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Abstract: Improving the efficiency of human-computer interaction is one of the critical goals of 
intelligent aircraft cockpit research. The gaze interaction control method can vastly reduce the 
manual operation of operators and improve the intellectual level of human-computer interaction. 
Eye-tracking is the basis of sight interaction, so the performance of eye-tracking will directly affect 
the outcome of gaze interaction. This paper presents an eye-tracking method suitable for 
human-computer interaction in an aircraft cockpit, which can now estimate the gaze position of 
operators on multiple screens based on face images. We use a multi-camera system to capture facial 
images, so that operators are not limited by the angle of head rotation. To improve the accuracy of 
gaze estimation, we have constructed a hybrid network. One branch uses the transformer framework 
to extract the global features of the face images; the other branch uses a convolutional neural 
network structure to extract the local features of the face images. Finally, the extracted features of the 
two branches are fused for eye-tracking. The experimental results show that the proposed method not 
only solves the problem of limited head movement for operators but also improves the accuracy of 
gaze estimation. In addition, our method has a capture rate of more than 80% for targets of different 
sizes, which is better than the other compared models. 

Keywords: human-computer interaction; eye-tracking; gaze estimation; vision transformer; feature 
pyramid network 
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1. Introduction  

Human-computer interaction is the way that people exchange information with a system. The 
system can be a wide variety of machines, computer systems, and software [1]. Early 
human-computer interaction was mediated by machine language, and the interaction was 
accomplished through manually inputting machine language instructions to exchange information. 
With the development of computer and communication technology, there are more and more ways of 
human-computer interaction, including speech recognition, gesture recognition, and eye-tracking [2–4]. 
Human-computer interaction methods based on eye-tracking are wildly used in various fields 
because of the characteristics of real-time performance and flexibility [5–9]. Eye-tracking is the 
method that estimates the gaze point or direction of the eye by tracking the movement of the eye. In 
human-computer interaction, gaze control is a flexible method to enable communication with 
computers [10]. 

Eye-tracking has always been a hot topic in machine vision technology [11]. Gaze-tracking 
methods fall into two main categories: model-based methods and appearance-based methods [12–14]. 
Model-based methods generally use special equipment to collect images, detect eye features by 
image analysis, and then use these features to build models to estimate gaze. In the model-based 
approach, the popular sight features include the pupil, iris, canthus and corneal reflection points. The 
specific applications of these features include using the radius and center of the pupil to estimate 
gaze through a geometric model [15,16] and using corneal reflection points to estimate the gaze [17,18]. 
The pupil-canthus method is used to estimate the fixation point of users [19,20]. The model-based 
methods must ensure the quality of the acquired image to obtain an accurate gaze estimation. The 
accuracy of gaze estimation will be affected by image resolution, noise and illumination conditions. 
Therefore, to get an accurate and reliable gaze estimation model, the hardware must be equipped 
with high-quality cameras and special devices such as narrow-angle lenses and external lighting to 
extract adequately accurate and detailed edges or feature points. But in the wild, because of the 
influence of the head pose or light conditions, the method based on the model yields a high error rate [21]. 
In addition, it is necessary to analyze the prior knowledge of the eye model to establish a good 
line-of-sight estimation model. However, this method of establishing a good model based on prior 
knowledge is a challenging task [22]. In contrast to the model-based approach, the appearance-based 
approach directly estimates gaze by analyzing eye images. The specific process is as follows. First, 
collect the face or eye image of the tested person with the label. Then select the training sample as 
the input image data, fit the relationship between the human eye appearance and the fixation 
direction or fixation point through the training sample and finally input the test image sample to 
determine the gaze direction or fixation point of the corresponding area. This method uses a mass of 
statistical data to learn the invariance of appearance differences [23]. And it does not require the 
manual design of features, as it automatically extracts image features from the data, so it has 
good robustness.  

