN), a
reinforcement learning (RL) algorithm.

Reinforcement Learning (RL) is a branch of Artificial Intelligence (AI) where optimal policies
are learned through a trial-and-error learning process. This iterative cycle involves an agent taking
action (e.g., intervention decision) based on the system’s current state, causing a transition to a
subsequent state associated with a given reward [6], and as the number of iterations increase it learns
to take decisions with the highest reward, continuing until the algorithm has converged to the optimal
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decision. Research in RL algorithms can be broadly categorized into three areas: the formulation of
the decision analytic algorithm as a RL problem, an algorithm for learning these decisions, and the
data required to train the algorithm. The focus of this work is solely on the first component: the
formulation of the decision analytic algorithm.

For the second component, algorithms for learning decisions, several algorithms are available in
the current literature. For our purpose, we utilized the Deep Q-Network (DQN), an off-the-shelf RL
algorithm, for its capacity to handle extensive environments pertinent to COVID-19 modeling [5]. DQN
has been employed across a broad spectrum of problems. This includes, but is not limited to,
applications such as games [7], autonomous driving [8], recommendation system [9], mobile robot
navigation [10], computer-aided diagnosis [11], stock trading [12], and very recently on COVID-19
pandemic control [13,14].

For the third component, in application of RL to disease epidemics, simulation models are widely
used to generate the data to train the algorithms [15]. There are two broad categorizations of simulation
models, agent-based and compartmental models that are typically employed. Generally,
compartmental models are apt for rapidly spreading diseases and allow for heterogeneity by
partitioning compartments. Alternatively, agent-based models are often more suitable for slower
spreading diseases, where contact structures play a significant role. In this work, as our focus was not
on the simulation model itself, we utilized a simple compartmental model (i.e., with no heterogeneity
in demographics), but any simulation environment could be substituted depending on the nature of
disease spread and research question.

As noted above, our focus is on the first component, formulation of decision analytic algorithm
(here COVID-related interventions) as a RL problem. The recent literature has seen an influx of RL
models related to this focus. There are three components to this model formulation: the state space, the
action (intervention) space, and the reward function. Amid the COVID-19 pandemic, lockdowns have
become a primary intervention to curb disease spread. Consequently, an increasing number of RL studies
formulated the problem as identifying optimal lockdown policies with the objective of minimizing
COVID-19 cases while also mitigating economic damages. For instance, Khadilkar et al. harnessed RL
to automate policy learning, thereby optimizing lockdown policies for epidemic control [16]. They
denoted their state space as different components of the compartmental model, the action space as
lockdown or no lockdown, and the reward function as the negative of the number of deaths, persons
infected, and the number of days with lockdown. Similarly, Kompella et al. [17] devised an agent-
based pandemic simulator and an RL-based methodology to optimize fine-grained mitigation policies
that minimize economic impact without overtaxing hospital capacity. They formulated their state space
as the number of people within each infection state, the action space as different stages of lockdown,
and the reward function as a combination of increasing economy while minimizing capacity violation.
Further, Arango et al. employed RL to optimize cyclic lockdowns as a temporary alternative to
extended lockdowns, aiming to minimize ICU usage overshoots and lockdown duration for socio-
economic benefit [18]. They formulated their RL components as follows: the state space being the
current number of infected persons, the action space being either non-lockdown or lockdown, and the
reward function as a combination of the economy and the number of available ICU beds.

As with our case, these studies utilized off-the-shelf learning algorithms and constructed simulation
models (either compartmental or agent-based) for training. Their contributions primarily lie in ‘formulating
the epidemic decision analytic problem’ as an RL problem. Our model contributes to this existing body of
work. A gap in these literature models is that they overlook cross-jurisdictional interactions. We address
this gap through novel formulation of the state space to consider jurisdictional interactions.
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We present an RL model trained using the DQN algorithm to evaluate the question of whether a
lockdown is necessary, and if so, when it should be initiated, to what level (proportion lockdown), and
how it should change over time, such that it minimizes both epidemic and economic burdens. Though
this objective is similar to other RL studies in the literature, our work differs from previous work in
two ways. First, we evaluated the question of when to initiate a lockdown policy, which would be
helpful for future outbreaks of similar epidemiology when lockdowns are a key intervention. Second,
we evaluate these decisions in the context of two-geographical jurisdictions that make autonomous,
independent decisions, cooperatively or non-cooperatively, but populations interact in the same
environment through travel. Though decisions are made independently, because of travel between
jurisdictions, the actions of one jurisdiction can influence the epidemic in the other jurisdiction. This
scenario would especially be of interest for a jurisdiction that makes the optimal decisions but has
travels coming from a jurisdiction with bad decisions. While travel between jurisdictions would be
favorable for the economy, it could diminish the impact of its optimal actions. Therefore, taking the
perspective of a jurisdiction that makes the optimal decision, we evaluate under travel when actions of
another jurisdiction significantly add to its disease and economic burdens. This would help inform
when border closures would need to be part of an optimal lockdown strategy. And subsequently,
whether decision-making control should be given to individual jurisdictions (say county-level or state-
level) or a common entity (such as state if jurisdictions are counties, and federal if jurisdictions are
states). In this study, we assume that both jurisdictions start an outbreak at the same time, thus our
results are limited to this scope.

