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Abstract: The use of multi-visual network 3D measurements is increasing; however, finding ways to 
apply low-cost industrial cameras to achieve intelligent networking and efficient measurement is a key 
problem that has not been fully solved. In this paper, the multivision stereo vision 3D measurement 
principle and multivision networking process constraints are analyzed in depth, and an intelligent 
networking method based on the genetic evolution algorithm (GEA) is proposed. The genetic operation 
is improved, and the fitness function is dynamically calibrated. Based on the visual sphere model, the 
best observation distance is assigned as the radius of the visual sphere, and the required constraints are 
fused to establish an intelligent networking design of the centering multivision. A simulation and 
experiment show that the proposed algorithm is widely feasible, and its measurement accuracy meets 
the requirements of the industrial field. Our multiview intelligent networking algorithms and methods 
provide solid theoretical and technical support for low-cost and efficient on-site 3D measurements of 
industrial structures. 

Keywords: 3D measurement; multiview intelligent networking; genetic evolution algorithm; visual 
sphere model; constraint condition 

 

1. Introduction  

3D vision measurement technology uses the type of image information obtained by a visual sensor 
as the carrier. The geometric information of the object to be measured in the space is calculated, and 
then the target object is reconstructed, and its 3D morphology information is restored [1–4]. High-
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precision 3D scanners have been widely used for large and complex structures based on the need for 
fast and noncontact measurements. However, the measurements can only be performed offline and 
require a long time. To enable online panoramic 3D measurements of small industrial structures, a 
high-speed 3D profilometer has been developed. The ultrafast industrial speed can reach 64 kHz, and 
materials with different reflective intensities are simultaneously measured with high speed, precision 
and stability. However, the measurements are expensive and have a limited application range. It is 
difficult to measure large complex structures in three dimensions [5]. Although visual inspection 
systems provide excellent accuracy within their field of view, they are not reliable in verifying the 
spacing between two entities located in different fields of view. In addition, a visual inspection system 
requires the installation of multiple cameras on fixtures dedicated to an application, project or 
component. This lack of flexibility is a major disadvantage, because if certain parameters of the tested 
component change, the position of the camera may become askew, and the fixtures may need to be 
replaced. Therefore, a fixed, rigid, permanent, expensive system suitable for small variations and mass 
production is well suited to the emerging needs of intelligent manufacturing. To date, there is no perfect 
solution for achieving flexible online 3D inspection of industrial components. 

Multivision networking measurement technology is an intelligent networked measurement 
method that has been developed in recent years. Some of the problems described above were solved, 
and it is one of the important development directions for modern industrial measurement [6–8]. The 
method can be used to accurately measure the 3D topography of industrial parts with multiple sizes at 
a low cost. Using this method, the visual sensors are placed at different measuring positions, and the 
object to be measured is photographed from different angles. Multiple viewpoint positions are required 
for the formation of a camera imaging network. In the actual measurement environment, the surface 
topography curvature of the part is not singular, which makes the best measurement position and 
azimuth angle of each visual sensor different. Based on the above issues, a visual measurement 
network planning problem arises. However, the determination of the position points in the current 
visual measurement network is mainly restricted by the measurement accuracy [9–11], and this is 
somewhat incomplete. Therefore, it is necessary to extend stereo vision measurement technology to 
the topography measurement engineering practice through intelligent algorithms. 

Scholars have conducted a substantial amount of research on camera pose optimization and 
camera distribution methods for multivision 3D measurement technology. In the initial research on 
multivision measurement, optimizations were mainly based on full coverage regarding imaging with 
certain constraints [12,13]. For example, in reference [14], the visibility constraints and coverage are 
considered, and the measurement cameras are classified and screened. Then, the penalty function is 
used to continuously optimize the screening, and the optimal visual measurement network is obtained. 
However, this measurement network does not take into account the influence of the shielding area and 
observation accuracy, so it does not have complete universality. In [15], in the process of multivisual 
networking, only the attitude of each node is considered, and the constraints between the nodes are not 
considered. Therefore, the obtained network has serious redundancies. Chen et al. proposed a 
photogrammetric network planning method based on a genetic algorithm (GA), which in turn was 
based on the high measurement accuracy requirements of a large trough concentrator [16]. This method 
used the 3D reconstruction uncertainty of the measurement target point as the network planning 
evaluation standard and combined the constraints of the actual measurement environment to conduct 
a simulation analysis to obtain the optimized simulation measurement network. The simulation results 
are verified by 3D measurement experiments. 
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The various visual measurement methods described above attempt to predict the visibility of the 
target points and the feasibility of the camera station to optimize the initial imaging network without 
using CAD models [17]. There are known disadvantages; all of these technologies need a good initial 
network expert (i.e., prior knowledge) [18]. Some network design strategies are suitable for 
coordination and are used for specific object features or texture changes of the 3D reconstructions from 
multiple views. Their method considers the difference in the image texture in the overlapping area, and 
by adjusting the feature vectors of the 3D points perpendicular to the camera view direction, the feature 
values are minimized to ensure the accuracy of the 3D reconstructions. However, the constraints 
related to the measurement range are not considered, and the self-occlusion area is not applicable. 

There are many constraints within the measurement range, such as the image size and resolution 
constraints, number and distribution of the feature points, camera field of view, depth of field, the 
imaging and size overlapping area of the target working area [19–24]. These range constraints are 
related to another set of visibility constraints, including the incidence angle, occlusion and self-
occlusion area. The design of a multiview visual network is characterized by the use of multiple 
parameters, multiple constraints, a large amount of computation and so on. These characteristics 
determine that the search for an absolute exact optimal solution requires a very large amount of 
computation. Theoretically, this is a complex optimization strategy problem, which is difficult to 
describe theoretically and requires a highly technical implementation. Therefore, the efficiency of 
the algorithm must be considered in the implementation. If the above factors are considered in the 
planning of a visual measurement network, and intelligent algorithms extend stereo vision 
measurement technology to the topography measurement engineering practice. Then, in the 
industrial vision measurement field, the accuracy and reliability of the measurements will make a 
qualitative leap. 

