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Abstract: Knowledge graph embedding aims to learn representation vectors for the entities and 
relations. Most of the existing approaches learn the representation from the structural information in 
the triples, which neglects the content related to the entity and relation. Though there are some 
approaches proposed to exploit the related multimodal content to improve knowledge graph 
embedding, such as the text description and images associated with the entities, they are not effective 
to address the heterogeneity and cross-modal correlation constraint of different types of content and 
network structure. In this paper, we propose a multi-modal content fusion model (MMCF) for 
knowledge graph embedding. To effectively fuse the heterogenous data for knowledge graph 
embedding, such as text description, related images and structural information, a cross-modal 
correlation learning component is proposed. It first learns the intra-modal and inter-modal correlation 
to fuse the multimodal content of each entity, and then they are fused with the structure features by a 
gating network. Meanwhile, to enhance the features of relation, the features of the associated head 
entity and tail entity are fused to learn relation embedding. To effectively evaluate the proposed model, 
we compare it with other baselines in three datasets, i.e., FB-IMG, WN18RR and FB15k-237. 
Experiment result of link prediction demonstrates that our model outperforms the state-of-the-art in 
most of the metrics significantly, implying the superiority of the proposed method. 

Keywords: knowledge graph; embedding learning; graph embedding; multimodal learning; cross-
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1. Introduction 

Knowledge Graphs are a type of relational graphs that store the factual knowledge in real-world, 
in which the factual knowledge is in the form of triplets. Existing large-scale knowledge graphs 
projects include FreeBase [1], YAGO [2] and DBpedia [3], which are effective to support downstream 
applications such as medical question answering [4], named entity disambiguation [5] and dialogue 
systems [6] and so on. Therefore, it is an important problem to develop an effective method to represent 
and store Knowledge Graphs for different applications. In order to provide a numerical representation 
for knowledge graph, knowledge graph embedding (KGE) aims to translate the entities and relations 
to a continuous low dimensional vector space [7,8]. Then, the embedded representation can be used as 
the input for other applications.  

Recently, KGE has attracted a great attention in natural language processing, and many KGE 
models have been proposed. Most of the existing KGE models mainly learn the representation for the 
relation, head entity and tail entity, based on the structural information of triples [9–11]. These models 
neglect the abundant content associated with the entities and relation, which affects the performance 
of the learned representation. Usually, many of the nodes in KG may be associated with different 
modalities of external data, such as text description and images, which provides details of the 
corresponding entities. These data are also valuable to specify the semantics of the nodes and predict 
the relation between entities, and hence improve the learning of KGE. For example, Figure 1 shows 
an example of knowledge subgraph, in which the nodes are associated with multi-modal contents. The 
image associated with the entity “Bill Gates” is helpful to predict that the “gender” of “Bill Gates” is 
“male”. The text description associated with “Bill Gates” is helpful to predict that the “country” of 
“Bill Gates” is the “United States of America”. Similar observations are the same for the entities 
“Microsoft” and “Melinda Gates”. Therefore, effectively encoding the multimodal data into the 
learning of knowledge graph embedding provides new clue to improve KGE. 

 

Figure 1. An example of knowledge graph with associated multimodal content. 
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Figure 2. The framework of MMCF, where FC denotes the Fully connected layer, and 
MFB denotes the multi-modal factorized bilinear pooling. It is mainly comprised of three 
components, i.e., the entity embedding module, relation embedding module and decoder. 
The entity embedding module first learns the multimodal content features by exploiting 
the intra-modal and inter-modal correlation, and then they are fused with the structure 
features by a gating network to obtain the final representation of entity. The relation 
embedding module fuses the corresponding entity feature and relation structure feature to 
learn the relation embedding. The decoder learns a scoring function for the entity 
embedding and relation embedding. 

There are some works that attempt to improve the performance of KGE by exploiting the 
multimodal content. For example, Mousselly-Sergieh et al. [12] propose to align the features of 
structure, text and image to learn the representation of KG with a translation-based method. Veira et 
al. [13] replace or add the entity features with text features. Yao et al. [14] use the text associated with 
the KG triples to finetune the pre-trained model BERT [15] for knowledge graph completion. Although 
these methods have achieved a certain degree of success, they are not effective to learn the cross-modal 
correlation in the multimodal data. Compared with the unimodal data, different modalities of data 
content contained in KGs are heterogeneous and represented in different spaces. It is not appropriate 
to integrate the features in different spaces directly by element wise addition, multiplication or 
concatenation. Moreover, the correlation in multimodal data is more complex.  There exist intra-
modal and inter-modal correlation in them. For example, the different objects in an image are 
correlated with each other, and also the words in text description. As for the inter-modal correlation, 
some objects in an image are semantically similar with certain words in the corresponding text 
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description. Therefore, it is nontrivial to encode the intra-modal and inter-modal correlation 
simultaneously to learn the features for the multimodal content. Meanwhile, the multimodal content 
and graph structure are also heterogenous, it is difficulty to combine the content and structural 
information for embedding learning. Finally, a large number of studies have shown that the interaction 
between entities and relations should not be ignored in KGE models [16,17]. It is desired to effectively 
encode the interaction between entities and relations in depth into the relation embedding learning. 

