
http://www.aimspress.com/journal/mbe

MBE, 20(8): 13900–13920.
DOI: 10.3934/mbe.2023619
Received: 23 May 2023
Revised: 04 June 2023
Accepted: 06 June 2023
Published: 19 June 2023

Research article

Flower image classification based on an improved lightweight neural
network with multi-scale feature fusion and attention mechanism

Zhigao Zeng1,2, Cheng Huang1,2, Wenqiu Zhu1,2, Zhiqiang Wen1,2 and Xinpan Yuan1,2,*

1 School of Computer Science, Hunan University of Technology, Zhuzhou, Hunan 412007, China
2 Hunan Key Laboratory of Intelligent Information Perception and Processing Technology, Zhuzhou,

Hunan 412007, China

* Correspondence: Email: xpyuan@hut.edu.cn.

Abstract: In order to solve the problem that deep learning-based flower image classification methods
lose more feature information in the early feature extraction process, and the model takes up more
storage space, a new lightweight neural network model based on multi-scale feature fusion and
attention mechanism is proposed in this paper. First, the AlexNet model is chosen as the basic
framework. Second, a multi-scale feature fusion module (MFFM) is used to replace the shallow
single-scale convolution. MFFM, which contains three depthwise separable convolution branches with
different sizes, can fuse features with different scales and reduce the feature loss caused by single-
scale convolution. Third, two layers of improved Inception module are first added to enhance the
extraction of deep features, and a layer of hybrid attention module is added to strengthen the focus
of the model on key information at a later stage. Finally, the flower image classification is completed
using a combination of global average pooling and fully connected layers. The experimental results
demonstrate that our lightweight model has fewer parameters, takes up less storage space and has
higher classification accuracy than the baseline model, which helps to achieve more accurate flower
image recognition on mobile devices.

Keywords: flower image classification; multi-scale feature fusion; depthwise separable convolution;
attention mechanism

1. Introduction

Flower image classification is a branch of fine-grained image classification. Unlike coarse-grained
image classification, flower image classification is more challenging because different species of floral
images are relatively similar and are susceptible to lighting and distortion [1]. In addition, some flower
images have leaves in the background, while others have grass in the background, and the difference in
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background further increases the difficulty of the flower image classification task. Manual classification
is not only costly but also prone to misclassification. Therefore, there is a need to develop efficient and
accurate methods for classifying floral images with the aid of computers.

Conventional flower image classification methods are often done by manually extracting specific
features or fusing multiple types of features. For example, Nilsback and Zisserman [2] extracted four
different features of the target image for classification using a multi-core support vector machine
(SVM) combined with weighted linear kernels to improve the flower image classification
performance. Fernando et al. [3] proposed a feature fusion method based on logistic regression model
to fused the color and shape features of the flower images for the classification of flower images.
Angelova [4] segmented the target image, extracted the histogram of directional gradient (HOG)
features at four scales of the image, then encoded the features using local constrained linear coding
(LLC) and classified them using SVM. Zawbba et al. [5] first segmented flower images from the
original images, then extracted the image features using both Scale Invariant Feature Transform
(SIFT) and Sgmentation-based Fractal Texture Analysis (SFTA), and finally completed the
classification using an SVM classifier. Inthiyaz et al. [6] proposed a level set algorithm that fuses
three features of flowers, color, texture and shape, to segment images, which achieved good results on
public data sets and was very helpful for subsequent classification tasks. The feature selection of the
above algorithms mainly relies on the experience of researchers. For different images, the ability to
select appropriate features will directly affect the accuracy of classification, so the generalization
ability of the algorithm of classification will be affected.

