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Abstract: This paper focuses on achieving leader-follower mean square consensus in semi-Markov
jump multi-agent systems. To effectively reduce communication costs and control updates, we propose
an event-triggered protocol based on stochastic sampling. The stochastic sampling interval randomly
switches between finite given values, while the event-triggered function depends on the stochastic
sampled data from neighboring agents. Using the event-triggered strategy, we present sufficient
conditions to ensure mean square consensus. Finally, we provide a numerical example demonstrating
the effectiveness of the theoretical results.
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1. Introduction

It is universally acknowledged that multi-agent cooperative control has a lot of applications, such
as unmanned air vehicles, traffic control, animal groups and automated highway systems [1–4]. The
cooperative control consensus that has received a lot of attention can be roughly divided into leader-
follower consensus and leaderless consensus [5, 6]. Most of the research aims have been to design a
consensus protocol to make agents exchange local information with their neighbors, so that a cluster of
agents are capable of achieving the consistent state.

As a paradigmatic instance, a digital microprocessor is installed in each agent of the system, which is
responsible for gathering information from its neighboring agents and updating the controller accordingly.
The majority of research studies utilize continuous measurement signals, yet continuous communication
in a constrained energy exchange network is not feasible. In order to avoid continuous communication,
some studies have introduced sampling data control [7–9], and each agent transmits the corresponding
data at the sampling instants. Control using periodic sampling data often requires estimation of an
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optimal sampling period since improper selection can result in either excessively frequent or infrequent
sampling, both of which can be detrimental to system performance. Stochastic sampling can better solve
this problem. Stochastic sampling has been gaining increasing attention due to its flexibility in terms of
dynamically switching sampling periods between different values. In [10], the authors investigated the
leaderless multi-agent consensus problem under stochastic sampling, where the sampling period was
chosen randomly at a given value.

Compared to the conventional time-triggered mechanism, the utilization of an event-triggered
mechanism presents a significant advantage in terms of improving the efficiency of communication
resource allocation. Research on event-triggered mechanisms has been extensively conducted in
various fields, including cyber-physical systems [11], cyber-control systems [12] and multi-agent
systems [13–16]. To solve the high-order multi-agent consensus problem, in [16], Wu et al. presented
by estimating the state of neighbor agents, a novel event-triggered protocol. For further research, many
scholars put forward dynamic event-triggered protocol [17–21]. In [17], a dynamic event-triggered
protocol was proposed for individual agents, which established a distributed adaptive consensus protocol.
This protocol involves updating the coupling strength to achieve consensus among the agents. A dynamic
event-triggered protocol was proposed in [20] for the investigation of consensus in multi-agent systems.
This protocol involved internal dynamic variables, and the elimination of Zeno behavior played an
important role. In [21], Du et al. studied the multi-agent problem of leader-follower consensus
based on a dynamic event-triggered mechanism. However, since event-triggered control has its own
limitation, there is a need for continuous event detection. To loosen that constraint, many researchers
designed an event-triggered protocol based on sampling data [22–24]. The authors presented research
on event-triggered consensus strategies for multi-agent systems in [25] and [26]. Specifically, Su et al.
investigated sampled data-based leader-follower multi-agent systems with input delays, with a focus on
making sampling-based mechanisms for event detection more realistic. Meanwhile, He et al. focused
on mean-square leaderless consensus for networked non-linear multi-agent systems and presented
an efficiently distributed event-triggered mechanism that reduces communication costs and controller
updates for random sampling-based systems. In [27], Ruan et al. studied the consensus problem with
bounded external disturbances under an event-triggered scheme based on two independent dynamic
thresholds in the context of leader-follower dynamics. The authors presented a nonlinear dynamic
event-triggered control strategy for achieving prescribed-time synchronization in networks of piecewise
smooth systems in [28].

The above studies are mostly the ones based on the fixed topology of multiple agents. A large number of
switching topologies, some of which are studied by establishing Markov models, can be observed in our
real world [29–31]. In [29], Hu et al. investigated the multi-agent consensus of Markov jump systems
based on event-triggered strategies. In [30, 31], the scholars studied consensus issues in multi-agent
systems with a Markov network structure. Nevertheless, the application of time-varying topology based
on Markov processes has certain limitations, primarily due to the exponential distribution of jump times
in Markov chains. Some researchers have focused on semi-Markovian jump topologies [32–36]. This is
because the sojourn time in the semi-Markovian exchange topology is a generic continuous random
variable. Its probability distribution is general. The H∞ consensus problem for multi-agent systems
in a semi-Markov switching topology with incomplete known transmission rates was investigated
in [35]. In a related research study by Xie et al. [36], the consensus problem of multi-agent systems was
investigated under an attack scenario in which both the semi-Markov switching topology and network
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were susceptible to attacks, with the possibility of recovery. In [37], the authors presented a study
on achieving cluster synchronization in finite/fixed time for semi-Markovian switching T − S fuzzy
complex dynamical networks with discontinuous dynamic nodes.

Building upon the aforementioned literature review, this research article is focused on the devel-
opment and analysis of an event-triggered mechanism for the stochastic sampling of leader-follower
multi-agent systems. The key contributions of this study can be summarized as follows:

(1). This paper proposes a novel event-triggered methodology by utilizing stochastic sampling,
which is capable of significantly reducing the frequency of control updates and communication overhead
among agents. Furthermore, the proposed mechanism ensures the avoidance of Zeno behavior.

(2). The dynamic system switching investigated in this paper is modeled by using the semi-Markov
jump process. A sufficient condition for mean-square consensus is derived.

(3). The sampling period of stochastic sampling is randomly selected from a finite set. Stochastic
sampling differs from the periodic sampling and stochastic sampling in the literature [26, 29].

The subsequent sections of this article are organized as follows. Section II presents the problem
formulation and introductory suggestions. Section III reports the major findings. The numerical tests in
Section IV validate the accuracy of the theoretical conclusions. Section V concludes with final remarks.

Notations: The n-dimensional identity matrix is denoted by In. A zero matrix of appropriate
dimension is represented by O. A positive (negative) definite matrix A is denoted by A > 0 (A < 0).
The element implied by the symmetry of a matrix is denoted by ∗. The function C([a, b],Rn) maps the
interval [a, b] to a continuous vector-valued function Rn. The Euclidean norm of a vector is represented
by | · |. A superscript T and the symbol ⊗ indicate matrix transposition and the Kronecker product,
respectively. Let IN = {1, 2, . . . ,N} denote a finite index set.