In highlighting the dynamic nature of infectious diseases, we underscore that a single policy
would not suffice for all disease types. Thus, our work provides a robust framework and a powerful
tool for decision analysis rather than a one-size-fits-all solution. The significance and potential
applicability of this model have been further emphasized through comprehensive sensitivity analyses.

The rest of the paper is organized as follows. Section 2 presents the methodology, including the
simulation model, MDP formulation, and RL. In section 3, we discuss the scenarios we analyzed in detail.
Section 4 presents the results, Section 4.1 includes sensitivity anaylysis, and finally, in Section 5, we
conclude the study with a discussion.

2.  Methodology

Our model framework includes a compartmental simulation model that simulates the epidemic
spread discussed in Section 2.1 integrated with a Markov decision process (MDP) optimization
framework discussed in Section 2.2 and solved using deep Q-network (DQN) discussed in Section 2.3.

2.1. Simulation model

We developed a susceptible(S)-exposed(E)-infected(I)-recovered(R)-dead(D) (SEIRD)
compartmental model based on Kermack and McKendrick [19] for simulating epidemic projections
over time (Figure 1). An individual starts in compartment S, and upon contracting the disease moves
to compartment E. A person in compartment E is in the incubation phase of the disease (for a duration
of 1/a days) and thus cannot transmit the disease. A person moves from compartment E to
compartment I, the transmissible phase of the infection. A person in compartment I either recovers,
i.e., moves to R with rate y per day, or succumbs to disease, i.e., moves to D with rate 8 per day.

Let
S be the number of Susceptible,
E be the number of Exposed,
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I be the number of Infectious,

R be the number of Recovered,

D be the number of Dead,

N be total population,

[ : transmission rate from susceptible to infected ([ = pc where p is the probability of
transmission per susceptible-infected contact and ¢ = number of contacts per person), a: is the
inverse of the average incubation period in days, y: rate of recovery per day, and

0: rate of disease-related mortality per day.

Recovered

P
}- Dead

Susceptible | s—) Exposed = Infectious

Figure 1. SEIRD flow diagram for infectious diseases.

Given the short duration of the disease, we evaluate over a short analytic period of 400 days,
assuming no births or natural deaths, and thus, the population size remains constant over time (N =
S(t) + E(t) + I(t) + R(t) + D(t)). The differential equation governing the dynamics of the disease
can be written as follows:

das 1

= —ps~ S(0) =S, >0

dE 1

S =pSt—aE E(0)=E >0

2= af -yl 100)=1,>0 (1)
dR

‘;—fzm D(0) =Dy =0

Population Mixing: To study the impact of travel on epidemic projections, we modified the standard
SEIRD equations to include travel between two jurisdictions (jurisdiction A and jurisdiction B).
Let
1,45 be the travel rate from jurisdiction A to jurisdiction B,
14 be the travel rate from jurisdiction B to jurisdiction A, and
Iz be the number of infectious people in jurisdiction B.
Then the SEIRD model can be modified to include population mixing as follows:

asa _ _ (A-14p)U4)+(rpa)UB)| _ (rap)Ua)+(1-rpa)UB)
at ’BSA(l rAB) [ (1-74B)Ng+(rpa)Np ] ﬁSA(rAB) [ (rap)Ng+(1-rpa)Np

dEs _ BSA(1 = 745) [(I—TAB)(IA)+(TBA)UB)] + BS,(rup) [(TAB)(IA)+(1—TBA)(IB) — a(E,)

at (1-714B)Ni+(rpa)NB (rap)Na+(1-1g4)Np
dl
d_: = a(E,) —vly (2)
dRa _
ar 127
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dDA
= 0]
dt A

Note that setting 45 = 15, = 0 in (2) results in (1), and hence the single jurisdiction model is a
special case of the two-jurisdiction model. For empirical analyses, we used epidemiology data from
the SARS-Cov2 alpha variant (Table 1).

Table 1. Parameters of the simulation model.

Parameter Value Description
51 0.4482 Transmission rate [20]
a 0.1923 1/interval in days for incubation (incubation period ~ 5.2 days) [21]
l/interval in days from infected to removal (infectious period ~ 5.8)
y 0.1724
[20,21]
0 0.017 The mortality rate due to infections (in scenario 1 to 5, 8 = 0) [22]

We utilized a compartmental model which could be substituted with any simulation environment,
such as agent-based modeling, depending on the nature of the disease spread. While compartmental
models are usually more apt for rapidly spreading diseases, allowing for heterogeneity by partitioning
compartments, agent-based models can be more suitable for slower spreading diseases, where contact
structures play a significant role. However, it’s important to note that our RL algorithm can be applied
in either of these environments, as demonstrated in our previous paper [23].