To tackle these problems, we propose a multi-modal content fusion-based knowledge graph 
embedding model (MMCF), which encodes the multimodal content based on cross-modal correlation 
with the structural information to learn embedding representation. In particular, we investigate: 1) how 
to encode the intra-modal and inter-modal correlation of multimodal content into the embedding of 
knowledge graph; 2) how to fuse the structure information and data content for embedding learning. 
As shown in Figure 2, the model mainly contains three modules. The first module is entity embedding, 
which is proposed to learn the intra-modal and inter-modal correlation, in which the multimodal 
content is fused based on the cross-modal correlation to obtain a uniform representation. Then, the 
content representation is fused with the structural features to obtain entity embedding. The second 
module is relation embedding, which is used to fuse the interaction between entities and relation to 
obtain relation embedding. The third module is a decoder, which learn a scoring function to fuse the 
learning of entity embedding and relation embedding. Our model is different from existing fusion 
models that mainly learn the global features of attribute data and network structure for KGE, which is 
not effective to capture the latent semantics correlation between different modality of data. In 
addition, the proposed model can be directly extended to integrate more types of data with existing 
decoders. To evaluate the model, we supplement the entities with related text and images for two 
public datasets. Experimental results demonstrate the superiority of our approach. The main 
contributions are as follows: 

• We propose to exploit the fine-grained semantics and correlation in the different modalities of 
data to improve the embedding of knowledge graph.  

•  We propose a novel Multi-modal content Fusion model (MMCF) for knowledge graph 
embedding, in which the text content and visual content are fused with the structure information to 
learning the embedding of entities and relation. 

• Extensive experiments are conducted on three benchmark datasets, and the result demonstrates 
the superiority of our approach. 

In the rest part of this paper, the related existing works is summarized in Section 2. Then, the 
problem of KGE with multimodal content is formulated in Section 3, followed by Section 4 which 
presents the detail of our model. The experiments and analysis are provided in Section 5. Finally, the 
paper is discussed in Section 6 and concluded in Section 7. 

2. Related works 

There are many knowledge graphs embedding models, which can be roughly divided into two 
categories: structure-based models, and models fused with external content. 

2.1. Structure-based models 

The traditional structure-based models mainly learn the representation for the entities and 
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relations from the triples, which defines a scoring or distance function on each fact to measure its 
plausibility. Some works propose translational distance models, including MuRE [10], TransE [18], 
TransR [19], etc. TransE is one of the first proposed models, which considers relation as a translation 
from the head entity to tail entity in the same vector space. By applying a relation-specific matrix, 
MuRE proposes a relation-specific distance measuring method. Some other works propose semantic 
matching models, which defines a similarity-based scoring function to calculate the probability that a 
triple is a golden triple. They mainly learn latent semantic representation for the entities and relations 
to measure the plausibility of each fact, such as TuckER [20], HolE [21], CrossE [22], etc. Recently, 
there are some works based on neural network, which proposes to apply the classic neural network 
models, i.e., CNN [23] and GNN [24], to learn the deep interaction information between the entities 
and relations. These approaches mainly include ReInceptionE [25], ConvKB [26], HypER [27], 
COMPGCN [28], etc. There are also some models that propose to use logical rules [29], and relation 
paths [30], to further learn the structure information. 

These structure-based models exploit different properties of representation space to expect that 
the learned embedding is effective to preserve the structural information of the original knowledge 
graph, i.e., the representation is effective and efficient to infer the relationships between entities. 
Though these approaches achieve great success, they only learn the representation from the structural 
information of the triples, which can’t be directly extended to encode the abundant and valuable 
content associated with the nodes of KG. 

2.2. Models fused with external content  

With the development of Web technology and social media, various data are produced for the 
entities and facts of knowledge graph. Therefore, there are some works that attempt to learn from the 
external data to improve the embedding of KG. One of the earliest works try to fuse the text 
information for knowledge base completion [31], in which only the text description is used to initialize 
the representation of entities. The text representations learned from text and knowledge graph structure 
are directly combined by a gate strategy in [9]. DKRL [25] propose to use both CBOW and CNN to 
learn entity representation by combining the text description, and then the objective function proposed 
by TransE is adopted for joint learning. Similarly, Veira et al. [13] propose to add text features to the 
entity features directly, which can be built on other KGE models. KG-BERT [14] uses the pre-trained 
language model BERT [15] to learn the representation of the text description associated with the 
entities and relations, and the triples are considered as textual sequences. However, these models are 
not effective to learn the latent correlation between different types of features since they are represented 
in different spaces.  