2. Preliminaries and problem statement

2.1. Graph theorem

We consider a directed graph, denoted by G = {V, E, A}, where V represents a set of vertices
{1, 2, . . . ,N}, E denotes a set of directed edges and A is a weighted adjacency matrix of size N × N.
The elements of A, denoted by ai j, are positive if there exists a directed edge going from vertex i to
vertex j, and zero otherwise. We can refer to the set of neighbors of vertex i as Ni, which is defined as
Ni = { j ∈ V : ( j, i) ∈ E}. The degree matrix D is defined as a diagonal matrix of size N × N, where the
diagonal entries di represent the weighted degree of vertex i. Specifically, di =

∑
j∈Ni

ai j. The Laplacian
matrix of G is defined as L = D − A =

(
li j

)
N×N

. The diagonal entries of L are given by lii = −
∑

j∈Ni
li j,

and the off-diagonal entries are defined as follows: li j = −ai j if (i, j) is an edge in G; otherwise, li j = 0.

2.2. Semi-Markov jump multi-agent systems

Consider a multi-agent system that has a leader and N followers. Label them respectively as 0 and
1, 2, 3, . . . ,N. The dynamic equations for each agent are illustrated below:{

ẋi(t) = A(r(t))xi(t) + B(r(t))ui(t), i ∈ IN ,
ẋ0(t) = A(r(t))x0(t).

(2.1)

The control input and state for the ith state are denoted by ui(t) ∈ Rn and xi ∈ Rn, respectively. A state
of x0(t) ∈ Rn indicates the leader agent. The constant matrices A(r(t)) and B(r(t)) have the appropriate
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dimensions. The semi-Markov chain {r(t), t ≥ 0} is a right-continuous process defined on the complete
probability space (Ω, F, P), where its values belong to the finite state space D = IM and its generators
are denoted by λ = (λmn(v))M×M. The transition probabililty is

Pr{r(t + v) = n | r(t) = m}

=

{
λmn(v)v + o(v) m , n,
1 + λmn(v)v + o(v) m = n.

(2.2)

v is the time interval, which stands for the amount of time that passes between two successive jumps.
The transition rate from mode m at time t to mode n at time t + v is denoted by λmn(v), and it satisfies
λmn(v) ≥ 0. o(v) can be defined as lim

v→0+
o(v)

v = 0. λmm(v) = −
∑

m,n λmn(v) .
Remark 1: The dwell time v is the time elapsed from the last jump of the system, and it is distinct from
the time t. When the system jumps, v resets to 0 and the transition probability λmn(v) only depends on v.

2.3. The event-triggered mean square consensus protocol based on stochastic sampled data

A consensus protocol for event-triggered consensus that is grounded in the stochastic sampling of
data is presented. Assuming that the sampling time is 0 = t0 < t1 < t2 < · · · < ts < · · · , the sampling
period is h = ts+1 − ts, in which h is selected from a random finite set h1, h2, · · · , hl. The probability is
described as Pr {h = hs} = πs, s ∈ Il, πs ∈ [0, 1], and

∑l
s=1 πs = 1. For the sake of generality, we can set

0 = h0 < h1 < h2 < · · · < hs < · · · < hl, l > 1.
Assuming that the ith agent has a K-time event-triggered time of ti

k,
{
ti
k

}∞
k=0

represents the event-
triggered time sequence of the ith agent, ti

k ∈ {ts, s ∈ N}, ti
0 = 0. ti

k+1represents the next event-triggering
time of the ith agent, which is determined by the following formula

ti
k+1 = min

ts>tk
{ts : (ei (ts))T Φ (ei (ts)) > σi (zi (ts))T Φ (zi (ts))}. (2.3)

The threshold parameter is represented in this case by σi > 0. A positive definite event-triggered
matrix is the intended matrix of matrix Φ. ei(ts) = xi(ti

k) − xi(ts) and zi (ts) =
∑N

j=1 ai j

(
xi

(
ti
k

)
− x j

(
t j
k′

))
+

bi

(
xi

(
ti
k

)
− x0 (ts)

)
, where ts ∈ [ti

k, t
i
k+1). ti

k′ is the latest transmitted sampled data of its neighbors before

ti
k, that is t j

k′ = max
{
t j
k | t

j
k ≤ ti

k

}
, k′ = 0, 1, 2, · · · .

Remark 2: The stochastic sampling sequence is 0 = t0 < t1 < t2 < · · · < ts < · · · . The sampling period
is h = ts+1 − ts, where h is selected from a random finite set {h1, h2, · · · , hl}, where 0 = h0 < h1 < h2 <

· · · < hl. This stochastic sampling differs from the periodic sampling and stochastic sampling in the
literature [26,29]. They represent the special form of stochastic sampling when h is constant and l equals 2.
Remark 3: In accordance with the event-triggered condition (2.3), the ith agent broadcasts the most
recent sampled data to its neighbors. The sampling sequence includes the event-triggered sequence
because the sampling period h = ts+1 − ts is stochastic in the set of {h1, h2, · · · , hl} , h > 0. Zeno behavior
is precisely precluded.
Remark 4: It should be noted that in an attempt to decrease unnecessary communication between
agents, a stochastic sampling static event-triggered protocol is proposed.

The following consensus protocol should be taken into consideration in light of the discussion above:

ui(t) = − K(r(t))
[ N∑

j=1

ai j

(
xi
(
ti
k
)
− x j

(
t j
k′
))
+ bi

(
xi
(
ti
k
)
− x0

(
ts
))]
. (2.4)
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Remark 5: The consensus protocol relies upon the stochastic sampling of event-triggered conditions
as well as upon a semi-Markov switching system, where the feedback gain K(r(t)) depends on r(t),
which will be given by a theorem later. When the ith agent and its neighbor agents satisfy the trigger
conditions, the controller will be updated. With a zero-order holder, ui(t) remains constant between two
successive event instants.

Define
ei (ts) = xi

(
ti
k

)
− xi (ts) ,

e j (ts) = x j

(
t j
k′

)
− x j (ts) ,

δi (ts) = xi (ts) − x0 (ts) .
(2.5)

Submitting (2.5) into (2.4) , we can obtain

ui(t) = −K(r(t))
[ N∑

j=1

li j

(
e j(ts) + δ j(ts)

)
+ bi

(
ei(ts) + δi(ts)

)]
. (2.6)

Define τ(t) = t−ts, where τ(t) is a piecewise linear function with a slope of τ̇(t) = 1 for all t ∈ [ts, ts+1),
except at time ts. The control protocol (2.6) may be expressed as

ui(t) = −K(r(t))
[ N∑

j=1

li j

(
e j(t − τ(t)) + δ j(t − τ(t))

)
+ bi

(
ei(t − τ(t)) + δi(t − τ(t))

)]
. (2.7)

A new stochastic variable is introduced as follows:

βs(t) =
{

1 ts−1 ≤ τ(t) < ts, s = 1, 2, · · · , l
0 otherwise.