Deep learning has aroused increasing research interest in recent years [24,25]. With the 
continuous development of deep learning theory, the gaze estimation methods based on appearance 
have been increasingly widely used [26–29]. In numerous approaches based on appearance, deep 
learning networks, especially convolutional neural networks (CNNS), exhibit good performance, to a 
certain extent, improving the accuracy of the gaze to estimate. In most of these studies, they used a 
front-facing camera to take an image of a human eye or face. To get a complete picture of a face or 
human eye, one must limit the movement of the head and narrow the field of vision. However, this 
approach is inapplicable to aircraft cockpit scenarios with multiple screens. This is because, during a 
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flight, the objects which need to be viewed are not concentrated on one screen but spread out across 
multiple screens. Therefore, to ensure that the flying personnel are not subject to the rotation angle of 
the head during gaze interaction, this paper proposes an eye-tracking method that uses multiple 
cameras to record images. This method can ensure that the complete frontal face image can be 
collected when the pilot turns their head to look at any target on the screen. Then, a CNN and 
transformer hybrid network model are applied to detect the fixation position of flight personnel 
in the process of human-computer interaction, using the frontal face image corresponding to each 
screen as input. 

2. Related work 

With the rapid progress of artificial intelligence technology, the traditional human-computer 
interaction cannot adapt to the multimodal human-machine intelligent environment for the efficient 
transmission of information. Therefore, it is of great significance to study how to actualize intelligent 
human-computer interaction. Eye-tracking provides a feasible solution for intelligent interaction. For 
example, Zhang et al. [30] proposed a multi-device gaze estimation algorithm based on a CNN for 
specific users. In this algorithm, cameras are installed on five devices, such as mobile phones, tablet 
computers, and smart TVs to collect the face image dataset of user interaction with the device. When 
training the CNN, it uses the encoder of a specific device and the shared feature extraction layer to 
process the image and gives the gaze estimation of the decoder of each device. Li et al. [31] designed 
an eye-tracking method for gaze control for surgical robots. In this approach, the direction of 
movement of the surgical robot or area is decided by the by the user’s point of gaze. They used 
images collected by a single camera training a CNN to get the user's gaze position. Finally, the user 
can control the surgical robot to move in nine directions according to the eye gaze information. 
Lorenz and Thomas [32] developed an eye-tracking system for detecting human interaction 
intentions. It uses two continuous cascaded convolutional networks to extract face features and 
estimate the head pose to determine eye fixation direction. Robots can judge human intentions 
based on line of sight. Kim et al. [33] developed an interactive system that can control devices 
through the user's gaze and simple gestures. The system's gaze estimation module uses a video 
stream recorded by a camera. It detects the user's facial image in the video to get information feature 
vectors, including the head pose. Then, these feature vectors are fed into the CNN to train the user's 
gaze estimation model. Luo et al. [34] developed a human-computer interaction control system for 
wheelchairs using eye-movement tracking and blink detection. It first extracts the pupil feature of the 
eye through binarization of the human eye image and then obtains the movement trajectory of the 
eye. Then, the eye movement tracker locates the eye's gaze direction. At the same time, the 
convolutional neural grid detects the open and closed states of human eyes to judge whether the user 
blinks. Finally, the system operates according to the user's gaze direction or blink movement to 
control the operation of the electric wheelchair. 

All of the above gaze-based interaction methods show good performance for specific 
applications. However, the deflection of the user’s head will result in a tendency to decrease the 
accuracy of gaze estimation because the image collected by only one camera cannot contain full-face 
or complete eye information. Therefore, we have constructed a multi-camera system to study the 
method of gaze interaction without restricting head movement. In this paper, we mainly design a 
hybrid network of a CNN and a transformer for gaze estimation to improve the reliability of gaze 
interaction, aiming at the problem of eye-tracking in the process of visual target acquisition by flight 
personnel in the cockpit scene should not be more than 4 levels. The fond of heading and 
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subheadings should be 12-point normal Times New Roman. The first letter of headings and 
subheadings should be capitalized. 