There are also some works use Nonnegative Matrix Factorization (NMF) to combine different 
views of data or attribute with the affinity information. For example, the tensor singular value 
decomposition is used to learn the relation between different views in [32]. The structure information 
of co-expression and attribute data are fused by NMF in [33]. Li et al. [33] uses Nonnegative Matrix 
Factorization to fuse the structure information and attribute data, where the attribute contains one 
modality of content. Ma et al. [34] also uses the joint NMF and self-representation leaning to combine 
the structure and multi-view data, and [35] uses the joint NMF to combine different networks. These 
methods need the global network structure, which is not effective to handle new data because it needs 
a matrix built on the whole network. 
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Beside the text content or attribute, the visual content is also fused to learn knowledge graph 
embedding. Based on DKRL, IKRL is proposed to further combine image with the structure 
information for KGE [36] and the objective function of DKRL is also used for joint learning. Based 
on IKRL, Mousselly-Sergieh et al. [12] propose a multimodal translation-based approach to leverage 
both multimodal, i.e., visual and linguistic, and structural information for KG representation learning. 
These methods mainly align the structural information and other types of features instead of learn the 
latent correlation between them. More types of data, such as numbers, texts and images are included 
to learn the embedding of KG in [37], which directly concatenates different types of features into a 
high-dimensional vector. It is not effective to be applied to embed large-scale KGs. 

Though introducing the external information has improved the performance of KGE, there are 
still some problems remained unsolved. First, these methods mainly regard different type of data as a 
whole, which neglects the fine-grained semantics and the cross-modal correlation. Second, most of the 
models mainly combine the text or image features with the entities, which is not effective to model the 
interaction between the content of entities and relations. However, it has been demonstrated that the 
interaction contributes greatly to the performance of KGE [38]. Finally, many of the fusion-based 
models are specifically designed, which can’t be extended to other KGE models to include the external 
content. 

3. Problem formulation 

Before the introduction of our model, we formulate the problem of KGE. A knowledge graph G 
is represented by a collection of golden triples denoted as (h, r, t), where h, t ∈ E denote the head 
and tail entity respectively, and r ∈ R denotes the relation between the head and tail entities. Beside 
the original structure information, each entity is also associated with other multi-modal content, i.e., 
the textual description e and image I.  

Then, the problem of knowledge graph embedding can be formulated as: ( ) ( , , ),z z ,zh r t f h r t , 

where f(.) is the embedding function which combines the triple structure information and the 
multimodal content associated with the entities to learn the embedding, hz , rz , tz ∈ Rd are the learned 

representations of the head entity h relation r and tail entity t respectively. 
The framework of our embedding model MMCF is showed in Figure 2. As it is shown, MMCF 

mainly contains three modules, i.e., entity embedding, relation embedding and decoder. The entity 
embedding component is proposed to learning embedding of entity, in which the intra-modal and inter-
modal correlation are encoded to fuse the multimodal content and structure information. The relation 
embedding module is used to learn the embedding of relation, which includes the features of the head 
entity and tail entity to supplement the relation feature. The decoder can be any of the existing decoders, 
such as MuRE [10] and InteractE [11], which learns a score for the input embeddings of a triple by a 
loss function.  

4. Methodology 

As shown in Figure 2, our model MMCF is mainly comprised of three modules, i.e., the entity 
embedding module, relation embedding module and decoder. We detail the three modules in this 
section. 
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4.1. Entity embedding by fusing multimodal content 

Most of the existing works of knowledge embedding learn the representation mainly based 
on the triple information [10,18]. Though some works try to include the other types of content for 
entity embedding, they are not effective to capture the latent correlation between different types 
of content [25,29]. In this module, we first learn the multimodal content features by exploiting the 
intra-modal and inter-modal correlation, and then they are fused with the structure features by a gating 
network to obtain the final representation of entity. 

4.1.1. Image feature extraction 

Given an image I, we use Faster R-CNN [39] initialized with ResNet-101 to extract the visual 
object proposals, which is represented by triple set (oi, li, ai), where oi is the feature vector extracted 
from the region of interest (ROI) pooling layer in the Region Proposal Network, li is a 4-dimensional 
representation of the bounding box location, and ai is a one hot representation of the attribute class. 
These vectors are then combined to formulate the representation of the visual object as follows: 

 ( , , )l a
i i i io concat o l a  W W  (1) 

where concat(.) is the concatenation operation, Wl and Wa are the parameter matrices. Then, a fully 
connected layer is added to transform the vector io  to match the textual features, i.e., 

1 2{ , ,..., )kv v vv  ,where vi denotes the transformation of io . 

4.1.2. Text feature extraction 

The pre-trained language representation model BERT [15] is used to obtain word vectors for the 
text description. Given a text description document e, we extract the word vectors as e = {w1,w2,…,wm}, 
where m denotes the number of words in the document. Then, the image object features and textual 
word embeddings are further processed to learn the intra-modal and inter-modal correlation, as shown 
in Figure 2. 

