
MBE, 20(8): 14306–14326. 
DOI: 10.3934/mbe.2023640 
Received: 10 October 2022 
Revised: 10 June 2023 
Accepted: 15 June 2023 
Published: 29 June 2023 

http://www.aimspress.com/journal/MBE 

 

Research article 

Deep reinforcement learning framework for controlling infectious 
disease outbreaks in the context of multi-jurisdictions 

Seyedeh Nazanin Khatami1,* and Chaitra Gopalappa2 

1 MGH Institute for Technology Assessment, Harvard Medical School, Boston, MA 02114, USA 
2 Mechanical and Industrial Engineering Department, University of Massachusetts Amherst, Amherst, 

MA 01003, USA 

* Correspondence: Email: skhatami@mgh.harvard.edu. 

Abstract: In the absence of pharmaceutical interventions, social distancing and lockdown have been 
key options for controlling new or reemerging respiratory infectious disease outbreaks. The timely 
implementation of these interventions is vital for effectively controlling and safeguarding the 
economy.Motivated by the COVID-19 pandemic, we evaluated whether, when, and to what level 
lockdowns are necessary to minimize epidemic and economic burdens of new disease outbreaks. We 
formulated the question as a sequential decision-making Markov Decision Process and solved it using 
deep Q-network algorithm. We evaluated the question under two objective functions: a 2-objective 
function to minimize economic burden and hospital capacity violations, suitable for diseases with 
severe health risks but with minimal death, and a 3-objective function that additionally minimizes the 
number of deaths, suitable for diseases that have high risk of mortality.A key feature of the model is 
that we evaluated the above questions in the context of two-geographical jurisdictions that interact 
through travel but make autonomous and independent decisions, evaluating under cross-jurisdictional 
cooperation and non-cooperation. In the 2-objective function under cross-jurisdictional cooperation, 
the optimal policy was to aim for shutdowns at 50 and 25% per day. Though this policy avoided 
hospital capacity violations, the shutdowns extended until a large proportion of the population reached 
herd immunity. Delays in initiating this optimal policy or non-cooperation from an outside jurisdiction 
required shutdowns at a higher level of 75% per day, thus adding to economic burdens. In the 3-
objective function, the optimal policy under cross-jurisdictional cooperation was to aim for shutdowns 
of up to 75% per day to prevent deaths by reducing infected cases. This optimal policy continued for 
the entire duration of the simulation, suggesting that, until pharmaceutical interventions such as 
treatment or vaccines become available, contact reductions through physical distancing would be 
necessary to minimize deaths. Deviating from this policy increased the number of shutdowns and led 
to several deaths.In summary, we present a decision-analytic methodology for identifying optimal 
lockdown strategy under the context of interactions between jurisdictions that make autonomous and 
independent decisions. The numerical analysis outcomes are intuitive and, as expected, serve as proof 
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of the feasibility of such a model. Our sensitivity analysis demonstrates that the optimal policy exhibits 
robustness to minor alterations in the transmission rate, yet shows sensitivity to more substantial 
deviations. This finding underscores the dynamic nature of epidemic parameters, thereby emphasizing 
the necessity for models trained across a diverse range of values to ensure effective policy-making. 

Keywords: decision-making in epidemics; COVID-19; deep reinforcement learning; artificial 
intelligence in public health; non-pharmaceutical intervention; jurisdictional decision-making 
 

1. Introduction 

Timely implementations of pharmaceutical and non-pharmaceutical interventions (NPI) are critical 
for effective control of new infectious disease outbreaks. Delay in response causes enormous disease and 
economic burdens, as seen during the COVID-19 outbreak caused by the SARS-Cov2 virus [1]. 

In the event of new respiratory infectious disease outbreaks, when pharmaceutical interventions 
are unavailable, NPIs are the only options, as was the case with COVID-19. Effective NPI options 
include facemask-use and social distancing [2]. Social distancing could include physical distancing 
(e.g., by 3 ft or 6 ft) or partial lockdowns. While facemasks and physical distancing could be the most 
economically feasible options, lockdowns may be necessary for highly contagious viruses such as the 
SARS-Cov2. While locking-down early in the pandemic would be suitable for reducing disease burden, 
it may unnecessarily add to the economic burden. On the other hand, delaying the lockdown or 
improper phasing of lockdowns can significantly amplify both economic and disease burdens [3]. 

In this context, through timely implementation of lockdowns, governmental public health 
agencies play a key role in effective containment of new outbreaks. Furthermore, though public health 
decisions are autonomous to each jurisdiction, e.g., in the United States, local COVID-19 prevention 
guidelines were determined by individual states [4], the epidemic can be influenced by outside 
jurisdictions through travel. 

The objective of our work is to a) Propose a reinforcement learning (RL) model designed 
specifically for the sequential analyses of epidemic decisions. b) Investigate jurisdiction-specific 
decisions within the context of multi-jurisdictional interactions, and subsequently conduct numerical 
analyses that aim to demonstrate the significance of these jurisdictional interactions. 

A methodology that can help determine whether and when a lockdown is necessary, to what level, 
and how to phase out a lockdown would be a critical part of a pandemic preparedness plan. While 
surveillance systems to help identify new outbreaks would be a crucial part of this preparedness plan, 
because of the delay in diagnosis of cases, informing decisions only based on data collected through 
these systems will not be sufficient. Surveillance data combined with epidemic projections through the 
use of dynamic mathematical models can help identify optimal control policies, including whether a 
partial shutdown will be necessary [4,5]. In this study, we formulated the question of whether and 
when a lockdown is necessary, to what level, and how to phase out a lockdown as a sequential decision-
making problem using Markov decision process (MDP) and solved using Deep Q-network (DQN), a 
reinforcement learning (RL) algorithm. 

Reinforcement Learning (RL) is a branch of Artificial Intelligence (AI) where optimal policies 
are learned through a trial-and-error learning process. This iterative cycle involves an agent taking 
action (e.g., intervention decision) based on the system’s current state, causing a transition to a 
subsequent state associated with a given reward [6], and as the number of iterations increase it learns 
to take decisions with the highest reward, continuing until the algorithm has converged to the optimal 
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decision. Research in RL algorithms can be broadly categorized into three areas: the formulation of 
the decision analytic algorithm as a RL problem, an algorithm for learning these decisions, and the 
data required to train the algorithm. The focus of this work is solely on the first component: the 
formulation of the decision analytic algorithm. 

For the second component, algorithms for learning decisions, several algorithms are available in 
the current literature. For our purpose, we utilized the Deep Q-Network (DQN), an off-the-shelf RL 
algorithm, for its capacity to handle extensive environments pertinent to COVID-19 modeling [5]. DQN 
has been employed across a broad spectrum of problems. This includes, but is not limited to, 
applications such as games [7], autonomous driving [8], recommendation system [9], mobile robot 
navigation [10], computer-aided diagnosis [11], stock trading [12], and very recently on COVID-19 
pandemic control [13,14]. 

For the third component, in application of RL to disease epidemics, simulation models are widely 
used to generate the data to train the algorithms [15]. There are two broad categorizations of simulation 
models, agent-based and compartmental models that are typically employed. Generally, 
compartmental models are apt for rapidly spreading diseases and allow for heterogeneity by 
partitioning compartments. Alternatively, agent-based models are often more suitable for slower 
spreading diseases, where contact structures play a significant role. In this work, as our focus was not 
on the simulation model itself, we utilized a simple compartmental model (i.e., with no heterogeneity 
in demographics), but any simulation environment could be substituted depending on the nature of 
disease spread and research question. 

