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Abstract: Feature selection has always been an important topic in machine learning and data mining. 
In multi-label learning tasks, each sample in the dataset is associated with multiple labels, and labels 
are usually related to each other. At the same time, multi-label learning has the problem of “curse of 
dimensionality”. Feature selection therefore becomes a difficult task. To solve this problem, this 
paper proposes a multi-label feature selection method based on the Hilbert-Schmidt independence 
criterion (HSIC) and sparrow search algorithm (SSA). It uses SSA for feature search and HSIC as 
feature selection criterion to describe the dependence between features and all labels, so as to select 
the optimal feature subset. Experimental results demonstrate the effectiveness of the proposed 
method. 
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1. Introduction 

Feature selection aims at determining a subset of available features which is most discriminative 
and informative for data analysis [1]. In practical applications, more features may result in higher 
data collection costs, greater difficulty in model interpretation, higher computational costs for the 
predictor, and sometimes lower generalization capabilities [2]. Therefore, it is important to perform 
feature selection before actual learning. 

Label data usually has thousands or even tens of thousands of features, especially images and 
texts; and each instance is associated with multiple labels at the same time. For example, a gene in 
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bioinformatics may be related to multiple functions. Each document in information retrieval may 
cover multiple topics. In image processing, images can be annotated with different scenes. For a 
given learning task, many features are redundant and irrelevant. High-dimensional data may bring 
many shortcomings to the learning algorithm, such as the large amount of calculation, overfitting and 
poor performance. To solve this problem, researchers have proposed multi-label feature selection 
algorithms to reduce the dimension of multi-label data, improve the accuracy of classification 
learning, and generate more compact and generalized classification models. Therefore, multi-label 
feature selection is an important research topic in pattern recognition, machine learning and other 
fields. For example, in the biomedicine field, multi-label feature selection is widely used in case data 
analysis to extract various information contained in cancer data and improve the cure rate of cancer. 
In the financial field, multi-label feature selection helps financial companies better recommend funds 
to users. 

Hilbert-Schmidt independence criterion (HSIC) [3] is a measure of the strength of dependence 
between two variables and is the most common kernel statistical independence criterion, including 
biased HSIC and unbiased HSIC versions. At present, due to the effectiveness and low computational 
complexity of the criterion, it is widely used in various machine learning problems, such as 
clustering [4], dimensionality reduction [5], feature selection [6], independent component analysis 
(ICA) [7] and canonical correlation analysis (CCA) [8]. When HSIC is applied to the feature 
selection problem, it can describe the dependency between the selected features and all labels. 

The swarm intelligence algorithm is a random search algorithm inspired by social behavior 
patterns, evolution mechanisms and physical phenomena of biological groups in nature [9]. It 
includes the ant colony optimization (ACO) [10,11], particle swarm algorithm (PSO) [12–14], grey 
wolf optimization (GWO) [15,16], sparrow search algorithm (SSA) [17], etc. Among them, SSA is a 
new swarm intelligence optimization algorithm proposed by Xue et al. in 2020. Compared with other 
swarm intelligence optimization algorithms, it has the characteristics of high search accuracy, fast 
convergence speed, good stability and strong robustness.  

At present, many researchers have studied multi-label feature selection. Sun et al. [18] proposed 
an improved ReliefF multi-label feature selection algorithm based on global sample correlation, but 
it only relies on the correlation between features and labels to select feature subsets, ignoring the 
dependence between labels. Mutual information (MI) is a dependency measure of variables, and it 
can be used to assess the correlation of variables [19]. González-López et al. [20] proposed two 
multi-label feature selection methods based on minimum redundancy and maximum relevance. Some 
researchers extended mutual information to fuzzy mutual information for feature selection. For 
example, Xiong et al. [21] proposed a feature selection algorithm based on label distribution and 
fuzzy mutual information. Some researchers also extended mutual information to conditional mutual 
information (CMI). Sha et al. [22] proposed a new filtering feature selection method based on CMI, 
and the experimental results show that this method has advantages in label prediction. When HSIC is 
applied to the feature selection problem, it can describe the dependency between the selected features 
and all labels. Liu et al. [23] proposed a multi-label feature selection method based on the unbiased 
HSIC and control genetic algorithm, but it does not consider the dependency between labels. Li et 
al. [24,25] proposed two multi-label feature selection methods with Pareto optimality for continuous 
data, but neither of them is suitable for the case of few features and many labels, and they do not 
analyze the correlation between labels.  