4.1.3. Intra-modal correlation learning 

Usually, the objects in an image and words in a document are correlated with each other. By 
exploiting the intra-modal correlation, the important information in each modality can be enhanced for 
representation learning. As for the visual content, we use the self-attention mechanism [40] to learn 
the intra-modal correlation. Specifically, given a set of objects 1 2{ , ,..., }kv v vv , the query, key and 

value are calculated: Q
v Q vW  , K

v K vW  , V
v V vW  ,where QW  , KW  ,and VW  are the matrices of 

parameters. Then, the weighted sum of the value is calculated as follows: 

 ( )
T

v v
v v v v

k

Self - Attent , , softmax
d

 
   

 

Q K
Q K V V  (2) 

where dk denotes the dimensionality of the visual object vector. We apply the multi-headed attention 
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mechanism to calculate the self -attention h times, and then the values of all heads are concatenated. 
Then, the Add Norm layers are appended to smooth the result as follows: 

 ( ) ( 1) ( )( )l l l
v v vNorm  O H M  (3) 

 ( ) ( ) ( ) ( ) ( ) ' ( )(0, ) 'l l l l l l
v v v v v vmax O  H W b W b  (4) 

where ( 1)l
v
H  is the input before self-attention process, and ( )l

vM denotes the output of self-attention 

process. The self-attention and Add Norm process literately to obtain the visual object vectors, and 
then the vectors are aggregated to obtain the image representation 0 dRv  by an average pooling 
operation.  

As for the textual content, the convolution neural networks [41] is used to learn the intra-modal 
correlation. Specifically, given the textual vectors input e = {w1,w2,…,wm}, the 1-dim CNN [41] is 
used to encode the context information. We use three window sizes, i.e., uni-gram, bi-gram and tri-
gram, to learn the representation of the i-th word as follows: 

 , : 1( ), 1,2,3s i s i i s sw ReLU w b s   W  (5) 

where ,s iw  is the output of the i-th word using window size s, sW is the parameter of filter matrix and 

sb is the bias parameter. Then, all the word vectors corresponding to the window size s is aggregated 

using a max-pooling operation to obtain the text representation: ,1 ,2 ,( , ,..., )s s s s mp max w w w  . Finally, 

p1, p2 and p3 are concatenated to a fully connected layer with a l2 normalization to obtain the final text 
description embedding e0: 

 0
1 2 3( ( , , )e ee Norm concat p p p b W  (6) 

where 0 dRe is the learned text representation which encodes the intra-modal correlation. 

4.1.4. Inter-modal correlation learning 

Beside the intra-modal correlation, each object in an image may also correlated with some words 
in the text description. The inter-correlation is important to supplement the learning of the 
representation for each other modalities. We use the cross-attention to capture the cross-modal 
correlation for representation learning. As shown in Figure 2, the input of the cross-attention are the 
stacked features of image objects 1 2{ , ,..., }kv v vv and textual words e={w1,w2,…,wm}. First, we 

obtain the query, key and value for the two modalities: K
v K vW  , Q

v Q vW  , V
v V vW  , 

K
e K eW , Q

e Q eW , V
e V eW . Then, the visual object and textual word representation encoding 

the cross-modal correlation are calculated as follows: 

 ( T
v v esoftmax v Q K )V  (7) 

 ( T
e e vsoftmax e Q K )V  (8) 
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where v denotes the set of visual object representation which captures the inter-modal cross-modal 
correlation, and e denotes the set of textual word representation. By these operations, we can obtain 
another representation for each textual word and visual object. To obtain the final representation 

1 dv R for the whole image, the learned v is passed into an average pool layer. The learned e is passed 
into an 1d-CNN layer followed by a max pool layer to obtain the final representation for the whole 
text description 1 dRe . 

4.1.5. Cross-modal feature fusion 

As discussed above, we have learned multiple features from the multimodal content. Meanwhile, 
there is also another type of feature which encode the structure information of knowledge graph, which 
is also the main feature learned in other works [10,18,19]. To capture the structure information, we use 
the structure-based methods, such as TransE [18], to learn the raw structure feature 0 xRs of each 
entity node. In the end, we obtain two types of visual feature 0v and 1v , two types of textual feature 

0e and 1e , and the structural feature 0s .  
Finally, all these features are fused to obtain a final representation of the entity node. The feature 

fusion operation is composed of several steps. First, the two types of textual features are fused using 
multi-modal factorized bilinear pooling (MFB) [42] as follows: 

 2 0 1 0 1

1

= ( , ) ( )
k

T T
i i

i

MFB


 e e e U e G e  (9) 

where ◦ denotes the element wise multiplication operation, k denotes the number of factors in MFB. 
Similarly, the two types of visual features are also fused with MFB to obtain the final representation 

2v . Then, we fuse the visual feature 2v , the textual feature 2e  and the structural feature 0s  to obtain 
the final representation of the entity using gating network with softmax function as follows: 

 
2 2 0

, , )= ( , , )
T T T
e e ev e s

softmax
d d d

  （
G G G

 (10) 

 2 2 0=e    z v e s  (11) 

where ez  is the final representation of the whole entity, which can be a head entity hz or a tail entity 

tz . As a result, the learned representation of an entity captures both the structure information and 

multimodal content, which encodes the content by exploiting the intra-modal and inter-modal 
correlation. When  and β are trained to be 0, the representation only contains the structural features, 
which is similar to the existing models [10,18,19]. Therefore, our approach is more effective to learn 
the representation.  