As noted above, our focus is on the first component, formulation of decision analytic algorithm 
(here COVID-related interventions) as a RL problem. The recent literature has seen an influx of RL 
models related to this focus. There are three components to this model formulation: the state space, the 
action (intervention) space, and the reward function. Amid the COVID-19 pandemic, lockdowns have 
become a primary intervention to curb disease spread. Consequently, an increasing number of RL studies 
formulated the problem as identifying optimal lockdown policies with the objective of minimizing 
COVID-19 cases while also mitigating economic damages. For instance, Khadilkar et al. harnessed RL 
to automate policy learning, thereby optimizing lockdown policies for epidemic control [16]. They 
denoted their state space as different components of the compartmental model, the action space as 
lockdown or no lockdown, and the reward function as the negative of the number of deaths, persons 
infected, and the number of days with lockdown. Similarly, Kompella et al. [17] devised an agent-
based pandemic simulator and an RL-based methodology to optimize fine-grained mitigation policies 
that minimize economic impact without overtaxing hospital capacity. They formulated their state space 
as the number of people within each infection state, the action space as different stages of lockdown, 
and the reward function as a combination of increasing economy while minimizing capacity violation. 
Further, Arango et al. employed RL to optimize cyclic lockdowns as a temporary alternative to 
extended lockdowns, aiming to minimize ICU usage overshoots and lockdown duration for socio-
economic benefit [18]. They formulated their RL components as follows: the state space being the 
current number of infected persons, the action space being either non-lockdown or lockdown, and the 
reward function as a combination of the economy and the number of available ICU beds. 

As with our case, these studies utilized off-the-shelf learning algorithms and constructed simulation 
models (either compartmental or agent-based) for training. Their contributions primarily lie in ‘formulating 
the epidemic decision analytic problem’ as an RL problem. Our model contributes to this existing body of 
work. A gap in these literature models is that they overlook cross-jurisdictional interactions. We address 
this gap through novel formulation of the state space to consider jurisdictional interactions. 
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We present an RL model trained using the DQN algorithm to evaluate the question of whether a 
lockdown is necessary, and if so, when it should be initiated, to what level (proportion lockdown), and 
how it should change over time, such that it minimizes both epidemic and economic burdens. Though 
this objective is similar to other RL studies in the literature, our work differs from previous work in 
two ways. First, we evaluated the question of when to initiate a lockdown policy, which would be 
helpful for future outbreaks of similar epidemiology when lockdowns are a key intervention. Second, 
we evaluate these decisions in the context of two-geographical jurisdictions that make autonomous, 
independent decisions, cooperatively or non-cooperatively, but populations interact in the same 
environment through travel. Though decisions are made independently, because of travel between 
jurisdictions, the actions of one jurisdiction can influence the epidemic in the other jurisdiction. This 
scenario would especially be of interest for a jurisdiction that makes the optimal decisions but has 
travels coming from a jurisdiction with bad decisions. While travel between jurisdictions would be 
favorable for the economy, it could diminish the impact of its optimal actions. Therefore, taking the 
perspective of a jurisdiction that makes the optimal decision, we evaluate under travel when actions of 
another jurisdiction significantly add to its disease and economic burdens. This would help inform 
when border closures would need to be part of an optimal lockdown strategy. And subsequently, 
whether decision-making control should be given to individual jurisdictions (say county-level or state-
level) or a common entity (such as state if jurisdictions are counties, and federal if jurisdictions are 
states). In this study, we assume that both jurisdictions start an outbreak at the same time, thus our 
results are limited to this scope. 

In highlighting the dynamic nature of infectious diseases, we underscore that a single policy 
would not suffice for all disease types. Thus, our work provides a robust framework and a powerful 
tool for decision analysis rather than a one-size-fits-all solution. The significance and potential 
applicability of this model have been further emphasized through comprehensive sensitivity analyses. 

The rest of the paper is organized as follows. Section 2 presents the methodology, including the 
simulation model, MDP formulation, and RL. In section 3, we discuss the scenarios we analyzed in detail. 
Section 4 presents the results, Section 4.1 includes sensitivity anaylysis, and finally, in Section 5, we 
conclude the study with a discussion. 

2. Methodology 

Our model framework includes a compartmental simulation model that simulates the epidemic 
spread discussed in Section 2.1 integrated with a Markov decision process (MDP) optimization 
framework discussed in Section 2.2 and solved using deep Q-network (DQN) discussed in Section 2.3. 

2.1. Simulation model 

We developed a susceptible(S)-exposed(E)-infected(I)-recovered(R)-dead(D) (SEIRD) 
compartmental model based on Kermack and McKendrick [19] for simulating epidemic projections 
over time (Figure 1). An individual starts in compartment 𝑆, and upon contracting the disease moves 
to compartment 𝐸. A person in compartment 𝐸 is in the incubation phase of the disease (for a duration 
of 1/𝛼  days) and thus cannot transmit the disease. A person moves from compartment E to 
compartment I, the transmissible phase of the infection. A person in compartment 𝐼 either recovers, 
i.e., moves to 𝑅 with rate 𝛾 per day, or succumbs to disease, i.e., moves to  𝐷 with rate 𝜃 per day. 
Let 

𝑆 be the number of Susceptible, 
𝐸 be the number of Exposed, 
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𝐼 be the number of Infectious, 
𝑅 be the number of Recovered, 
𝐷 be the number of Dead, 
𝑁 be total population, 
𝛽 : transmission rate from susceptible to infected ( 𝛽 𝑝𝑐  where 𝑝  is the probability of 

transmission per susceptible-infected contact and 𝑐  number of contacts per person), 𝛼 : is the 
inverse of the average incubation period in days, 𝛾: rate of recovery per day, and 

𝜃: rate of disease-related mortality per day. 

 

Figure 1. SEIRD flow diagram for infectious diseases. 

Given the short duration of the disease, we evaluate over a short analytic period of 400 days, 
assuming no births or natural deaths, and thus, the population size remains constant over time (𝑁 
 𝑆 𝑡 𝐸 𝑡 𝐼 𝑡 𝑅 𝑡 𝐷 𝑡 ). The differential equation governing the dynamics of the disease 
can be written as follows: 

 𝛽𝑆                 𝑆 0 𝑆 0  

 𝛽𝑆 𝛼𝐸      𝐸 0 𝐸 0  

 𝛼𝐸 𝛾𝐼             𝐼 0 𝐼 0 (1) 

 𝛾𝐼                 𝑅 0 𝑅 0  

 𝜃𝐼                 𝐷 0 𝐷 0  

Population Mixing: To study the impact of travel on epidemic projections, we modified the standard 
SEIRD equations to include travel between two jurisdictions (jurisdiction A and jurisdiction B). 
Let 

𝑟  be the travel rate from jurisdiction A to jurisdiction B, 
𝑟  be the travel rate from jurisdiction B to jurisdiction A, and 
𝐼  be the number of infectious people in jurisdiction B. 