The feasibility of a GA solution in the search space has broad possibilities, and the population 
search process has significant advantages. Moreover, the algorithm can search for the global optimal 
solution in parallel, and it can be selected and applied in combination with other intelligent algorithms 
for different engineering problems. In this paper, the multiview stereovision 3D measurement principle 
and the multivision networking constraints are analyzed, and the parameters to be optimized are obtained. 
To seek an accurate position and pose of the camera in the vision measurement network, it is proposed 
that the genetic evolutionary algorithm (GEA) is integrated into the network design. In this algorithm, 
the genetic operation step is improved, and the fitness function is dynamically calibrated. Then, the 
centering networking method is designed for the workpiece structure, resulting in easy centering. The 
spherical model is adopted, and the optimal observation distance is taken as the spherical radius. The 
required constraint conditions are considered, and the optimal centering camera network is iteratively 
selected by GEA to implement precise 3D measurements. 

2. The 3D measurement principle based on multiview stereo vision 

To achieve full measurement coverage, numerous measurement modules must be arranged in 
space to form a multiview stereo vision measurement network. Based on the binocular vision 3D 
measurement principle, the multivision 3D measurement model is further derived. The 3D 
measurement principle is shown in Figure 1. 
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Figure 1. The 3D measurement principle in multiview stereoscopic networking. 

The cameras of each measuring viewpoint are set as 𝑂ଵ, 𝑂ଶ,⋅⋅⋅, 𝑂୬ . For the convenience of 
calculation, the camera coordinate system, (𝑂௖ଵ െ 𝑋௖ଵ𝑌௖ଵ𝑍௖ଵ), of Camera 1 overlaps with the world 
coordinate system, (𝑂௪ଵ െ 𝑋௪ଵ𝑌௪ଵ𝑍௪ଵ) analogously with the 3D measurement principle of binocular 
stereovision. The characteristic points on the object to be measured are 𝑃௜ሺ𝑖 ൌ 1,2,3. . . ሻ . The 
coordinate of 𝑃௜ in the coordinate system of Camera 1 is  ሺ𝑥௜ଵ, 𝑦௜ଵ, 𝑧௜ଵሻ, and the coordinate system 
of 𝑃௜   in the coordinate system of Camera 2 is  ሺ𝑥௜ଶ, 𝑦௜ଶ, 𝑧௜ଶሻ . The rotation matrix between the 
coordinate systems of Cameras 1 and 2 is 𝑅ଶଵ , and the translation matrix is 𝑡ଶଵ . Therefore, the 
transformation formula for the coordinate system of Cameras 1 and 2 is shown in Eq (1). 

൥
𝑥௜ଵ
𝑦௜ଵ
𝑧௜ଵ

൩ ൌ 𝑅ଶଵ ൥
𝑥௜ଶ
𝑦௜ଶ
𝑧௜ଶ

൩ ൅ 𝑡ଶଵ                              (1) 

By analogy, the coordinates of 𝑃௜  in the coordinate system of Camera n-1 are 

ሺ𝑥௜ሺ௡ିଵሻ, 𝑦௜ሺ௡ିଵሻ, 𝑧௜ሺ௡ିଵሻሻ , and the coordinates of 𝑃௜  in the coordinate system of Camera n are 

ሺ𝑥௜௡, 𝑦௜௡, 𝑧௜௡ሻ. The transformation relation between the coordinate systems of Cameras n-1 and n is 
shown in Eq (2). 

቎

𝑥௜ሺ௡ିଵሻ

𝑦௜ሺ௡ିଵሻ

𝑧௜ሺ௡ିଵሻ

቏ ൌ 𝑅ଶଵ ൥
𝑥௜௡
𝑦௜௡
𝑧௜௡

൩ ൅ 𝑡௡ሺ௡ିଵሻ                          (2) 

The coordinate transformation matrix of the camera is obtained from Eqs (1) and (2), as shown 
in Eq (3). 
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𝐾௡ሺ௡ିଵሻ ൌ ൤
𝑅௡ሺ௡ିଵሻ 𝑡௡ሺ௡ିଵሻ

0 1
൨                            (3) 

According to the above derivation, any camera coordinate system in the measurement network of 
a multiview stereo vision can be expressed as 𝑂௖௝ െ 𝑋௖௝𝑌௖௝𝑍௖௝ሺ2 ൑ 𝑗 ൑ 𝑛ሻ , and the spatial 3D 
coordinates of its characteristic point 𝑃௜ are shown in Eq (4). 

൦

𝑋ௐ௜
𝑌ௐ௜
𝑍ௐ௜
1

൪ ൌ 𝐾௝ଵ ൦

𝑥௜௝

𝑦௜௝

𝑧௜௝

1

൪                                (4) 

The 3D information of any object to be measured in space can be handled through integrating the 
binocular and multiview stereo vision 3D measurement principle. 

3. Multiview intelligent networking method based on GEA 

Visual networking has many constraints, a large amount of computation, complex parameters and 
requires interdisciplinary knowledge. Based on these characteristics, the stability and operational 
efficiency of algorithm technology must be considered in networking design implementation, however, 
it the method of finding the global optimal solution is difficult to use in traditional mathematical 
modeling. This paper improves on GA to solve the visual networking design problem. 