4.2. Relation embedding by fusing multimodal content 

Usually, the relation in knowledge graph exists between a head entity and tail entity, which rarely 
contains other content information. To improve the representation of relation, we use the multimodal 
features learned from the head entity and tail entity to enhance the semantics information of relation. 
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Meanwhile, this process can also capture the interaction between entities and the corresponding 
relation, and thus further improves the representation learning of relation. The Bilinear Network is 
used to fuse the entity feature and relation structure feature as follows: 

 = ( ) ( ) ( )+T T T
r h h t t r s r  W W W z z z r b  (12) 

where σ is a nonlinear activation function, sr  is the relation representation learned by other structure-

based method [18], hz   and tz  are the fused representation of the head entity and tail entity 

respectively. This formulation is also used to learn the structural information of a triple. 

Algorithm 1 the training of MMCF 

Input: triples (h, r, t) of a graph G; 

Output: hz , rz , tz  

1:  For each entity in G 
2:      Feature Extraction 

2:      Extract the visual representation  io  of each object by Eq (1); 

6:      Extract the word representation wi; 

3:      Transform io  to vi  by fully-connect layer; 

4:      Intra-modal Correlation Learning 
4:      Learn the intra-modal correlation between vi by Eq (2); 

5:      All the vi s are aggregated to obtain the image representation 0 dRv ; 
6:      Extract the word representation wi; 
7:      Use 1-dim CNN to encode the intra-modal correlation of wi by Eq (5); 

8:      Obtain text description embedding 0 dRe by Eq (6). 
9:      Inter-modal Correlation Learning 

9:      Learn visual representation 1 dv R  based on inter-modal correlation by Eq (7); 

10:     Learn textual representation 1 dRe  based on inter-modal correlation by Eq (8); 
12:     Cross-modal Feature Fusion 

11:     Obtain text representation 2e by fusing 0e and 1e  using Eq (9); 

12:     Obtain visual representation 2v by fusing 0v and 1v  using Eq (9); 

13:     Combine 2v , 2e , 0s to obtain  entity representation hz or tz  by Eq (11); 

14:  end for 
15:  For each relation in G 

16:     Learn relation representation rz by Eq (12) 

17:  end for 
18:  Minimize ( )h,r,t  by Eq (13). 

4.3. Decoder 

In the decoder module, a scoring function is applied to learn the representation. Many of current 
score functions proposed by other works [10,18,19] can be used since our method can be directly 
extended to these models. For example, we use the MuRE [10] scoring function to calculate a score 
for a triple as follows: 

 2( )= ( , )h t f h th,r,t - d   Rz z r b b  (13) 
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where (.)d  is a Euclidean distance function, R  is a relation-specific matrix, hb   and tb   are the 

biases of the head and tail entities. The scoring function aim to give a high value to the positive triple, 
and a small value to the negative triple. With this function, we can train our model on the training 
dataset to learn the representation of entity and relation. Meanwhile, the other types of decoders 
proposed by other models can also be used to learn the scoring function, such as InteractE [11] and 
TransE [12]. The training process of MMCF is shown in Algorithm 1. 

5. Experiment and analysis 

To evaluate the performance of our approach, extensive experiments are conducted to compare 
our approach with other approaches. Meanwhile, the effectiveness of each component in our model is 
also verified.  

5.1. Dataset 

Three public datasets are used in the experiments, i.e., FB-IMG [12], WN18RR [43] and FB15k-
237 [44]. The dataset FB-IMG has already included high-quality multimodal content to knowledge 
graph. It contains the embedding representation for entities and relations, and representation of the 
textual description and images associated with the entities. WN18RR is built on the base of WN18[18]. 
It removes the inverse relations, which makes the test triples can’t be inferred from the inverse of 
training examples directly. FB15k-237 is a revision of FB15k [18], in which all the inverse relations 
are also removed. Though the two datasets are widely used in KGE evaluation, they contain only the 
structure information. To associate the datasets with external multimodal content, Yao et al. [14] 
download the text description for the triples in WN18RR and FB15k-237. Based on the work [14], we 
further extend the two datasets with text description and images. The names of entities are used as 
keywords to crawl the related images from the web search engines, such as Google and Bing. Then, 
the top-15 images and the text content, such as title, caption, abstract of each entity are downloaded. 
We manually select the image and the text content which is most related to the corresponding entity to 
supplement the multimodal content of the two datasets. Since the relation denotes the structure between 
entities, it is difficulty to be directly described by other multimodal content. Therefore, we use the data 
of the associated entities to enhance the learning of relation embedding as discussed above. We show 
the statistics information of these datasets in Table 1. 

Table 1. Statistics of the datasets. 