It is well known that deep learning has been widely used in various fields in recent years because
it can extract features automatically with high accuracy. The concept of deep learning was introduced
by Hinton [7] in 2006. Deep learning can improve the accuracy of classification or prediction by
building deep neural network models and large amounts of training data to learn significant features.
Among the many neural network models, the convolutional neural network (CNN) has attracted the
attention of many researchers due to its excellent achievements in image processing. The famous
models AlexNet [8], VGG [9] and GoogLeNet [10] are all CNNs. Since image processing is subject
to uncertainty, some researchers have started to investigate tools based on fuzzy logic, with good
results [11–13]. CNN also performs well in flower image classification. For example, Liu et al. [14]
combined saliency map and luminance map for flower images to perform region selection of the images
and used CNN to extract features from the selected regions, and then used a softmax classifier to
classify flower images with an accuracy of 84.0% on the Oxford 102 Flowers data set. Cao et al. [15]
introduced a visual attention mechanism in the residual module and proposed an improved residual
network model to improve the accuracy of flower classification. Xia et al. [16] used the pre-trained
Inception-v3 model for flower image classification and improved the accuracy of flower classification
greatly. Qin et al. [17] added the inverse residual module to the Inception-v3 model and then improved
the classification accuracy of fine-grained images by inputting raw images of different sizes. Simon
et al. [18] first used neural activation maps to locate key regions of fine-grained images and then
extracted image features from the key regions for final classification. Cıbuk et al. [19] first extracted
image features using AlexNet and VGG16 and combined them. They then selected more efficient
features by the Max-Relevance and Min-Redundancy (mRMR) feature selection algorithm and finally
used SVM for classification. Bae et al. [20] proposed an improved multimodal convolutional neural
network (M-CNN) for flower image classification by first learning features of text data through a text
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CNN, then learning image features through an image CNN and finally inputting text features and
image features into the classifier through a concatenated CNN to complete the classification. Pang
et al. [21] combined Feature Pyramid Network (FPN) with Bilinear-CNN (B-CNN) and proposed a
Bilinear Pyramid Network (BPN), which uses up-sampling operations to unify the feature dimensions
of different network layers and then fuses them by bilinear pooling with good results. Liu et al. [22]
used FPN and a channel attention mechanism to locate key regions of fine-grained images and then
increased the weight of key regions through a spatial attention mechanism. Guan et al. [23] proposed
a channel cumulative attention mechanism that uses the Cusum function to obtain hierarchical channel
attention with a clear bias and incorporates it into a ResNet model, achieving very good classification
results on four fine-grained image data sets.

Although all of the above CNN-based approaches have yielded promising results for flower image
classification, they still have four main shortcomings: 1) Classification accuracy is not high enough.
Flower images are fine-grained images with the visual characteristic that the inter-class variance is
smaller than the intra-class variance, causing the training results of the model to be different from the
expectations. 2) The single convolution used in the first layer causes excessive feature loss during the
process of feature exaction. Because the current CNNs use a single-scale convolutional kernel in the
initial feature extraction process, they cannot extract the multi-scale features of the original image.
Some models, such as GoogLeNet and Inception-v3, only start to extract multi-scale features in the
middle and late stages, so these models cannot reduce the feature loss generated in the first layer. 3)
There are not enough training samples. At present, there is a lack of large-scale public data sets like
ImageNet for flower image classification, but the training of a CNN requires a lot of data. Although
data augmentation can be used to alleviate the problem, it cannot fundamentally solve the problem of
the lack of data sets. The lack of sufficient training samples affects the performance of the CNN models
which are used for flower classification. 4) The storage space taken up by the model is relatively large.
At present, the demand for flower recognition on mobile devices is gradually increasing, and the model
is too large, making it difficult to deploy to mobile devices, which also makes the flower recognition
on mobile devices not accurate enough.

To address the above shortcomings, this paper proposes a Multi-scale Feature Fusion Module
(MFFM), an Improved Inception Module (IIM) and a Hybrid Attention Module (HAM) for CNN. We
use AlexNet as the baseline model, replace the first convolutional layer with MFFM and add two
layers of IIM and a layer of HAM in the later stage to obtain a lightweight CNN model (FHNet). The
experimental results of flower image classification show that FHNet has the advantages of fewer
model parameters, higher classification accuracy and better generalization ability than AlexNet and
other classical models. It is demonstrated that the lightweight model proposed in this paper can help
achieve high-accuracy flower image classification on mobile devices.