3. The proposed method 

3.1. Introduction of the method of this paper 

The steps of this approach are shown in Figure 1. As the subjects look at the target on one of the 
three screens, the three cameras will get the initial set of images. Each group of images contains one 
front and two side images of subjects. First, select the image taken by the frontal camera from the 
initial set of images, and then detect the facial landmarks of the subjects by using the facial feature 
point localization network. Each group of images contains one front and two side images of subjects. 
According to the facial landmarks, set the face ROI and obtain the frontal face image. Then, the 
human face image is input into the hybrid network of the CNN and transformer built to track the 
number of screens watched by the pilot in the cockpit and the pilot's fixation position. 

 

Figure 1. Steps of this method. 

3.2. Image processing 

Pick the image of the frontal camera from the images of the three cameras through the 
preprocessor, using a facial feature point localization network [35] to extract the face image. This 
facial feature point localization network, based on the hourglass network [36] architecture used for 
human posture estimation, replaces the original bottleneck block of the hourglass network with 
layered, parallel, and multi-scale blocks [37], and then it carries out landmark localization of the face. 
Obtain the corresponding ROI by using face contour facial landmarks and cutting out the face image. 
The size of all cropped face images is 224×224. Figure 1 already shows an example of the result of 
processing a set of images. 
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3.3. Eye-tracking based on a deep learning network 

3.3.1.  A network model for eye tracking 

To realize the eye-tracking of the aircraft cockpit scene, we design a eye-tracking model based 
on a deep learning network. The model comprises a vision transformer (VIT), a feature pyramid 
network (FPN) and fully connected layers. Figure 2 shows the model framework. 

 
 

Figure 2. The overall framework of the eye-tracking model. 
 

The cropped frontal face images were fed into the VIT and FPN, respectively, for feature 
extraction, and then the extracted features were fused through the fully connected layers. Finally, the 
screen number and the position of the fixation point on the screen were output. VIT extracts the 
global feature of the face image, and FPN extracts the local characteristics of the face image. Fusing 
global features and local features of faces can effectively improve the accuracy of gaze estimation.  

The loss function of the model adopts the Minkowski distance, which is defined as 

𝐿𝐿𝑝𝑝(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = (∑ |𝑥𝑥𝑖𝑖
(𝑚𝑚) − 𝑥𝑥𝑗𝑗

(𝑚𝑚)|𝑝𝑝)𝑛𝑛
𝑚𝑚=1

1
𝑝𝑝                                      (1)         

where 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ 𝑋𝑋 = 𝑅𝑅𝑛𝑛 ,𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖(1),𝑥𝑥𝑖𝑖(2), . . . , 𝑥𝑥𝑖𝑖(𝑛𝑛))𝑇𝑇 ,𝑥𝑥𝑗𝑗 = (𝑥𝑥𝑗𝑗(1),𝑥𝑥𝑗𝑗(2), . . . , 𝑥𝑥𝑗𝑗(𝑛𝑛))𝑇𝑇 .  𝑝𝑝 is a 
variable parameter. The formula shows that the distance metric of Minkowski distance has 
tremendous flexibility. It can iterate over P to find the most suitable distance metric for practical 
applications. After several experimental trials, the value of P in this paper was calculated to be 4. 

3.3.2.  Vision transformer 

A transformer is a new network model that uses the self-attention mechanism to extract intrinsic 
features [38]. Because the transformer advanced performance in natural language processing, 
Dosovitskiy et al. [39] attempted to use a standard transformer for image classification and called the 
network a vision transformer. VIT introduces the concept of an image patch to transform the image 
into sequence data that the transformer structure can process. Since the input to the standard 
transformer must be a one-dimensional token embedding sequence, VIT first segments the image 
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into fixed-size patches and generates a linear embedding sequence of these patches. Then the 
sequence can be used as the input to the transformer. This process is as follows. 