3.1. Implementation process of GEA 

According to Darwinian evolution theory, a genetic algorithm (GA) can automatically find a 
solution model for the theoretical global optimal solution [25]. Genetic operations include three 
methods: selection, crossover and mutation. GEA is a new calculation model that evolved based on 
the GA mechanism. In addition to having all the characteristics of GA, GEA has different improvement 
methods for different genetic operation problems, and can also conduct individual optimizations for 
multiple objectives [26]. The specific implementation process is as follows: 

Step 1. Input the total number of individuals N, the maximum number G of iterations, the cross 
probability 𝐶 ∈ ሾ0.4, 0.99ሿ , the mutation probability 𝑀 ∈ 0, 0.05  and the intensity factor α. The 
parameters of fitness function threshold Fit and the discrete precision epsDiscrete are set according to 
the measurement accuracy requirements. The N algorithm individuals xi (i = 1, 2, …, N) are randomly 
initialized. 

Step 2. Since each function to be solved has an interval constraint, the operation process uses 
binary and is coded according to the iterative precision. N coded individuals are uniformly and 
randomly generated, and the fitness function is calculated for each individual. 

Step 3. Implement genetic manipulation, selection, crossover and mutation. 

Step 4. Record the initial generated optimal individual 𝑥௢௣ and its fitness function 𝑓൫𝑥௢௣൯. 

Step 5. When the number of iterations k < G, consider whether a large mutation is needed. The 
mutation operation in the genetic operation is used to avoid the “precocity” of the algorithm. However, 
since, in the operation, the mutation probability is usually small, it is necessary to iterate a large 
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progeny group before the mutation of new individuals can occur, which greatly increases the amount 
of computation. 

Define: 

𝑘 ൏ 𝐺/2&൫𝑓௔௩௘ െ 𝑓௠௜௡ሺሻሺ𝑓𝑚𝑖𝑛௠௔௫&𝑟 ൏ 𝑀௠௔௫ሻ൯                 (5) 

where 𝑓௔௩௘  is the average fitness value, 𝑓௠௜௡  is the minimum fitness value and 𝑓௠௔௫  is the 
maximum fitness value. If Eq (5) is satisfied, there is no need for large variations. If Eq (5) is not 
satisfied, all the individuals, except for the best ones, need to conduct large genetic mutation operations.  

Step 6. The fitness function after large mutations is dynamically calibrated. In the algorithm 
operation process, the fitness function of each individual may be slightly different, resulting in the 
selection operation weakening or even disappearing, which is not conducive to the stability of the 
algorithm. In this paper, the fitness function is calibrated dynamically to ensure the relative difference 
of the individual fitness function. 

The formula 𝑓ሺ𝑥௜ሻ ൌ 𝑓ሺ𝑥௜ሻ െ 𝑓𝑘௠௜௡ is used to calculate the individuals of the optimal fitness 
function and replace the worst individual, where Q is the initial adjustment value, 𝑞 ∈ ሾ0.9, 0.999ሿ 
represents the constringency coefficient, and fୟ୴ୣ, 𝑓௠௜௡ and 𝑓௠௔௫ are calculated again. 

Step 7. Equation (6) is used to calculate the selection probability and cumulative probability: 

𝑝௜ ൌ 𝑓ሺ𝑥௜ሻ/ ∑ 𝑓ሺ𝑥௜ሻே
௜ୀଵ ，𝑃௜ ൌ ∑ 𝑓൫𝑥௝൯௜

௝ୀଵ                    (6) 

Step 8. N offspring are produced. When 𝑃௜ିଵ ൏ 𝑟 ൏ 𝑃௜, for each offspring i; based on the idea of 
“survival of the fittest” in GEA, the roulette algorithm is used to select the paternal line in the GA, and 
then the maternal line is randomly selected. 

The calculation of adaptive genetic crossover probability is shown in Eq (7):  

，𝑓 ൌ 𝑚𝑎𝑥൫𝑓௙௔௧௛௘௥, 𝑓௠௢௧௛௘௥൯            (7) 

If 𝑟 ൏ 𝑝𝑟𝐶 , a cross operation is performed. The probability of adaptive genetic mutation is 
calculated as shown in Eq (8): 

                       (8) 

If 𝑟 ൏ 𝑝𝑟𝑀 , perform the mutation operation. All the individuals, except the optimal one, are 
replaced by the next generation. 

Step 9. Update the iterative optimal individual 𝑥௢௣௧ , and record the iterative number k of 

offspring. When 𝑓௔௩௘/𝑓൫𝑥௢௣௧൯ ൒ 𝑡ℎ𝐹𝑖𝑡𝑛𝑒𝑠𝑠, the fitness function exceeds the threshold, the algorithm 

converges and the global optimal solution is obtained. At the end of the iteration, the optimal visual 
networking method is obtained by decoding. 
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3.2. Multivision measurement networking method 

For the structural parts with easy centering, take the center of the target to be measured as the 
center of the sphere to build the visual sphere model, and combine the GEA and visual constraints. The 
theoretical global optimal camera networking method is obtained, and in this paper, it is called peering-
type networking. 