Then the SEIRD model can be modified to include population mixing as follows: 

 𝛽𝑆 1 𝑟 𝛽𝑆 𝑟   

 𝛽𝑆 1 𝑟 𝛽𝑆 𝑟  𝛼 𝐸  

  𝛼 𝐸 𝛾𝐼  (2) 

 𝛾𝐼   
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 𝜃𝐼 .  

Note that setting 𝑟 𝑟 0 in (2) results in (1), and hence the single jurisdiction model is a 
special case of the two-jurisdiction model. For empirical analyses, we used epidemiology data from 
the SARS-Cov2 alpha variant (Table 1). 

Table 1. Parameters of the simulation model. 

Parameter Value Description 
𝛽 0.4482 Transmission rate [20]
𝛼 0.1923 1/interval in days for incubation (incubation period ~ 5.2 days) [21]

𝛾 0.1724 
1/interval in days from infected to removal (infectious period ~ 5.8) 
[20,21] 

𝜃 0.017 The mortality rate due to infections (in scenario 1 to 5, 𝜃 0) [22]

We utilized a compartmental model which could be substituted with any simulation environment, 
such as agent-based modeling, depending on the nature of the disease spread. While compartmental 
models are usually more apt for rapidly spreading diseases, allowing for heterogeneity by partitioning 
compartments, agent-based models can be more suitable for slower spreading diseases, where contact 
structures play a significant role. However, it’s important to note that our RL algorithm can be applied 
in either of these environments, as demonstrated in our previous paper [23]. 

2.2. Markov decision process 

We formulate the question of whether a lockdown is necessary, and if so, when it should be 
initiated, to what level (proportion lockdown), and how this should change over time as an MDP, as 

follows. We define the pandemic state as a multivariate parameter 𝑋 , , , , , 𝑋 ∈ ℝ , 

where , , , , and  are the proportion of the jurisdiction A population in the S, E, I, R, and 

D compartment, respectively, and add to 1. 
Then, using the standard form, we can define the MDP as a 5-tuple Ω, 𝒜, 𝑃 , 𝑅 , 𝛾 , where, 

 Ω is the state space, a set of all possible states of the pandemic, 𝑋 𝜖 Ω, 
 𝒜 is the action space, a set of all possible actions, here choices of lockdown, 𝑎 𝜖 𝒜, 
 𝑃  is the one-step transition probability matrix from one state of pandemic to another under action 

𝑎 (where 𝑃 𝑥 |𝑎, 𝑥  is the transition probability from state 𝑥 to 𝑥  under action 𝑎), 
 ℛ is a reward matrix, with each element,  ℛ 𝑥 |𝑎, 𝑥 , the immediate reward of transitioning 

from state 𝑥 to 𝑥  under action 𝑎, and 
 𝛾 is the discount factor. 

Given the system is in state 𝑥 ∈ Ω  at time of implementation of decision, the problem is to solve 
for the optimal policy (𝒅 𝑥 ) using the following objective function to maximize the total expected 
reward over the analytic period 𝑇 (for numerical analyses we assumed 𝑇  400): 

 max
,.., 𝒜

𝔼 ∑ 𝛾ℛ 𝑥 |𝑎, 𝑥   

 𝒅 𝒔 𝑎𝑟𝑔 max
,.., 𝒜

𝔼 ∑ 𝛾ℛ 𝑥 |𝑎, 𝑥  (3) 

We next discuss the formulation of the 5-tuple Ω, 𝒜, 𝑃 , ℛ , 𝛾 : 
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State space: We formulate the state space as Ω 𝑆

𝑁
, 𝐸

𝑁
, 𝐼

𝑁
, 𝑅

𝑁
, 𝐷

𝑁
, a continuous state space where 

each element of the state space can get a value between 0 and 1, such that at each time step, 
𝑆

𝑁

𝐸

𝑁
𝐼

𝑁

𝑅

𝑁

𝐷

𝑁
1. 

Action space: We formulated the action space ( 𝒜 ) as a finite discrete set of interventions, 𝒜
𝑎 75%, 𝑎 50%, 𝑎 25%, 𝑎 0% , corresponding to a contact rate reduction of 75, 50, 25 

and 0%, respectively, a factor multiplied to the transmission rate (𝛽 ) in (1) and (2). For these 
numerical analyses, to make it representative of the COVID-19 epidemic, we assumed contact 
reductions are achieved through lockdowns. We assumed about 25% of the U.S. population are 
essential personnel [24] (34% of adults reported as essential personnel, and 78% of the population are 
adults) and thus the strictest lockdown, 𝑎 , corresponds to a 75% reduction in contact rate. Value of 
action 𝑎  was selected to represent no-lockdowns, and values of actions 𝑎  and 𝑎  were set at 
intermediate levels between 𝑎  and 𝑎 . 
Transition probabilities: As generating the transition probability for every possible transition is 
infeasible, we use our SEIRD simulation model discussed earlier to simulate each action and keep 
track of each transition in the model. 
Immediate rewards:  Immediate reward (ℛ 𝑥 ) corresponds to the per time step reward (benefits – 
costs) achieved by implementing an action when the system is in state 𝑥. We evaluated immediate 
reward ℛ 𝑥  under two objective functions: 
 2-term objective function: The objective is to minimize economic burden and hospital capacity 

violation. This objective function would be most suitable for diseases that have a high risk of 
hospitalization, but minimal risk of mortality. 

 3-term objective function: The objective is to minimize economic burden, hospital capacity 
violation, and minimize mortalities. This objective function would be most suitable for diseases 
with high risk of hospitalizations and mortality. 

Mathematically, we formulated the immediate reward ℛ 𝑥 : 

 ℛ 𝑥 𝑓 𝑎 𝑓 𝐼 , 𝜂 𝜃𝐼 , 𝐶  (4) 

where, setting 𝜂
0 results in 2 term objective function
1 results in 3 term objective function, 

𝑓 𝑎  is the per day monetary benefit of implementing action 𝑎，𝑓 𝐼 ,  is the per day cost of 
exceeding hospital capacity in jurisdiction 𝐴, when there are 𝐼 ,  number of infected persons, 𝜃 is the 
mortality rate, and thus 𝜃𝐼 ,  is the number of daily deaths in jurisdiction 𝐴 when there are 𝐼 ,  number 
of infected persons, and 𝐶  is the per person mortality cost. 

We modeled the monetary benefit (𝑓 𝑎  as the economic benefit, 

 𝑓 𝑎 𝜏 𝑎 𝑀, (5) 

where, 𝜏 𝑎  is the monetary reduction in the economy upon implementation of action 𝑎 and 𝑀 is the 
per day monetary value generated by the economy in a no-lockdown scenario. Here, we assumed 𝑀
1𝑒 11, and set 𝜏 𝑎 0.4, 𝜏 𝑎 0.6, 𝜏 𝑎 0.8, and 𝜏 𝑎 1. Per day monetary value of 
𝑀 is assumed based on US gross domestic product (GDP) per capita multiplied by US population 
in 2020 [24]. 

We assumed that for every 1000 inhabitants, there is 1.5 hospital beds available (we used data in 

the state of Utah which has the lowest number of beds per capita among US sates [25]) (𝑁 .
) 

and that 5% of infected people at each timestep are hospitalized [20,22], and modeled the per day cost 
of exceeding hospital capacity (𝑓 𝐼 , ) as 
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 𝑓 𝐼 ,
1𝑒 11                      if 5%𝐼 , 𝑁
0                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

We assumed mortality rate is 0.017 corresponding to the SARS-Cov2 virus [22], and the cost per 
mortality (𝐶 ) as 1𝑒 10. 

