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Abstract: In recent years, the industrial network has seen a number of high-impact attacks. To
counter these threats, several security systems have been implemented to detect attacks on industrial
networks. However, these systems solely address issues once they have already transpired and do not
proactively prevent them from occurring in the first place. The identification of malicious attacks is
crucial for industrial networks, as these attacks can lead to system malfunctions, network disruptions,
data corruption, and the theft of sensitive information. To ensure the effectiveness of detection in
industrial networks, which necessitate continuous operation and undergo changes over time, intrusion
detection algorithms should possess the capability to automatically adapt to these changes. Several
researchers have focused on the automatic detection of these attacks, in which deep learning (DL) and
machine learning algorithms play a prominent role. This study proposes a hybrid model that combines
two DL algorithms, namely convolutional neural networks (CNN) and deep belief networks (DBN),
for intrusion detection in industrial networks. To evaluate the effectiveness of the proposed model, we
utilized the Multi-Step Cyber Attack (MSCAD) dataset and employed various evaluation metrics.
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1. Introduction

A network can be seen as a tangible manifestation of interconnected components. When
comparing industrial networks to social networks, communication networks, or electrical networks, it
becomes apparent that the entities involved in industrial networks are active participants in economic
processes. These networks play a vital role in converting raw materials into the end products and
services that are ultimately consumed by the public [1, 2]. Consequently, the relationships between
actors within industrial networks are often conceptualized through financial transactions that occur
within the framework of long-term partnerships. These interconnected links are what make industrial
networks viable and successful [3, 4]. Typically, networks are utilized for data transfer, and certain
networks are better suited for handling specific data volumes. Industrial networks enable the
connection of various devices over long distances, facilitating communication between them by
efficiently transmitting and receiving substantial volumes of data [5]. Therefore, the number of
internet-connected devices in industrial settings has experienced a recent increase, primarily driven by
emerging technologies in Internet of Things (IoT) networks [6]. While these technologies make
administrative tasks easier, they also face the challenge of cyber attacks. One such system commonly
used in industrial environments is Supervisory Control and Data Acquisition (SCADA) [7].
Sodinokibi, an affiliate of REvil, launched a Stuxnet [8] attack against Acer, while the Darkside
cyber-criminal organization launched an attack against Colonial Pipeline [9].

Recently, hackers have been targeting not just traditional commercial networks but also industrial
networks [10]. Twenty-one lines of code were demonstrated by the US government in 2007 as a
potential means of damaging a power plant generator [11]. To render an out-of-phase generator, unless
the attackers connected and disconnected it from the grid on a regular basis [12]. More than 80,000
people in Ukraine were left without electricity after cyber-criminals hijacked the networks of two
power distribution companies in late 2015 and early 2016 [13]. Hackers got into a German steel firm
in 2015 and tampered with a blast furnace, severely damaging the plant [14]. An attack scenario is
illustrated in Figure 1. These attack scenarios show that traditional systems cannot be adequately
protected using standard security methods. Consequently, cyber security is increasingly becoming an
inherent component of today’s industrial networks [15].

Numerous security solutions, such as intrusion detection systems (IDS) based on machine learning
(ML) and deep learning (DL) models [16], have been proposed by several research studies to protect
industrial networks from both known and unknown (zero-day) attacks [17]. An IDS is software that
monitors the network for any suspicious activities, like a failed network intrusion attempt or the use
of a hacked account [18]. An IDS is considered to be the most effective form of security because it is
designed to identify intrusions by spotting unusual anomalies in sensor data or actuator activity [19].
Hence, an IDS plays a crucial role in preserving the security of industrial networks [20].

There are a number of problems with the current batch of IDSs [21], such as poor detection rates,
excessive false positives, and sluggish real-time functionality during attempted impersonations [22].
Due to insufficient security solutions, the attacker breaks the firewall to attack the networks, which
results in a huge loss of confidential data of the industrial networks. They either sneak into the network
and snitch the sensitive information without making any changes, or they obtain unauthorized access
and modify the confidential data by encrypting, deleting, or tampering with it, thus, badly damaging
the industrial network. The detection of malicious attacks in industrial networks is crucial, as these
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attacks can result in system failures, network disruptions [23], data damage, or the theft of confidential
information [24]. Thus, enhancing the security of industrial networks necessitates the creation of
reliable and efficient systems for detecting anomalies, based on continuous monitoring of the actual
state of the system.