2.2. Markov decision process

We formulate the question of whether a lockdown is necessary, and if so, when it should be
initiated, to what level (proportion lockdown), and how this should change over time as an MDP, as

follows. We define the pandemic state as a multivariate parameter X = [S—A Za ;—A Ii—A,Z—A ,X € R>,
A A A
where 24 Za la Ra and Da  are the proportion of the jurisdiction A populatlon inthe S, E, I, R, and

Ng'Ng’' Ny’ Ng
D compartment, respectlvely, and add to 1.
Then, using the standard form, we can define the MDP as a 5-tuple {(}, A, P,, R,, v}, where,
e QO is the state space, a set of all possible states of the pandemic, X € Q,
e A is the action space, a set of all possible actions, here choices of lockdown, a € A,
e P, is the one-step transition probability matrix from one state of pandemic to another under action
a (where P,(x'|a, x) is the transition probability from state x to x" under action a),
e R,is a reward matrix, with each element, R,(x'|a, x), the immediate reward of transitioning
from state x to x’ under action a, and
eV is the discount factor.
Given the system is in state x, € {1 at time of implementation of decision, the problem is to solve
for the optimal policy (d(x,)) using the following objective function to maximize the total expected
reward over the analytic period T (for numerical analyses we assumed T = 400):

T 1
o max . E (Y= YRa=q, (x']a,x)]

d(s) = arg [dl,f,rcligi(&/ﬂ E [Zle YRa=a,(x'|a, x)] 3)

We next discuss the formulation of the 5-tuple {Q, A, P,, R,, v}

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14306-14326.
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S E 1 R D .
State space: We formulate the state space as 1 = [—A,—A,i,—A, —A], a continuous state space where
No Ng Ng Ng Ny

each element of the state space can get a value between 0 and 1, such that at each time step, ;—A + f]—A +
A A

14 Rp Da
=4+ =4+==1.
Ng  Nag Ny

Action space: We formulated the action space (A ) as a finite discrete set of interventions, A =
[a; = 75%, a, = 50%, a; = 25%, a, = 0%], corresponding to a contact rate reduction of 75, 50, 25
and 0%, respectively, a factor multiplied to the transmission rate (f) in (1) and (2). For these
numerical analyses, to make it representative of the COVID-19 epidemic, we assumed contact
reductions are achieved through lockdowns. We assumed about 25% of the U.S. population are
essential personnel [24] (34% of adults reported as essential personnel, and 78% of the population are
adults) and thus the strictest lockdown, a,, corresponds to a 75% reduction in contact rate. Value of
action a, was selected to represent no-lockdowns, and values of actions a, and a; were set at

intermediate levels between a, and a,.

Transition probabilities: As generating the transition probability for every possible transition is

infeasible, we use our SEIRD simulation model discussed earlier to simulate each action and keep

track of each transition in the model.

Immediate rewards: Immediate reward (R, (x)) corresponds to the per time step reward (benefits —

costs) achieved by implementing an action when the system is in state x. We evaluated immediate

reward R, (x) under two objective functions:

e 2-term objective function: The objective is to minimize economic burden and hospital capacity
violation. This objective function would be most suitable for diseases that have a high risk of
hospitalization, but minimal risk of mortality.

e 3-term objective function: The objective is to minimize economic burden, hospital capacity
violation, and minimize mortalities. This objective function would be most suitable for diseases
with high risk of hospitalizations and mortality.

Mathematically, we formulated the immediate reward R, (x):

Ra(x) = fe(a) - fh(lx,A) - n[elx,ACl] (4)
0 results in 2 — term objective function
1 results in 3 — term objective function’
fe(a) is the per day monetary benefit of implementing action a, f (I x, A) is the per day cost of
exceeding hospital capacity in jurisdiction A, when there are I, , number of infected persons, 8 is the
mortality rate, and thus 61, 4 is the number of daily deaths in jurisdiction A when there are I, , number
of infected persons, and C; is the per person mortality cost.

We modeled the monetary benefit (f,(a)) as the economic benefit,

fe(a) = t(a)M, (5)

where, T(a) is the monetary reduction in the economy upon implementation of action a and M is the
per day monetary value generated by the economy in a no-lockdown scenario. Here, we assumed M =
le + 11, and set 7(a,) = 0.4, 7(a,) = 0.6, T(a3) = 0.8, and 7(a,) = 1. Per day monetary value of
M is assumed based on US gross domestic product (GDP) per capita multiplied by US population
in 2020 [24].

We assumed that for every 1000 inhabitants, there is 1.5 hospital beds available (we used data in

the state of Utah which has the lowest number of beds per capita among US sates [25]) (Npegs = %)

and that 5% of infected people at each timestep are hospitalized [20,22], and modeled the per day cost
of exceeding hospital capacity (f, (I x, A)) as

where, setting = {
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le + 11 if 5%I, 4 > N,
I _ { x,A beds 6
fh( x,A) 0 otherwise ©

We assumed mortality rate is 0.017 corresponding to the SARS-Cov2 virus [22], and the cost per
mortality (C;) as 1e + 10.

2.3. Deep reinforcement learning

We solve for the optimal sequence, level, and time of initiation of lockdowns for the control of
COVID-19 type new infectious disease outbreaks, formulated above as an MDP, using DQN. We solve
for this under varying scenarios (see Section 3). DQN is a deep reinforcement learning algorithm
suitable for continuous state and discrete action spaces [5]. Conceptually, the algorithm works as

follows. At each time step, based on the state of the pandemic, i.e., values for [ﬂ' Mo N Na Na
algorithm determines what action to take, feeds it to the simulation model to calculate the immediate
reward of taking that action at that particular state. This process is repeated for multiple iterations, and
at every iteration, through training of a neural network, the algorithm is learning to take better actions,
such that, under the proper neural network architecture and hyper-parameters, the algorithm eventually
learns to identify the decision that maximizes the objective function defined in (3). We developed the
model using the stable baselines library in Python [25]. The details of the algorithm are presented in
Supplementary Section S.1.