Feature selection can be implemented by swarm intelligence algorithms. Paniri et al. [10] 
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proposed a multi-label feature selection algorithm based on ACO (MLACO). By introducing two 
unsupervised and supervised heuristic functions, the features with low redundancy and high 
relevance to class labels were found. Experimental results show that the method has better 
classification performance. Paniri et al. [11] proposed a multi-label feature selection algorithm 
combining ACO and time difference reinforcement learning. The algorithm can achieve better 
classification performance by using the heuristic function of reinforcement learning ACO. Zhang et 
al. [12] proposed a wrapper multi-label multi-objective feature selection algorithm based on the PSO 
algorithm. This method used a probability-based coding strategy to represent each particle, which 
makes the problem suitable for PSO. Different from the off-line multi-label feature selection methods 
based on PSO, Paul et al. [13] proposed a multi-objective multi-label online feature selection method 
based on PSO. However, the method does not consider the dependence between labels, and if a large 
number of significant features appear before feature selection, it may make the algorithm fall into 
incalculable difficulties. Feature selection based on swarm intelligence algorithms has the 
disadvantages of large computation, being easy to fall into local optima, slow convergence speed and 
bad classification performance. 

This paper proposes a multi-label feature selection method based on HSIC and SSA (MLSSA). 
This method searches features according to SSA, and uses HSIC as a feature selection criterion to 
describe the dependence between features and all labels, and then selects the optimal feature subset. 
The performance of the proposed method is evaluated by experiments on eight datasets. The results 
of different evaluation indicators show that the proposed method can improve the classification 
performance and is superior or competitive to other comparison methods. SSA has been used for 
single-label feature selection [26], but there is no report on the application of SSA to multi-label 
feature selection. Therefore, the proposed algorithm is the first to apply SSA to the field of 
multi-label feature selection, and for the first time to use HSIC in the fitness function to distinguish 
good and bad individuals in the sparrow population. The main contributions of this paper are 
outlined as follows: 

• A multi-label feature selection method based on HSIC and SSA was proposed, which uses 
SSA for feature search and HSIC as feature selection criterion to describe the dependence between 
features and all labels. 

• To the best of our knowledge, this is the first time that SSA is used for multi-label feature 
selection and the HSIC is used as the fitness function of SSA. 

• Comprehensive experiments on real-world datasets verify the effectiveness of the proposed 
MLSSA method. 

The rest of this article is summarized as follows. Section 2 describes the relevant knowledge, 
including HSIC and the sparrow search algorithm. Section 3 introduces the proposed multi-label 
feature selection method in detail. Section 4 discusses the experimental results. Section 5 draws 
conclusions. 

2. Preliminaries 

Suppose the number of samples is m , the number of labels is q , X  is the d  dimension 

instance space d ; Y  is a set of labels with q  possible class labels  1, ,jY y j q   . The task 

of multi-label learning is to learn a function : 2Yh X   from the multi-label training set 
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 ( , ) 1, ,i iD y i m  x . For any unknown instance iE ( ix  is a d  dimensional feature vector, iY  

is a label set related to ix ), the multi-label classifier ( )h   predicts that ( )ih Yx  is the 

appropriate label set of ix . 

2.1. HSIC 

HSIC is an independence measure based on kernel functions. An independence criterion is 
obtained by calculating the empirical estimate of the Hilbert-Schmidt cross-covariance operator norm 
between variables in the reproducing kernel Hilbert space (RKHS). The empirical estimation of 
HSIC has been proved to have the advantages of fast convergence speed and simple calculation 
(computational complexity is 2( )m ) in theory. The greater the value, the stronger the correlation 

between X  and Y  is, and a value of 0 indicates that X  and Y  are independent of each other. 
Let F  be the RKHS of the X  to R , where X  and R  are the metric space and a set of 

real numbers respectively. For a point ',x x X , there is a corresponding element '( ), ( )x x F  

(we call : X F  as a feature map) with ' '( , ) ( ), ( )
F

k x x x x  , where :k X X R   is the 

related reproducing kernel. Let G  be the RKHS of function Y  to R , where Y  is the metric 

space with feature maps :Y G   and ' '( , ) ( ), ( )
G

l y y y y  , where ',y y Y . 