(2.8)

In this way, we can obtain

Pr {βs(t) = 1} = Pr {ts−1 ≤ τ(t) < ts} =

l∑
i=s

πi
hi − hi−1

hi
= βs. (2.9)

The Bernoulli distribution is satisfied by βs(t), given that E {βs(t)} = βs and E
{
βs(t) − β2

s

}
=

βs (1 − βs) respectively. We can obtain the calculation of the following formula from the above study:

δ̇(t) =
(
IN ⊗ A(r(t))

)
δ(t) −

l∑
s=1

βs(t)
(
H ⊗ B(r(t))K(r(t))

)
e
(
t − τs(t)

)
−

l∑
s=1

βs(t)
(
H ⊗ B(r(t))K(r(t))

)
δ
(
t − τs(t)

)
,

(2.10)

where δ = diag {δ1, δ2, · · · , δN}, H = L + B1, B1 = diag {b1, b2, · · · , bN}.
According to the initial conditions of Equation (2.10), let δ(t) = ϕ(t),−hl ≤ t ≤ 0,

ϕ(t) =
[
ϕT

1 (t), ϕT
2 (t), · · · , ϕT

N(t)
]

and ϕi(t) ∈ C ([−hl, 0] ,Rn).
Definition 1 [34]. Under semi-Markov switching topologies, the leader-follower consensus of
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multi-agent system (2.1) with the consensus protocol is said to be achieved if lim
t→∞

E ∥xi(t) − x0(t)∥ = 0,
i ∈ IN holds for any initial distribution r0 ∈ D and any initial condition ϕ(t),∀t ∈ [−hl, 0].
Assumption 1. The directed spanning tree in the network graph G has the leader’s root.
Lemma 1 [34]. For symmetric matrices R > 0 and X and any scalar µ, the following inequality holds:

−XR−1X ≤ µ2R − 2µX.

3. Results

Theorem 1. Under Assumption 1 and utilizing the protocol given by (2.7), the constants provided
are 0 = h0 < h1 < · · · < hs < · · · < hl and πi ∈ [0, 1], σi > 0, i ∈ IN. Consensus can be achieved in the
mean-square sense for the multi-agent system (2.10) by employing the stochastic sampling event-triggered
strategy given by (2.3), provided that constant metrics are present, namely P(m) > 0,Qs > 0,Rs > 0,Ws >

0,m ∈ Dands ∈ Il. In such a way, the inequality below holds:
Ξ FT (m) Σ(m, v)
∗ Ψ 0
∗ ∗ −X2(m)

 < 0, (3.1)

where

Ξ = ℵ1 + ℵ2 + ℵ3 + ℵ4 + ℵ5 + ℵ6.

ℵ1 = FT (m) (IN ⊗ P(m)) ε1 + ε
T
1 (IN ⊗ P(m)) F(m) +

M∑
n=1

λmn(v)
(
εT

1 (IN ⊗ P(n)) ε1

)
.

ℵ2 =β1ε
T
1 (IN ⊗ Qs) ε1 − β1ε

T
l+1 (IN ⊗ Qs) εi+1 +

l∑
s=2

βs(εT
l+s (IN ⊗ Qs) εl+s

− εT
l+s+1 (IN ⊗ Qs) εl+s+1).

ℵ3 = −

l∑
s=1

βs
1

hs − hs−1
((εT

l+s − ε
T
l+s+1) × (IN ⊗ (Rs +Ws))(εl+s − εl+s+1)).

ℵ4 = ε
T
1 (IN ⊗ P(m))ε1.

ℵ5 = −
∑l

s=1 βsε
T
s+1Φεs+1.

ℵ6 = (εs+1 + ε2l+s+1)T
(
HTΛH ⊗ Φ

)
(εs+1 + ε2l+s+1) .

F(m) = (IN ⊗ A(m)) ε1 −

l∑
s=1

βs(H ⊗ B(m)K(m))ε2l+s+1 −

l∑
s=1

βs(H ⊗ B(m)K(m))εs+1.

Φ = diag {Φ1,Φ2, · · · ,ΦN}, Σ(m, v) = λ(m, v)X1(m).
Ψ = −

(∑l
s=1 βs (hs − hs−1) (IN ⊗ (Rs +Ws))

)−1
.

λ(m, v) =
( √
λm1(v),

√
λm2(v), · · · ,

√
λmm−1(v),

√
λmm+1(v), · · · ,

√
λmM(v)

)
.

X1(m) = diag {IN ⊗ P(m), · · · , IN ⊗ P(m)}M−1 .

X2(m) = diag {IN ⊗ P(1), IN ⊗ P(2), · · · , IN ⊗ P(m − 1), IN ⊗ P(m + 1), · · · , IN ⊗ P(M)}M−1 .

A(m) = A(r(t) = m), P(m) = P(r(t) = m) and βs is defined the same way as in (2.10). Define εs as a
block matrix consisting of 3l + 1 block elements. The s-th block element is an Nn × Nn identity matrix,
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denoted by INn, while all other block elements are zero matrices. Therefore, εs can be expressed as
εs = [0, 0, · · · , INn, 0, 0, · · · , 0] ∈ RNn×(3l+1)Nn for s = 1, 2, · · · , 3l + 1.

Proof of Theorem 1. Think about the Lyapunov-Krasovskii functional presented as follows:

V
(
t, δt, δ̇t, r(t)

)
=

3∑
i=1

Vi

(
t, δt, δ̇t, r(t)

)
, t ∈ [ts, ts+1] , (3.2)

where
V1

(
t, δt, δ̇t, r(t)

)
= δT (t) (IN ⊗ P(r(t))) δ(t), (3.3)

V2

(
t, δt, δ̇t

)
=

l∑
s=1

βs

∫ t−hs−1

t−hs

δT (µ) × (IN ⊗ Qs) δ(µ)dµ, (3.4)

V3(t, δt, δ̇t) =
l∑

s=1

βs

∫ −hs−1

−hs

∫ t

t+v
δ̇T (µ)(IN ⊗ (Rs +Ws))δ̇(µ)dµdv. (3.5)

Consider the weak infinitesimal generator

ℑV (t, zt) = lim
∆→0+

1
∆
{E{V(t + ∆, δt+∆, δ̇t+∆, r(t + ∆)) | δt, r(t) = m} − V(t, δt, δ̇t, r(t))}. (3.6)

Introduce
y(t) = (δT (t), δT (t − τ1(t)) , · · · , δT (t − τl(t)) , δT (t − h1) , · · · , δT (t − hl) , eT (t − τ1(t)) , · · · ,
eT (t − τl(t))), y(t) ∈ R(3l+1)Nn, A(m) = A(r(t) = m), P(m) = P(r(t) = m),∀m ∈ D.
Thus, we obtain

E[ℑV1(t, δt, δ̇t, r(t))]

=E[ lim
∆→0+

1
∆
{E{V1(t + ∆, δt+∆, δ̇t+∆, r(t + ∆) | δt, r(t) = m)} − V1

(
t, δi, δ̇i, r(t)

)
}]

=E[yT (t)(FT (m)(IN ⊗ P(m))ε1 + ε
τ
1(IN ⊗ P(m))F(m) +

M∑
n=1

λmn(v)ετ1(IN ⊗ P(n))ε1)y(t)],

(3.7)

where

F(m) =
(
IN ⊗ A(m)

)
ε1 −

l∑
s=1

βs

(
H ⊗ B(m)K(m)

)
ε2l+s+1 −

l∑
s=1

βs

(
H ⊗ B(m)K(m)

)
εs+1.