2.3. Deep reinforcement learning 

We solve for the optimal sequence, level, and time of initiation of lockdowns for the control of 
COVID-19 type new infectious disease outbreaks, formulated above as an MDP, using DQN. We solve 
for this under varying scenarios (see Section 3). DQN is a deep reinforcement learning algorithm 
suitable for continuous state and discrete action spaces [5]. Conceptually, the algorithm works as 
follows. At each time step, based on the state of the pandemic, i.e., values for 

𝑆

𝑁
, 𝐸

𝑁
, 𝐼

𝑁
, 𝑅

𝑁
, 𝐷

𝑁
, the 

algorithm determines what action to take, feeds it to the simulation model to calculate the immediate 
reward of taking that action at that particular state. This process is repeated for multiple iterations, and 
at every iteration, through training of a neural network, the algorithm is learning to take better actions, 
such that, under the proper neural network architecture and hyper-parameters, the algorithm eventually 
learns to identify the decision that maximizes the objective function defined in (3). We developed the 
model using the stable_baselines library in Python [25]. The details of the algorithm are presented in 
Supplementary Section S.1. 

DQN configuration and hyper-parameters: To approximate the Q-function, we used a deep 
learning network, a multi-layer perceptron with four layers that have 64, 128, 128, and 8 nodes, 
respectively. We use 𝛾 = 0.95 and a learning rate of 0.001 with buffer size 100000. The rest of the 
parameters are set as default by the stable_baselines DQN library [25]. We trained each scenario 
separately for different number of MDP iterations (referred to as episodes), each 100 times with 
different random seeds. 

The initial state at the beginning of each episode is set to one person exposed for jurisdiction 𝐴 
and two persons exposed for jurisdiction 𝐵, and rest of the population are susceptible. Each episode 
is 400 days, and at the end of each episode, the model is reset to the initial state. We trained the model 
for different episodes from 2500 to 25000 (corresponding to 1 to 10 M time-steps). At the end of the 
training, we identify the optimal solution as the best among all the trained models, i.e., the model with 
the highest expected total reward (defined in (3)). 

Similar to many optimization problems, DQN does not guarantee reaching the optimal solution, 
however, by sufficiently exploring the solution space, the chance of finding an optimal solution could 
be increased. Therefore, for each scenario (Section 3), we generated 100 different runs of the algorithm, 
each with a different random seed, and identifying an optimal solution under each. Similar optimal 
solutions in multiple runs would also suggest higher chance of optimality. 

3. Analyses scenarios 

We analyzed seven scenarios. Scenario 1 to 5 correspond to the 2-term objective (that considers 
impact of decisions on economy and hospital capacity violation), while scenarios 6 and 7 correspond 
to the 3-term objective (that consider the impact of decisions on economy, hospital capacity violation, 
and disease related mortality). Scenarios 1 and 6 correspond to a single jurisdiction while the rest of 
the scenarios correspond to two-jurisdictions with different travel rates. In the two-jurisdiction 
scenarios, decisions are made independently, and we consider two distinct behaviors among them. In 
scenarios 2 and 3, jurisdiction A implements the optimal policy but jurisdiction B does not implement 
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any intervention (non-cooperative behavior), while in scenario 4 and 5, jurisdiction B follows the exact 
same policy as A (cooperative behavior). However, note that, even in Scenarios 4 and 5, just as in 
Scenario 1 to 3, the formulation of the DQN focused only on the epidemic state in jurisdiction A. Thus, 
the DQN here was still a single-agent RL but evaluated in the context of two interacting jurisdictions 
making autonomous independent decisions.  We further expanded these scenarios into sub-scenarios 
by examining the impact of delay in initiation of optimal policy, i.e., delaying initiation of optimal 
policy until day 30, 45, 60, 75, 90, 95, 100, 105, and 110 such that each corresponds to different 
prevalence upon initiation of optimal policy. 

Intuitively, if the optimal policy is a lock-down, the more the delay in initiation of lockdown, the 
more the epidemic burden, but less of an economic burden. On the other hand, if the optimal policy is 
no-lockdown, it is equivalent to doing nothing, and so a delay in implementing optimal policy would 
not have any consequences until it reaches a time where the optimal policy shifts to a lockdown. Thus, 
the model technically considers the impact of delay and the tradeoff between economy and epidemic 
burden into its evaluation. Hence, the resulting optimal policy would also hold the answer to when a 
shutdown should be initiated. Besides, in the case of open borders, the optimal policy also changes 
based on the epidemic in the jurisdictions that the population interacts with through travel. However, 
the results would depend on how much weight (costs) is given to each objective function component. 
These costs associated with hospital capacity and lockdowns are likely to be subjective. For example, 
a jurisdiction where a significant fraction of jobs can seamlessly transition to remote work (e.g., IT) 
may differently weigh each of the four lockdown options (e.g., fewer days but maximum lockdown-
level) compared to a jurisdiction where a large fraction of the jobs require physical presence (e.g., 
manufacturing) (e.g., extend days of lockdown at low lockdown-levels on each day). On the other hand, 
an infectious disease that is not deadly may be weighed lower for disease burden (hospital capacity as 
proxy) than a more deadly disease. Therefore, we made ‘time to initiate’ the optimal policy as an 
exogenous variable and evaluated multiple values. Details of the scenarios are discussed in Table 2. 

For each scenario, 1 to 7, we present the following metrics: the frequency of occurrence of each 
action over a 400-day period, the total number of days hospitalizations exceeded hospital capacity 
(which we will refer to as “hospital capacity violation”), number of hospitalizations, and additionally 
for Scenarios 6 and 7, the number of deaths. 

We present the “initiation of optimal policy” in days, which is how it was modeled, but also 
present the corresponding disease states, specifically, the observed prevalence and the actual 
prevalence. We define observed prevalence as the cumulative number of reported cases, tracked as 
part of disease surveillance, and expressed as a percentage of the total population. We define actual 
prevalence as the cumulative number of infected cases, i.e., it additionally includes those cases that are 
not yet reported and expressed as a percentage of the total population. Therefore, while the “initiation 
of optimal policy” was modeled in days, the corresponding observed prevalence is more relevant and 
trackable from a public health perspective. In the case of the SARS-CoV2 virus, persons in the 
“exposed” compartment are asymptomatic, and only show symptoms when they transition to the 
“infectious” compartment. Therefore, we made a simplifying assumption that the observed prevalence 
includes all cases except those in the exposed compartment (i.e., includes infectious + recovered + 
death compartments), while the actual prevalence also includes the exposed compartment. 

Note that, while all scenarios were modeled with the same time-points for ‘delay in initiation’, 
the epidemic projections under the different travel rates would be different and thus the 
corresponding values of observed prevalence and actual prevalence would vary by scenarios. For 
instance, 90 days of delay in scenario 1 corresponds to an observed prevalence of 1.35% and the 
actual prevalence of 2.13%, while the same days of delay in scenario 3 correspond to an observed 
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prevalence of 1.9% and an actual prevalence of 3%. Therefore, we represent each sub-scenario, as 
[delay in initiation (in days), observed prevalence, and actual prevalence]. 

Table 2. Summary of the scenarios studied. 