Let ( , )x y X Y   be a random variable derived from the joint probability distribution xyP , 

then the covariance matrix can be defined as: 

 T T( ) ( ) ( )xy xy x yC xy x y     (1) 

where , ,xy x yE E E  are the expected values of the probability distributions xyP , xP  and yP , 

respectively, and y
 is the transpose of y . The Frobenius norm can effectively generalize the 

degreeof linear correlation between x  and y : 

 T
Frob HS|| || || || tr( )xy xy xy xyC C C C   (2) 

where ( )tr   is the trace operator, which is 0 if and only if there is no linear correlation between x  
and y , so it can be used to detect a linear correlation between them. However, such statistics are 

fairly limited [27,28]. 
In order to address these limitations, the concept of the Frobenius norm is extended to HSIC: 

Given two feature mappings : X F   and :Y G  , the linear operator :xyC G F
 
is the 

cross-covariance operator between   and  , such that: 

 , [[ ( ) [ ( )]] [ ( ) [ ( )]]]xy x y x yC x x y y         (3) 

where   is the tensor product. The square of the Hilbert-Schmidt norm of the cross-covariance 
operator can be defined as HSIC: 
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where ' 'xx yy
E

 
is the expected value of ( , ) xyx y P  and ' '( , ) xyx y P . It shows that the 

Hilbert-Schmidt norm exists when the kernels k  and l  are bounded. If both feature maps are 
linear, then HSIC is the same as the second power of the Frobenius norm [29,30]. 

Given a set 1{( , )}m
i i iD x y   from Pxy  

and the selected kernel k  and l , we can form two 

kernel matrices ,  Rm mK L , where ( , )ij i jk x xK , ( , )ij i jl y yL , and it takes the following form: 

 
2

1
(F,G, ) tr( )

( 1)
HSIC D

m



 KHLH  (5) 

where T R m m
m m m m   H I e e  is the central matrix, R m

m
mI  and R m

m e  are the unit matrix 

and vector of 1, respectively. 

2.2. Sparrow search algorithm 

The SSA algorithm is an optimal search strategy designed for the search and anti-predation 
characteristics of sparrow. Its basic principle is that the search process can be summarized as a 
discoverer-entrant model, and the reconnaissance and early warning mechanism is incorporated. It is 
found that individuals are highly adaptable and have a wide range of search capabilities, which can 
guide group search and foraging. In order to better adapt to the environment, the attender will follow 
the discoverers for foraging. In addition, in order to increase their ability to hunt, some individuals 
monitor the finders in order to compete for food or search for food around them [31]. 

Suppose that there are N  sparrows in d  dimensional search space, and the position of a 
population of N  sparrows in a d-dimensional space is 1[ , , ]i NP p p  , ,1 ,[ , , ]i i i dp p p  , where 

1,2,i N  , ,i dp  represents the position of the thi  sparrow in the d  dimension search space. 

The adaptation values of the sparrow are 1[ ( ), ( ), ( )]T
p i NF f p f p f p   and

,1 ,2 ,( ) [ ( ), ( ), ( )]i i i i df p f p f p f p  , where 1,2,i N  . Each value in pF  represents the fitness 

value of the individual. In SSA, producers with better fitness values preferentially obtain food during 
the search process. 

Discoverers generally account for 10 to 20%  of the population, and the location update 
formula is as follows: 

 , 21
,

, 2

exp ,

,

t
i dt

i d
t
i d

i
p R ST

Tp

p Q L R ST



       
   

 (6) 

where t  is the current iteration number, T  is the maximum iteration number, and ,
t
i dp  is the thd  

dimensional value of the thi  sparrow at the tht  iteration.   is a uniform random number 
between (0,1] . Q  is a random number obeying standard normal distribution. L  represents a 

matrix of size 1 d  and elements 1. 2 [0,1]R   and [0.5,1]ST   represent the warning value and 

the safety value, respectively. When 2R ST , the population does not find the existence of predators 

or other dangers, the search environment is safe, and discoverers can be widely searched to guide the 
population to obtain a higher fitness. When 2R ST , sparrows detect predators and immediately 
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release danger signals. The population immediately performs anti-predation behavior, adjusts the 
search strategy, and quickly moves closer to the safe area. 

