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Abstract: In 3D reconstruction tasks, camera parameter matrix estimation is usually used to present
the single view of an object, which is not necessary when mapping the 3D point to 2D image. The
single view reconstruction task should care more about the quality of reconstruction instead of the
alignment. So in this paper, we propose an implicit field knowledge distillation model (IFKD) to
reconstruct 3D objects from the single view. Transformations are performed on 3D points instead of
the camera and keep the camera coordinate identified with the world coordinate, so that the extrinsic
matrix can be omitted. Besides, a knowledge distillation structure from 3D voxel to the feature vector
is established to further refine the feature description of 3D objects. Thus, the details of a 3D model
can be better captured by the proposed model. This paper adopts ShapeNet Core dataset to verify the
effectiveness of the IFKD model. Experiments show that IFKD has strong advantages in IOU and other
core indicators compared with the camera matrix estimation methods, which verifies the feasibility of
the new proposed mapping method.
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1. Introduction

3D reconstruction [1, 2] is one of the frontier research directions of computer graphics, which is
widely used in virtual reality, medical treatment, architecture, industrial design, 3D printing, and
many other fields. Traditional 3D modeling needs a lot of work of professionals. Although with the
development of technology, users can obtain 3D objects through acquisition devices, even the
cheapest depth cameras are much more expensive than ordinary cameras. Professional 3D acquisition
devices are so expensive and not suitable for large-scale application. In recent years, with the
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development of artificial intelligence and deep learning, the ability to perceive 3D models has been
significantly improved. As a result, the demand for sensing equipment capability reduced a lot, which
further promoted wider application of 3D reconstruction technology.

Single view reconstruction (SVR) [3-7] can reduce the demand for 3D object information
collection, and build the whole shape of 3D objects in a delicate way. Because of these advantages,
SVR has gradually become one of the mainstream methods in 3D reconstruction. SVR mainly relies
on the encoder decoder structure to extract features from the input single image, and then generates a
3D model through restoration according to the features. Implicit Field model is one of the
representative models used to solve SVR task by defining continuous functions in 2D/3D space,
finding the zero isosurface of the field to reconstruct the mesh surface.

In most 3D reconstruction models, the estimation of camera parameters is an important step in
object feature extraction. However, in the task of single view reconstruction, the parameter estimation
of the camera itself is not necessary. It can even get rid of the dependence on the camera parameter
matrix by assuming the initial position state of the object, so as to reduce the redundant structure in
the 3D reconstruction model. In this way, the model itself can pay more attention to the reconstruction
of 3D objects details, rather than aligning the objects framework. Instead of simplifying the feature
extraction network structure, the proposed model omits the camera parameter matrix prediction
network. Previous algorithms need to use camera parameters to map 3D points to image points before
feature extraction. However, the proposed model does not require the camera matrix, which simplifies
the mapping process rather than the network structure. The advantage of this is that no redundant
network is required to predict the camera parameter matrix.

In this paper, we propose a Implicit Field Knowledge Distillation model (IFKD) for SVR task in
Figure 1, which can deal with the task when the Camera Matrix is unknown. A new mapping method
from 3D points to 2D pixels is proposed, instead of the estimation of Camera Matrix. In order to get
more refined feature representation of the object, we adopt a knowledge distillation [8] structure to
teach the feature extraction networks by voxel 3D encoder. The 3D voxel network can easily extract
spatial information, so using the 3D voxel network to supervise the 2D student network can help the
student networks learn spatial information better.

The main contributions of this paper are summarized as follows:

1) A new mapping method is proposed to reconstruct 3D objects without camera matrix, simplifying
the network structure of feature extraction.

2) A teacher-student structure for voxel 3D feature knowledge distillation is adopted to refine the
details of 3D objects.

3) The skip connection of the encoder-decoder is considered and discussed in detail to further optimize
the effect of SVR.