Scenario 
Objective 
function 

Number of 
jurisdictions 

Policy 
Travel 
from 
B to A 

Initiation of 
optimal policy 
(days) 

Scenario 1 2-term 
Single 
jurisdiction, A

A optimal policy 
Not 
applicable 

30, 60, 75, 90, 95, 
100, 105,110

Scenario 2 2-term 
Two jurisdictions, 
A and B 

A optimal policy,
B no intervention

5% 30, 60, …, 110 

Scenario 3 2-term Two jurisdictions
A optimal policy, 
B no intervention

10% 30, 60, …, 110 

Scenario 4 2-term Two jurisdictions
A optimal policy, 
B optimal policy

5% 30, 60, …, 110 

Scenario 5 2-term Two jurisdictions
A optimal policy,
B optimal policy

10% 30, 60, …, 110 

Scenario 6 3-term 
Single 
jurisdiction 

A optimal policy 
Not 
applicable 

30, 60, …, 110 

Scenario 7 3-term Two jurisdictions
A optimal policy,
B no intervention

10% 30, 60, …, 110 

4. Results 

In all scenarios, as expected from the highly virulent SARS-CoV2 virus, the optimal scenarios 
involved some lockdown until a majority of the population became infected or lasted for the entire 
simulation duration. In the 2-objective function scenarios (Scenarios 1 to 5), the optimal lockdown 
strategy helped avoid hospital capacity violations while minimizing the economic burden from 
lockdowns by taking the least stringent lockdown. However, the optimal policy was to end lockdown 
only after a majority of the population became infected and reached herd-immunity levels. In the 3-
objective function scenarios (Scenarios 6 and 7), the optimal lockdown strategy helped avoid hospital 
capacity violations, minimize infected cases and deaths while minimizing the economic burden from 
lockdowns by taking the least stringent lockdown. However, the optimal strategy here was to continue 
the optimal pattern of lockdowns for the remaining duration of the simulation, suggesting that until a 
vaccine becomes available, there is a chance that the infection would spread. We discuss these results 
in more detail below. 

With only one jurisdiction (Scenario 1), the optimal strategy was to initiate lockdown if the 
observed prevalence (proportion of the population infected) reached 2.3% (which corresponded to the 
actual prevalence of 3.6%). This can be seen in Figure 2 (first row), scenarios where lockdown initiated 
at the observed prevalence of 2.3% or below (corresponding to up to 95 days from time of first case) 
had least lockdown and similar outcome of zero hospital capacity violations. Over the duration of 400 
days, this optimal policy consisted of lockdown at 50% for 62 days and lockdown at 25% for 46 days. 
Under this policy, lockdowns could be fully lifted on day 209. In the optimal strategy, the number 
hospitalized per day never exceeded hospital capacity, i.e., zero days of hospital capacity violation. As 
expected from including only economy and hospital capacity in the objective function, given the high 
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infectiousness of the virus and absence of other interventions, about 79% of the population were infected 
over the duration of the pandemic Figure 3 (first row). 

Delaying implementation of optimal policy in Scenario 1, i.e., initiating lockdown after observed 
prevalence exceeded 2.3%, led to more prolonged or more stringent lockdowns and/or hospital 
capacity violations (Figure 2 first row). For example, delaying to until 3.8% observed prevalence led 
to 73 days of 50% shutdown, 27 days of 25% shutdown, and zero days of hospital capacity violation.  
Delaying to 6.4% observed prevalence led to 6 days of 75% shutdown, 52 days of 50% shutdown, 36 
days of 25% shutdown, and five days of hospital capacity violation. Delaying to until 10.46% observed 
prevalence led to 17 days of 75% shutdown, followed by 34 days of 50% shutdown, 41 days of 25% 
shutdown, and 16 days of hospital capacity violation. While the 1.35% observed prevalence occurred 
on day 90, the observed prevalence of 2.3%, 3.88%, 6.43%, and 10.46% occurred on days 95, 100, 105, 
and 110, suggesting that because of the high infectiousness of the virus, a few days of delay could lead 
to significantly worse disease and economic burdens. 

When jurisdiction A interacted with jurisdiction B through travel, but jurisdiction B was non-
cooperative and did not take the optimal decision as A (Scenarios 2 and 3 –with 5% and 10% travel, 
respectively), the optimal policy for A was to control for B’s non-cooperative actions through more 
stringent lockdowns than in Scenario 1 (0% travel). Even with the lower 5% travel (Scenario 2– 
Figure 2 second row) and initiating lockdowns when observed prevalence was as low as 0.002% (30 
days delay), unlike in Scenario 1 (Figure 2 first row), the optimal lockdown involved 28 days of 
maximum 75% lockdown. 

In Scenario 2, the optimal lockdown strategy up until observed prevalence of 3.07% were similar 
with outcomes of zero days of hospital capacity violation. The optimal policy, over the period of 400 
days, was lockdowns at the maximum-level of 75% for 37 days before transitioning to the less 
stringent 50% and 25% levels. Delayed implementation of optimal policy until the observed prevalence 
reached 5.17% led to the need for more stringent lockdowns (41 days of the maximum 75%, 20 days 
of 50%, and 42 days of 25%) to avoid hospital capacity violation. Delaying implementation of optimal 
policy to beyond observed prevalence of 5.17% led to a situation where hospital capacity violations 
could not be avoided (Figure 2 second row). For example, delaying until 8.54% observed prevalence 
led to 58 days of 75% shutdown, and 11 days of hospital capacity violation. Delaying to until 13.73% 
observed prevalence led to 47 days of 75% shutdown, and 24 days of hospital capacity violation. 

In Scenario 3 (Figure 2 third row), the optimal policy was to initiate a lockdown no later than an 
observed prevalence of 5.52%. The optimal policy, over the period of 400 days, was lockdowns at the 
maximum level of 75% for 57 days, which resulted in zero days of hospital capacity violation. Delaying 
implementation of optimal policy to after observed prevalence exceeded 5.52%, led to higher hospital 
capacity violations (Figure 2 third row). For example, delaying until observed prevalence was 9.07% led 
to 24 days of 75% shutdown, followed by 45 days of 50% shutdown, and 14 days of hospital capacity 
violation. Delaying until observed prevalence was 14.48% led to 33 days of 75% shutdown, followed 
by 36 days of 25% shutdown and 26 days of hospital capacity violation. 

When jurisdiction A interacted with B through travel but unlike the above scenarios, B was 
cooperative by taking optimal actions as A (Scenarios 4 and 5), the optimal policy was similar to that 
in Scenario 1 (single jurisdiction, 0% travel), suggesting that cooperative behavior would yield similar 
results as single jurisdiction, as expected. Note that, similarity in results between Scenarios 4, 5 and 1 
suggests that, though the DQN was trained as a single-agent RL by considering only the state space of 
jurisdiction A, this is a sufficient method here as we assumed that both jurisdictions start the epidemic 
at the same time. 
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Figure 2. 2-term objective function models for scenarios 1, 2, 3, 4, and 5. 
Left plots: Bar plots of frequency of occurrence of each action (75% (red), 50% (yellow), 
25% (blue), and 0% (red) lockdown) over 400 days for different delay (x-axis) in initiation 
of optimal policy [delay in days, observed prevalence, and actual prevalence]. Middle plots: 
Number of available hospital beds (y-axis) against time (x-axis) under different delays in 
initiation of optimal policy. Right plots: Total number of days hospital capacity is violated 
(y-axis) against observed prevalence at time of initiation of optimal policy (x-axis). 
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Figure 3. Percentage infectious among total population vs time for different delays in 
initiation of the optimal policy (left plots) and corresponding impact on percentage total 
infected over time (right plots) for scenarios 1, 2, 3, 4, and 5. 