In addition to the discoverer, the remaining sparrows are the entrants and the location is updated 
as follows: 

 
,
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 (7) 

where t
worstp  represents the worst position of the sparrow at the tht  iteration of the population. 

1t
bp   represents the optimal position of the sparrow in the ( 1)tht   iteration. A  represents that 

each element value of a 1 d  matrix is randomly assigned 1 or 1 , T T 1( )A A AA  . When 

2

n
i  , it indicates that the thi  participant does not receive any food, and then it is hungry and has 

low fitness, so in order to gain more energy they must fly to other places to search food. Otherwise, 
the thi  participant will randomly find a position near the current optimal position bp  for foraging. 

Reconnaissance warning sparrows generally account for 10 to 20%  of the population, and the 
location update is as follows: 
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where bestp  is the current optimal position of the population.   is a random number, and follows 

the normal distribution of mean 0 and variance 1. It is also a step size control parameter.  1,1K  
 

represents both the direction in which the sparrow moves and the step size control coefficient. To 
avoid having a denominator of 0, e  is represented as a minimal constant. if  represents the fitness 

value of the current individual, gf
 
and wf  represent the best and worst fitness values of the 

current population, respectively. When i gf f , it indicates that the individual is located in the edge 

population and is vulnerable to natural enemies. When i gf f , it represents an individual located in 

the center of the population, which senses the threat of natural enemies and approaches other 
individuals in time to avoid being attacked by natural enemies. 

3. Proposed method 

In this section, HSIC is used to describe the dependence between features and labels and SSA is 
used for feature search. A multi-label feature selection algorithm MLSSA based on HSIC and SSA is 
proposed. The process is shown in Table 1. First, the algorithm initializes the sparrow population 
parameters. Second, the HSIC value of each feature is calculated and stored in the fitness value, and 
the fitness value is sorted to find the optimal position and the worst position. Then, the current 
sparrow position is updated and obtained, and it is compared with the previous position. If it is better 
than the previous position, the fitness value and the optimal position are updated. Otherwise, the 
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sparrow position is continuously updated until the maximum number of iterations is reached. Finally, 
the recorded positions and fitness values are sorted in descending order, and the top n  features are 
extracted as the optimal feature subset. 

Table 1. MLSSA algorithm. 

Algorithm 1. The pseudo-codes for MLSSA 

Input X : feature data matrix; Y : label data matrix; n : the number of selected features; 

G : the maximal number of generations; N : Sparrow population size;  

Kernel function types and parameters of label data; 
Proportion of sparrow population discoverers, producers, warnings, warning values 2R ;  

1 Initialize sparrow population, set population size, evolution times, warning value, discoverer, producer 

ratio; 

2 Calculate the kernel matrix of label data; 

3 Calculate the HSIC value for each feature and store it in the fitness value; 

4 While （t < G） 

5 Rank the fitness values to find the current optimal fitness value and the worst fitness value, and their 

corresponding position; 

6 2 (1)R rand ; 

7 Update sparrow position according to Eqs (6)–(8); 

8 Get the current position and compare it with the previous optimal position. If it is better than the 

previous optimal position, update and record; 

9 1t t  ; 

10 end 

11 The position and fitness value of the record are sorted in descending order, and the first n  features are 

extracted; 

12 These n  features are the best subset of features; 

Output Optimal feature subset. 

The specific flow chart is shown in Figure 1. For multi-label data, we first preprocess it, and 
then randomly select 300 data and divide them into training set and test set. We calculate the HSIC 
values between each feature and all labels and then put them into the fitness value, that is, we replace 
the fitness function with HSIC. We sort them to find the optimal fitness value and the optimal 
position. We then update and obtain the position and fitness value of the current sparrow. If they are 
better, we update the optimal position and fitness value until the maximum number of iterations is 
reached. 