The rest of the paper is organized as follows: Section 2 investigates the recent research progress
of related work. Section 3 provides the pipeline and structures of implicit field knowledge distillation
model. In Section 4, ShapeNet dataset is introduced to verify the proposed model, and experimental
comparisons and discussions are provided. At last, Section 5 presents the conclusion.
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Figure 1. Motivation of the IFKD model. The model adopts a knowledge distillation model
to refine the feature vector instead of a camera matrix estimation network.

2. Related works

2.1. Implicit-field-based SVR methods

According to the 3D representation of the reconstruction results, the existing SVR methods can be
divided into Euclidean representation, non-Euclidean representation and implicit field based
representation. The first two can be collectively classified as geometry-based methods. Models
reconstructed by geometry-based methods can be represented by meshes [3, 9], voxels [4, 10, 11] and
points [5, 12], they are intuitive and visible. However, it is difficult to analyze meshed points because
they are sparse and irregular. Meanwhile, the storage occupied by a voxel grows cubically with its
resolution, therefore, it is difficult to balance reconstruction quality with storage cost.

However, Implicit field learning avoids the limitation of storage cost and has achieved significant
improvement in SVR. [6, 7, 13] use a similar idea of making predictions for each 3D point to
reconstruct 3D shapes. This design is beneficial for generating contiguous surfaces because it does
not use complex geometric representations and avoids the storage cost constraints. Meanwhile, it can
encode descriptions of 3D output at infinite resolution without taking up excessive memory, which
makes implicit field learning have greater advantages in the quality and the storage cost of the output
voxels. However, the above models have insufficient perception of objects, resulting in insufficient
accuracy of the reconstructed shapes [14]. The details of the objects, such as edges and corners, are
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disconnected or linked up at the wrong scale. To address this problem, [1] proposes D2IM-Net to
encode the input image as global and local features, which are fed into two decoders respectively. The
base decoder uses global features to reconstruct the coarse implicit field, while the detail decoder
reconstructs two displacement maps from local features. The final 3D reconstruction result is
obtained by combining the base shape and displacement map. [15] predicts the projected position of
each 3D point on a 2D image and extracts local features from image feature maps. Combining global
and local features significantly improves the accuracy of signed distance field predictions, especially
for detail-rich regions. Furthermore, [16] extracts local information from different layers and
reorganizes this information.

2.2. Detail reconstruction

SVR has less input images and thus less useful information can be obtained. This results in that
the results of SVR often lack detailed information. Therefore, researchers aim to solve the problem
of insufficient detailed information in SVR. The current mainstream method is to use local feature
encoding to solve this problem. In [1], the 3D shape reconstruction task is decomposed into two parts:
shape reconstruction and residual reconstruction. The former aims to generate the main shape of the
model using global feature vectors, while the latter focuses on reconstructing the details of the model.
At the same time, the reconstructed result is projected to a 2D plane and compared with the original
image, and the difference between these two images will be used as part of the loss function. [2]
introduces an implicit representation function that aligns 2D image pixels with the global information
of their corresponding 3D objects, which enables the function to infer the surface texture of the 3D
reconstructed model using a single input image or multiple input images information if available.

Besides local feature encoding, inspired by how humans learn, [17] proposes a minimum
circumference loss that trains the network in an easy-to-hard way. In the early stage of training, the
network learns to reconstruct the main body through a high loss function tolerance. After that, the
penalty for false prediction is increased to supervise the model to learn the details of the model.

2.3. Knowledge distillation

Knowledge Distillation [8] is a method of compressing knowledge from the cumbersome model
into a more easily deployable model. In the pioneering work of classification, [8] proposes the teacher-
student framework where the student network mimics the softened output of the teacher network.
FitNet [18] extends this idea by training a student that is deeper and thinner than the teacher, using the
output and intermediate representations learned by the teacher as cues to improve the training process
and the performance of the student.