3.2.1. Visual sphere model and parameters to be optimized 

First, the target structure to be measured is centered (refer to the literature [27]); the visual sphere 
model is established based on this. In peering-type networking, the distance between the camera and 
the object to be measured is fixed in the measurement process, and the optical axis of the camera is 
toward the center of the sphere, so the camera networking is on the surface of the spherical model with 
a fixed radius, as shown in Figure 2. In the visual sphere model, each viewpoint represents a camera 
station point, and the angle on the camera projection plane is called the azimuth angle 𝛼. The included 
angle on the vertical plane is called the elevation angle β, where 𝛼 ∈ ሾ0,2𝜋ሻ, 𝛽 ∈ ሾെ𝜋/2, 𝜋/2ሿ. D is 
the equivalent focal length of the camera. In the visual sphere model, the camera is fixed on a spherical 
surface with a radius of D, and then the spatial position and orientation coordinates of camera i can be 
expressed as ሺ𝛼௜, 𝛽௜, 𝐷ሻ. The external parameter vector of the camera can also be further estimated 
from the above information, where the rotation vector 𝑅 ൌ ሾ𝛼 𝜋 െ 𝛽 𝜋/2ሿ் and the translation 
vector 𝑡 ൌ ሾ0 0 𝐷ሿ் . Assuming m cameras are given, the parameters to be optimized for the 
multiview measurement network are shown in Eq (9): 

𝑥 ൌ ሾ𝑥ଵ, 𝑥ଶ,⋅⋅⋅, 𝑥௠ሿ்，𝑥௝ ൌ ൣ𝛼௝, 𝛽௝൧
்
                     (9) 

 

Figure 2. Visual sphere model. 

A reasonable camera spatial position is determined by 𝐼 ൌ ሾ𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝐷ሿ , which has 6 
parameters to be optimized. In addition, the constant parameters that affect the camera’s position 
mainly include the focal length f and the baseline B. Theoretically, the spatial position coordinates (x, 
y) of the camera remain unchanged. Increasing z can increase the number of measurable points of the 
camera and improve the networking coverage. However, increasing z continuously will reduce the 
spatial resolution of the camera, resulting in the surface details of the target to be measured being 
ignored, and reducing the networking accuracy. Therefore, it is crucial to reasonably select the optimal 
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distance of the camera. According to the conclusion of Literature [28] in Section 3 (this paper contains 
our team’s the research work), the change in the baseline distance between the two cameras will 
directly lead to a change in the camera’s spatial pose coordinates ሺ𝛼, 𝛽, 𝐷ሻ , thus affecting the 
measurement accuracy of the image depth. The depth information measurement error and baseline 
variation curve can be obtained from Eq (10) [28], as shown in Figure 3. 

∆z ൌ √ଶ୸

୤
ቀ୸

୆
൅ ୆

ସ୸
ቁ                                 (10) 

where f is the focal length and B is the baseline. 

 

Figure 3. Variation curve of depth information measurement error and baseline. 

According to the above analysis, in terms of system accuracy, any two vision sensors in the 
measurement network can be combined into a binocular stereo vision system, and the baseline distance 
B can be calculated through the Cartesian coordinates of the viewpoint, so increasing the baseline 
distance B of the binocular vision in a certain range can effectively reduce the measurement error of 
the system. As shown in Figure 2, the changes in the azimuth angle and elevation angle are the key 
parameters to control the direction of the camera’s optical axis, which directly determines the camera's 
spatial position and orientation coordinates. It is necessary to analyze the relationship between the two 
factors and the accuracy of the measurement network. In the actual binocular measurement process, to 
meet the requirements of the measurement task, the two azimuth angles, αଵ and αଶ, may be different, 
so it is necessary to analyze the influence of the two azimuth angle changes on the measurement error. 
Based on the mechanism analysis results of the impact of the projection angle on the measurement 
accuracy in Literature [28], taking ሾ0, π/2ሿ as an example, the change curve is shown in Figure 4, 
and the other three quadrants can be obtained based on the mutual complement. Δ represents the 
measurement error (unit: mm). Figure 4 shows that with an increasing αଵ and αଶ, the measurement 
error Δ also increases. 
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Figure 4. Variation curve of the elevation angle. 

In the same way, it can be deduced that the change curve of the relationship between the Elevation 
Angles 𝛽ଵ and 𝛽ଶ and the measurement error is shown in Figure 5. With the increase of the Elevation 
Angles 𝛽ଵ and 𝛽ଶ, the measurement error 𝛥 first decreases, tends to be stable, and then increases. 
Figure 5 only shows the change curve between β ∈ [0, π/2]. The curve trend of β ∈ [-π/2, 0] and β 
∈ [0, π/2] is the same, so the interval is ሾെ70∘, െ10∘ሿ. In binocular stereo vision, the Azimuth Angle 
and Elevation Angle simultaneously restrict the accuracy of the measurement network. 

 

Figure 5. Variation curve of the elevation angle. 

 

Figure 6. The system accuracy varies with the angle between the optical axis and the baseline. 

To select a reasonable range of azimuth angles, based on the range of the interval, two 
complementary azimuth angles αଵ  and αଶ  are arranged, and a two-dimensional change curve is 
drawn, as shown in Figure 6. At this time, it is easy to observe the change in measurement error in the 
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azimuth range. As shown in Figure 6, the measurement error Δ  is evenly distributed within the 
interval ሾ25∘, 45∘ሿ of α with a small error value. Therefore, the optimal interval of measurement error 
Δ within α ∈ ሾ0,2πሻ is ሾ25∘, 45∘ሿ，ሾ115∘, 135∘ሿ，ሾ205∘, 225∘ሿ and ሾ295∘, 315∘ሿ. 

3.2.2. Target model to be measured and constraint conditions 

The visual measurement process is affected by various kinds of constraints. The major influencing 
factors include the multiview measurement principle, the structural parameters of the camera itself, the 
measurement environment, etc. To establish a multiview measurement network, it is necessary to 
analyze and screen out the constraints of factors with significant influence weights from the complex 
constraints and establish a mathematical model. This process will directly affect the efficiency of the 
algorithm in the process of network design. 