DQN configuration and hyper-parameters: To approximate the Q-function, we used a deep
learning network, a multi-layer perceptron with four layers that have 64, 128, 128, and 8 nodes,
respectively. We use y = 0.95 and a learning rate of 0.001 with buffer size 100000. The rest of the
parameters are set as default by the stable baselines DQN library [25]. We trained each scenario
separately for different number of MDP iterations (referred to as episodes), each 100 times with
different random seeds.

The initial state at the beginning of each episode is set to one person exposed for jurisdiction A
and two persons exposed for jurisdiction B, and rest of the population are susceptible. Each episode
1s 400 days, and at the end of each episode, the model is reset to the initial state. We trained the model
for different episodes from 2500 to 25000 (corresponding to 1 to 10 M time-steps). At the end of the
training, we identify the optimal solution as the best among all the trained models, i.e., the model with
the highest expected total reward (defined in (3)).

Similar to many optimization problems, DQN does not guarantee reaching the optimal solution,
however, by sufficiently exploring the solution space, the chance of finding an optimal solution could
be increased. Therefore, for each scenario (Section 3), we generated 100 different runs of the algorithm,
each with a different random seed, and identifying an optimal solution under each. Similar optimal
solutions in multiple runs would also suggest higher chance of optimality.

3. Analyses scenarios

We analyzed seven scenarios. Scenario 1 to 5 correspond to the 2-term objective (that considers
impact of decisions on economy and hospital capacity violation), while scenarios 6 and 7 correspond
to the 3-term objective (that consider the impact of decisions on economy, hospital capacity violation,
and disease related mortality). Scenarios 1 and 6 correspond to a single jurisdiction while the rest of
the scenarios correspond to two-jurisdictions with different travel rates. In the two-jurisdiction
scenarios, decisions are made independently, and we consider two distinct behaviors among them. In
scenarios 2 and 3, jurisdiction A implements the optimal policy but jurisdiction B does not implement
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any intervention (non-cooperative behavior), while in scenario 4 and 5, jurisdiction B follows the exact
same policy as A (cooperative behavior). However, note that, even in Scenarios 4 and 5, just as in
Scenario 1 to 3, the formulation of the DQN focused only on the epidemic state in jurisdiction A. Thus,
the DQN here was still a single-agent RL but evaluated in the context of two interacting jurisdictions
making autonomous independent decisions. We further expanded these scenarios into sub-scenarios
by examining the impact of delay in initiation of optimal policy, i.e., delaying initiation of optimal
policy until day 30, 45, 60, 75, 90, 95, 100, 105, and 110 such that each corresponds to different
prevalence upon initiation of optimal policy.

Intuitively, if the optimal policy is a lock-down, the more the delay in initiation of lockdown, the
more the epidemic burden, but less of an economic burden. On the other hand, if the optimal policy is
no-lockdown, it is equivalent to doing nothing, and so a delay in implementing optimal policy would
not have any consequences until it reaches a time where the optimal policy shifts to a lockdown. Thus,
the model technically considers the impact of delay and the tradeoff between economy and epidemic
burden into its evaluation. Hence, the resulting optimal policy would also hold the answer to when a
shutdown should be initiated. Besides, in the case of open borders, the optimal policy also changes
based on the epidemic in the jurisdictions that the population interacts with through travel. However,
the results would depend on how much weight (costs) is given to each objective function component.
These costs associated with hospital capacity and lockdowns are likely to be subjective. For example,
a jurisdiction where a significant fraction of jobs can seamlessly transition to remote work (e.g., IT)
may differently weigh each of the four lockdown options (e.g., fewer days but maximum lockdown-
level) compared to a jurisdiction where a large fraction of the jobs require physical presence (e.g.,
manufacturing) (e.g., extend days of lockdown at low lockdown-levels on each day). On the other hand,
an infectious disease that is not deadly may be weighed lower for disease burden (hospital capacity as
proxy) than a more deadly disease. Therefore, we made ‘time to initiate’ the optimal policy as an
exogenous variable and evaluated multiple values. Details of the scenarios are discussed in Table 2.

For each scenario, 1 to 7, we present the following metrics: the frequency of occurrence of each
action over a 400-day period, the total number of days hospitalizations exceeded hospital capacity
(which we will refer to as “hospital capacity violation”), number of hospitalizations, and additionally
for Scenarios 6 and 7, the number of deaths.

We present the “initiation of optimal policy” in days, which is how it was modeled, but also
present the corresponding disease states, specifically, the observed prevalence and the actual
prevalence. We define observed prevalence as the cumulative number of reported cases, tracked as
part of disease surveillance, and expressed as a percentage of the total population. We define actual
prevalence as the cumulative number of infected cases, i.e., it additionally includes those cases that are
not yet reported and expressed as a percentage of the total population. Therefore, while the “initiation
of optimal policy” was modeled in days, the corresponding observed prevalence is more relevant and
trackable from a public health perspective. In the case of the SARS-CoV2 virus, persons in the
“exposed” compartment are asymptomatic, and only show symptoms when they transition to the
“infectious” compartment. Therefore, we made a simplifying assumption that the observed prevalence
includes all cases except those in the exposed compartment (i.e., includes infectious + recovered +
death compartments), while the actual prevalence also includes the exposed compartment.