Assum image 𝐹𝐹 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 such that (H, W) is the resolution of an image and C is the number 
of channels. F is divided into N flattened 2D patches  𝑋𝑋𝑝𝑝 ∈ 𝑅𝑅𝑁𝑁×(𝑝𝑝2∙𝐶𝐶), where 𝑁𝑁 = 𝐻𝐻𝐻𝐻/𝑝𝑝2. We map 
each patch into a D-dimensional embedding vector via a learnable projection matrix E and add 
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛  before the D-dimensional embedding vector. 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛  is also a D-dimensional learnable 
embedding vector, which can better represent global information. After that, add the location 
code 𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝  which indicates the location information of the patch. We get the following patch 
embeddings 

𝑧𝑧0 = [𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛;𝑋𝑋𝑝𝑝1𝐸𝐸;𝑋𝑋𝑝𝑝2𝐸𝐸; . . . ;𝑋𝑋𝑃𝑃𝑁𝑁𝐸𝐸] + 𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝,𝐸𝐸 ∈ 𝑅𝑅(𝑝𝑝2∙𝐶𝐶)×𝐷𝐷,𝐸𝐸𝑝𝑝𝑡𝑡𝑝𝑝 ∈ 𝑅𝑅(𝑁𝑁+1)×𝐷𝐷       (2) 

The patch embeddings are input to the encoder of VIT and are processed sequentially by 
LayerNorm (LN), multihead attention mechanism (MSA) and multilayer perceptron (MLP). The 
processing equations are (3) to (4). 

𝑍𝑍𝑙𝑙′ = 𝑀𝑀𝑆𝑆𝐴𝐴(𝐿𝐿𝑁𝑁(𝑧𝑧𝑙𝑙−1)) + 𝑧𝑧𝑙𝑙−1  𝑙𝑙 = 1, . . . , 𝐿𝐿                             (3) 

𝑍𝑍𝑙𝑙 = 𝑀𝑀𝐿𝐿𝑀𝑀(𝐿𝐿𝑁𝑁(𝑍𝑍𝑙𝑙′)) + 𝑍𝑍𝑙𝑙′  𝑙𝑙 = 1, . . . , 𝐿𝐿                                (4)  

Apply Layernorm before the multi-headed attention mechanism module and the multi-layer 
perceptron module and apply residual connectivity after the multi-headed attention mechanism 
module and the multi-layer perceptron module. 

3.3.3.  Feature pyramid network 

The FPN is a CNN for detecting multi-scale targets [40]. The FPN combines the fine-grained 
spatial information of shallow feature maps with the semantic information of deep feature maps. It 
dramatically improves the performance of target detection. The core structure of FPNs contains 
bottom-up pathways and top-down pathways.  

The bottom-up pathway is the forward process of the CNN. In the forward process, the size of 
the feature map changes after passing through some layers, while it does not change when passing 
through some other layers. The layers that do not modify the size of the feature map are grouped into 
one stage so that each extracted feature is the output of the last layer of each step, thus forming a 
feature pyramid. Specifically, it serves to output the features of the last residual structure in the five 
stages of the residual neural network. Then, the feature map is up-sampled by a top-down pathway so 
that the up-sampled feature map has the same size as the feature map of the next layer. The feature 
maps generated by the bottom-up way are C1, C2, C3, C4, and C5 in Figure 2. The feature maps 
generated by the top-down path are P2, P3, P4, and P5 in Figure 3. 

4. Experimental design and results 

4.1. Data acquisition equipment 

Figure 3 shows the experimental environment of the flight simulation platform. The flight 
simulation platform comprises a six-axis full-motion platform, three displays, flight joysticks, data 
measurement instruments, and a mainframe. This study builds a system for capturing targets with 
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gaze during human-computer interaction based on a simulated flight platform. Figure 4 shows the 
structure of the system. 

 

 
 

Figure 3. Simulation flight platform. 
 

 
 

Figure 4. The structure of the experimental system. 
 