Dataset #entities #relation #train #valid #test 

FB-IMG 11,757 1,231 285,850 29,580 34,863 

WN18RR 40,943 11 86,835 3,034 3,134 

FB15k-237 14,541 237 272,115 17,535 20,466 

5.2. Experiment configuration 

We use the pre-trained language model BERT [13] to obtain a 300-dimensional vector for the text 
word. The whole text content is finally represented by a 1024-dimensional vector. As for the image, 
the top-15 objects extracted by the pretrained Fast R-CNN [39] with the highest accuracy are selected 
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and each one is represented by a 2048-dimensional vector. The Adam et al. [45] optimizer is used in 
the experiments, whose initial learning rate is 1 × 10−4, and then decreases at a rate of 0.9 every 20 
epochs. By adjusting the parameters, the model with the highest F1 value in the verification set is 
finally selected. All of the experiments are conducted on 2 NVIDIA RTX 3090 24 GB. 

5.3. Evaluation matrices 

Usually, the task of link prediction is used to evaluate the quality of the representation learned by 
the embedding method. It is used to predict the missed facts of knowledge graph, which is also an 
effective way to solve the problem of incompleteness of KGs. The task of link prediction in KG is 
formulated as inferring the missed head entity given (−, r, t), or the missed tail entity given (h, r, −). 
The trained model calculates the plausibility scores of all possible triples in the test set, and then the 
ranking result of these triples is used for evaluation. In the experiment, we use the popular matrices of 
Mean Reciprocal Rank (MRR) and H@N to evaluate the ranking result. MRR is the mean reciprocals 
of all the ranking result of the test samples. HITS@N denotes the hits occur at the N-th position, which 
denotes the average proportion of positive triples that rank less than N in the ranking list, N = 1/3/10.  

Table 2. Comparison of link prediction on WN18RR and FB15k-237, where the best 
results are labelled with bold, and the suboptimal performance is underlined. 

Models 
WN18RR FB15k-237 

MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10 

MuRE 0.475 0.436 0.487 0.554 0.336 0.245 0.370 0.521 

MuRP 0.481 0.440 0.495 0.566 0.335 0.243 0.367 0.518 

InteractE 0.463 0.430 − 0.528 0.354 0.263 − 0.535 

ConvKB 0.249 0.057 0.417 0.524 0.243 0.155 0.371 0.421 

HypER 0.465 0.436 0.477 0.522 0.341 0.252 0.376 0.520 

DistMult 0.430 0.390 0.440 0.490 0.241 0.155 0.263 0.419 

M2GNN 0.485 0.444 0.498 0.572 0.362 0.275 0.398 0.565 

ComplEx 0.440 0.410 0.460 0.510 0.247 0.158 0.275 0.428 

ConvE 0.430 0.400 0.440 0.520 0.325 0.237 0.356 0.501 

KG-BERT − − − 0.524 − − − 0.420 

MMCFMuRE 0.489 0.443 0.497 0.571 0.359 0.269 0.397 0.554 

MMCFInteractE 0.483 0.448 0.495 0.570 0.367 0.273 0.402 0.563 

5.4. Baselines 

To evaluate the performance of our approach, we compare it with two categories of models, i.e., 
the structure-based models and external information-fused models. 

The structure-based models mainly learn the embedding of entity and relation based on the graph 
structure information, such as the triplet set. In the experiment, MuRE and MuRP [10], InteractE [11], 
ConvKB [26], HypER [27], DistMult [46] and M2GNN [47] are used as the baselines, and the link 
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prediction result on WN18RR and FB15k-237 published by these models are directly used for 
comparison. As for the dataset FB-IMG, we also reproduce several baseline modes for comparison, 
such as MuRE [10], InteractE [11], ComplEx [35], ConvE [48]. There are also some models exploiting 
external information for knowledge graph embedding, such as the entity-related text descriptions or 
images. On the datasets WN18RR and FB15k-237, we adopt the baseline model KG-BERT [14] for 
comparison, which exploits the external text content for KGE and achieves the state-of-the-art 
performance. On the dataset FB-IMG, there are some other works exploiting the external multimodal 
content for KGE, such as TransE [12] and MKRL [36]. Accordingly, we compare with these baseline 
models on FB-IMG.  

5.5. Experiment of comparison 

In the first experiment, we compare the performance of link prediction of our model MMCF with 
the baseline models on the datasets WN18RR and FB15k-237 which introduces the textual and visual 
content. We implement MMCF with two decoders MuRE [8] and InteractE [7]. The comparison result 
is shown in Table 2. From the table, several conclusions can be derived. 

First, our model MMCF achieves the best performance of multiple metrices on the two datasets. 
The result demonstrates that learning the intra-modal and inter-modal correlation to fuse the 
multimodal content with the structure information is effective to improve the performance of 
knowledge graph embedding. Second, whichever of the two decoders MuRE [8] and InteractE [7] is 
applied, MMCF outperforms other models in most of the matrices. Therefore, it also demonstrates that 
including the multimodal content with cross-modal correlation can improve the performance of the 
existing KGE models. Meanwhile, MMCFMuRE performs better than MMCFInteractE on WN18RR, 
which is the same as that MuRE performs better than InteractE. The same observation can also be 
found in FB15k-237. Therefore, an effective decoder also contributes to the performance of MMCF. 
Third, compared with other models that include the related content for knowledge graph embedding, 
such as KG-BERT, our model still improves the performance. It demonstrates that exploiting the intra-
modal and inter-modal correlation to fuse multimodal content is more effective than directly fusing 
the multimodal for KGE. 