Note that, while all scenarios were modeled with the same time-points for ‘delay in initiation’,
the epidemic projections under the different travel rates would be different and thus the
corresponding values of observed prevalence and actual prevalence would vary by scenarios. For
instance, 90 days of delay in scenario 1 corresponds to an observed prevalence of 1.35% and the
actual prevalence of 2.13%, while the same days of delay in scenario 3 correspond to an observed
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prevalence of 1.9% and an actual prevalence of 3%. Therefore, we represent each sub-scenario, as
[delay in initiation (in days), observed prevalence, and actual prevalence].

Table 2. Summary of the scenarios studied.

) Objective Number of . Travel Imt.l ation . of

Scenario . P Policy from optimal policy
function  jurisdictions
BtoA (days)

) Single . ) Not 30, 60, 75, 90, 95,
Scenario 1 2-term jurisdiction, A A optimal policy applicable 100, 105,110
Scenario 2 2-term Two jurisdictions, - A opt}mal poh.c Y 5% 30, 60, ..., 110

Aand B B no intervention
Scenario 3  2-term Two jurisdictions A opt}mal pol%cy, 10% 30, 60, ..., 110
B no intervention
Scenario 4 2-term Two jurisdictions A op‘qmal pol‘lcy, 5% 30, 60, ..., 110
B optimal policy
Scenario 5  2-term Two jurisdictions A optl'mal poh‘cy, 10% 30, 60, ..., 110
B optimal policy
Scenario 6  3-term Single A optimal polic Not 30, 60 110
jurisdiction P pOlCY applicable o
Scenario 7  3-term Two jurisdictions A optimal policy, 10% 30, 60, ..., 110

B no intervention

4. Results

In all scenarios, as expected from the highly virulent SARS-CoV?2 virus, the optimal scenarios
involved some lockdown until a majority of the population became infected or lasted for the entire
simulation duration. In the 2-objective function scenarios (Scenarios 1 to 5), the optimal lockdown
strategy helped avoid hospital capacity violations while minimizing the economic burden from
lockdowns by taking the least stringent lockdown. However, the optimal policy was to end lockdown
only after a majority of the population became infected and reached herd-immunity levels. In the 3-
objective function scenarios (Scenarios 6 and 7), the optimal lockdown strategy helped avoid hospital
capacity violations, minimize infected cases and deaths while minimizing the economic burden from
lockdowns by taking the least stringent lockdown. However, the optimal strategy here was to continue
the optimal pattern of lockdowns for the remaining duration of the simulation, suggesting that until a
vaccine becomes available, there is a chance that the infection would spread. We discuss these results
in more detail below.

With only one jurisdiction (Scenario 1), the optimal strategy was to initiate lockdown if the
observed prevalence (proportion of the population infected) reached 2.3% (which corresponded to the
actual prevalence of 3.6%). This can be seen in Figure 2 (first row), scenarios where lockdown initiated
at the observed prevalence of 2.3% or below (corresponding to up to 95 days from time of first case)
had least lockdown and similar outcome of zero hospital capacity violations. Over the duration of 400
days, this optimal policy consisted of lockdown at 50% for 62 days and lockdown at 25% for 46 days.
Under this policy, lockdowns could be fully lifted on day 209. In the optimal strategy, the number
hospitalized per day never exceeded hospital capacity, i.e., zero days of hospital capacity violation. As
expected from including only economy and hospital capacity in the objective function, given the high
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infectiousness of the virus and absence of other interventions, about 79% of the population were infected
over the duration of the pandemic Figure 3 (first row).

Delaying implementation of optimal policy in Scenario 1, i.e., initiating lockdown after observed
prevalence exceeded 2.3%, led to more prolonged or more stringent lockdowns and/or hospital
capacity violations (Figure 2 first row). For example, delaying to until 3.8% observed prevalence led
to 73 days of 50% shutdown, 27 days of 25% shutdown, and zero days of hospital capacity violation.
Delaying to 6.4% observed prevalence led to 6 days of 75% shutdown, 52 days of 50% shutdown, 36
days of 25% shutdown, and five days of hospital capacity violation. Delaying to until 10.46% observed
prevalence led to 17 days of 75% shutdown, followed by 34 days of 50% shutdown, 41 days of 25%
shutdown, and 16 days of hospital capacity violation. While the 1.35% observed prevalence occurred
on day 90, the observed prevalence of 2.3%, 3.88%, 6.43%, and 10.46% occurred on days 95, 100, 105,
and 110, suggesting that because of the high infectiousness of the virus, a few days of delay could lead
to significantly worse disease and economic burdens.

When jurisdiction A interacted with jurisdiction B through travel, but jurisdiction B was non-
cooperative and did not take the optimal decision as A (Scenarios 2 and 3 —with 5% and 10% travel,
respectively), the optimal policy for A was to control for B’s non-cooperative actions through more
stringent lockdowns than in Scenario 1 (0% travel). Even with the lower 5% travel (Scenario 2—
Figure 2 second row) and initiating lockdowns when observed prevalence was as low as 0.002% (30
days delay), unlike in Scenario 1 (Figure 2 first row), the optimal lockdown involved 28 days of
maximum 75% lockdown.