          

(a)                        (b)                          (c) 

             

(d)                                   (e) 

Figure 7 The constraints in the multiview networking process. (a) Field angle constraint; 
(b) Visibility constraint; (c) Constraints on incident angle constraint; (d) Depth of field 
constraint; (e) Coview constraint. 

The main constraints are summarized as the following: the field angle constraint, visibility 
constraint, incidence angle constraint, depth of field constraint, common view constraint, curvature 
constraint and empty set constraint. 

1) Field angle constraint. The field angle is defined as a measure of the imaging range in a camera 
system. It refers to the angle between two rays formed from the camera lens and along the boundary 
of the maximum object that can be contained by the lens. The larger the field of view angle, the larger 
the camera’s field of view. If the angle between the boundary of the target to be measured and the lens 
exceeds the field of view angle, the part beyond the field of view angle will not be imaged in the 
camera, as shown in Figure 7(a). The visual area within the pyramid region represents the visual area, 
and the mathematical formula to constrain the pyramid region is the field of view angle constraint, as 

ρ n

θ
ν

CCD

Model of object 
under test

νa

CCD

Depth of field

Maximum 
shooting distance
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shown in Eq (11). 

𝑔ଵ: ‖𝑣⃑‖ ⋅ ‖𝑣⃑௔‖ 𝑐𝑜𝑠ሺ𝜌/2ሻ െ 𝑣⃑𝑣⃑௔ ൑ 0                      (11) 

where 𝑣⃑ is the unit direction vector of the camera’s optical axis, 𝑣⃑௔ is the optical axis of the camera 
and 𝜌 represents the field angle of the camera. 

2) Visibility constraint. As shown in Figure 7(b), 𝑛ሬ⃑  is the normal vector at measurement target 
point P. If the angle between the normal vector 𝑛ሬ⃑  and the direction vector of the sensor viewpoint is 
equal to 90°, then the part on the right cannot be collected. The mathematical model of the visibility 
constraint is shown in Eq (12). 

𝑔ଶ: 𝑛ሬ⃑ ⋅ 𝑣⃑௔ ൑ 0                               (12) 

3) Constraints on incident angle constraint. As shown in Figure 7(c), in the actual visual 
measurement process, to reduce the pixel error value of the image points after two-dimensional 
imaging, it is not expected that the position of some viewpoints is coplanar with the surface of the 
measured object. 𝜃௠௔௫ is the maximum acceptable angle between the camera viewpoint direction 
vector 𝑣⃑௔ and the target point normal vector 𝑛ሬ⃑ , which is defined as the incident angle. The constraint 
conditions of the incident angle are shown in Eq (13). 

𝑔ଷ: 𝜋 െ 𝑐𝑜𝑠ିଵ ௡ሬ⃑ ௩ሬ⃑ ೌ

‖௡ሬ⃑ ‖‖௩ሬ⃑ ೌ‖
െ 𝜃 ൑ 0                      (13) 

4) Depth of field constraint. A schematic diagram of the depth of field is shown in Figure 7 (d), 
where 𝛥𝐿ଵ  represents the foreground depth, and 𝛥𝐿ଶ  represents the back depth of the field. The 
object to be measured has a distance between the front and back depth of field, and the imaging is clear. 
Therefore, camera imaging should be constrained within this area, which is called a depth of field 
constraint, and the constraint formula is shown in Eq (14). 

𝑔ସ: ቐ

ிఋ௅ሺ௅ି௙ሻ

௙మାிఋሺ௅ି௙ሻ
െ 𝛥𝐿ଵ ൑ 0

𝛥𝐿ଶ െ ிఋ௅ሺ௅ି௙ሻ

௙మିிఋሺ௅ି௙ሻ
൑ 0

                             (14) 

where F is the camera aperture, δ is the diameter of the allowable dispersion circle, L is the shooting 
distance and 𝑓 is the focal length of the camera. 

5) Coview constraint. In the process of multiview visual measurement, any point P in space is 
observed by at least two cameras at the same time to attain high observation accuracy, as shown in 
Figure 7(e). Limited by the structure of the target under test, there is self-occlusion or mutual occlusion, 
and the P point can only be observed by one camera, so the spatial 3D coordinates of the P point cannot 
be obtained. Therefore, it is necessary to constrain each area to meet the multicamera coview condition, 
which is called a coview constraint, as shown in Eq (15): 

𝑔ହ: 𝛺ௗ ൌ 𝛺ଵ ∩ 𝛺ଶ ∩⋅⋅⋅∩ 𝛺௡                       (15) 

6) Curvature constraint. According to the analysis in Section 3.2.1, the measurement accuracy of 
the visual measurement network is closely related to the camera spatial pose (α, β, D). The higher the 
surface complexity of the object structure to be measured, the greater the curvature is, and the more 
information it contains, which requires higher camera pose requirements. Therefore, the constraints 
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need to be carried out based on the actual situation, and are called curvature constraints. The mapping 
relationship is shown in Eq (16). 

𝑔଺: ሺ𝜌௜ሻ → ሺ𝛼, 𝛽, 𝐷ሻ                           (16) 

where 𝜌௜ is the curvature of the object structure corresponding to the camera at the i-th station point. 
7) Null set constraint. To ensure the independence of each view in the multiview measurement 

network and avoid the view overlap increasing the calculation amount, it is also necessary to limit the 
overlap part 𝛬 of each view, which is called a null set constraint. Equation (16) is as follows: 

𝑔଻: 𝛷 ൌ 𝛬ଵ ∩ 𝛬ଶ ∩⋅⋅⋅∩ 𝛬௡                            (17) 

3.2.3. Fitness function 

In the GEA, the fitness function is used to represent the superiority and inferiority of each 
individual to determine the chance that it can be inherited. In the visual measurement networking 
design process, it represents the measurement networking accuracy. For the point cloud of the target 
to be measured, under the above constraints, it is reasonable to measure when it will be visible by two 
or more cameras. The parameters involved in visual network design are multidimensional, and the 
measurement accuracy of the point clouds are effectively estimated by using the covariance. 