To automatically detect malicious attacks in real-time, DL algorithms exhibit a superior
performance compared to traditional ML algorithms, particularly when handling large amounts of
data [25]. DL is highly effective in detecting zero-day attacks and achieving a high detection rate [26],
as it has the capability to automatically identify correlations within the data [27]. Therefore, in this
study, DL algorithms convolutional neural networks (CNN) and deep belief networks (DBN) are used
to develop an IDS which specifically meets the requirements of industrial network security. To
improve detection rates while lowering training and generalization errors, we have proposed an
integrated intrusion detection model that comprises three layers namely CNN, DENSE, and DBN.
The reason for choosing CNN and DBN for IDS is due to their superior performance compared to
other ML and DL methods [28]. The results show that the proposed model offers an optimal
performance within a shorter time frame when compared to other models.
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Figure 1. An attack scenario on a device in the network.
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2. Related work

2.1. Background

With the rise of interconnected networks, industrial networks are now relying on the vast amount
of information available online. However, increasing integration has left industrial network security
exposed to a variety of cyberattacks [29]. As such, it is imperative to integrate measures to detect these
potential attacks and establish defense mechanisms [30]. One of the most effective solutions is the use
of IDSs.

These systems keep an eye out for any suspicious behavior on a network and can spot intrusions by
seeing potentially harmful abnormalities in sensor data or actuator activity [19]. The primary goal of
this research study is to develop an improved model for IDSs that provides optimal accuracy rates and
enhances the performance of evaluation measures used in experiments [31].

2.2. State of the art

The use of ML and time series-based anomaly detection methods in [32] helps in monitoring
industrial operations data present in networks for signs of cyber-attacks. The data analyzed include
Modbus-based gas pipeline control traffic and OPC UA-based batch processing traffic. The resulting
accuracy of 90.8% is slightly worse than before. The F1-score is doing quite well with a 94.9% recall.
The algorithms still work well, despite a large amount of missing data in this dataset. In actual use,
this will allow attacks on industrial networks to go undetected, which is a major security risk. To
improve safety, more resources are needed.

The knowledge distillation triplet convolution neural network (KD-TCNN) model was developed
to enhance the performance of IDS in industrial CPS. The proposed model reduces the computational
cost and size by 86% while maintaining a 0.4% drop in accuracy compared to the current model. To
process and analyze huge volumes of data and comprehend the relationships between categories in the
teacher network, knowledge distillation aims to make the student network’s outputs identical to those
of the teacher network. To perform an efficient detection of intrusion, the model must undergo two
stages of training: first, the preliminary training of the teacher model, and second, the training of the
KD-TCNN model. To bridge the gap between similar inputs for knowledge distillation, deep metric
learning is applied, which improves the performance of the student model [33].

The data from the Integrated Automation lab’s process control plant was utilized to gather metrics
pertaining to ICS. CNNs were employed to assess the efficiency of detecting injection attacks. A
three-layer CNN architecture with rectified linear activation unit (ReLU) activation and a SoftMax
classification layer was constructed to distinguish between benign and malicious data. The proposed
CNN model’s efficacy was gauged through a range of metrics such as F1-score, accuracy, recall,
precision, and Cohen’s kappa coefficient. In terms of performance, CNN demonstrated a superiority
over other deep learning algorithms. However, the outcome depends on the program and data utilized.
By combining various DL and ML techniques, the effectiveness of the security mechanism can be
further improved. Alternative DL techniques such as recurrent neural networks (RNN) can also be
employed [34].

The intrusion detection system based on CNN has the capability to identify different attack types,
which were evaluated using datasets such as Network Security Laboratory-Knowledge Discovery and
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Data Mining (NSL-KDD) and University of New South Wales-Network Behavior 15 (UNSW-NB 15).
Performance indicators such as recall, F1-score, and precision, were calculated and contrasted to those
of other DL techniques. A CNN has been tested on the NSL-KDD and UNSW-NB 15 datasets for
intrusion detection, resulting in an improved detection accuracy when compared to previous CNN-
based methods. However, when it came to classifying attacks with multiple classes, the CNN did not
perform better than other DL-based IDSs, such as SAE and DBN. For a more specific and accurate
development, creating a dataset within the ICS context should be considered. MATLAB can be used
to capture real-time network traffic data and DL algorithms can then be applied to this network for
enhanced results [35].

The use of a Stacked Auto-encoder (SAE) combined with a CNN can reduce high-dimensional
data to generalizations and essential characteristics that describe the machine tool’s operating state.
The process begins with the use of an unsupervised SAE for generic feature extraction from industrial
process data. The proposed model’s effectiveness in the updated production line is then validated by
fine-tuning a one-dimensional CNN classifier with supervised data. It is evident from the
experimental results that the proposed model is a potent and versatile solution for monitoring machine
tool production data, minimizing the complexity features with high-dimensional, and having positive
economic impacts on the industry [36].