In addition, the teacher-student framework can also be used in object detection tasks. [19] make
the student sample from the entire feature map, and then use a transformation layer to map the
student’s sampling results to the same dimensions as the teacher’s sampling features. When training
the student, [19] supervises the student to learn from the teacher by optimizing the similarity of the
same area of the feature map sampled by the both networks. However, this method does not work on
detectors without proposals. [20] supervises the student to learn the teacher’s method of feature
extraction and generalization based on the fact that the detector is more concerned with local near
object region, but the introduction of the additional selection algorithm will increase the complexity
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Figure 2. Pipeline of IFKD model. Local feature from 3D teacher is adopted to refine the
reconstruction network.

of the network. [6] first employs a cue-based learning approach that encourages the feature
representation of the student to be consistent with the teacher. After that, knowledge distillation is
used to learn a stronger classification module. However, the imitation of the teacher’s feature
representation by the student will make the student network have a large amount of irrelevant noise,
which makes the performance of the student not outstanding.

3. Method

3.1. Mapping 3D points to 2D pixels

The previous methods [1,2, 15] have proven that local features from 2D images are important for
improving the reconstruction of details. Extracting local features of a 3D point from a 2D image
need map the point to a pixel first. The mapping from 3D point p(x,y, z) to 2D pixel p’(x’,y") can be
represented as the Camera Matrix M.

y|l=M i (3.1)
! 1

However, the camera matrix is commonly unknown in our SVR settings. The existing methods train
an extra CNN to predict the matrix, and then use it as the 3D to 2D mapping. This design introduces
redundant network and accumulative errors.

The camera matrix M can be deduced from an intrinsic matrix K and an extrinsic matrix E,
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formulated as follows,

M=KE=| 0 f/d, wll, |
o 0 1

fld; 0 Up [R Z‘]
3.2)

where intrinsic matrix K is determined by the properties of the camera itself, f is focal length of
camera. d, and d, represent the scale relationship between the camera coordinate and the camera
coordinate, while 1, and v, represent the offset between the origins of these two coordinates. Extrinsic
matrix E indicates the transform from the world coordinate to camera coordinate, where R and ¢
represent the rotation and translation transformations, respectively.

Given a 3D object, different images can be captured by the same camera but with different positions
and rotations. Each image [; is corresponding to a camera matrix M;, which consists of a constant
intrinsic matrix K and a variable extrinsic matrix E£;. By adjusting properties of the camera, we can
assume that the offset represented by u and v, in K is zero and d = d, = d,. So the intrinsic matrix K
is simplified as follows,

fld 0 0
K=|0 f/d 0 (3.3)
0 0 1

Further, we can perform transformations on 3D points instead of the camera and keep the camera
coordinate identified with the world coordinate, so that the extrinsic matrix can be omitted.

v X X
y'| = KE ﬁ - M.(E ﬁ) (3.4)
! 1 1

where M. is the simplified camera matrix. Now all images are corresponding to the same camera matrix
M., but different transformation E; on the 3D object. In fact, M. is just depended on the resolution ratio
of the 2D image and the 3D space, and can be fixed.

As the same with existing implicit-field based methods, the training samples of our method are
point-value pairs (p, v)s, where p is 3D point and v indicate whether p is occupied by the 3D object.
In training phrase, the transformation E; of image I; is known. So we can perform E; on point p, when
the network input is /;. The transformed point p can be mapped to a 2D point p’ directly, then the local
feature can be extracted from the CNN feature map as described in 3.2.

In inference phrase, E; is unknown, but also unnecessary. We directly feed the image /; and the
points into network, get the implicit field and then generate surfaces by the Marching Cubes
algorithm [21]. Without transformation on input points, the reconstructed result is not aligned and has
the same orientation with the object in /;. This is different with existing methods that pursue aligned
results and the consistent orientation. We argue that the SVR task should care more about the quality
of reconstruction instead of the alignment.

3.2. Network architecture

Our network consists of a feature extraction network and a reconstruction network. The backbone
of feature extraction network is a U-Net [22], which is commonly used in semantic segmentation.
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Figure 3. Teacher network structure for feature vector knowledge distillation.