In summary, results from the above 2-objective function scenarios suggest that deviating from 
the optimal policy through delays in initiating the optimal policy or through non-cooperative behavior 
by an outside but interacting jurisdiction (B in this case) would require more stringent lockdowns (red 
bar) to avoid hospital capacity violations. 

Scenario 1 

 

Scenario 2 

 

Scenario 3 

 

Scenario 4 

 

Scenario 5 
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Figure 4. 3-term objective function models for scenarios 6 and 7. Left plots: Bar plots of 
frequency of occurrences of each action (75% (red), 50% (yellow), 25% (blue), and 0% 
(red) lockdown) over 400 days for different delays (x-axis) in initiation of optimal 
policy]delays in days, observed prevalence, and actual prevalence]. Middle plots: Number 
of available hospital beds (y-axis) against time (x-axis) under different delays in initiation of 
optimal policy. Right plots: Total number of days hospital capacity is violated (y-axis) against 
observed prevalence at time of initiation of optimal policy (x-axis). 

 

Figure 5. Percentage infectious among total population vs time for different delays in 
initiation of the optimal policy (left plots) and corresponding impact on percentage total 
infected over time (right plots) for scenarios 6 and 7. 
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With the 3-objective function, and only one jurisdiction (Scenario 6), the optimal policy was to 
initiate lockdown when observed prevalence was 0.01% (Figure 4 first row). Under this, the optimal 
lockdown policy continued for the remaining duration of the simulation in order to reduce cases and 
keep deaths at zero. This suggests that until pharmaceutical options are available, preventing highly 
transmissible diseases such as COVID-19 would require some level of physical distancing between 
contacts. Delaying the initiation of the optimal policy generated multiple deaths even though higher 
number of lockdowns were initiated to control for the delays. Delaying implementation of an optimal 
strategy to prevalence 10.46% (which occurred on day 110 from the first infection) resulted in 4374 
deaths, and 16 hospital capacity violations (Figure 4 first row, and Supplementary Table S2). 

With the 3-objective function, when jurisdiction A was interacting with B through travel, but 
jurisdiction B was not implementing any interventions (Scenario 7), the optimal strategy for A to 
control for the non-cooperative behavior of B were a greater number of days and more stringent 
lockdowns. Under this, the optimal policy over the 400 days was lockdown at the highest-level of 75% 
for 299 days and at 25% for an additional 47 days (Figure 4 row 2). This optimal policy resulted in 
zero days of hospital capacity violation but 1935 deaths (Figure 4 row 2). Delaying implementation of 
the optimal policy until observed prevalence reached 8.5%, led to a situation where the epidemic burden 
had already created sufficient deaths that lockdowns had a lesser impact and could only be implemented 
to reduce future deaths than to prevent deaths. The optimal policy in this case was 231 days of the 
highest-level of 75% lockdown and resulted in 4775 deaths and 14 days of hospital capacity violation. 

Comparing results between 2-objecive and 3-objectve functions: In the 2-term objective 
function, as the objective was to only minimize economic burden and hospital capacity violations, 
the cumulative prevalence reached up to 80%, (Figure 3) i.e., the main outcome was that it reduced 
daily cases sufficient enough to keep hospitalizations below hospital capacity.  In the 3-objective 
function, as the objective additionally minimized deaths, even in the worst-case scenario the 
cumulative prevalence reached about 35% (Figure 5). However, a key consequence of this was that, 
while in the 2-objective function lockdowns could be lifted within the timeline of the simulation, in 
the 3-objective function lockdowns continued over the full duration of the simulation. This suggests the 
need for continuing shutdowns until the availability of pharmaceutical interventions such as treatment to 
prevent deaths or vaccines to prevent transmissions. 

Details of optimal policy of each sub-scenarios of 2-objective and 3-objective are presented in 
Supplementary Table S1. 

4.1. Sensitivity analysis 

We conducted to analysis to show how sensitive our results are to the selected transmission rate 
(β, crucial factor in modeling the spread of infectious diseases): a) widely varying transmission rate 
values b) -8.5 to + 9% change around COVID-specific values. The first to represent different virus 
strains/ viruses and the second to represent uncertainty in values for a fixed virus strain. 

We tested the sensitivity of our results for single jurisdiction (Scenario 1) to the transmission rate 
β in Table 1 using the learned model. The transmission rate was varied from 0.3 to 0.5 in increments 
of 0.1. Additionally, a more fine-grained variation in transmission rates compared to the baseline 
transmission rate (β 0.448) was also tested (β 0.41, 0.42, 0.43, 0.45, 0.46, 0.47, 0.48, 0.49 . 

Results are robust within the values of uncertainty range (−4.06% and + 0.401%, values of 
uncertainty range). However, as expected, if there are different viruses, or virus strains evolve over 
time, as was the case with COVID, then the analyses should be redone to identify a policy specific to 
that strain. 
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𝛽 = 0.3 𝛽 0.4

𝛽 = 0.41 𝛽 = 0.42 

𝛽 =0.43 𝛽 =0.4482* 

𝛽=0.45 𝛽 =0.46 

𝛽 =0.47 𝛽 =0.48 

𝛽 =0.49 𝛽 =0.5 

Figure 6. Sensitivity analysis on impact of transmission rate (β on optimal policy for single 
jurisdiction (Scenario 1). % Observed prevalence upon initiation of optimal policy is kept 
constant as the point of references for comparing different transmission rates. This value is 
translated into different % actual prevalence and delay (line 1 and 3 of x-axis). 
*: Basecase value for β 
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In the plots depicted below, the observed prevalence serves as a reference point for assessing the 
impact of delayed policy implementation. It is evident that the lower the transmission rate, the less 
restrictive the lockdown measures can be. This relationship highlights the importance of considering 
both observed prevalence and transmission rates when determining the most effective strategies to 
control the spread of infectious diseases. 

The sensitivity analysis aimed to evaluate how changes in the transmission rate influenced the 
optimal policy. The results highlighted the following points: 

Optimal Policy Sensitivity: The optimal policy in general was found to be sensitive to variations 
in the transmission rate, however when more fine-grained transmission rates were tested, we observed 
that optimal policies for β  0.43 and 0.5 (Figure 6, third and fourth rows) are more consistent with 
the baseline value (β = 0.448). But the recommended optimal policy deviates from baseline for 
transmission rates smaller or larger than the baseline value. As a result, the model is robust to 
uncertainty in transmission rate up to −4.06% and +0.401%, but higher/ lower uncertainty in 
transmission rate requires a new RL learning process to find the optimal policy and to devise an 
effective strategy to control the spread of the disease. 

Deviation from the Paper’s Value: The results also showed that as the tested transmission rate 
deviated further from the value specified in the paper (0.448), the optimal policy changed more 
significantly. This highlights the fact that epidemics characterized by distinct parameters necessitate 
models trained across a corresponding spectrum of values for optimal performance. The specificities of 
the disease parameters, coupled with the non-linearity of disease progression, can result in drastically 
differing ranges of robustness for the learned models. This finding particularly challenges policies that 
exclusively depend on observed prevalence for public health decision-making. 