Table 3. Comparison of link prediction on FB-IMG, where the best results are labelled 
with bold, and the suboptimal performance is underlined. 

Models MRR HITS@1 HITS@3 HITS@10 

TransE − − − 0.494 

MKRL − − − 0.645 

MuRE 0.765 0.703 0.807 0.874 

InteractE 0.813 0.762 0.849 0.895 

ConvKB 0.449 0.337 0.513 0.621 

ComplEx 0.525 0.392 0.618 0.754 

ConvE 0.747 0.667 0.804 0.882 

MMCFTransE 0.453 0.342 0.525 0.702 

MMCFMuRE 0.820 0.768 0.852 0.899 

MMCFInteractE 0.819 0.771 0.849 0.897 
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In the other experiment, we also compare MMCF with the baselines on the dataset FB-IMG. The 
comparison result is shown in Table 3, where MMCFTreansE denotes that MMCF adopts TransE [12] as 
the decoder. From the table, it is observed that our modal outperforms than these baselines. The result 
further demonstrates that the multimodal content of entities supplements the structural information for 
KGE, and exploiting the intra-modal and inter-modal correlation is also effective to learn the 
representation for multimodal content. 

5.6. Ablation experiments 

To evaluate the effectiveness of each component in MMCF, we design a set of ablation 
experiments on multi-modal dataset FB-IMG. Meanwhile, a set of various versions of MMCF are 
designed as follows: 

MMCF-intra. It removes the intra-modal correlation learning components for both the two 
modalities, and only the inter-modal correlation is encoded to learn the multimodal representation. 

MMCF-inter. It removes the inter-modal correlation learning components, and only the intra-
modal correlation is encoded to learn the multimodal representation. 

MMCF-gating. It removes the gating network, and then the feature output by the cross-modal 
correlation learning module and the structure feature are added element-wise. 

MMCF-text. It removes the text description from the multimodal content, and then only the image 
is used as the external content of the entities. 

MMCF-image. It removes the image from the multimodal content, and then only the textual 
description is used as the external content of the entities. 

MMCF-entity. The features of entities are not fused into the relation feature. It mainly tests 
whether the entity features are useful for relation representation learning.  

Table 4. Result of ablation experiment on WN18RR and FB15k-237, where the best results 
are labelled with bold, and the suboptimal performance is underlined. 

Models 
WN18RR FB15k-237 

MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10 

MMCF-intra 0.471 0.426 0.479 0.554 0.342 0.256 0.384 0.544 

MMCF-inter 0.475 0.429 0.482 0.556 0.348 0.258 0.389 0.546 

MMCF-gating 0.480 0.435 0.491 0.566 0.353 0.265 0.396 0.552 

MMCF-text 0.458 0.421 0.471 0.549 0.335 0.252 0.380 0.538 

MMCF-image 0.482 0.441 0.494 0.562 0.356 0.267 0.394 0.549 

MMCF-entity 0.467 0.438 0.485 0.559 0.339 0.254 0.387 0.542 

MMCF 0.489 0.443 0.497 0.571 0.359 0.269 0.397 0.554 

Then, the ablation experiment is conducted on WN18RR and FB15k-237 with the decoder MuRE. 
Table 4 shows the experiment result. From the table, we can obtain several conclusions. First, MMCF 
with all components to exploit the multi-modal content obtains the best performance. Second, all the 
components contribute to the performance of MMCF, and the related multimodal content is useful to 
knowledge graph embedding. MMCF without image obtains the second-best performance, while the 
performance of MMCF without the text description decrease greatly. This is might because that the text 
content is more effective to reflect the semantics of entity than image. Third, including the entity features 
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to the relation is effective to improve the learning of relation representation, since the performance of 
MMCF-entity also decreases greatly. The entity features can enrich the semantics of relation.  

5.7. Additional analysis 

In this section, we analyze the impact of embedding size and also give a case study. We recode 
the experiment result by setting the embedding of MMCF with different dimension size {20, 40, 60, 
80, 100, 120, 140, 160} on WN18RR. From the table, it can be found that the performance is improved 
greatly with the embedding size increased in the early stage. Then the performance is maintained for 
a period, and decreases very slowly. Therefore, it demonstrates that a large vector is not always 
perform better than a small vector of the embedding. Moreover, our model is not very sensitive to the 
size of the embedding size when the size reaches a certain number. 

Table 5. Result of MMCF with different embedding size on WN18RR, where the best 
results are labelled with bold, and the suboptimal performance is underlined. 