The network utilizes skip connections between shallow layers and deep layers to reserve more texture
information. The reconstruction network is a simple Multi-layer Perceptron(MLP) [23].

The U-Net takes image I as input and outputs a feature map. To predict the implicit field of point
p, we first map it to 2D point p” on the feature map as described in 3.1. Then we utilize bi-linear
interpolation algorithm to extract the feature vector of p. The vector is fed into reconstruction network,
and the network outputs implicit field prediction.

3.3. Knowledge distillation from 3D

As shown in Figure 2, our SVR network is supervised by two losses. The first one is reconstruction
loss, which is the same with existing methods. The second one is Knowledge Distillation (KD) loss.
We use a 3D network as the teacher and our SVR network as the student. Then, the KD loss is designed
to force the student to learn from the teacher network.

To obtain the teacher network, we first train a voxel-to-implicit field network, as shown in Figure 3.
The encoder is a 3D CNN, which processes the voxels of object and output a feature voxels. Similar to
the SVR pipeline, we use tri-linear interpolation to extract the local feature vector of 3D points from
the feature voxels. Then the feature vector is fed into the decoder to get the implicit field prediction.
The decoder is implemented with MLP. The teacher network is trained to transform the representation
of 3D objects. At the same time, the teacher network learns to extract local feature vectors of 3D points
from the 3D voxels.

It is clear that the local features extracted from voxels are more informative than that from 2D
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Figure 4. Visualization comparison between existing methods.

images. So the teacher network’s feature vector can be used to supervise feature extraction of the SVR
network.

Algorithm 1 shows how to compute loss from a single sample. In a training epoch, our method
iterates over each sample in the dataset and uses Algorithm 1 to train the network. At the same time,
back-propagation and parameter update are performed according to the loss. In Algorithm 1, we input
image /, corresponding transformation matrix E, voxel of 3D model mesh and polygonal mesh of 3D
model polygon, then the algorithm will output loss, the sum of reconstruction loss and knowledge
distillation loss, for this epoch. In the Algorithm 1, P is 3d point set, V is correspinding value set
and P’ is 2d point set mapped from P. Z,,Z, are feature vectors, and o is implicit field prediction of
reconstruction network.

Algorithm 1 Single Image Training Process

Input: Image /, corresponding transformation matrix E, voxel of 3D model mesh and polygonal mesh
of 3D model polygon
Output: Loss loss.
: P, V « sample_points(mesh)
P’ < mapping(P, E)
21 < fenn(I, PY)
22 < fip-cnn(mesh, P;)
0 — furr(z1)
loss <« compute_loss(z;, 22,0, V;)
return [oss

AN AR
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4. Experiments

4.1. Citation dataset

Following the existing methods [13, 15,24], we use 13 categories of ShapeNet-Core as our dataset.
ShapeNet-Core is a densely annotated subset of ShapeNet covering 55 common object categories with
about 51,300 unique 3D models. The input images are rendered by 3D-R2N2 [4] and their resolution
i1s 137 x 137. The voxel dataset for the teacher network and data sampling is from HSP [25] and the
resolution is 128 x128x128. To prepare the training data, we sample 10000 point-value pairs totally, of
which 128 pairs are randomly sampled in 3D space and the others are sampled near the object surface.
The sampling method is the same with IM-NET [24].

4.2. Implementation details

Network architecture. The implementation of U-Net [22] is the same with the origin one. The
MLP, the reconstruction network, consists of five fully connected layers, using Leaky-ReLU [26] as
activation function. For knowledge distillation, we use IF-Net [27] as our 3D teacher network. IF-
Net takes sparse voxels as input, and extracts 5 local features in different scales for a 3D point. We
concatenate all the local features as the target of the student network.