In Scenario 2, the optimal lockdown strategy up until observed prevalence of 3.07% were similar
with outcomes of zero days of hospital capacity violation. The optimal policy, over the period of 400
days, was lockdowns at the maximum-level of 75% for 37 days before transitioning to the less
stringent 50% and 25% levels. Delayed implementation of optimal policy until the observed prevalence
reached 5.17% led to the need for more stringent lockdowns (41 days of the maximum 75%, 20 days
of 50%, and 42 days of 25%) to avoid hospital capacity violation. Delaying implementation of optimal
policy to beyond observed prevalence of 5.17% led to a situation where hospital capacity violations
could not be avoided (Figure 2 second row). For example, delaying until 8.54% observed prevalence
led to 58 days of 75% shutdown, and 11 days of hospital capacity violation. Delaying to until 13.73%
observed prevalence led to 47 days of 75% shutdown, and 24 days of hospital capacity violation.

In Scenario 3 (Figure 2 third row), the optimal policy was to initiate a lockdown no later than an
observed prevalence of 5.52%. The optimal policy, over the period of 400 days, was lockdowns at the
maximum level of 75% for 57 days, which resulted in zero days of hospital capacity violation. Delaying
implementation of optimal policy to after observed prevalence exceeded 5.52%, led to higher hospital
capacity violations (Figure 2 third row). For example, delaying until observed prevalence was 9.07% led
to 24 days of 75% shutdown, followed by 45 days of 50% shutdown, and 14 days of hospital capacity
violation. Delaying until observed prevalence was 14.48% led to 33 days of 75% shutdown, followed
by 36 days of 25% shutdown and 26 days of hospital capacity violation.

When jurisdiction A interacted with B through travel but unlike the above scenarios, B was
cooperative by taking optimal actions as A (Scenarios 4 and 5), the optimal policy was similar to that
in Scenario 1 (single jurisdiction, 0% travel), suggesting that cooperative behavior would yield similar
results as single jurisdiction, as expected. Note that, similarity in results between Scenarios 4, 5 and 1
suggests that, though the DQN was trained as a single-agent RL by considering only the state space of
jurisdiction A, this is a sufficient method here as we assumed that both jurisdictions start the epidemic
at the same time.
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Figure 3. Percentage infectious among total population vs time for different delays in
initiation of the optimal policy (left plots) and corresponding impact on percentage total

infected over time (right plots) for scenarios 1, 2, 3, 4, and 5.

In summary, results from the above 2-objective function scenarios suggest that deviating from
the optimal policy through delays in initiating the optimal policy or through non-cooperative behavior
by an outside but interacting jurisdiction (B in this case) would require more stringent lockdowns (red
bar) to avoid hospital capacity violations.
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observed prevalence at time of initiation of optimal policy (x-axis).
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With the 3-objective function, and only one jurisdiction (Scenario 6), the optimal policy was to
initiate lockdown when observed prevalence was 0.01% (Figure 4 first row). Under this, the optimal
lockdown policy continued for the remaining duration of the simulation in order to reduce cases and
keep deaths at zero. This suggests that until pharmaceutical options are available, preventing highly
transmissible diseases such as COVID-19 would require some level of physical distancing between
contacts. Delaying the initiation of the optimal policy generated multiple deaths even though higher
number of lockdowns were initiated to control for the delays. Delaying implementation of an optimal
strategy to prevalence 10.46% (which occurred on day 110 from the first infection) resulted in 4374
deaths, and 16 hospital capacity violations (Figure 4 first row, and Supplementary Table S2).

With the 3-objective function, when jurisdiction A was interacting with B through travel, but
jurisdiction B was not implementing any interventions (Scenario 7), the optimal strategy for A to
control for the non-cooperative behavior of B were a greater number of days and more stringent
lockdowns. Under this, the optimal policy over the 400 days was lockdown at the highest-level of 75%
for 299 days and at 25% for an additional 47 days (Figure 4 row 2). This optimal policy resulted in
zero days of hospital capacity violation but 1935 deaths (Figure 4 row 2). Delaying implementation of
the optimal policy until observed prevalence reached 8.5%, led to a situation where the epidemic burden
had already created sufficient deaths that lockdowns had a lesser impact and could only be implemented
to reduce future deaths than to prevent deaths. The optimal policy in this case was 231 days of the
highest-level of 75% lockdown and resulted in 4775 deaths and 14 days of hospital capacity violation.

Comparing results between 2-objecive and 3-objectve functions: In the 2-term objective
function, as the objective was to only minimize economic burden and hospital capacity violations,
the cumulative prevalence reached up to 80%, (Figure 3) i.e., the main outcome was that it reduced
daily cases sufficient enough to keep hospitalizations below hospital capacity. In the 3-objective
function, as the objective additionally minimized deaths, even in the worst-case scenario the
cumulative prevalence reached about 35% (Figure 5). However, a key consequence of this was that,
while in the 2-objective function lockdowns could be lifted within the timeline of the simulation, in
the 3-objective function lockdowns continued over the full duration of the simulation. This suggests the
need for continuing shutdowns until the availability of pharmaceutical interventions such as treatment to
prevent deaths or vaccines to prevent transmissions.