The contributions of this paper are summarized as follows:
1). We propose a Multi-scale Feature Fusion Module (MFFM), which contains three depthwise

separable convolution branches with different sizes and can fuse features with different scales and
reduce the feature loss caused by single-scale convolution.

2). We propose an Improved Inception Module (IIM) to enhance the extraction of deep features by
the neural network.

3). We propose a Hybrid Attention Module (HAM) that enhances the model’s attention to key
features in floral images by fusing spatial attention with channel attention.
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4). We propose a novel lightweight flower image classification model (FHNet), which is based on
AlexNet and incorporates MFFM, IIM and HAM. Experimental results on three flower image data sets
demonstrate the superiority of FHNet.

2. Proposed module and lightweight model

2.1. Multi-scale feature fusion module

AlexNet uses a large kernel with the size of 11 × 11 in the first convolutional layer. The large
kernel is undoubtedly inappropriate for the classification of fine-grained images, such as floral images,
as shown by the experimental results in Figure 9. This is because the convolution kernel with large
size will cause the model to fail to recognize the subtle differences in different flower images, and the
accuracy of flower image classification will be affected. Therefore, this paper proposes MFFM, which
can improve the ability of the model to identify tiny differences between flower images and reduce
the loss of feature information. There are two types of MFFM, described as Fusion1 and Fusion2,
respectively, and their structures are shown as Figure 1.

(a) Fusion1 module (b) Fusion2 module

Figure 1. Two types of MFFM.

Shown in Figure 1, MFFM has three branches of different scales. To improve the nonlinear
capability of the module and reduce the loss of feature information caused by the large-scale
convolution kernel, we replace the large-scale convolution with two layers of small-scale
convolutions. The “s” in Figure 1 indicates the stride of the convolution kernel. To keep the output
size consistent across the different branches in the Fusion1 module and to reduce the computational
effort of the model, we set the stride of the first layer of convolution in the module to 2. To reduce the
parameters of the module, we use depthwise separable convolution [24] instead of standard
convolution. The standard convolution is decomposed by the depthwise separable convolution into
two parts: channel-wise convolution and point-wise convolution. First, a single convolution kernel is
used for each channel to perform the convolution operation, and then the output of the channel-wise
convolution is combined by the 1 × 1 point-wise convolution. In addition, considering that different
branches have different effects on the final classification accuracy of the model, they are given
different weights. The weight W i of each branch is calculated from the lowest loss value Li obtained
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after 200 epochs of individual training. The calculation is as follows:

W i =

1
Li∑3

i=1
1
Li

. (2.1)

The output of MFFM is defined as

Y =
3∑

i=1

W i ⊗ Fi

(
X,
{
Conv j

})
, (2.2)

where X is the input, ⊗ represents element multiplication, and Fi

(
X,
{
Conv j

})
denotes the feature

mapping of the i-th branch which will be learned. Take the third branch as an example:
F3 = σ (β (Conv1 (X))), in which β represents the batch normalization (BN) [25], and σ denotes the
activation function ReLU. The output of the three branches is multiplied by their respective weights
and then summed up to give the final output Y.

2.2. Improved Inception module

Figure 2. An overview of IIM.

The Inception module first appeared in GoogLeNet. Before that, most CNNs were stacking
convolutional layers to increase the depth of the network in the hope of getting good enough results.
The Inception module used in GoogLeNet is a highly representative work that increases the width of
the network without increasing its depth, and it can extract sufficient image features. Later, Szegedy et
al. [26] provided Inception-v2 and Inception-v3 by introducing the ideas of batch normalization and
factorization. After He et al. [27] demonstrated the validity of shortcut connections, Szegedy et al.
combined the Inception module with the Residual module to put forward an Inception-ResNet
module [28]. The Inception-ResNet module removes 1 × 1 convolution from residual connections, so
it is necessary for the Inception-ResNet-v1 model to use other modules to complete the dimensional
transformation. To better extract the deep image features and reduce the computational parameters of
the module, this study incorporated the depthwise separable convolution and the residual connection
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containing 1 × 1 convolution into the Inception module, generating the IIM shown as Figure 2. Unlike
MFFM, the depthwise separable convolution in IIM performs point-wise convolution first and then
channel-wise convolution.