The system comprises a head motion sensor, three industrial digital cameras, eight infrared light 
sources, and visual target calibration software. The head motion sensor measures the subject's head 
posture data, and three industrial black-and-white digital cameras acquire frontal and side images of 
the subjects. Infrared light sources ensure that the captured images are not affected by external 
ambient lighting. The function of the visual target calibration software is to record where the target 
appears during the simulated flight. 

4.2. Experimental process 

To collect head and eye movement data during human-computer interaction, 12 graduate 
students with normal vision, aged 21–25 years, were recruited as subjects. All subjects had no 
neurological or psychiatric disorders history and signed an informed consent form before the 
experiment. In addition, this study has passed the review of the ethics committee of the unit. 

The equipment needed calibration before the experiment. Each subject completed 10 sets of 
experiments, each lasting 30 minutes. Figure 5 shows the experimental process. First, the subjects 
adjust their sitting posture and wear the head motion sensor. Then, the user opens the visual target 
calibration software, and a red circle will randomly pop up on the display screen of the simulated 
flight platform every 10 seconds. The red circle is the target that the subject needed to capture. When 
it appears, the subject looks at the center of the red circle and presses the space key to indicate that 
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the subject has obtained the target. At this time, three cameras will take an image of the subject while 
capturing the objective. The head motion sensor also saved the subject's head posture data. The 
visual target calibration software recorded the coordinates of the center point of the red circle target. 
Throughout the experiment, the subject's head was able to rotate and capture targets anywhere on the 
three displays. 

 

 

 

Figure 5. Experimental process diagram. 

4.3. Analysis of results 

The face images captured by the pre-processed frontal camera were input into the proposed 
eye-tracking model. The features of face images were extracted using a VIT and FPN, respectively, 
then, these features were fused through a fully connected layer. The final output was the screen number 
and the coordinates of the gazing point on the screen. Figure 6 shows the structure of the model. 
 

 
 

Figure 6. Structure of the model. 
 

We used classification accuracy as a rubric for screen number prediction. We used the angular 
error between the true and the predicted gaze positions as the evaluation indicator for gaze estimation. 
We randomly selected 5000 groups of images from the collected dataset for analysis. The epochs for 
each experiment were 500. The learning rate for the first 270 epochs was 10-3, while the learning rate 
for the last 230 epochs was 10-4. The batch size for each training set was 16. We used simple 
cross-validation and 10-fold cross-validation to group the sample data for training when dividing the 
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training and test sets, respectively. In the simple cross-validation method, the first 80% of the data set 
was used as the training set, and the remaining data as the test set. The 10-fold cross-validation 
divided the dataset into 10 parts, with nine parts used as the training set and one as the testing set. We 
counted the test results of both methods, as shown in Table 1. Table 1 shows that the 10-fold 
cross-validation can improve the gaze estimation accuracy and outperforms the simple 
cross-validation method without considering the time consumed by the model training. Therefore, we 
chose 10-fold cross-validation for grouping the dataset in this paper. 

 

Table 1. Comparison results for the two methods. 

Method Classification of screen 
number (%) 

Angle error (°) Average training time 
per session (s) 

cross validation 0.985 0.5 33.4 
10-fold cross-validation 0.997 0.4 49.8 

 
 

 
     (a) Classification of screen number             (b) Angular error 

 
Figure 7. Comparison of gaze estimation results. 

 
A single transformer network and a single FPN network were used as control groups for 

comparison with the proposed hybrid transformer and FPN parallel networks. The comparison results 
for the screen number prediction accuracy are shown in Figure 7(a). Figure 7(b) shows the 
comparison result for the gaze's angular error. In Figure 7(a), the classification accuracy of our 
proposed hybrid network is higher than that of other single networks. In Figure 7(b), the angular error of 
the proposed hybrid network is smaller than that of the single network. Therefore, Figure 7 shows that 
our constructed transformer and FPN hybrid parallel network outperform the single network. 