E
[
ℑV2

(
t, δi, δ̇t

)]
=E{yT (t)(β1δ

T (t − h0)(IN ⊗ Q1)δ(t − h0) − β1δ
T (t − h1)(IN ⊗ Q1)δ(t − h1)

+

l∑
s=2

βs(δT (t − hs−1)(IN ⊗ Qs)δ(t − hs−1) − δT (t − hs)(IN ⊗ Qs)δ(t − hs)))y(t)},

(3.8)
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and

E[ℑV3

(
t, δt, δ̇t

)
] =E

[ l∑
s=1

βs(hs − hs−1)δ̇T (t)
(
IN ⊗ (Rs +Ws)

)
δ̇(t)

−

l∑
s=1

βs

∫ t−hs−1

t−hs

δ̇T (v)
(
IN ⊗ (Rs +Ws)

)
δ̇(v)dv

]
.

(3.9)

According to Jensen’s inequality, it can be obtained that

−

l∑
s=1

βs

∫ t−hs−1

t−hs

δ̇T (ν)
(
IN ⊗

(
Rs +Ws

))
δ̇(ν)dν

≤ −

l∑
s=1

βs
1

hs − hs−1

∫ t−hs−1

t−hs

δ̇T (ν)dν ×
(
IN ⊗

(
Rs +Ws

)) ∫ t−hs−1

t−hs

δ̇(ν)dν.

(3.10)

Submit (2.10) and (3.10) into (3.9), and we can obtain

E
[
ℑV3

(
t, δt, δ̇t, r(t)

)]
≤ yT (t)

 l∑
s=1

βs (hs − hs−1) × FT (m) (IN ⊗ (Rs +Ws)) F(m)

−

l∑
s=1

βs
1

hs − hs−1

(
εT

l+s − ε
T
l+s+1

)
× (IN ⊗ (Rs +Ws))

(
εT

l+s − ε
T
l+s+1

)]
y(t).

(3.11)

From (2.3), we can obtain

eT (t − τs)Φe (t − τs) ≤ zT (t − τs) (Λ ⊗ Φ)z (t − τs)
= (δ (t − τs) + e (t − τs))T (HTΛH ⊗ Φ) × (δ (t − τs) + e (t − τs)),

(3.12)

where e (t − τs) = col{e1 (t − τs) , e2 (t − τs) , · · · , eN (t − τs)} , Λ = diag {σ1, σ2, · · · , σN}. Additionally,
z (t − τs) = col{z1 (t − τs) , z2 (t − τs) , · · · , zN (t − τs)}.
Thus, combine (3.8–3.10) with (3.11), and we can obtain

E
[
ℑV

(
t, δt, δ̇t, r(t)

)]
≤ E[yT (t)

l∑
s=1

βs

(
Ξ − ET

s+1ΦEs+1 + (Es+1 + E2l+s+1)T (HTΛH ⊗ Φ)(Es+1 + E2l+s+1)]y(t),
(3.13)

and

E
[
ℑV

(
t, δt, δ̇t, r(t)

)]
≤ E[yT (t)

l∑
s=1

βs

(
Ξ − ET

s+1ΦEs+1 + (Es+1 + E2l+s+1)T (HTΛH ⊗ Φ)(Es+1 + E2l+s+1)]y(t).
(3.14)

Applying the Schur complement and (3.1) leads to the conclusion that

E
[
ℑV

(
t, δt, δ̇t, r(t)

)]
< 0, (3.15)
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where
Ξ = ℵ1 + ℵ2 + ℵ3 + ℵ4 + ℵ5 + ℵ6.

Hence, the consensus (3.1) of the multi-agent system can be attained in a mean squared sense under
the event-triggered method given by (2.3). □

Keeping Theorem 1’s results in mind, this method provides an efficient approach to design consensus
controller gains.

Theorem 2. Under Assumption 1, and by utilizing the protocol given by (2.7), we have the following
constants 0 = h0 < h1 < · · · < hs < · · · < hl, πi ∈ [0, 1], σi > 0, i ∈ IN and µ > 0. The multi-agent system
consensus (2.10) can be achieved in the mean-square sense with the stochastic sampled even-triggered
strategy (2.3) if there exist the matrices P̂(m) > 0, Q̂s > 0, R̂s > 0, Ŵs > 0 and Φ̂ > 0 and the matrices
K̂(m),m ∈ D and s ∈ Il satisfy the following inequality:

Ξ̂ (hm − h(m−1))F̂T (m) Σ̂(m, v)
∗ Ψ̂ O
∗ ∗ −X̂2(m)

 < 0, (3.16)

where Ξ̂ = ℵ̂1 + ℵ̂2 + ℵ̂3 + ℵ̂4 + ℵ̂5 + ℵ̂6.

ℵ̂1 = F̂T (m)ε1 + ε
T
1 F̂(m) + εT

1λmm(v)
(
IN ⊗ P̂(m)

)
ε1.

ℵ̂2 =β1ε
T
1

(
IN ⊗ Q̂1

)
ε1 − β1ε

T
l+1

(
IN ⊗ Q̂1

)
εl+1 +

l∑
s=2

βs

(
εT

l+s

(
IN ⊗ Q̂s

)
εl+s

− εT
l+s+1

(
IN ⊗ Q̂s

)
εl+s+1).

ℵ̂3 = −

l∑
s=1

βs
1

hs − hs−1
(
(
εT

l+s − ε
T
l+s+1

)
(IN ⊗

(
R̂s + Ŵs

)
) (εl+s − εl+s+1)).

ℵ̂4 = ε
T
1 (IN ⊗ P̂(m))ε1.

ℵ̂5 = −
∑l

s=1 βsε
T
s+1

(
Φ̂
)
εs+1.

ℵ̂6 = (εs+1 + ε2l+s+1)T
(
HTΛH ⊗ Φ̂

)
(εs+1 + ε2l+s+1).

F̂(m) =
(
IN ⊗ A(m)P̂(m)

)
ε1 −

l∑
s=1

βs(H ⊗ B(m)K̂(m))ε2l+s+1 −

l∑
s=1

βs(H ⊗ B(m)K̂(m))εs+1.

Φ̂ = diag
{
Φ̂1, Φ̂2, · · · , Φ̂N

}
, Φ̂i = P̂(m)ΦiP̂(m), P̂(m) = P−1(m), Φ̂s = P̂(m)ΦsP̂(m).

Ψ̂ =

l∑
s=1

(βs (hs − hs−1))−1
(
µ2 (IN ⊗ (Rs +Ws)) −2µ

(
IN ⊗ P̂(m)

))
.

R̂s = P̂(m)RsP̂(m), Ŵs = P̂(m)WsP̂(m), Σ̂(m, v) = λ(m, v)X̂1(m).
λ(m, v) =

( √
λm1(v),

√
λm2(v), · · · ,

√
λmm−1(v),

√
λmm+1(v), · · · ,

√
λmM(v), 0, · · · , 0

)
.