Testing fine-grained transmission rates allowed for a more nuanced understanding of how the 
optimal policy changed with varying transmission rates. This level of detail is essential for 
policymakers to consider when tailoring their strategies to specific contexts and situations. 

To make the comparison with basecase, we fixed the observed prevalence (values in second row 
of x-axis Figure 2 left hand-side plot) as the point in time that policy makers delay the decisions. 

5. Conclusions and discussion 

We formulated the question of how to control epidemics such as COVID-19 in the absence of 
pharmaceutical interventions as a sequential decision-making problem formulated as a Markov 
decision process (MDP) and solved using Deep Q-network (DQN), a reinforcement learning algorithm.  
We propose a methodology that can help determine whether and when a lockdown is necessary, to 
what level, and how to phase out a lockdown which is a critical part of a pandemic preparedness plan. 
Furthermore, we evaluated these decisions in the context of two-geographical jurisdictions that make 
autonomous, independent decisions, cooperatively or non-cooperatively, but interact in the same 
environment through travel. We evaluated these decisions both under a 2-term objective function that 
minimized economic burden and hospital capacity violations, suitable for diseases with high-risk of 
hospitalizations but low risk of mortality, and a 3-term objective function that additionally minimized 
deaths. We used a SEIRD model to simulate the disease progression and incorporated the impact of 
travel in the formulation of the transmission rate. 

In the case of a single jurisdiction, under a 2-term objective, the optimal time for initiation of 
lockdowns would be at about an observed prevalence of 3.87% and included lockdowns at a 
combination of 50 and 25% per day. Delaying decisions led to a higher number or more stringent 
lockdowns at the maximum levels of 75% per day in addition to a higher number of hospital capacity 
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violations. In the case of two-jurisdictions A and B interacting through travel, if jurisdiction B deviated 
from the optimal policy, jurisdiction A would have to implement more stringent lockdowns to 
compensate for the non-cooperative behavior of B, and if there was any delay in this implementation 
also face excess hospitalizations. This suggests that, even if jurisdictions make decisions independently, 
cooperation between jurisdictions could help minimize lockdowns and avoid border travel restrictions, 
thus minimizing overall economic burden. In the absence of such cooperation, the trade-offs for 
jurisdiction A to consider would be between more stringent lockdowns within its jurisdiction or border 
closures to remove the interactions with jurisdiction B. The results are intuitive, what the study 
contributes is a methodology that can be used by jurisdictions to evaluate a suitable policy, under such 
interactive environments, and the numerical analyses here serves as proof-of-concept for the method. 

In the 2-objective function scenarios (Scenarios 1 to 5), the optimal lockdown strategy helped avoid 
hospital capacity violations while minimizing the economic burden from lockdowns by taking the least 
stringent lockdown. However, as expected from the high transmissibility of the virus, the optimal policy 
was to end lockdowns only after a majority of the population became infected and reached herd-
immunity levels. In the 3-objective function scenarios (Scenarios 6 and 7), the optimal lockdown 
strategy helped avoid hospital capacity violations, minimized infected cases and deaths while 
minimizing the economic burden from lockdowns by taking the least stringent lockdown. However, 
the optimal strategy here was to continue the optimal pattern of lockdowns for the remaining duration 
of the simulation, suggesting that shutdowns would have to continue until a vaccine became available. 
Any deviations from this optimal policy generated more stringent lockdowns and/or higher cases of 
hospitalizations and deaths. This suggests that, in the absence of pharmaceutical interventions, some 
measures of physical distancing would be necessary to control the epidemic even if it creates economic 
burdens, as deviating from this would only increase future economic burdens. 

Finally, we conducted sensitivity analysis on imoact of transmission rate on our results for single-
jurisdiction scenario, including 1) widely varying transmission rate for different virus strains/ viruses 
and 2) small changes around COVID-19 transmission rate value to represent uncertainty in values for 
a fixed virus strain. Results are robust within the values of uncertainty range (-4.06% and +0.401%, 
values of uncertainty range). However, as expected, if there are different viruses, or virus strains evolve 
over time, as was the case with COVID, then the analyses should be redone to identify a policy specific 
to that strain. 

Some of the limitations of our model are as follows. Motivated by the COVID-19 pandemic, for 
the numerical analyses, we assumed epidemiology staging and transmissibility of the SARS-CoV 2 
virus. Thus, the specific results here are limited to diseases caused by viruses similar to that of SARS-
CoV 2 type. The model will have to be reparametrized and evaluated for other diseases with vary 
epidemiology structures.  In our model, the impact of lockdowns on the economy is scaled linearly, 
i.e., lockdown on any day has a similar impact on the economy’s monetary value. This impact can be 
formulated as a non-linear function to consider the dynamical changes over time. We assumed that 
both jurisdictions start an outbreak at the same time, thus it was sufficient to train the DQN as a single-
jurisdiction RL with both jurisdictions implementing the same policy (as evident from the similarity 
in results between Scenario 4, 5, and 1). Thus, our results are limited to this scope. For evaluating 
decisions between two jurisdictions that start the outbreak at different times leading to significantly 
different states of the epidemic at the time of decision-making, other methods such as multi-agent RL 
maybe more relevant. The compartmental model utilized in this study could be replaced with any other 
simulation environment and can be enhanced to include more heterogeneity by further dividing the 
compartments. Besides, improving the performance of DQN algorithm was outside of scope of this 
model, but can be explored in future research.  
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We utilized the Deep Q-Network (DQN), an off-the-shelf RL algorithm, which has shown a broad 
spectrum of applicability to a vast number of problems in the literature. Fine-tuning the parameters of 
this algorithm was beyond the scope of this work; however, many studies exist to address how to 
improve performance, reduce computational complexities, and hardware requirements, which can be 
further studied in future works [26,27]. 

Despite these limitations, we believe that the methodology presented here can help decision makers 
in formulating a pandemic preparedness plan for future infectious disease outbreaks. The results 
generated by the numerical analyses are intuitive, which support the feasibility of application of AI 
algorithms for such analyses, as typically, given the computational complexity of the algorithms and 
problem formulation, the feasibility is not always guaranteed [28]. This study provides a generalized 
framework that can be applied to any jurisdiction or infectious disease by adjusting the parameters 
accordingly, some examples are as follows. We interpreted the intervention options here to represent 
lockdowns and did not consider other options such as facemask use, self-isolation when infected, or 6 
ft distancing. However, we modeled lockdowns by reducing transmission rate, assuming that the cost 
for that reduction represents economic loss. Interventions such as facemask use, self-isolation when 
infected, or 6 ft distancing are also modeled as reduction in transmission rates, but they may differ in 
governmental lockdowns in terms of the cost and impact, i.e., they may have a lesser impact on the 
economy (lower costs) but also achieve a smaller reduction in transmission rate. Therefore, the 
different levels of shutdowns and costs modeled here can also be interpreted as different types of 
interventions and the corresponding transmission rate, rewards, and costs informed specific to the 
setting. Design of the immediate reward is an essential step in RL models and can significantly change 
the optimal policy. Thus, this is a subjective metric that should be informed specific to the case under 
study. For example, a jurisdiction where a significant fraction of jobs can seamlessly transition to remote 
work (e.g., IT) may differently weigh each of the four lockdown options (e.g., fewer days but maximum 
lockdown-level) compared to a jurisdiction where a large fraction of the jobs require physical presence 
(e.g., manufacturing, or essential workers). On the other hand, those costs saved from preventing 
economic loss could instead be redirected to ensure safety of workers. Thus, the immediate reward 
function would be formulated to consider economic costs, epidemic costs, and costs for safety measures. 
This work offers a framework and a tool for decision analysis, with the significance of this aspect 
emphasized through our sensitivity analyses. These considerations not only highlight the value of our 
study but also indicate potential avenues for further research and development. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article. 