To further compare the performance of the gaze estimation model in this paper, the CANet 
model [41] and the MCSANet model [42] were also used on the dataset of this paper. The prediction 
accuracy of the screen number and the error of gaze estimation for these three models are shown in 
Figure 8. The results in Figure 8 show that compared with the CANet and the MCSANet, the 
accuracy of the screen number prediction obtained by this method was the highest, and the angular 
error of gaze estimation was the lowest, which can better confirm the point of view during 
human-computer interaction. 
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     (a) Classification of screen number            (b) Angular error 

 
Figure 8. Performance comparisons of gaze estimation networks. 

 

 
 

Figure 9. Interaction application scenarios. 
 

The purpose of eye-tracking in this study was to evaluate the effectiveness of subjects' target 
capture by the proposed model for a flight cockpit scenario with multiple screens. The evaluation 
metric for target capture is the percentage of red-circled targets captured. Since the target is a circle, 
we specify that the subject captures the target if the error value of the gaze estimation is less than the 
radius of the circle target. Otherwise, it means that the subject did not acquire the target. Figure 9 
shows the gaze interaction application scenario. The background of figure 9 is the cockpit of an 
aircraft in a flight simulation game. The display in the picture is the virtual integrated control panel 
(ICP). In the figure are red circles of different sizes of targets. Each red circle represents a button in 
the ICP. The user selected three of the red circle targets. These selected targets were numbered I, II, 
and III. The radius of Target I was 20 pixels. It was set to represent the button for the mode selection 
function. The radius of Target II was 40 pixels. It was selected to represent the button that 
implements the communication control function. The radius of Target III was 60 pixels. It was set to 
represent the button that completes the message input. Target I, Target II, and Target III were used 
as the objects to be captured by the subjects. The results of using different models for target 
capture are shown in Figure 10. 
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 Figure 10. Comparison of target capturing results. 

 
Figure 10 shows the capture rates of the five models for three targets. The success rates of all 

five models on target tracking tended to increase with increasing target size. Compared to other 
models, the eye-tracking model constructed in this paper can capture all types of targets effectively, 
with capture rates above 80%. For Target I,I.e. the smallest size, the capture rate of MCSANet was 
only 17%. Moreover, only the CANet model and our model had a capture rate of more than 50%. In 
particular, our model had the highest success rate of 80% for capturing Target I. These results 
indicate that the model proposed in this paper has low eye-tracking errors and can obtain good results 
when capturing small targets. For Target III with the largest size,the FPN, CANet, and our method 
each had a success rate of over 60%. However, only the eye-tracking model we built had the Target 
III capture rate exceeding 90%, showing the optimal performance. In conclusion, the comparison 
results show that the eye-tracking model established in this paper is more stable for the acquisition of 
different targets, which is better than other models. 

5. Discussion and conclusion 

Aiming at the target capture function in the human-computer interaction process in the flight 
cockpit scene, this paper presented a hybrid network combining a CNN and transformer for eye 
tracking. To improve the gaze estimation accuracy, cameras were installed on three display screens in 
the simulated flight cockpit to capture images containing the subjects' faces. First, all images 
captured by the frontal camera were selected and cropped to obtain the subject's face image. The 
advantage of using three cameras is that it removes the limitation of the subject's head rotation angle 
and expands the subject's field of view. 

Then, inspired by previous studies using frontal face images for gaze estimation, we input the 
cropped frontal face images into the proposed eye-tracking model to predict the gaze position of the 
subjects. To test the model performance presented in this paper, we compared it with various 
models. We concluded that the transformer and FPN hybrid parallel network could improve gaze 
estimation accuracy. 

Finally, we applied both the present model and other models to the target capture task in a 
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simulated flight cockpit scenario and found that the performance of our model is superior. 
The experiments and models designed in this study achieved excellent results on the target 

capture task for human-computer interaction and achieved the desired goals. However, there are still 
some problems in the experiment, such as insufficient population distribution of subjects and 
insufficient ability of real-time target acquisition. Subsequent research will focus on the two main 
requirements of the extensiveness of the tested population and the real-time nature of target capture. 
At the same time, we will continue to optimize the neural network model and reduce its complexity. 
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