The line of sight intersection equation under reasonable measurement can be expressed in the 
nonhomogeneous form 𝐴𝑥 ൌ 𝑏，and the object point coordinates obtained from the intersection 
conditions are expressed in the normal equation 𝐴்𝐴𝑋 ൌ 𝐴்𝑏 , which can be converted into 𝑋 ൌ
ሺ𝐴்𝐴ሻିଵ𝐴்𝑏, and Eq (18) can be obtained: 

𝑋 ൌ 𝑓ሺ𝑥ሻ                               (18) 

where f represents the mapping relationship, and x represents the parameters related to A and b. Then, 
Eq (19) is obtained as follows. 

𝑥 ൌ ሾ𝑥ଵ, 𝑥ଶ,⋅⋅⋅, 𝑥௠ሿ்                         (19) 

The covariance matrix of the image point is shown in Eq (20). 

𝛴௫ ൌ 𝑑𝑖𝑎𝑔ሺ𝛴௫ଵ, 𝛴௫ଶ,⋅⋅⋅, 𝛴௫௠ሻ，𝛴௫௝ ൌ 𝑑𝑖𝑎𝑔൫𝜎௫௝
ଶ , 𝜎௬௝

ଶ ൯              (20) 

According to the Monte Carlo simulation method [26], if the covariance of an image point in the 
point cloud cannot be obtained, that is, let 𝛴௫௝ be the unit matrix, the Gaussian noise covariance of 
this point’s coordinate is “1 pixel”. The covariance matrix of object points obtained from the above 
analysis is shown in Eq (21). 

𝛴௫ ൌ 𝐽𝛴௫𝐽் ൌ ∑ 𝐽௝
௠
௝ୀଵ 𝛴௫௝𝐽௝

்，𝐽௝ ൌ ൤ డ௙

డ௫ೕ
, డ௙

డ௬ೕ
൨                   (21) 

where 𝐽′ ൌ ൣ𝐽′ଵ
், 𝐽′ଶ

் ⋅⋅⋅, 𝐽′௠
்൧

்
, 𝐽′௝ is the first derivative matrix of the image point on the j-th camera 

to the measurement marker point, which is 2 rows and 3 columns, and the covariance matrix of the 
image point is shown in Eq (22). 
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𝛴௫ ൌ 𝑑𝑖𝑎𝑔ሺ𝛴௫ଵ, 𝛴௫ଶ,⋅⋅⋅, 𝛴௫௠ሻ，𝛴௫௝ ൌ 𝑑𝑖𝑎𝑔൫𝜎௫௝
ଶ , 𝜎௬௝

ଶ ൯                 (22) 

If a mark point on the object structure to be measured is visible, its covariance matrix can be 
calculated by Eq (21), and the three diagonal elements of the covariance matrix are represented by 
𝜎௫௜, 𝜎௬௜, 𝜎௭௜. Then, the measurement accuracy of the object point can be obtained as the maximum error 
of the three coordinates in the space, as shown in Eq (23). 

𝜎௜ ൌ 𝑚𝑎𝑥൛𝜎௫௜, 𝜎௬௜, 𝜎௭௜ൟ                              (23) 

If the object point is not visible, the measurement accuracy is defined as 𝜎௜ ൌ 10𝜅, and 𝜅 is the 
worst spatial resolution of all the measuring cameras. The measurement marker points on the target 
structure to be measured are classified into visible points and invisible points, which are numbered n1 
and n2, respectively. Then, the improved individual fitness function table is shown in Eq (24): 

𝑓𝑖𝑡 ൌ െ 𝑚𝑎𝑥
௜ୀଵ,⋅⋅⋅,௡భ

ሼ𝜎௜ሽ െ 10𝜅𝑛ଶ                           (24) 

According to genetic knowledge, individuals with poor fitness will be gradually eliminated. By 
analogy, in the measurement networking design, the larger the number of invisible measurement marks 
n2, the worse the fitness will be, and this kind of networking design method will eventually be 
eliminated. 

3.2.4. Implementation of GEA in intelligent networking 

An input operation is required before the GEA is implemented that includes the structure model 
of the target to be tested, the selection of constraints, the number and type of cameras, the value range 
of each parameter in the visual sphere model of the camera, the fitness function threshold and the 
measurement accuracy threshold. 

The target structure to be measured is discretized into a uniform point cloud, the coordinates of 
the center point ሾ𝑥଴, 𝑦଴, 𝑧଴ሿ் and the unit normal vector ሾ𝑛ଵ, 𝑛ଶ, 𝑛ଷሿ் of the triangular grid area are 
calculated, and the radius r of the visual sphere is determined. The parameters to be optimized are 
coded and decoded, and the fitness function is calculated. 