Training Details. We first train the SVR network only with reconstruction loss for 50 epochs, and
then add the KD loss for another 30 epochs. The reconstruction loss is Mean Square Error (MSE) and
the KD loss is L1 loss as commonly used. The Adam optimizer is used and the initial learning rate is
0.001. To generate surface from implicit field prediction, we apply Marching Cube algorithm [21] and
the threshold is 0.5.

Metrics. Intersection of Union (IoU), Chamfer-L; Distance (CD) and Edge Chamfer Distance
(ECD) [13] and DR-KFS [28] are used as quantitative metrics. To compute loU metric, We voxelize
reconstructed results and ground truths into 32 X 32 x 32 voxels. To compute CD and ECD, We sample
4k and 16k points on the surface, respectively. DR-KFS is defined in [28] and the results are normalized
into [0, 1].

4.3. Experiments results on ShapeNet-Core

Qualitative results. Figure 4 shows the qualitative comparison between occupancy network
(OccMet) [13], IM-NET [24], DISN [15] and ours. All the methods can reconstruct the main body of
3D objects from a single image, but behave differently in details. One of the challenges is to
reconstruct the thin connections in the 3D objects. OccNet and IM-Net both fail on the chairs and the
screen. Especially in the first and last chairs, they can not generate complete surfaces. While our
method can reconstruct most connections in these objects, but fails in the last chair. DISN perform
well on the connection reconstruction, but it fails on the airplane. Overall, our method achieves
comparable results with the existing methods, and even better performance on some details.

As we can see in Figure 4, our method reconstruct unsymmetrical results, such as the first chair
and the airplane. This is a drawback of our method. Because we emphasize the local image feature in
network design and training scheme, the network may be influenced by the perspective in some cases.

Table 1 lists the quantitative results. In addition to the baseline models of qualitative experiment,
Pix2Vox++ [11] and AttSets [29] are added as comparison in quantitative experiment. T represents
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Table 1. Quantitative comparison between existing SVR methods.