2.3. Hybrid attention module

The attention mechanism mimics the human visual mechanism, which focuses on the crucial
features of an image and reduces the impact of irrelevant features of the image. The attention model
was initially used in machine translation and has now become an important concept in deep
learning [29]. Many scholars have introduced attention mechanisms in neural networks to facilitate
their research on the topic of image processing. Hu et al. [30] proposed a new Squeeze-and-Excitation
module that computes channel attention using global average pooling (GAP) to compress the feature
map, and they won first place in the image classification project of the ImageNet competition in 2017.
Woo et al. [31] devoted a convolutional block attention module (CBAM), which computes the channel
attention and spatial attention of the input feature map successively through a serial architecture, and
CBAM got better results than the results from using only channel attention. For the flower image
classification problem, the attention mechanism can effectively suppress the effects of problems such
as fewer training samples and minor differences between different flowers, and this can improve the
accuracy of classification. Specifically, this paper proposes a HAM by combining an improved
CBAM structure with residual connections.

Figure 3. An overview of HAM.

Shown as Figure 3, the HAM connects the channel attention branch with the spatial attention branch
in parallel. The input matrix X will learn the corresponding attention after being processed by the two
attention branches. The final output of HAM is obtained by mixing the outputs of the two branches by
elemental multiplication and then adding them to X. The computational process of HAM is defined as

Y = (Wc ⊗ X) ⊗ (Ws ⊗ X) + X, (2.3)

where X, Y, ⊗, Wc, Ws represent the input, output, element multiplication, channel weight matrix and
spatial weight matrix, respectively. The details of the two attention branches will be described next.

2.3.1. Improved channel attention branch

To increase the weight of critical channels is the goal of channel attention. CBAM calculates
channel attention in a relatively simple way, which is not suitable for direct application to flower
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image classification. Inspired by the cross-channel pooling approach proposed by Goodfellow et
al. [32], as shown in Figure 4, the improved channel attention branch fuses the average pooling and
maximum pooling results by Eqs (2.4) and (2.5), thus making fuller use of the information from the
image features. Then, a compression activation operation is used to calibrate the response of the filter,
where r is the compression rate. Finally, the sigmoid function assigns values to each channel to obtain
the channel weight matrix Wc using Eq (2.6). The above process is expressed as

X1=AvgPool (X) ⊗MaxPool (X) , (2.4)

X2=AvgPool (X) ⊕MaxPool (X) , (2.5)

Wc = δ (Conv (σ (β (Conv (X1; X2))))) , (2.6)

where β, σ, δ represent BN, ReLU, sigmoid function, respectively.

Figure 4. Improved channel attention branch.

2.3.2. Improved spatial attention branch

Figure 5. Improved spatial attention branch.

To increase the weight of vital feature maps is the goal of spatial attention. As shown in Figure 5,
the improved spatial attention branch also uses Eqs (2.4) and (2.5) to process the pooled features and
concatenates the results to generate a two-channel feature map. Unlike the channel attention branch,
the spatial attention branch uses pooling operations on the channel axis. Finally, the spatial weight
matrix Ws is obtained by a basis convolution and a sigmoid function, the process of which can be
expressed as follows Eq (2.7):

Ws = δ (Conv5×5 (X1; X2)) , (2.7)
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where δ represents the sigmoid function, and Conv5×5 denotes the 5 × 5 convolution.

2.4. Improved lightweight model

We use AlexNet as the baseline model, which is the winner of the ImageNet competition in 2012.
Compared with LeNet-5 [33], AlexNet has a deeper network structure and is capable of learning higher-
dimensional image features. Compared to VGG and ResNet, AlexNet has fewer convolutional layers,
and therefore the improved model takes up less storage space. Based on the previous work, we made
improvements to AlexNet and obtained an improved lightweight model named FHNet.