4. Experiments 

4.1. Datasets 

The datasets used in the experiment can be downloaded from the open source project mulan 
(http://mulan.sourceforge.net/datasets-mlc.html) or Multi-Label Classification Dataset Repository 
(https://www.uco.es/kdis/mllresources). These datasets are widely used in multi-label learning, as 
shown in Table 2. “Name” represents the name of the dataset, “Domain” represents the domain to 
which the dataset belongs, “Instances” represents the total number of samples of the dataset, 
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“Features” represents the total numbers of features of the dataset, “Labels” represents the total 
number of labels of the dataset and “Cardinality” represents the average category to which the 
samples of the dataset belong. These datasets cover different application fields. For example, the 
corel5k dataset contains 5000 corel images, each containing multiple segments such as cats, forests, 
grasslands and tigers, which are used for image classification scenarios. The genbase dataset is used 
for protein function classification, which belongs to biological classification scenarios. The rest of 
the datasets are widely used for text classification. 

 

Figure 1. Algorithm flow chart. 

Tabel 2. Datasets for multi-label learning. 

Name Domain Instances Features Labels Cardinality 

corel5k images 5000 499 374 3.522 

tmc2007-500 text 28596 500 22 2.22 

languagelog text 1460 1004 75 1.180 

medical text 978 1449 45 1.245 

enron text 1702 1001 53 3.378 

chess text 1675 812 227 2.411 

genbase biology 662 1186 27 1.252 

delicious text (web) 16110 500 983 19.020 
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4.2. Evaluating indicators 

The evaluation indicators including accuracy, precision, and recall in traditional single-label 
classification problems are not suitable for multi-label learning problems. The evaluation of 
multi-label learning problems is much more complicated than that of single-label learning. 
Literature [32] defines five commonly used evaluation indicators in multi-label learning, and the 
specific formula can be seen in the original text. The introduction is as follows: 

1) Hamming loss 

 
1

1
( ) ( )

p

i i
i

hloss h h Y
p 

  x  (9) 

where   represents the symmetry difference between two sets, and   returns the cardinality of 

the set  . Hamming loss evaluates the percentage of misclassified instant-label pairs, that is, missing 
a relevant label or predicting an irrelevant label. 

2) One-error  

 
1

1
One-error( ) [[arg max ( , )] ]

p

y L i i
i

f f y Y
p 



  x  (10) 

where the real-valued function :f X L   , ( , )f yx  returns the confidence of the correct label 

of x , and the one-error calculates the proportion of examples where the top-ranked label is not in 
the relevant label set. 

3) Coverage  

 
1

1
coverage( )= max ( , ) 1

i

p

y Y f i
i

f rank y
p 



 x  (11) 

where ( , )frank yx
 
returns the order of y  in L  in the descending order of ( , )f x . The coverage 

evaluation takes on average how many steps to move the sorted label list down to cover all relevant 
labels of the example. 

4) Ranking loss 

  
1

1 1
rloss( )= ( ', '') ( , ') ( , '') , ( ', '')

p

ii i i
i ii

f y y f x y f x y y y Y Y
p Y Y

    (12) 

where ' iy Y  is the related label of ix , '' iy Y  is the unrelated label of ix  and Y  is the 
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complementary set of Y . The ranking loss evalutes the proportion of reverse ranked label pairs, that 
is, the ranking of unrelated labels is higher than that of related labels. 

5) Average precision 

 
 

1

' ( , ') ( , ), '1 1
( )

( , )i

p f i f i i

y Y
i i f i

y rank y rank y y Y
avgprec f

p Y rank y


 
  

x x

x
 (13) 

Average precision evaluates the average score of related labels that are ranked above a particular 

label iy Y . 

For the above metrics (except average precision), the smaller the metric, the better the system 

performance is. The optimal value of coverage is 
1

1
1

p

i
i

Y
p 

 , and the optimal value of one-error 

and ranking loss is 0. For the measure of average precision, the larger the measure, the better the 
system performs, and the optimal value is 1. 