X̂1(m) = diag
{
IN ⊗ P̂(m), · · · , IN ⊗ P̂(m),O, · · · ,O

}
.

X̂2(m) = diag
{
IN ⊗ P̂(1), IN ⊗ P̂(2), · · · , IN ⊗ P̂(m − 1), IN ⊗ P̂(m + 1), · · · , IN ⊗ P̂(M),O, · · · ,O

}
.

In addition, the feedback gain is supplied by K(m)=K̂(m)P̂−1(m) and the event-triggered parameter
matrix is given by Φ(m) = P̂−1(m)Φ̂(m)P̂−1(m).

Proof of Theorem 2. Here we present the definitions of matrix variables K(m) = K̂(m)P̂−1(m), P̂(m) =
P−1(m) and Φ̂(m) = P̂(m)Φ(m)P̂(m). We pre- and post-multiply both sides of (3.3) by the
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matrix diag{IN ⊗ P−1(m), IN ⊗ P−1(m), IN ⊗ P−1(m), InN}, and both sides of (3.2) by the matrix
diag{IN ⊗ P−1(m), IN ⊗ P−1(m)}, respectively.
Lemma 1 enables one to derive the subsequent inequality.
−

(
IN ⊗ P̂(m)

) (∑l
s=1 β (hs − hs−1) (IN ⊗ (Rs +Ws))

)−1
×

(
IN ⊗ P̂(m)

)
≤ µ2

(∑l
s=1 β (hs − hs−1) (IN ⊗ (Rs +Ws))

)
− 2µ

(
IN ⊗ P̂(m)

)
;

we can get 
Ξ̂ (hm − h(m−1))F̂T (m) Σ̂(m, v)
∗ Ψ̂ O
∗ ∗ −X̂2(m)

 < 0, (3.17)

where Ξ̂ = ℵ̂1 + ℵ̂2 + ℵ̂3 + ℵ̂4 + ℵ̂5 + ℵ̂6,
ℵ̂1 = F̂T (m)ε1 + ε

T
1 F̂(m) + εT

1λmm(v)
(
IN ⊗ P̂(m)

)
ε1,

ℵ̂2 =β1ε
T
1

(
IN ⊗ Q̂1

)
ε1 − β1ε

T
l+1

(
IN ⊗ Q̂1

)
εl+1 +

l∑
s=2

βs

(
εT

l+s

(
IN ⊗ Q̂s

)
εl+s

−εT
l+s+1

(
IN ⊗ Q̂s

)
εl+s+1

)
,

ℵ̂3 = −

l∑
s=1

βs
1

hs − hs−1

((
εT

l+s − ε
T
l+s+1

)
(IN ⊗

(
R̂s + Ŵs

)
) (εl+s − εl+s+1)),

ℵ̂4 = ε
T
1 (IN ⊗ P̂(m))ε1,

ℵ̂5 = −
∑l

s=1 βsε
T
s+1

(
Φ̂
)
εs+1,

ℵ̂6 = (εs+1 + ε2l+s+1)T
(
HTΛH ⊗ Φ̂

)
(εs+1 + ε2l+s+1) ,

F̂(m) =
(
IN ⊗ A(m)P̂(m)

)
ε1 −

l∑
s=1

βs(H ⊗ B(m)K̂(m))ε2l+s+1 −

l∑
s=1

βs(H ⊗ B(m)K̂(m))εs+1,

Φ̂ = diag
{
Φ̂1, Φ̂2, · · · , Φ̂N

}
, Φ̂i = P̂(m)ΦiP̂(m), P̂(m) = P−1(m), Φ̂s = P̂(m)ΦsP̂(m),

Ψ̂ =

l∑
s=1

(βs (hs − hs−1))−1
(
µ2 (IN ⊗ (Rs +Ws)) −2µ

(
IN ⊗ P̂(m)

))
,

R̂s = P̂(m)RsP̂(m),Ŵs = P̂(m)WsP̂(m), Σ̂(m, v) = λ(m, v)X̂1(m),
λ(m, v) =

( √
λm1(v),

√
λm2(v), · · · ,

√
λmm−1(v),

√
λmm+1(v), · · · ,

√
λmM(v), 0, · · · , 0

)
,

X̂1(m) = diag
{
IN ⊗ P̂(m), · · · , IN ⊗ P̂(m),O, · · · ,O

}
,

X̂2(m) = diag
{
IN ⊗ P̂(1), IN ⊗ P̂(2), · · · , IN ⊗ P̂(m − 1),

IN ⊗ P̂(m + 1), · · · , IN ⊗ P̂(M),O, · · · ,O
}
.

The proof is therefore complete. □

In Theorems 1 and 2, we establish sufficient conditions for achieving consensus in event-triggered
semi-Markov jump multi-agent systems through stochastic sampling. But the sufficient conditions do
not satisfy linear matrix inequality (LMI) conditions , because λ(m, v) is time-varying. As a result,
the problems cannot be directly solved by using the LMI toolbox in MATLAB. Nevertheless, we can
establish lower and upper bounds for the transition rate and apply the theorem presented below to
overcome this issue.

Theorem 3. Under Assumption 1, and by utilizing the protocol given by (2.7), we have the following
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constants 0 = h0 < h1 < · · · < hs < · · · < hl, πi ∈ [0, 1], σi > 0, i ∈ IN and µ > 0. By utilizing
the stochastic sampled event-triggered strategy (2.3) and assuming the existence of positive matrices
P̂(m), Q̂s, R̂s, Ŵ s, Φ̂, consensus of the multi-agent system (2.10) can be achieved in a mean square sense.
This is subject to the condition that the matrices K̂(m),m ∈ D and s ∈ Il satisfy the following inequality:


Ξ̂ (hm − h(m−1))F̂T (m) Σ̂(m)
∗ Ψ̂ O
∗ ∗ −X̂2

 < 0, (3.18)

 Ξ̂ (hm − h(m−1))F̂T (m) Σ̂(m)
∗ Ψ̂ O
∗ ∗ −X̂2

 < 0, (3.19)

where Ξ̂ = ℵ̂1 + ℵ̂2 + ℵ̂3 + ℵ̂4 + ℵ̂5 + ℵ̂6,
ℵ̂1 = F̂T (m)ε1 + ε

T
1 F̂(m) + εT

1λmm

(
IN ⊗ P̂(m)

)
ε1,

Ξ̂ = ℵ̂1 + ℵ̂2 + ℵ̂3 + ℵ̂4 + ℵ̂5 + ℵ̂6,
ℵ̂1 = F̂T (m)ε1 + ε

T
1 F̂(m) + εT

1λmm

(
IN ⊗ P̂(m)

)
ε1,

Σ̂(m) = λ(m)X̂1(m), Σ̂(m) = λ̄(m)X̂1(m),

λ(m) =
(√
λm1,

√
λm2, · · · ,

√
λmm−1,

√
λmm+1, · · · ,

√
λmM, 0, · · · , 0

)
,

λ(m) =
(√
λm1,

√
λm2, · · · ,

√
λmm−1,

√
λmm+1, · · · ,

√
λmM, 0, · · · , 0

)
.