Shown as Table 1, FHNet uses the Fusion1 module in the first convolution layer, and the second to
fifth convolution layers are all standard convolution layers. After the fifth convolution layer, two layers
of IIM and one layer of HAM are added. Like most models, FHNet also uses the BN layer to accelerate
the network training and uses max pooling between the different convolution layers to compress the
spatial dimension of the feature maps. Finally, the classification of flower images is achieved using
GAP and fully connected layers.

Table 1. FHNet model structure.

Layer Type Input size
Conv1 Fusion1 3 × 224 × 224
MaxPool Pool 3 × 3 64 × 112 × 112
Conv2 Conv 5 × 5 64 × 56 × 56
MaxPool Pool 3 × 3 128 × 56 × 56
Conv3 Conv 3 × 3 128 × 28 × 28
Conv4 Conv 1 × 1 192 × 28 × 28
MaxPool Pool 3 × 3 192 × 28 × 28
Conv5 Conv 1 × 1 192 × 14 × 14
Conv6 IIM 128 × 14 × 14
Conv7 IIM 256 × 14 × 14
MaxPool Pool 3 × 3 512 × 14 × 14
Attention HAM 512 × 7 × 7
AvgPool Pool 7 × 7 512 × 7 × 7
FC Classifier 512 × 1 × 1

2.5. Model training process

Due to the use of the Fusion1 module, the training process of FHNet needs to be operated in the
following steps:

Step 1. Pre-process data. We randomly crop the input flower images to a size of 3 × 224 × 224 and
perform the normalization operation for the images.

Step 2. Load data. When loading the training set, the Shuffle function is used to disrupt the order of
the flower images to avoid over-fitting.

Step 3. Retain one of the branches in the Fusion1 module and block the remaining two branches.
Step 4. Feed the data into FHNet and record the lowest loss value for this branch after 200 iterations.
Step 5. Repeat steps 3 and 4 twice to record the loss values corresponding to the other two branches.
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Step 6. Calculate the weights of each branch by Eq (2.1).
Step 7. Update the output Eq (2.2) of the Fusion1 module based on the weights.
Step 8. Input the flower images into the full FHNet model to complete the training.

3. Experiments

3.1. Experiment data

The experimental data sets are the Oxford 17 Flower [34] and Oxford 102 Flower [2] data sets. The
former contains 17 species of flowers commonly found in Britain, and there are 80 images in each
category. The latter includes 8191 flowers images in 102 categories, and there are 40 to 258 flowers
images in each category. In addition, we select images of five rare flowers from the Plant Photo Bank
of China (http://ppbc.iplant.cn/) and construct a small-scale data set named China 5 Flower, in which
there are 150 images of each flower. Some of these images are shown in Figure 6.

Figure 6. Some images in the flower data set, where a-d belong to Oxford 17 Flower, (e)–(h)
to Oxford 102 Flower and (i)–(k) to the Plant Photo Bank of China (http://ppbc.iplant.cn/).
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Since the number of images per category in the Oxford 17 Flower data set is too little, we use
methods of data augmentation to expand the number of flower images. Data augmentation can make the
model more robust and effectively mitigate over-fitting. Specifically, for each original image, we rotate
it by 90°, flip it symmetrically, reduce the brightness by half and add Gaussian noise, respectively.

3.2. Experimental environment and hyper-parameter selection

A computer with Windows operating system is used for the experiments, the GPU is RTX 3060, the
deep learning framework is PyTorch-1.8.1, and the programming language is Python.

In order to select more suitable hyper-parameters, we investigate the effect of different
hyper-parameters on classification accuracy in the Oxford 102 data set. The learning rate starts with
0.001, and the program is stopped at 200 iterations. The variation of batch size and the learning rate
are set as follows:

1) The batch size is set to 4, 8, 12 and 16, respectively. The learning rate is multiplied by 0.8 for
every 30 iterations. The experimental results are shown in Figure 7(a).

2) The batch size is set to 4, 8, 12 and 16, respectively. The learning rate is multiplied by 0.5 for
every 60 iterations. The experimental results are shown in Figure 7(b).

3) The batch size is set to 4, 8, 12 and 16, respectively. The learning rate is multiplied by 0.1 for
every 100 iterations. The experimental results are shown in Figure 8(a).