method airplane  car  chair display lamp rifle table | mean

OccNET 0.480 0570 0.358 0.439 0.254 0.427 0.461 | 0.461

10U(T) IM-NET 0.379 0.674 0.487 0.514 0.336 0.468 0.484 | 0.527
DISN 0.328 0.672 0.301 0358 0.189 0.197 0.105 | 0.360

Pix2Vox++ | 0.413 0.630 0.435 0.324 0350 0.417 0.305| 0.411

AttSets 0.398 0.612 0403 0301 0.334 0433 0.306 | 0.398

Ours 0.420 0.686 0.505 0.527 0.307 0.467 0.509 | 0.545

OccNET 0461 0.368 0.639 0.636 0.683 0.414 0.763 | 0.587

CD() IM-NET 0.574 0.650 0919 0907 0.802 0.556 0.979 | 0.797
DISN 0.572 0.645 0907 0906 0.800 0.578 0.972 | 0.794

Pix2Vox++ | 0.512 0453 0.712 0.744 0.701 0.465 0.876 | 0.638

AttSets 0.527 0512 0.785 0.801 0.743 0.498 0911 | 0.682

Ours 0.581 0394 0.619 0.610 0.653 0.419 0.719 | 0.575

OccNET 0423 0.288 0.465 0475 0.581 0.321 0.594 | 0.473

ECD(}) IM-NET 0.522 0370 0.627 0.641 0.695 0.478 0.750 | 0.589
DISN 0.554 0412 0.732 0.653 0.733 0.565 0.844 | 0.655

Pix2Vox++ | 0.501 0342 0.562 0.573 0.618 0.442 0.812 | 0.550

AttSets 0471 0378 0.629 0.523 0.643 0.424 0.647 | 0.531

Ours 0493 0329 0408 0461 0.574 0.311 0.568 | 0.463

OccNET 0.296 0.239 0.325 0366 0402 0.291 0.438 | 0.337

DR-KFS(}) IM-NET 0.337 0308 0.375 0386 0.398 0.269 0.512 | 0.367
DISN 0.324 0313 0392 0403 0422 0401 0.524 | 0.397

Pix2Vox++ | 0.311 0.297 0.355 0.372 0.407 0.335 0.503 | 0.369

AttSets 0.324 0325 0.373 0401 0398 0.283 0.497 | 0.372

Ours 0.331 0.294 0.323 0.341 0.390 0.257 0.429 | 0.316

that the larger the metric is, the better, and | is opposite. We display the results of 7 categories with
the most shapes in ShapeNet-Core dataset. The OccNet shows great results on airplanes and cars. The
most surfaces of these two categories are main body parts, where the OccNet does well. As we can
find in Table 1, our method has best performance on most categories.

4.4. Ablation study on knowledge distillation

We conduct experiments to prove that the knowledge distillation loss is effectiveness. Table 2
compares the quantitative results of our methods without and with knowledge distillation. As we can
see, KD loss can improve all the three metrics.

We also compare the effect of different architectures of teacher network. As described in 3.3, our
3D teacher network extracts feature vectors of different levels from the voxels input. We try to replace
it with a simple one. The simple teacher is a naive 3D CNN also with 4 convolutional layers, but
only outputs a single feature vector from the last layer. The results in Table 2 show that our teacher
network is better than the simple one. The U-Net in our SVR pipeline leverage the multi-level feature
extraction, so the teacher network should follow the same idea.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13864—13880.
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Figure 5. Qualitative comparison on 3D knowledge distillation.

Figure 5 shows a sample to explain the effect of knowledge distillation. Our model results are
closest to the ground truth. In contrast, the network without knowledge distillation performs poorly
in reconstructing details, and even some detailed parts, such as chair legs, are difficult to reconstruct.
Since the simple teacher only outputs the feature vector of the last layer, although it can correctly
identify and reconstruct the main part of the model, the texture features are tough. This is because it is
easier for the shallow network to recognize the texture information in the input image, and the lack of
feature vectors in the shallow network causes the simple teacher to reconstruct rough shapes. However,
the multi-layer feature extraction in our method can solve this problem well.

Table 2. Quantitative comparison on 3D knowledge distillation.

1I0U(1) CD() ECD()
w/o KD 0.539 0.595 0.471
simple teacher 0.541 0.579 0.464
Ours 0.545 0.575 0.463

4.5. The effect of the iterative process on the model performance

Our method is trained in an iterative manner. In order to study how the network can improve the
performance in the iterative process, we show the change of the IoU of our model under different
iteration rounds in the Figure 6, and give IoU values under some iteration rounds, as shown in the
Table 3. As the iteration prohresses, the model performance gradually improves and becomes stable.
The IoU value plummeted after the introduction of knowledge distillation. However, the performance
of the network with knowledge distillation will gradually improve with iteration, and finally converge
to a higher performance than the network without knowledge distillation.

4.6. Attempts to optimize skip connection

The skip connection is an important mechanism in U-Net [22]. It enriches the output feature map
with texture information, which greatly benefits image segmentation task. However, SVR task needs
more spatial information and these information can not be extracted by shallow convolutional layers.
So we try to replace the skip connections with more complex modules, as shown in Figure 7. First,

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13864—13880.
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Table 3. Statistics of IoU values under some iteration rounds. The first row represents
the iteration round, and the second row represents the IoU value under this round. Due
to the introduction of knowledge distillation in the 50th iteration, it can be seen that the
IoU value has dropped significantly in this round of iterations. However, as the model
continues to iterate, the loU value of the network with knowledge distillation gradually rises
and eventually surpasses the network without knowledge distillation.

iteration 1 10 20 30 40 49 50 60 70 80
10U 0.115 0345 0466 0.503 0.537 0539 0405 0.501 0.549 0.544

we try to use a 5-layer CNN as the submodule. The simple CNN can increase the convolutional layers
from the shallow layer to the deep one, and we expect more spatial information can be extracted.