The definitions of Theorem 2 are applicable to the remaining terms in the inequalities. By using the
same strategy for proof as Theorem 2 of [35], the theorem may be simply constructed. Therefore, it is
omitted here.
Remark 6. It is worth mentioning that Theorem 3’s conclusion is relatively conservative. To decrease
conservativeness, the sojourn-time division method is used by dividing the sojourn time υ by J and
denoting the pth segment as λnm,p and λnm,p to represent the upper and lower bounds on the transmission
probability, respectively. The conclusions drawn are relatively lenient.

Corollary 1. Under Assumption 1 and the protocol (2.7), where 0 = h0 < h1 < · · · < hs < · · · < hl,
πi ∈ [0, 1], σi > 0, i ∈ IN and µ > 0, the multi-agent system consensus (2.10) can be achieved in a
mean-square sense with the stochastic sampled event-triggered strategy (2.3). This can be achieved
if there exists a positive matrix P̂(m), and positive matrices Q̂s, R̂s, Ŵs, Φ̂, along with the matrices
K̂(m),m ∈ D, s ∈ Il, which satisfy the following LMI:

Ξ̂(m, p) (hm − h(m−1))F̂T (m, p) Σ̂(m, p)
∗ Ψ̂(m, p) O
∗ ∗ −X̂2(m, p)

 < 0,

 Ξ̂(m, p) (hm − h(m−1))F̂T (m, p) Σ̂(m, p)
∗ Ψ̂(m, p) O
∗ ∗ −X̂2(m, p)

 < 0,
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in which Ξ̂(m, p), Ξ̂(m, p), Σ̂(m, p), Σ̂(m, p), F̂(m, p), P̂(m, p), X̂2(m, p), Ψ̂(m, p), Υ̂1(m, p) and Υ̂2(m, p)
are similarly defined as in Theorem 3, with the exception that (m) is substituted by (m, p). Furthermore,
the feedback gain is given by K(m, p) = K̂(m, p)P̂−1(m, p). Moreover, the expression for the feedback
gain is defined as K(m, p) = K̂(m, p)P̂−1(m, p). The parameter matrix for the event-triggered strategy is
denoted as Φ(m, p) = P̂−1(m, p)Φ̂(m, p)P̂−1(m, p), where Φ̂(m, p) is an estimated parameter and m is an
element in the set D while p is an element in the index set IJ.

4. Numerical example

Within this part, we will provide a numerical illustration to showcase the efficacy of the suggested
design methodology. For consideration of a semi-Markov jump multi-agent system, which contains
a leader and five followers, we assume that the model is described in formula (2.1). The coefficient

matrices of the system equation are Ar, Br, Cr, r = 1, 2, 3. A(1) =
(
−14 −18
−11 −28

)
, A(2) =

(
−16 −16
−15 −23

)
,

A(3) =
(
−13 −18
−11 −20

)
, B(1) =

(
17
2

)
, B(2) =

(
6

12

)
, B(3) =

(
6
8

)
. The topology of the network is

shown in Figure 1. The corresponding Laplacian matrix L and the leader adjacency matrix B can be
derived in the manner shown as follows:

L =


1 −1 0 0 0
0 0 0 0 0
−1 0 1 0 0
0 0 −1 1 0
0 0 −1 0 1


, B = diag(1, 1, 0, 0, 0).

0

2

1 3

4

5

Figure 1. The leader and five followers topology.

Let the event-trigged parameters be σ1 = 6.353, σ2 = 7.163, σ3 = 6.093, σ4 = 7.533 and σ5 = 6.312.
The stochastic sampling period h takes values from the set {h1, h2} = {0.1s, 0.2s} with probabilities of
occurrence π1 = Pr{h = h1} = 0.2 and θ2 = Pr{h = h2} = 0.8. With these values, we can obtain that
ρ1 = 0.6, ρ2 = 0.4. By utilizing MATLAB’s LMI toolbox, we can verify the feasibility of solutions to
LMIs (3.18, 3.19) for µ = 4 in Theorem 3. The event-triggered parameter metrics are derived as follows:

Φ1 =

(
3.1159 0.0189
0.0189 3.1294

)
, Φ2 =

(
3.1153 0.0195
0.0196 3.1279

)
, and Φ3 =

(
3.1149 0.0195
0.0195 3.1279

)
. The consensus

feedback matrices are as follows: K(1) =
(

0.0058 −0.0038
)
, K(2) =

(
0.0027 −0.0011

)
, K(3) =(

0.0048 −0.0023
)
. The initial states of the leader and followers were selected as follows: x0(0) =(

1 0
)
, x1(0) =

(
3.547 9.553

)
, x2(0) =

(
−6.154 5.902

)
, x3(0) =

(
3.594 −7.611

)
, x4(0) =
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9.341 7.841

)
, x5(0) =

(
2.301 12.24

)
. The tracking errors between the leader and the followers

are shown in Figures 2 and 3.

Figure 2. The system state e1.

Figure 3. The system state e2.

Figure 4 illustrates the point in time at which an event is triggered. It indicates that the triggering of
the event occurs at a lower frequency than the sampling rate.
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Figure 4. Event-triggered instants for each agent.

Figure 5. The semi-Markov switching system state trajectory under the event-triggered protocol.

Furthermore, the stochastic sampling period h is shown in Figure 6.
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Figure 6. Stochastic sampling period h.

We can compare our simulation example with that in [34]. Both our article and [34] share
the same state equations. However, [34] adopted a static event-triggered protocol, while we
added a process of stochastic sampling to its event-triggered protocol. Compared with the figure
in [34], the multi-agent system controlled by stochastic sampling event-triggered control has a
faster convergence rate and smaller steady-state error. Thus, this example validates the validity of
Theorem 3.

5. Discussion

The paper presented a study on the mean-square consensus of a semi-Markov jump multi-agent
system based on event-triggered stochastic sampling. We have proposed a novel approach to improve
the efficiency of multi-agent systems for consensus control.

The results of the study showed that the proposed approach was effective in achieving mean-square
consensus in multi-agent systems. The use of event-triggering via stochastic sampling reduced the
communication frequency and improved the computational efficiency of the system. The semi-Markov
jump model provided a more accurate representation of the state transitions in the system.

However, there are some limitations to this study. The numerical examples presented in the paper
were relatively small, and it is unclear how the proposed approach would scale to larger multi-agent
systems. Additionally, the study assumed perfect knowledge of the system parameters, which may not
be the case in real-world scenarios.

Future research can further investigate the robustness of the proposed approach against uncertainties
and disturbances in the system. The scalability of the approach can also be explored in more details,
and the approach can be tested on more complex multi-agent systems.
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6. Conclusions

The study presented in this article focuses on the use of multi-agent systems for the leader-follower
consensus control topic. We have proposed a novel event-triggered stochastic sampling approach
and investigated the use of a semi-Markov switching system architecture. We have also developed
appropriate measures for mean-square consensus in multi-agent systems.