The experimental results in Figures 7 and 8 and Table 2 show that the accuracy with a batch size
of 4 is the lowest when the learning rate is multiplied by 0.8 every 30 iterations or by 0.5 every 60
iterations, and the accuracies of other batch sizes are basically the same. When the learning rate is
multiplied by 0.1 every 100 iterations, the highest accuracy is achieved with a batch size of 8. Figure
8(b) shows the accuracy variation curves when the batch size is fixed to 8 and the learning rate is varied
in different ways. It is clear that the highest classification accuracy is achieved when the learning rate
is multiplied by 0.1 every 100 iterations. In summary, the hyper-parameters in this paper are set as
follows: The batch size is set to 8, the learning rate is multiplied by 0.1 for every 100 iterations, the
training process uses the Adam optimizer, and the loss function is selected as cross-entropy.

Table 2. Comparison of classification accuracies under different hyper-parameters.

Scheduler 4 8 12 16
s = 30/g = 0.8 93.5 96.3 95.5 96.0
s = 60/g = 0.5 95.2 96.1 95.9 96.3
s = 100/g = 0.1 95.7 97.2 95.9 95.7
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(a)

(b)

Figure 7. Accuracy variation curves of different hyper-parameters.
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(a)

(b)

Figure 8. Accuracy change curves of different hyper-parameters.
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3.3. Experimental results and analysis

In order to validate the performance of FHNet, Table 3 shows the experimental results of FHNet
and other classical models on China 5 Flower. The evaluation metrics include Parameters (M), FLOPs
(Floating-point Operations/G), Model size (MB), and Top-1 accuracy (%). FLOPs are used to measure
the complexity of the model. The model size is the storage space occupied by the model weights after
the training is completed. The experimental results obtained by some classical network models or other
researchers on the Oxford 17 Flower and Oxford 102 Flower data sets are compared with the results of
our model, shown in Tables 4 and 5. We use ten-fold cross-validation to make the experimental results
more convincing.

Table 3. The results of different classification methods on the China 5 Flower data set.

Method Parameters/M FLOPs/G Model size/MB Top-1 accuracy/%
AlexNet [8] 61.10 0.72 217 93.3
VGG16 [9] 138.36 15.50 512 96.0
GoogLeNet [10] 6.62 1.51 39.4 96.7
MobileNet-v2 [24] 3.50 0.32 8.81 96.3
Inception-v3 [26] 23.83 2.85 93.2 94.7
ResNet34 [27] 21.80 3.67 81.3 97.3
FHNet 1.99 1.19 3.56 98.7

Table 4. The results of different classification methods on the Oxford 17 Flower data set.

Method Top-1 accuracy/%
AlexNet [8] 89.3
VGG16 [9] 90.6
GoogLeNet [10] 86.6
MobileNet-v2 [24] 96.3
Nilsback and Zisserman [34] 88.3
ResNet34 [27] 93.9
Fernando [3] 93.0
Cao [15] 85.7
Xia [16] 95.0
SMA-Net [22] 97.3
FHNet 97.8
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Table 5. The results of different classification methods on the Oxford 102 Flower data set.

Method Top-1 accuracy/%
AlexNet [8] 81.5
VGG16 [9] 90.1
GoogLeNet [10] 79.6
MobileNet-v2 [24] 95.7
Nilsback and Zisserman [2] 72.8
ResNet34 [27] 93.7
Angelova [4] 80.7
Liu [14] 84.0
Xia [16] 94.0
Qin [17] 96.6
M-CNN [20] 93.7
BPN [21] 94.2
CCA-ResNet [23] 97.0
FHNet 97.2