Details of optimal policy of each sub-scenarios of 2-objective and 3-objective are presented in
Supplementary Table S1.

4.1. Sensitivity analysis

We conducted to analysis to show how sensitive our results are to the selected transmission rate
(B, crucial factor in modeling the spread of infectious diseases): a) widely varying transmission rate
values b) -8.5 to + 9% change around COVID-specific values. The first to represent different virus
strains/ viruses and the second to represent uncertainty in values for a fixed virus strain.

We tested the sensitivity of our results for single jurisdiction (Scenario 1) to the transmission rate
B in Table 1 using the learned model. The transmission rate was varied from 0.3 to 0.5 in increments
of 0.1. Additionally, a more fine-grained variation in transmission rates compared to the baseline
transmission rate (3 = 0.448) was also tested (f = 0.41,0.42,0.43,0.45,0.46,0.47,0.48, 0.49).

Results are robust within the values of uncertainty range (—4.06% and + 0.401%, values of
uncertainty range). However, as expected, if there are different viruses, or virus strains evolve over
time, as was the case with COVID, then the analyses should be redone to identify a policy specific to
that strain.
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In the plots depicted below, the observed prevalence serves as a reference point for assessing the
impact of delayed policy implementation. It is evident that the lower the transmission rate, the less
restrictive the lockdown measures can be. This relationship highlights the importance of considering
both observed prevalence and transmission rates when determining the most effective strategies to
control the spread of infectious diseases.

The sensitivity analysis aimed to evaluate how changes in the transmission rate influenced the
optimal policy. The results highlighted the following points:

Optimal Policy Sensitivity: The optimal policy in general was found to be sensitive to variations
in the transmission rate, however when more fine-grained transmission rates were tested, we observed
that optimal policies for = 0.43 and 0.5 (Figure 6, third and fourth rows) are more consistent with
the baseline value (3 = 0.448). But the recommended optimal policy deviates from baseline for
transmission rates smaller or larger than the baseline value. As a result, the model is robust to
uncertainty in transmission rate up to —4.06% and +0.401%, but higher/ lower uncertainty in
transmission rate requires a new RL learning process to find the optimal policy and to devise an
effective strategy to control the spread of the disease.

Deviation from the Paper’s Value: The results also showed that as the tested transmission rate
deviated further from the value specified in the paper (0.448), the optimal policy changed more
significantly. This highlights the fact that epidemics characterized by distinct parameters necessitate
models trained across a corresponding spectrum of values for optimal performance. The specificities of
the disease parameters, coupled with the non-linearity of disease progression, can result in drastically
differing ranges of robustness for the learned models. This finding particularly challenges policies that
exclusively depend on observed prevalence for public health decision-making.

Testing fine-grained transmission rates allowed for a more nuanced understanding of how the
optimal policy changed with varying transmission rates. This level of detail is essential for
policymakers to consider when tailoring their strategies to specific contexts and situations.

To make the comparison with basecase, we fixed the observed prevalence (values in second row
of x-axis Figure 2 left hand-side plot) as the point in time that policy makers delay the decisions.

5. Conclusions and discussion

We formulated the question of how to control epidemics such as COVID-19 in the absence of
pharmaceutical interventions as a sequential decision-making problem formulated as a Markov
decision process (MDP) and solved using Deep Q-network (DQN), a reinforcement learning algorithm.
We propose a methodology that can help determine whether and when a lockdown is necessary, to
what level, and how to phase out a lockdown which is a critical part of a pandemic preparedness plan.
Furthermore, we evaluated these decisions in the context of two-geographical jurisdictions that make
autonomous, independent decisions, cooperatively or non-cooperatively, but interact in the same
environment through travel. We evaluated these decisions both under a 2-term objective function that
minimized economic burden and hospital capacity violations, suitable for diseases with high-risk of
hospitalizations but low risk of mortality, and a 3-term objective function that additionally minimized
deaths. We used a SEIRD model to simulate the disease progression and incorporated the impact of
travel in the formulation of the transmission rate.

In the case of a single jurisdiction, under a 2-term objective, the optimal time for initiation of
lockdowns would be at about an observed prevalence of 3.87% and included lockdowns at a
combination of 50 and 25% per day. Delaying decisions led to a higher number or more stringent
lockdowns at the maximum levels of 75% per day in addition to a higher number of hospital capacity
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violations. In the case of two-jurisdictions A and B interacting through travel, if jurisdiction B deviated
from the optimal policy, jurisdiction A would have to implement more stringent lockdowns to
compensate for the non-cooperative behavior of B, and if there was any delay in this implementation
also face excess hospitalizations. This suggests that, even if jurisdictions make decisions independently,
cooperation between jurisdictions could help minimize lockdowns and avoid border travel restrictions,
thus minimizing overall economic burden. In the absence of such cooperation, the trade-offs for
jurisdiction A to consider would be between more stringent lockdowns within its jurisdiction or border
closures to remove the interactions with jurisdiction B. The results are intuitive, what the study
contributes is a methodology that can be used by jurisdictions to evaluate a suitable policy, under such
interactive environments, and the numerical analyses here serves as proof-of-concept for the method.