The results of the numerical example presented in this study demonstrate the accuracy of the
theoretical computations. The proposed approach has the potential to improve the efficiency of multi-
agent systems for consensus control in various applications.

Use of AI tools declaration

The authors declare that they have not used artificial intelligence tools in the creation of this article.

Acknowledgments

This work was supported by the College Students’ Innovation and Entrepreneurship Program of the
Ministry of Education (202211306068), Excellent Scientific Research and Innovation Team of Anhui
Colleges (2022AH010098), Innovation and Entrepreneurship Training Program for College Students in
Anhui Province (S202211306114, S202211306134), Quality Engineering Project of Chizhou University
(2022XXSKC09), Chizhou University Introducing Doctoral Research Startup Project (CZ2022YJRC08),
and Key Research Project of Chizhou University (CZ2021ZR03, CZ2023ZRZ04).

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. X. Ren, D. Li, Y. Xi, H. Shao, Distributed multi-agent optimization via coordination
with second-order nearest neighbors, IET Control Theory Appl., 14 (2020), 1733–1743.
https://doi.org/10.1049/iet-cta.2019.0708

2. X. Tan, M. Cao, J. Cao, Distributed dynamic event-based control for nonlinear
multi-agent systems, IEEE Trans. Circuits Syst. II Exp. Briefs, 68 (2021), 687–691.
https://doi.org/10.1109/TCSII.2020.3006125

3. Y. L. Wang, Q. L. Han, M. R. Fei, C. Peng, Network-based t − s fuzzy dynamic position-
ing controller design for unmanned marine vehicles, IEEE Trans. Cybern., 48 (2018), 1–14.
https://doi.org/10.1109/TCYB.2018.2829730

4. Y. L. Wang, Q. L. Han, Network-based modelling and dynamic output feedback control
for unmanned marine vehicles in network environments, Automatica, 91 (2018), 43–53.
https://doi.org/10.1016/j.automatica.2018.01.026

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14241–14259.

http://dx.doi.org/https://doi.org/10.1049/iet-cta.2019.0708
http://dx.doi.org/https://doi.org/10.1109/TCSII.2020.3006125
http://dx.doi.org/https://doi.org/10.1109/TCYB.2018.2829730
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.01.026


14257

5. W. He, C. Xu, Q. L. Han, F. Qian, Z. Lang, Finite-time L2 leader-follower consensus of networked
euler-lagrange systems with external disturbances, IEEE Trans. Syst. Man Cybern. Syst., 48 (2017),
1–9. 10.1109/TSMC.2017.2774251

6. X. Wang, H. Wu, J. Cao, Global leader-following consensus in finite time for fractional-order
multi-agent systems with discontinuous inherent dynamics subject to nonlinear growth, Nonlinear
Anal.-Hybri. Syst., 37 (2020), 100888. https://doi.org/10.1016/j.nahs.2020.100888

7. S. V. Feofilov, A. Kozyr, Stability of periodic movements in sampled data relay
feedback control systems, in 2019 1st International Conference on Control Systems,
Mathematical Modelling, Automation and Energy Efficiency (SUMMA), (2019), 18–21.
https://doi.org/10.1109/SUMMA48161.2019.8947604

8. E. Rosenwasser, W. Drewelow, T. Jeinsch, Synchronous sampled-data modal control of a linear pe-
riodic object with lti actuator, in 2020 International Russian Automation Conference (RusAutoCon),
(2020), 49–56. https://doi.org/10.1109/RusAutoCon49822.2020.9208195

9. W. He, S. Lv, C. Peng, N. Kubota, F. Qian, Improved leaderless consenus criteria of net-
worked multi-agent systems based on the sampled data, Int. J. Syst. Sci., 49 (2018), 2737–2752.
https://doi.org/10.1080/00207721.2018.1505005

10. W. He, S. Lv, X. Wang, F. Qian, Leaderless consensus of multi-agent systems via an
event-triggered strategy under stochastic sampling, J. Franklin I., 356 (2019), 6502–6524.
https://doi.org/10.1016/j.jfranklin.2019.05.033

11. Y. C. Sun, G. H. Yang, Periodic event-triggered resilient control for cyber-physical
systems under denial-of-service attacks, J. Franklin I., 355 (2018), 5613–5631.
https://doi.org/10.1016/j.jfranklin.2018.06.009

12. H. Li, Y. Fan, G. Pan, C. Song, Event-triggered remote dynamic control for network control systems,
in 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV),
(2020), 483–488. https://doi.org/10.1109/ICARCV50220.2020.9305348

13. D. Liu, G. H. Yang, Robust event-triggered control for networked control systems, Inform. Sci.,
459 (2018), 186–197. https://doi.org/10.1016/j.ins.2018.02.057

14. M. Hertneck, S. Linsenmayer, F. Allgower, Nonlinear dynamic periodic event-triggered
control with robustness to packet loss based on non-monotonic lyapunov functions,
in 2019 IEEE 58th Conference on Decision and Control (CDC), (2019), 1680–1685.
https://doi.org/10.1109/CDC40024.2019.9029770

15. T. Y. Zhang, D. Ye, Distributed event-triggered control for multi-agent systems un-
der intermittently random denial-of-service attacks, Inform. Sci., 542 (2021), 380–390.
https://doi.org/10.1016/j.ins.2020.06.070

16. Z. G. Wu, Y. Xu, R. Lu, Y. Wu, T. Huang, Event-triggered control for consensus of multiagent
systems with fixed/switching topologies, IEEE Trans. Syst. Man Cybern. Syst., 48 (2018), 1736–
1746. http://dx.doi.org/10.1109/TSMC.2017.2744671

17. S. Lv, W. He, F. Qian, J. Cao, Leaderless synchronization of coupled neural
networks with the event-triggered mechanism, Neural Netw., 105 (2018), 316–327.
https://doi.org/10.1016/j.neunet.2018.05.012

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14241–14259.

http://dx.doi.org/10.1109/TSMC.2017.2774251
http://dx.doi.org/https://doi.org/10.1016/j.nahs.2020.100888
http://dx.doi.org/https://doi.org/10.1109/SUMMA48161.2019.8947604
http://dx.doi.org/https://doi.org/10.1109/RusAutoCon49822.2020.9208195
http://dx.doi.org/https://doi.org/10.1080/00207721.2018.1505005
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2019.05.033
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2018.06.009
http://dx.doi.org/https://doi.org/10.1109/ICARCV50220.2020.9305348
http://dx.doi.org/https://doi.org/10.1016/j.ins.2018.02.057
http://dx.doi.org/https://doi.org/10.1109/CDC40024.2019.9029770
http://dx.doi.org/https://doi.org/10.1016/j.ins.2020.06.070
http://dx.doi.org/http://dx.doi.org/10.1109/TSMC.2017.2744671
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2018.05.012