The experimental results in Table 3 show that FHNet has much fewer parameters than AlexNet.
The number of FLOPs for FHNet is slightly higher than AlexNet and MobileNet-v2 but lower than
the other models. The model size of FHNet is much smaller than AlexNet and smaller than the classic
lightweight model MobileNet-v2, which means that FHNet can be deployed on mobile devices or
embedded devices. In addition, the classification accuracy of FHNet on the China 5 Flower data set
is also higher than that of other models, indicating that it has an excellent performance in identifying
rare Chinese flowers. Compared with AlexNet, FHNet performs slightly worse in terms of FLOPs but
performs much better in terms of parameters, model size and Top-1 accuracy. The experimental results
in Tables 4 and 5 show that FHNet achieves a Top-1 accuracy of 97.8% and 97.2% on the Oxford
17 and Oxford 102 flower data sets, respectively, outperforming other models or methods. Overall,
FHNet has the advantages of fewer model parameters, high classification accuracy and small storage
space occupation, and its overall performance is superior for meeting the needs of flower recognition
on mobile devices.

3.4. Ablation studies

We conducted ablation studies on the Oxford 102 Flower data set to investigate the components of
FHNet.

To investigate the contribution of MFFM, the first convolutional layer of FHNet is set to 11 × 11
Conv and the Fusion1 module, respectively. Shown as Figure 9, the accuracy of FHNet using the
Fusion1 module is significantly higher, indicating that the large size of the convolutional kernel used
in the original AlexNet model caused excessive feature loss in the feature extraction process of the
flower images, which in turn affected the final classification accuracy. In contrast, MFFM effectively
reduces the feature loss caused by single-scale convolution and improves model performance through
the weighted fusion of depthwise separable convolutional branches with different scales.
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Figure 9. Accuracy change curve of FHNet with and without Fusion1.

The accuracy change curve in Figure 10 shows that when we replace the IIM in FHNet with 3 × 3
Conv, the classification accuracy of the model drops significantly, indicating that the IIM can enhance
the model for deep feature extraction.

Figure 10. Accuracy change curve of FHNet with and without IIM.
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By training FHNet without HAM and comparing it with the full model, we investigate the effect
of HAM. The experimental results in Figure 11 show that the classification accuracy of FHNet with
HAM is higher, which demonstrates that HAM can improve the model’s attention to critical features.

Figure 11. Accuracy change curve of FHNet with and without HAM.

We set up the first three convolutional layers of FHNet according to experiments a, b and c in Table
6 to test the effect of the number of MFFM in the model on the classification accuracy. Regrettably, the
experimental results in Figure 12 show that stacking the number of MFFM does not further improve
the classification accuracy. We will further analyze the results of this experiment through feature
visualization.

Table 6. Model structure settings for MFFM with different number of layers.

Experiment Conv1 Conv2 Conv3
a Fusion1 Conv 5 × 5 Conv 3 × 3
b Fusion1 Fusion2 Conv 3 × 3
c Fusion1 Fusion2 Fusion2
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Figure 12. Accuracy variation curves for different numbers of MFFM in FHNet.

Figure 13 shows the feature visualization results of buttercup, daisy and windflower. As can be seen
from the results in Figure 13, the Conv1 layer mainly extracts high-resolution features such as texture
and color, while MFFM has a good enhancement effect on the extraction of such features. Conv2 and
Conv3 mainly extract low-resolution features such as contours and shapes. For low-resolution features,
the feature loss due to single-scale convolution is relatively minor. Therefore, increasing the number
of MFFM cannot further improve the accuracy of classification.

Figure 13. Feature visualization results of three kinds of flowers, with the original image
from the Oxford 17 Flower data set.
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4. Conclusions

In this paper, we propose a lightweight deep neural network model (FHNet) based on multi-scale
feature fusion and attention mechanism for flower image classification. By using MFFM in the early
stage, FHNet can extract more adequate image features. By adding IIM and HAM at a later stage,
FHNet can strengthen the focus on critical features. The experimental results show that FHNet
achieves fairly good classification results on three flower image data sets, demonstrating the model’s
applicability to the flower image classification problem. The lightweight nature of FHNet facilitates
the deployment of the model to mobile or embedded devices, thus meeting the need for flower
recognition on mobile devices. In addition, we found during the research that MFFM is not effective
for the medium-term feature extraction process. We will try other feature enhancement methods in the
future to further improve the performance of FHNet on flower image classification.
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