In the 2-objective function scenarios (Scenarios 1 to 5), the optimal lockdown strategy helped avoid
hospital capacity violations while minimizing the economic burden from lockdowns by taking the least
stringent lockdown. However, as expected from the high transmissibility of the virus, the optimal policy
was to end lockdowns only after a majority of the population became infected and reached herd-
immunity levels. In the 3-objective function scenarios (Scenarios 6 and 7), the optimal lockdown
strategy helped avoid hospital capacity violations, minimized infected cases and deaths while
minimizing the economic burden from lockdowns by taking the least stringent lockdown. However,
the optimal strategy here was to continue the optimal pattern of lockdowns for the remaining duration
of the simulation, suggesting that shutdowns would have to continue until a vaccine became available.
Any deviations from this optimal policy generated more stringent lockdowns and/or higher cases of
hospitalizations and deaths. This suggests that, in the absence of pharmaceutical interventions, some
measures of physical distancing would be necessary to control the epidemic even if it creates economic
burdens, as deviating from this would only increase future economic burdens.

Finally, we conducted sensitivity analysis on imoact of transmission rate on our results for single-
jurisdiction scenario, including 1) widely varying transmission rate for different virus strains/ viruses
and 2) small changes around COVID-19 transmission rate value to represent uncertainty in values for
a fixed virus strain. Results are robust within the values of uncertainty range (-4.06% and +0.401%,
values of uncertainty range). However, as expected, if there are different viruses, or virus strains evolve
over time, as was the case with COVID, then the analyses should be redone to identify a policy specific
to that strain.

Some of the limitations of our model are as follows. Motivated by the COVID-19 pandemic, for
the numerical analyses, we assumed epidemiology staging and transmissibility of the SARS-CoV 2
virus. Thus, the specific results here are limited to diseases caused by viruses similar to that of SARS-
CoV 2 type. The model will have to be reparametrized and evaluated for other diseases with vary
epidemiology structures. In our model, the impact of lockdowns on the economy is scaled linearly,
i.e., lockdown on any day has a similar impact on the economy’s monetary value. This impact can be
formulated as a non-linear function to consider the dynamical changes over time. We assumed that
both jurisdictions start an outbreak at the same time, thus it was sufficient to train the DQN as a single-
jurisdiction RL with both jurisdictions implementing the same policy (as evident from the similarity
in results between Scenario 4, 5, and 1). Thus, our results are limited to this scope. For evaluating
decisions between two jurisdictions that start the outbreak at different times leading to significantly
different states of the epidemic at the time of decision-making, other methods such as multi-agent RL
maybe more relevant. The compartmental model utilized in this study could be replaced with any other
simulation environment and can be enhanced to include more heterogeneity by further dividing the
compartments. Besides, improving the performance of DQN algorithm was outside of scope of this
model, but can be explored in future research.
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We utilized the Deep Q-Network (DQN), an off-the-shelf RL algorithm, which has shown a broad
spectrum of applicability to a vast number of problems in the literature. Fine-tuning the parameters of
this algorithm was beyond the scope of this work; however, many studies exist to address how to
improve performance, reduce computational complexities, and hardware requirements, which can be
further studied in future works [26,27].

Despite these limitations, we believe that the methodology presented here can help decision makers
in formulating a pandemic preparedness plan for future infectious disease outbreaks. The results
generated by the numerical analyses are intuitive, which support the feasibility of application of Al
algorithms for such analyses, as typically, given the computational complexity of the algorithms and
problem formulation, the feasibility is not always guaranteed [28]. This study provides a generalized
framework that can be applied to any jurisdiction or infectious disease by adjusting the parameters
accordingly, some examples are as follows. We interpreted the intervention options here to represent
lockdowns and did not consider other options such as facemask use, self-isolation when infected, or 6
ft distancing. However, we modeled lockdowns by reducing transmission rate, assuming that the cost
for that reduction represents economic loss. Interventions such as facemask use, self-isolation when
infected, or 6 ft distancing are also modeled as reduction in transmission rates, but they may differ in
governmental lockdowns in terms of the cost and impact, i.e., they may have a lesser impact on the
economy (lower costs) but also achieve a smaller reduction in transmission rate. Therefore, the
different levels of shutdowns and costs modeled here can also be interpreted as different types of
interventions and the corresponding transmission rate, rewards, and costs informed specific to the
setting. Design of the immediate reward is an essential step in RL models and can significantly change
the optimal policy. Thus, this is a subjective metric that should be informed specific to the case under
study. For example, a jurisdiction where a significant fraction of jobs can seamlessly transition to remote
work (e.g., IT) may differently weigh each of the four lockdown options (e.g., fewer days but maximum
lockdown-level) compared to a jurisdiction where a large fraction of the jobs require physical presence
(e.g., manufacturing, or essential workers). On the other hand, those costs saved from preventing
economic loss could instead be redirected to ensure safety of workers. Thus, the immediate reward
function would be formulated to consider economic costs, epidemic costs, and costs for safety measures.
This work offers a framework and a tool for decision analysis, with the significance of this aspect
emphasized through our sensitivity analyses. These considerations not only highlight the value of our
study but also indicate potential avenues for further research and development.
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