14258

18. D. Liu, G. H. Yang, Dynamic event-triggered control for linear time-invariant systems with L2-gain
performance, Int. J. Robust Nonlin., 29 (2018), 507–518. https://doi.org/10.1002/rnc.4403

19. X. Yi, K. Liu, D. V. Dimarogonas, K. H. Johansson, Dynamic event-triggered and self-
triggered control for multi-agent systems, IEEE Trans. Automat. Contr., 64 (2019), 3300–3307.
https://doi.org/10.1109/TAC.2018.2874703

20. D. Liu, G. H. Yang, A dynamic event-triggered control approach to leader-following consen-
sus for linear multiagent systems, IEEE Trans. Syst. Man, and Cybern. Syst., 50 (2020), 1–9.
https://doi.org/10.1109/TSMC.2019.2960062

21. S. L. Du, T. Liu, D. W. C. Ho, Dynamic event-triggered control for leader-following con-
sensus of multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 50 (2018), 2168–2216.
https://doi.org/10.1109/TSMC.2018.2866853

22. W. He, B. Xu, Q. L. Han, F. Qian, Adaptive consensus control of linear multiagent
systems with dynamic event-triggered strategies, IEEE Trans. Cybern., 50 (2019), 1–13.
https://doi.org/10.1109/TCYB.2019.2920093

23. X. M. Zhang, Q. L. Han, B. L. Zhang, An overview and deep investigation on sampled-data-based
event-triggered control and filtering for networked systems, IEEE Trans. Ind. Inform., 13 (2016),
4–16. https://doi.org/10.1109/TII.2016.2607150

24. L. Liu, S. Zhu, B. Wu, Asynchronous sampled-data consensus of singular multi-agent
systems based on event-triggered strategy, Int. J. Syst. Sci., 50 (2019), 1530–1542.
https://doi.org/10.1080/00207721.2019.1616232

25. H. Su, Z. Wang, Z. Song, X. Chen, Event-triggered consensus of nonlinear multi-agent sys-
tems with sampling data and time delay, IET Control Theory Appl., 11 (2016), 1715–1725.
https://doi.org/10.1049/iet-cta.2016.0865

26. H. Wangli, L. Siqi, W. Xiaoqiang and Q. Feng, Leaderless consensus of multi-agent systems
via an event-triggered strategy under stochastic sampling, J. Franklin I., 356 (2019), 6502–6524.
https://doi.org/10.1016/j.jfranklin.2019.05.033

27. X. Ruan, J. Feng, C. Xu, J. Wang, Observer-based dynamic event-triggered strategies for leader-
following consensus of multi-agent systems with disturbances, IEEE Trans. Netw. Sci. Eng., 7
(2020), 3148–3158. https://doi.org/10.1109/TNSE.2020.3017493

28. X. Li, H. Wu, J. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via
a nonlinear dynamic event-triggered control strategy, Math. Comput. Simulat., 203 (2023), 647–668.
https://doi.org/10.1016/j.matcom.2022.07.010

29. A. Hu, J. Cao, M. Hu, L. Guo, Event-triggered consensus of Markovian jumping multi-agent systems
via stochastic sampling, IET Control Theory Appl., 9 (2015), 1964–1972. https://doi.org/10.1049/iet-
cta.2014.1164

30. X. H. Ge, Q. L. Han, Consensus of multiagent systems subject to partially accessible and
overlapping markovian network topologies, IEEE Trans. Cyberne., 47 (2017), 1807–1819.
https://doi.org/10.1109/TCYB.2016.2570860

31. L. Wang, Y. Dong, D. Xie, J. Cao, Robust passivity analysis of markov-type lotka–volterra model

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14241–14259.

http://dx.doi.org/https://doi.org/10.1002/rnc.4403
http://dx.doi.org/https://doi.org/10.1109/TAC.2018.2874703
http://dx.doi.org/https://doi.org/10.1109/TSMC.2019.2960062
http://dx.doi.org/https://doi.org/10.1109/TSMC.2018.2866853
http://dx.doi.org/https://doi.org/10.1109/TCYB.2019.2920093
http://dx.doi.org/https://doi.org/10.1109/TII.2016.2607150
http://dx.doi.org/https://doi.org/10.1080/00207721.2019.1616232
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2016.0865
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2019.05.033
http://dx.doi.org/https://doi.org/10.1109/TNSE.2020.3017493
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2022.07.010
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2014.1164
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2014.1164
http://dx.doi.org/https://doi.org/10.1109/TCYB.2016.2570860


14259

with time-varying delay and uncertain mode transition rates, Math. Methods Applied Sci., 43 (2020),
6976–6984. https://doi.org/10.1002/mma.6447

32. J. Dai, G. Guo, Exponential consensus of nonlinear multi-agent systems with semi-markov switch-
ing topologies, IET Control Theory and Appl., 11 (2017), 3363–3371. https://doi.org/10.1049/iet-
cta.2017.0562

33. B. Wang, Q. Zhu, Mode dependent H∞ filtering for semi-Markovian jump linear systems with
sojourn time dependent transition rates, IET Control Theory Appl., 13 (2019), 3019–3025.
https://doi.org/10.1049/iet-cta.2019.0141

34. J. Dai, G. Guo, Event-triggered leader-following consensus for multi-agent sys-
tems with semi-markov switching topologies, Inform. Sci., 459 (2018), 290–301.
https://doi.org/10.1016/j.ins.2018.04.054

35. M. He, J. Mu, X. Mu, H∞ leader-following consensus of nonlinear multi-agent systems under
semi-markovian switching topologies with partially unknown transition rates, Inform. Sci., 513
(2020), 168–179. https://doi.org/10.1016/j.ins.2019.11.002

36. X. Xie, Z. Yang, X. Mu, Observer-based consensus control of nonlinear multi-agent systems
under semi-markovian switching topologies and cyber attacks, Int. J. Robust Nonlin., 30 (2020),
5510–5528. https://doi.org/10.1002/rnc.5088

37. Z. Zhang, H. Wu, Cluster synchronization in finite/fixed time for semi-markovian switching t-s
fuzzy complex dynamical networks with discontinuous dynamic nodes, AIMS Math., 7 (2022),
11942–11971. http://dx.doi.org/10.3934/math.2022666

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14241–14259.

http://dx.doi.org/https://doi.org/10.1002/mma.6447
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2017.0562
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2017.0562
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2019.0141
http://dx.doi.org/https://doi.org/10.1016/j.ins.2018.04.054
http://dx.doi.org/https://doi.org/10.1016/j.ins.2019.11.002
http://dx.doi.org/https://doi.org/10.1002/rnc.5088
http://dx.doi.org/http://dx.doi.org/10.3934/math.2022666
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries and problem statement
	Graph theorem
	Semi-Markov jump multi-agent systems
	The event-triggered mean square consensus protocol based on stochastic sampled data

	Results
	Numerical example
	Discussion
	Conclusions