4.3. Comparison algorithms 

The proposed multi-label feature selection algorithm is tested on the selected eight datasets, and 
compared with the following six algorithms: GRRO (multi-label feature selection method via global 
relevance and redundancy optimization) [33], GRRO-LS (GRRO with label-specific features) [33], 
FIMF (fast multi-label feature selection based on information-theoretic feature ranking) [34], 
PPT-MI (pruned problem transformation with mutual information) [35], PPT-CHI (pruned problem 
transformation with 2  test) [36] and Ant-TD (ant colony optimization plus temporal difference 

reinforcement learning for multi-label feature selection) [11]. 
GRRO: It is a multi-label feature selection method based on information theory. This method is 

a feature evaluation considering feature relevance, feature redundancy and label relevance, and the 
optimal solution can be obtained by processing the relevance and redundancy information once. 

GRRO-LS: It is an extension of the algorithm GRRO. Considering that different labels have 
their inherent distinguishing features, the features selected by this method are label-specific. 

FIMF: It is a fast multi-label feature selection method. It obtains a scoring function based on 
information theory to evaluate the importance of each feature, and then analyzes the results from the 
perspective of computational cost. 

PPT-MI: It is a feature selection algorithm based on mutual information. The idea is to first use 
the PPT (pruned problem transformation) to transform the problem, and then use the greedy search 
algorithm based on MI to select the most relevant features. 

PPT-CHI: It is the result obtained by Trochidis et al. using the method in [37], that is, the PPT 

method is used to transform the problem, and then the 2  statistic is used to rank the features. 

ANT-TD: It is a multi-label feature selection method based on heuristic learning. This method 
uses the temporal difference reinforcement learning algorithm to learn heuristic function from 
experience, and combines the ant colony algorithm with heuristic learning. 
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4.4. Results and discussion 

In this paper, multi-label k-nearest neighbor method (ML-kNN) is used as a classifier to 
calculate the above multi-label evaluation indicators, and the parameter k is set to 10. In this 
experiment, 300 data samples in the datasets are selected for experiments, of which 60%  of the 
dataset samples are used for the training set, and the remaining 40%  of the samples are used for the 
test set. Moreover, it applies the polynomial kernel of degree 4 for feature data and label data. The 
number of generations is set to 40, the size of sparrow population is set to 70, and the proportion of 
producers (PD), the proportion of scouts (SD) and the safety threshold (ST) are set to 0.2, 0.1, and 
0.8, respectively.  

In this section, hamming loss, one-error, coverage, ranking loss and average precision are 
selected to measure the performance of the above methods. Tables 3–7 show the classification 
performance of these multi-label feature selection methods. The boldface in the table indicates the 
best performance, and the numbers in parentheses indicate the relative ranking of the seven 
algorithms on each evaluation metric for each dataset. 

Table 3. Comparison of hamming loss of different algorithms on each dataset. 

dataset MLSSA FIMF GRRO GRRO-LS PPT-CHI PPT-MI Ant-TD 

medical 0.0228(3) 0.0214(2) 0.0271(4) 0.0271(4) 0.0280(6) 0.0281(7) 0.0168(1) 

languagelog 0.1805(1) 0.1919(2) 0.2092(5) 0.2060(3) 0.2136(6) 0.2192(7) 0.2067(4) 

tmc2007 0.0924(1) 0.0961(6) 0.0968(7) 0.0956(5) 0.0938(3) 0.0948(4) 0.0933(2) 

corel5k 0.0052(2) 0.0063(3) 0.0102(6) 0.0102(6) 0.0097(4) 0.0097(4) 0.0037(1) 

enron 0.0329(1) 0.0379(3) 0.0503(6) 0.0503(6) 0.0422(5) 0.0412(4) 0.0365(2) 

chess 0.0086(2) 0.0110(5) 0.0109(3) 0.0109(3) 0.0113(7) 0.0111(6) 0.0081(1) 

genbase 0.0245(2) 0.0252(3) 0.0434(6) 0.0441(7) 0.0263(4) 0.0351(5) 0.0158(1) 

delicious 0.0193(1) 0.0198(5) 0.0198(5) 0.0197(4) 0.0195(2) 0.0196(3) 0.0198(5) 