Acknowledgments 

This material is based upon work supported by the National Science Foundation NSF 1915481. 
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the National Science Foundation. Dr. Khatami was 
affiliated to UMass Amherst at the time of study. 

Conflict of interest 

All authors declare no conflicts of interest in this paper. 



14325 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14306–14326. 

References 

1. S. Thomson, E. C. Ip, COVID-19 emergency measures and the impending authoritarian pandemic, 
J. Law Biosci., 7 (2020). 1–13. https://doi.org/10.1093/jlb/lsaa064 

2. A. L. Bertozzi, E. Franco, G. Mohler, M. B. Short, D. Sledge, The challenges of modeling and 
forecasting the spread of COVID-19, Proc. Natl. Acad. Sci. U.S.A., 117 (2020), 16732–16738. 
https://doi.org/10.1073/pnas.2006520117 

3. T. Oraby, M. G. Tyshenko, J. C. Maldonado, K. Vatcheva, S. Elsaadany, W. Q. Alali, et al., 
Modeling the effect of lockdown timing as a COVID-19 control measure in countries with 
differing social contacts, Sci. Rep., 11 (2021), 3354. https://doi.org/10.1038/s41598-021-82873-2 

4. State/Local Activity Dashboard, 2021. Available from: https://www.multistate.us/issues/covid-19-
policy-tracker 

5. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, et al., Playing atari 
with deep reinforcement learning, preprint, arXiv: 1312.5602. 

6. R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, in Adaptive computation and 
machine learning series, MIT Press, Massachusetts, 2018. 

7. Y. Liang, M. C. Machado, E. Talvitie, M. Bowling, State of the art control of Atari games using 
shallow reinforcement learning, preprint, arXiv: 1512.01563. 

8. B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, et al., Deep 
reinforcement learning for autonomous driving: A survey, IEEE Trans. Intell. Transp. Syst., 23 
(2022), 4909–4926. https://doi.org/10.1109/TITS.2021.3054625 

9. X. Chen, S. Li, H. Li, S. Jiang, Y. Qi, L. Song, Generative adversarial user model for reinforcement 
learning based recommendation system, in Proceedings of the 36th International Conference on 
Machine Learning, 97 (2019), 1052–1061. 

10. S. Zhou, X. Liu, Y. Xu, J. Guo, A deep Q-network (DQN) based path planning method for mobile 
robots, in 2018 IEEE International Conference on Information and Automation (ICIA), (2018), 
366–371. https://doi.org/10.1109/ICInfA.2018.8812452 

11. H. Luo, S. W. Li, J. Glass, Prototypical q networks for automatic conversational diagnosis and 
few-shot new disease adaption, preprint, arXiv:2005.11153. 

12. L. Chen, Q. Gao, Application of deep reinforcement learning on automated stock trading, in 2019 
IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), 
(2019), 29–33. https://doi.org/10.1109/ICSESS47205.2019.9040728 

13. C. Colas, B. Hejblum, S. Rouillon, R. Thiébaut, P. Y. Oudeyer, C. Moulin-Frier, et al., 
EpidemiOptim: A toolbox for the optimization of control policies in epidemiological models, J. 
Artif. Intell. Res., 71 (2021), 479–519. https://doi.org/10.1613/jair.1.12588 

14. G. H. Kwak, L. Ling, P. Hui, Deep reinforcement learning approaches for global public health 
strategies for COVID-19 pandemic, PLoS ONE, 16 (2021). 
https://doi.org/10.1371/journal.pone.0251550 

15. A. Gosavi, Simulation-based optimization: Parametric optimization techniques and reinforcement 
learning, in Operations Research/Computer Science Interfaces Series, Springer, 2015. 

16. H. Khadilkar, T. Ganu, D. P. Seetharam, Optimising lockdown policies for epidemic control using 
reinforcement learning: An AI-driven control approach compatible with existing disease and 
network models, Trans. Indian Natl. Acad. Eng., 5 (2020), 129–132. 
https://doi.org/10.1007/s41403-020-00129-3 

17. V. Kompella, R. Capobianco, S. Jong, J. Browne, S. Fox, L. Meyers, et al., Reinforcement learning 
for optimization of COVID-19 mitigation policies, preprint, arXiv: 2010.10560. 



14326 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14306–14326. 

18. M. Arango, L. Pelov, COVID-19 pandemic cyclic lockdown optimization using reinforcement 
learning, preprint, arXiv: 2009.04647. 

19. W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. 
R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 

20. L. Miralles-Pechuán, F. Jiménez, H. Ponce, L. Martínez-Villaseñor, A deep Q-learning/genetic 
algorithms based novel methodology for optimizing COVID-19 pandemic government actions, 
preprint, arXiv: 2005.07656. 

21. T. M. Chen, J. Rui, Q. P. Wang, Z. Y. Zhao, J. A. Cui, L. Yin, A mathematical model for simulating 
the phase-based transmissibility of a novel coronavirus, Infect. Dis. Poverty, 9 (2020), 24. 
https://doi.org/10.1186/s40249-020-00640-3 

22. Centers for Disease Control and Prevention, COVID Data Tracker, 2021. Available from: 
https://covid.cdc.gov/covid-data-tracker/#cases_casesper100k 

23. S. N. Khatami, C. Gopalappa, A reinforcement learning model to inform optimal decision paths 
for HIV elimination, Math. Biosci. Eng., 18 (2021), 7666–7684. 
https://doi.org/10.3934%2Fmbe.2021380 

24. U.S. BUREAU OF LABOR STATISTICS, TED: The Economics Daily image, 2021. Available 
from: https://www.bls.gov/opub/ted/2021/107-5-million-private-sector-workers-in-pandemic-
essential-industries-in-2019.htm 

25. A. Hill, Stable Baselines, 2018. Available from: https://github.com/hill-a/stable-baselines 
26. Z. Tang, L. Luo, B. Xie, Y. Zhu, R. Zhao, L. Bi, et al., Automatic sparse connectivity learning for 

neural networks, IEEE Trans. Neural Netw. Learn. Syst., 2022 (2022). 
https://doi.org/10.1109/TNNLS.2022.3141665 

27. J. Zheng, C. Lu, C. Hao, D. Chen, D. Guo, Improving the generalization ability of deep neural 
networks for cross-domain visual recognition, IEEE Trans. Cogn. Dev. Syst., 13 (2021), 607–620. 
https://doi.org/10.1109/TCDS.2020.2965166 

28. T. Hagendorff, K. Wezel, 15 challenges for AI: or what AI (currently) can’t do, AI Soc., 35 (2020),  
355–365. https://doi.org/10.1007/s00146-019-00886-y 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