We also try to apply Spatial Transform Network (STN) [30] in our network for more flexible feature
extraction. STN can learn the spatial manipulations on the feature maps, so we expect it guide the
network extract more discriminative features.

The results of attempts to optimize skip connection are listed in Table 4. Although 5-layer CNN
and STN have some advantages, they do not outperform skip connection in our network. So we still
use the skip connection submodule.

Table 4. Comparison between different submodule to replace skip connection.

10U CD() ECD(])
5-layer CNN 0.520 0.621 0.593
STN 0.540 0.572 0.472
skip connection 0.545 0.575 0.463

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13864—13880.
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4.7. Time complexity

The training procedure is as follows. A 3D teacher network is trained first, followed by a 2D student
network. Compared with the traditional method, our training time increases the time of training the
teacher network, but we do not need to train the camera parameters prediction network, and the teacher
network makes the training of the student network easier. Therefore, the overall time complexity will
not increase much compared to the traditional method.

As for the test process, our model uses U-Net and MLP instead of the heavy network, so the test
time will not be slower than the previous network. In a word, we pay more attention to the innovation
of the mechanism than the performance of the network. However, our network structure is relatively
lightweight, so the time complexity will not increase much compared to previous algorithms.

4.8. Experimental analysis

According to the analysis of the above tables and figures, we can draw the following conclusions:

1) From Figure 4 and the qualitative results, our method can accurately identify and reconstruct the
overall shape of the model and reconstruct as many model details as possible. In contrast, OccNet
and IM-Net often reconstruct parts that do not exist in the ground truth, or omit details of the
ground truth. The DISN reconstruction results show poor continuity and also lack shape details.
This indicates that the reconstruction results of our method are more in line with people’s common
sense and perform better in terms of vision.

2) From Table 1 and the quantitative results, our method outperforms the other three models under
all four different metrics. Our method significantly outperforms OccNet and DISN on IoU and
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ECD metrics, in addition, our method significantly outperforms IM-NET and DISN on CD metrics.
Meanwhile, compared with the other three methods, our method still has advantages on DR-KFS
metric.

3) Figure 5 and Table 2 show that the performance of the network without knowledge distillation
becomes worse on all three metrics. Besides, the simple teacher using only the feature vector
output from the last layer also performs worse than our method on all three metrics. This indicates
that the introduction of knowledge distillation and multi-layer feature extraction is beneficial to the
quality of the reconstructed results, demonstrating the effectiveness of both.

4) Figure 6 and Table 3 illustrate how the iterative process improves prediction results. It can be seen
that with the increase of iteration rounds, the performance of the network on the IoU metric
gradually improves and finally stabilizes around 0.539. Due to the introduction of knowledge
distillation, the model performance plummeted at the 50th round. After that, as the training
progresses, the performance of the network with knowledge distillation gradually improves, and
finally stabilizes around 0.545, which is better than the network without knowledge distillation.
This also proves the effectiveness of the introduction of knowledge distillation.

5) Due to the insufficiency of skip connection, we try to use 5-layer CNN and STN to replace the skip
connection submodule. However, this attempt does not achieve the expected results, so our method
still uses skip connection.

5. Discussion and conclusions

In this article, we propose IFKD model to simplify the mapping from 3D points to 2D pixels, so
that local feature extraction can be very convenient and does not require additional camera
information. Then, we perform knowledge distillation between a voxel-to-implicit field network and
the SVR network to supervise the latter learning to extract a more informative feature vector. The
experiments show that the proposed methods can improve the reconstruction performance.

To simplify the 3D-to-2D mapping, our method does not output aligned 3D objects, while the
orientation is relative to the input image. This is a significant difference from the existing methods.
However, we believe that the reconstruction quality is more important rather than the alignment.

Performing knowledge distillation between a 3D network and a SVR network is a novel design.
There are still many things to explore. In the futre work, we will try more delicate knowledge
distillation mechanism to help CNN extract 3D information from 2D image for SVR.
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