Table 4. Comparison of one-error of different algorithms on each dataset. 

dataset MLSSA FIMF GRRO GRRO-LS PPT-CHI PPT-MI AntTD 

medical 0.4550(2) 0.4586(3) 0.9206(7) 0.9203(6) 0.7133(5) 0.6836(4) 0.2695(1) 

languagelog 0.2142(2) 0.2444(3) 0.3186(5) 0.3195(6) 0.3208(7) 0.3935(4) 0.1518(1) 

tmc2007 0.4675(1) 0.5219(7) 0.4750(3) 0.4872（5） 0.4836(4) 0.4906(6) 0.4748(2) 

corel5k 0.0883(2) 0.1150(3) 0.5550(4) 0.6250（5） 0.6317(6) 0.6383(7) 0.0280(1) 

enron 0.2197(1) 0.2681(3) 0.5167(6) 0.5167(6) 0.3611(4) 0.4094(5) 0.2221(2) 

chess 0.4325(2) 0.7686(5) 0.9211(6) 0.9247(7) 0.7594(4) 0.7550(3) 0.2163(1) 

genbase 0.2713(2) 0.3408(4) 0.3570(5) 0.4085(7) 0.2775(3) 0.3962(6) 0.0825(1) 

delicious 0.6002(7) 0.5808(3) 0.5955(6) 0.5852(4) 0.5660(1) 0.5890(5) 0.5782(2) 

It can be seen from Tables 3–7 that the MLSSA is superior or competitive to FIMF, GRRO, 
GRRO-LS, PPT-CHI, PPT-MI and Ant-TD algorithms in terms of hamming loss, one-error, coverage, 
ranking loss, and average precision. Specifically, it can be seen from Tables 3 and 6 that MLSSA 
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ranks first in four datasets among the seven algorithms, and ranks second or third on the other 
datasets. In Table 4, although the MLSSA ranks first only in two datasets, except for the last ranking 
on the delicious dataset, it ranks second in other datasets, which is relatively superior to other 
algorithms. In Table 5, the MLSSA ranks first in six datasets, and ranks second and third in other two 
datasets, which is significantly better than other comparison algorithms. In Table 7, although the 
proposed algorithm ranks first only in two datasets, it ranks second in most of the other datasets. 
Therefore, it can be seen that MLSSA can achieve better classification performance. 

Table 5. Comparison of coverage of different algorithms on each dataset. 

dataset MLSSA FIMF GRRO GRRO-LS PPT-CHI PPT-MI Ant-TD 

medical 4.5064(2) 5.4106(3) 9.8267(6) 9.8886(7) 7.0520(5) 6.9167(4) 3.6900(1) 

languagelog 51.0961(1) 53.0903(4) 51.5669(2) 55.6447(6) 55.0808(5) 55.7092(7) 52.4532(3) 

tmc2007 5.3386(1) 5.7258(3) 6.7047(7) 6.6597(6) 5.9786(4) 6.6472(5) 5.3622(2) 

corel5k 43.9908(1) 57.0614(5) 54.7569(3) 55.3606(4) 58.5689(6) 63.4750(7) 50.9270(2) 

enron 9.8725(1) 11.3911(4) 12.5458(7) 12.4744(6) 10.6347(2) 10.6708(3) 11.4839(5) 

chess 66.9128(1) 77.1972(5) 82.4578(6) 83.0583(7) 75.9845(3) 76.9500(4) 72.1711(2) 

genbase 1.6213(3) 2.1339(5) 3.5687(6) 3.9832(7) 1.4208(2) 1.7210(4) 0.9275(1) 

delicious 746.7223(1) 749.4578(2) 758.6830(4) 757.8877(3) 760.5303(5) 763.1310(7) 762.1550(6) 

Table 6. Comparison of ranking loss of different algorithms on each dataset. 