The algorithm’s operation flow chart is shown in Figure 8. First, the structure of the target to be 
measured is input, as well as the number and type of cameras. The parameters 𝑥௝ ൌ
ൣ𝛼௝, 𝛽௝൧

்
 of the camera pose that are the azimuth angle and the elevation angle, the rotation vector 

𝑅 ൌ ൣ𝛼௝, 𝜋 െ 𝛽௝, 𝜋/2൧
்
  and the translation vector 𝑡 ൌ ሾ0,0, 𝐷ሿ்  of the camera external parameter 

matrix are encoded by binary code to generate the new individuals. To perform subsequent genetic 
operations, the individuals are divided into subpopulation A and subpopulation B. According to the 
constraint conditions, the fitness functions 𝑓ሺ𝐴ሻ and 𝑓ሺ𝐵ሻ  corresponding to subpopulations A and 
B are calculated, respectively, to obtain the optimal individual 𝑥௢௣ of the two subpopulations initially 
generated. Except for the optimal individual, all the other individuals are replaced by the next 
generation. The fifth step in Section 3.1 considers whether large mutations, adaptive crossovers and 
mutations are needed. The above steps are repeated, update the iteration optimal individual 𝑥௢௣௧ and 
record the iteration subalgebra k. When 𝑓௔௩௘/𝑓൫𝑥௢௣௧൯ ൒ 𝐹𝑖𝑡 , the fitness function exceeds the 
threshold, the algorithm converges, the global optimal solution is obtained and the iteration ends. The 
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optimal individual is decoded, and the networking method of the visual measurement network is obtained. 

 

Figure 8. The operation flow of GEA. 

4. 3D measurement experiment based on intelligent networking 

4.1. Simulation experiment analysis 

To verify the correctness of the centering networking method, a simulation environment is set up, 
and the conditions required by the GEA are given. A rectangular plane with one side length 298 × 148 
mm is set on the XOY plane, and then the normal vector of the plane is ሾ0, 0, 1ሿ். Taking the center of 
the plane and four corners within the plane, that is, there are a total of five marked circles, the diameter 
of the large center circle is 𝜙ଵ ൌ 59 𝑚𝑚 and the diameter of the four small circles is 𝜑 ൌ 29 mm. 
For the convenience of calculation, the resolution of the camera is defined as 2000 × 2000 pixels, the 
equivalent focal length is 3000 mm and the radius of the visual sphere is 1500 mm. Then, the spatial 
resolution of the camera is 0.5 mm/pixel, the range of the azimuth angle is 𝛼 ∈ ሾ0, 2𝜋ሻ and the range 
of the elevation angle is 𝛽 ∈ ሾെ𝜋/2, 𝜋/2ሿ. Different numbers of cameras are used for the networking 
method, and 100 individuals are selected for iteration until the algorithm converges. The camera pose 
information of each networking camera is shown in Table 1, and the camera pose information is shown 
in Figure 8. Figure 9(a) is the result of two-camera networking, Figure 9(b) is the result of three-camera 
networking, Figure 9(c) is the result of four-camera networking, Figure 9(d) is the result of five-camera 
networking and Figure 9(e) is the result of six-camera networking. 

According to the analysis in Section 3.2.1, the optimal range of the azimuth angle of the visual 
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sphere network is ሾ10∘, 70∘ሿ . In the case of binocular vision, the azimuth angle optimal interval 
ሾ25∘, 45∘ሿ  should be considered. All the parameters of the visual sphere obtained by the above 
simulation experiments fall into the optimal interval, and the fitness is small when െ0.063; that is, 
the maximum error of the 3D coordinates in space is 0.063 mm, and the absolute value decreases with 
increasing camera numbers, which proves the rationality of the centering networking method in this 
paper. Notably, the acceleration of the fitness reduction decreases gradually, indicating that the fitness 
will become stable when the number of cameras continues to increase, and the benefit of measurement 
networking will begin to decrease because of the measurement costs. 

Table 1. Camera pose information of each network. 

Number of cameras 2 3 4 5 6 

Parameters of the 
visual sphere 
network 

𝛼 
43.52° 
224.15° 

99.52° 
217.64° 
340.06° 

10.15°, 98.17° 
180.89°, 
275.34° 

13.47°, 76.56° 
151.22°, 219.94° 
301.68° 

5.09°, 87.40° 
101.06°, 198.24°
279.32°, 348.36°

𝛽 
38.13° 
38.13° 

36.56° 
37.82° 
39.22° 

35.71°, 37.62° 
35.71°, 37.62° 

45.24°, 35.71° 
37.62°, 36.67° 
37.62° 

36.67°, 36.67° 
37.62°, 39.52° 
37.62°, 37.62° 

Fitness 𝐹𝑖𝑡 -0.230 -0.142 -0.097 -0.086 -0.063 

     

(a)             (b)            (c)             (d)             (e) 

Figure 9. Camera pose information in multivisual networking. (a) The result of two-
camera networking; (b) The result of three-camera networking; (c) The result of four-
camera networking; (d) The result of five-camera networking; (e) The result of six-camera 
networking. 

4.2. 3D measurement experiment of multiview networking for a real workpiece 

The experimental platform is composed of an upper computer, mechanical arm system and 
camera system. The upper computer adopts a Windows 10 x 64-bit control system with 8.00 GB 
memory for the model ““Inter” (R)”Core” (‘TM’)”i5-4200H CPU@2.80GHz “ “. The upper computer 
is used to control the motion of the manipulator, take pictures of the target to be measured and extracts 
its three-dimensional position information. A six-axis manipulator is used to accurately and quickly 
move the camera system to each viewpoint position of the network. The layout of the experimental 
platform is shown in Figure 10. 
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Figure 10. Layout of the experimental platform. 

The workpiece to be tested is shown in Figure 11(a), and the 3D CAD model structure diagram 
of the model to be tested is obtained through the motion recovery structure. Then, the structure diagram 
is gridded through MATLAB, as shown in Figure 11(b). 

       

(a)                                  (b) 

Figure 11. The actual measurement target used to verify the algorithm. (a) The workpiece 
to be tested; (b) 3D model diagram. 