Embedding Size MRR HITS@1 HITS@3 HITS@10 

20 0.368 0.395 0.421 0.523 

40 0.476 0.428 0.468 0.551 

60 0.483 0.435 0.490 0.562 

80 0.487 0.440 0.495 0.567 

100 0.489 0.443 0.497 0.571 

120 0.488 0.441 0.495 0.572 

140 0.487 0.438 0.493 0.570 

160 0.485 0.435 0.490 0.565 

Table 6. Given the query (peach, hypernym, −) , the top-N items of the ranking list returned 
by MMCF and MuRE from WN18RR, wher the correct answer “stone fruit” is shown in 
bold. 

Top-N MMCF MuRE TransE 

1 stone fruit structure fruit tree 

2 fruit fruit tree stone fruit 

3 citrus fruit stone fruit veggie 

4 fruit tree seasoning tree 

5 structure computer memory unit nut 

6 monocot genus veggie citrus fruit 

7 veggie citrus fruit monocot genus 

8 tree monocot genus structure 

9 produce tree root 

10 root root animal 

To visualize the performance in detail, we present an example of ranking list for a query (peach, 
_hypernym, −). Table 6 shows the result of MMCF and MuRE, where MMCF use MuRE as the decoder. 
From the table, it can be observed that the correct answer is located in the first position of the ranking 
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list returned by MMCF. MuRE ranks the correct answer in the third position. The other method TransE 
which also fuse the external multimodal content to embed knowledge graph ranks the correct item in 
the second position. Therefore, our method obtains the best result in this example. This is might 
because that stone fruit contain some text and visual content that describe the nature of peach. MMCF 
can learn the latent correlation between the multimodal content of different entities, which is then more 
effective to infer the related entity. From the experiment result, it is further demonstrated that the 
external multi-modal content is useful for knowledge graph embedding. 

Our model is built on the exiting KGE model to exploit the external multimodal knowledge to 
improve the embedding of knowledge graph. Since it learns the inter-modal and intra-modal 
correlation of different modalities of content, it needs more running time than the traditional KGE 
algorithm, such as TransE, MuRE and InteractE. The parameter size of our model is about 4.2M. The 
training of our model is conducted on 2 NVIDIA RTX 3090 24GB, which takes about 12 hours for one 
dataset. However, the algorithm can be optimized by distributed, parallel and cluster computing.  

6. Discussion 

This study is designed to deeply exploit the external multimodal content for knowledge graph 
embedding. In reality, there is usually a great volume of different types of data related to entities and 
relation, such as text description, web pages, medical images, web images, audio and videos and so 
on. Many of the data can be easily obtained from different sources, such as Web sites, traditional 
databases and medical datasets, etc. Therefore, it is reasonable to exploit the multimodal data to 
improve the performance of traditional knowledge graph embedding methods. Accordingly, there are 
already some works [14,37] to fuse the external data for knowledge graph embedding, which has 
achieved certain success. However, these methods mainly regard the different types of data as a whole 
or directly fuse the features of external data with the features learned from knowledge graph. Therefore, 
these methods are not effective to learn from the multimodal data since different types of data are 
heterogeneous and there exists cross-modal correlation.  

Our method first learns the representation of different modalities of data by exploiting the intra-
modal correlation, and then the features of different modalities are fused by encoding the inter-modal 
correlation. Finally, the features learned from the multimodal content and graph structural information 
are fused by a gating network. Therefore, our method gives consideration to the characteristic of 
multimodal data, and thus it is more effective to fuse the multimodal content for knowledge graph 
embedding. The experiment result also demonstrates the superiority of our method, by comparing with 
the structure-based methods and multimodal content fusion-based methods. By using the same decoder, 
our model performs better than the original models MURE, TransE and InteractE. Though we mainly 
fuse the text description and image for knowledge graph embedding in this paper, the other types of 
data, such as video and audio, can also be fused by extending our method directly. Moreover, the 
framework of our method can also be used or revised in other domains which needs to handle 
multimodal data, such as network embedding, multimodal knowledge graph construction, visual 
question answering, multimodal data classification and so on. The limitation of our method is that it 
might be more complex than the structure-based methods and other multimodal content fusion-based 
methods, since it further learns the fine-granularity cross-modal correlation between different types of 
data. However, this problem can be alleviated by parallel computing. 
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7. Conclusion and future works 

In this paper, we propose to learn knowledge graph embedding by exploiting the cross-modal 
correlation between the multimodal content related to the entities. Specifically, a novel model is 
proposed to exploit the intra-modal and inter-modal correlation for multimodal representation learning, 
which then fused with the structure features for entity and relation representation learning. It is 
different from existing works which learn entity embedding mainly base on the structure information 
or include the external data as a whole. We evaluate the performance on three datasets, and the result 
demonstrate the superiority of the proposed model. Meanwhile, our model can be easily combined 
with other structure-based models, such as MuRE, TransE and InteractE. 

In the future works, it is interesting to exploit the multi-modal pre-training models to more 
effectively learning the context semantics of entity. Moreover, this model can also be combined with 
other embedding models, such as network embedding. 
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