dataset MLSSA FIMF GRRO GRRO-LS PPT-CHI PPT-MI Ant-TD 

medical 0.0891(2) 0.1118(3) 0.2088(6) 0.2104(7) 0.1434(5) 0.1379(4) 0.0674(1) 

languagelog 0.2119(2) 0.2261(3) 0.2523(6) 0.2590(7) 0.2429(5) 0.2350(4) 0.2046(1) 

tmc2007 0.1345(1) 0.1514(3) 0.1799(7) 0.1789(6) 0.1515(4) 0.1759(5) 0.1369(2) 

corel5k 0.0378(1) 0.0529(3) 0.0655(6) 0.0673(7) 0.0564(4) 0.0642(5) 0.0463(2) 

enron 0.0784(1) 0.0925(5) 0.1148(7) 0.1101(6) 0.0880(2) 0.0899(3) 0.0911(4) 

chess 0.1758(1) 0.2014(3) 0.2456(6) 0.2478(7) 0.2153(4) 0.2181(5) 0.1780(2) 

genbase 0.0463(3) 0.0618(5) 0.1150(7) 0.1301(6) 0.0390(2) 0.0528(4) 0.0165(1) 

delicious 0.2131(3) 0.2174(7) 0.2168(5) 0.2168(5) 0.2050(1) 0.2070(2) 0.2161(4) 

Table 7. Comparison of average precision of different algorithms on each dataset. 

dataset MLSSA FIMF GRRO GRRO-LS PPT-CHI PPT-MI Ant-TD 

medical 0.6347(2) 0.6157(3) 0.2209(6) 0.2184(7) 0.3390(5) 0.4165(4) 0.7762(1) 

languagelog 0.6087(2) 0.5823(3) 0.5268(6) 0.5112(7) 0.5289(5) 0.5447(4) 0.6265(1) 

tmc2007 0.6045(1) 0.5570(3) 0.5448(6) 0.5499(5) 0.5591(3) 0.5381(7) 0.6017(2) 

corel5k 0.7663(2) 0.6892(3) 0.3466(6) 0.3178(7) 0.3701(4) 0.3701(4) 0.8379(1) 

enron 0.7462(1) 0.7035(3) 0.5672(7) 0.5783(6) 0.6842(4) 0.6825(5) 0.7197(2) 

chess 0.4460(2) 0.2357(4) 0.1216(6) 0.1189(7) 0.2419(3) 0.2349(5) 0.5499(1) 

genbase 0.8119(2) 0.7532(4) 0.6886(6) 0.6460(7) 0.8116(3) 0.7265(5) 0.9379(1) 

delicious 0.2083(3) 0.2068(4) 0.1993(7) 0.1994(6) 0.2128(2) 0.2156(1) 0.2066(5) 
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Figure 2. Comparison of hamming loss of different algorithms. 
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Figure 3. Comparison of one-error of different algorithms. 
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Figure 4. Comparison of coverage of different algorithms. 
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Figure 5. Comparison of ranking loss of different algorithms. 
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Figure 6. Comparison of average precision of different algorithms. 
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In order to clearly show the classification performance of MLSSA and other comparison 
algorithms, Figures 2–6 show the performance of these feature selection algorithms. The horizontal 
axis represents the number of features selected by each feature selection algorithm, and the vertical 
axis represents the value obtained by each algorithm according to the evaluation indicators. The 
results show that the proposed MLSSA performs better than the comparison algorithm in most cases. 
Specifically, in Figures 2–5, the curve of MLSSA is generally below the curves of other algorithms. 
In Figure 6, the curve of MLSSA is generally above the curves of other algorithms. 

5. Conclusions 

This paper proposes a new multi-label feature selection algorithm based on HSIC and SSA 
(MLSSA). By utilizing the HSIC as a feature selection criterion to describe the dependency between 
features and all labels, MLSSA attempts to search in the feature space to find the optimal features. 
The performance of the proposed method is compared with those of FIMF, GRRO, GRRO-LS, 
PPT-CHI, PPT-MI and Ant-TD algorithms on eight datasets. Experimental results demonstrate the 
effectiveness of the method. However, the algorithm does not take into account the correlation 
between labels and the problem that the SSA algorithm can easily fall into local optima. Therefore, in 
future research, these two types of problems should be further studied to further improve the 
performance of the algorithm. Last but not least, more comparison experiments with the 
state-of-the-art multi-label feature selection methods on more real-world datasets should be further 
investigated to verify the effectiveness of the proposed method. 
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