In the experiment, the measurement distance is set to 300 mm, that is, the radius of the visual 
sphere is 300 mm. The range of the known camera azimuth angle is 𝛼 ∈ ሾ0,2𝜋ሻ, and the range of the 
elevation angle is 𝛽 ∈ ሾെ𝜋/2, 𝜋/2ሿ. To ensure the best imaging, based on the optimal analysis of the 
azimuth angle and elevation angle in Section 3.2.1, the settings are as shown in Eqs (25) and (26). 

𝛼 ∈ ሾ25∘, 45∘ሿ ∪ ሾ115∘, 135∘ሿ ∪ ሾ205∘, 225∘ሿ ∪ ሾ295∘, 315∘ሿ             (25) 

𝛽 ∈ ൣ10∘，70∘൧ ∪ ൣെ70∘， െ 10∘൧                    (26) 

Different numbers of cameras were used for the networking method. After running the GEA many 
times until convergence, the performance of the comprehensive fitness function under different camera 
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numbers draws the fitness of 10, 15, 20, 22, 24, 26, 28 and 30 cameras, as shown in Table 2. The 
centering networking method with 24 cameras as an example is shown in Figure 12(a), and the dense 
3D reconstruction results obtained under this networking method are shown in Figure 12(b). 

Table 2. Adaptability of concentric networking experiment. 

Number of cameras 10 15 20 22 24 26 28 30 
Fitness -5.158 -3.037 1.231 -1.182 -1.154 -1.088 -1.021 -0.983 

  

(a)                             (b) 

Figure 12. Centering networking and 3D reconstruction results of 24 cameras. (a) Pose 
diagram of the 24 cameras centering networking method; (b) The dense 3D reconstruction 
result. 

4.3. Precision analysis of measurement  

The reconstruction measurement results are analyzed based on the photographic geometry idea, 
and the feasibility and accuracy of the core networking method are analyzed quantitatively. To obtain 
the mapping scale relationship between the actual size and the reconstruction size, the calibration plate 
is reconstructed and measured. Three squares, A, B and C, with rich reconstruction information are 
selected, and three intersections are recorded as 𝐴ଵ𝐴ଶ𝐴ଷ , 𝐵ଵ𝐵ଶ𝐵ଷ  and 𝐶ଵ𝐶ଶ𝐶ଷ , respectively. The 
results are shown in Figure 13. 

 

Figure 13. Calibration board point cloud. 

The mapping scale Factor s represents the ratio between reconstruction size Lreconstruction and the 
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actual size Ltrue, as shown in Eq (27). The scale factor remains unchanged under the same camera. The 
error between the reconstruction size and actual size can be compared and analyzed by using the scale 
factor calculated by the calibration plate, and the error calculation is shown in Eq (28). Thus, a 
reconstructed coordinate system with the pixel size in units is constructed. The size information is 
shown in Table 3. 

𝑠 ൌ ௅reconstruction

௅೟ೝೠ೐
                               (27) 

𝑒 ൌ |𝑑𝑟 െ 𝑑𝑡/𝑠|                              (28) 

In the formula, 𝐿reconstruction is the reconstruction size, 𝐿௧௥௨௘ is the actual size, e is the size error, 
𝑑𝑟 is the actual size of the target to be measured and 𝑑𝑡 is the reconstruction size after photographic 
geometric mapping. 

Table 3. Calibration board size information table. 

 A1A2 A1A3 B1B2 B2B3 C1C2 C2C3 

Actual size 25 mm 25 mm 25 mm 25 mm 25 mm 25 mm 

Rebuild dimensions 0.2450 mm 0.2369 mm 0.2381 mm 0.2421 mm 0.2383 mm 0.2355 mm

Mapping Scale s 0.0098 0.009476 0.009524 0.009684 0.009532 0.00942 

The shape of the object measured by the centering network is regular, and the size can be used as 
the evaluation target. The average of each mapping ratio in Table 3 is calculated to obtain s = 0.009573. 
Then, the reconstructed dimensions and errors of the target under the centering networking method are 
shown in Table 4. 

Table 4. Comparison of dimensional errors. 

 The length AB The width CD The height BC Diameter of inner hole
Actual size 120 mm 108 mm 46 mm 44 mm 
Rebuild dimensions 1.1470 mm 1.0235 mm 0.4379 mm 0.4178 mm 
Error e 0.1839 mm 0.1085 mm 0.2568 mm 0.3564 mm 

Table 4 shows that the error between the reconstructed size and the actual size under the centering 
networking method is controlled within half a millimeter. Compared with the expensive noncontact 
measurement system, the experimental layout is simple, which saves significant costs and meet the 
needs of industrial topography measurements. The 3D reconstruction image is clear and has a fine 
texture, which meets the needs of human-computer interaction in industrial measurements. The 
correctness and feasibility of the centering networking method designed in this paper are verified. 

5. Conclusions 

The intelligence of multivision networking enables 3D measurement technology based on vision 
to implement low cost and real-time measurements. In this paper, a multivision intelligence networking 
method based on a genetic evolution algorithm is proposed. By using the proposed method, centering 
multivision intelligence networking is established. GEA is a heuristic algorithm, and each operation 
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may have different results, so it is necessary to deploy it as many times as possible and select the best 
individual according to the fitness function. In the centering networking method, the camera position 
coordinates and pose coordinates are designated as the parameters to be optimized in combination with 
the visual sphere model. Considering the constraints encountered in the camera measurements, the 
fitness function is improved to reduce the computation amount, and ultimately, an optimal centering 
networking method is obtained. 

The following work further studies the intelligent visual networking measurement of irregular 
shapes based on the method proposed in this paper, and is called, scattered networking. It is expected 
that scattered networking will implement real-time 3D measurements of complex shapes and large 
structures with multivision flexible networking. 
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