A proposed model for SCADA [37] network data detection has been suggested as a means of
creating a secure architecture for ICS networks. The proposed architecture creates two
ensemble-based detection methods by combining a DBN with a conventional classifier, such as a
support vector machine (SVM). The results of the experiments support the effectiveness of the
proposed DBN ensemble approach in addressing the DBN structure selection problem and providing
dependable attack detection for the secure operation of SCADA systems. However, the approach has
some limitations, including using a neural network (NN)-based classifier within the DBN framework.
Although DBNs are effective in extracting features from raw data, the NN-based classifiers they use
can limit their pattern recognition precision. Additionally, the proposed training method for the DBN
is not designed for real-time situations [38].

A proposed method for diagnosing intrusions in industrial robots, based on joint DBN information
fusion technology, addresses the limitations of the traditional fault diagnosis model. These limitations
include low precision, inefficiency, instability, and a slow time-to-diagnosis in cases of multiple faults.
To test the method, the researchers chose an industrial robot with a problem in one of its joint bearings.
The results showed that the developed fault diagnostic approach is effective, with a test set accuracy of
97.96%. The proposed method has several advantages over the traditional diagnostic model, including
a faster diagnosis time and an improved diagnosis efficiency, making it better suited for diagnosing
multiple faults [39].

The detection of cyberattacks on SCADA-based industrial control systems (ICS) is addressed in a
study that introduces the first-ever population extremal optimization (PEO)-based DBN network
detection technique (PEO-DBN). To further improve the detection performance, a new ensemble
learning strategy, called EnPEO-DBN, is proposed to combine the PEO-DBN approach. The
simulation results depicted that the proposed PEO-DBN and EnPEO-DBN have superior performance
compared to other methods and can be considered promising solutions for detecting cyberattacks on
SCADA-based ICS. To speed up the fitness evaluation process, future work can take advantage of
surrogate-assisted models, such as a Gaussian process regression or a Bayesian optimization [40].
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As a means of securing IoT networks, [41] presented a hybrid DBN cyber intrusion detection
system. In order to construct better attack detectors for network traffic, researchers have studied and
addressed DBN’s drawbacks. The results from the analysis are then integrated into a SoftMax
Regression model to improve the security and accuracy of detection. The hybrid DBN model was
trained and evaluated based on the original and unaltered dataset generated by the system. In terms of
detecting and classifying intrusions, the suggested hybrid DBN model had a 99.72 % success rate.
According to these findings, the model outperformed the current IDS. Further, the hybrid model
offered a roughly 5% greater accuracy improvements compared to pre-hybrid DBN-based systems.

An interesting approach is used as a solution that aims to combine the strengths of two popular
machine learning techniques: Long short-term memory (LSTM) and DBNs. By using LSTM to
enhance the representation power of traditional shallow machine learning, and DBNs to extract
non-linear components from the data, the researchers hope to achieve both high accuracy and high
processing speed. The results of their approach appear to be promising, with recall rates as high as
97.3% and area under the curve (AUC) as high as 0.927, suggesting that this combination of
techniques could be effective for solving complex problems in machine learning. However, as
mentioned, this area of research is still being explored, and more work needs to be done to fully
understand the trade-offs between precision, speed, and other factors when using this hybrid
approach [42].

2.3. Existing datasets

The KDD-98 dataset, produced by the “Defense Advanced Research Projects Agency’s
Knowledge Discovery and Data Mining program” in 1998, was the first publicly available intrusion
detection dataset, though it contained flaws like duplicate records [43]. NSL-KDD, introduced in
2009, improved on KDD-98, though KDD-99 still had issues like outdated attack methods and
inaccurate network parameters [43]. The Cooperative Association for Internet Data Analysis
(CAIDA) dataset, introduced in 2007 had limited information on DDoS attacks [44]. The University
of Brescia (UNIBS) database (2009) by Gringoli et al. focused on profiling popular web apps but was
unsuitable for detecting anomalies [45]. The Information Security Centre of Excellence (ISCX) 2012
dataset by Shiravi et al. had two network configurations (α and β) but lacked Hypertext Transfer
Protocol Secure (HTTPS) protocol traffic [46]. DDoS 2016, released in 2016 by Alkassasbeh et al.,
was not useful for multi-step attack detection. The ADFA Linux (ADFA-LD) and ADFA Windows
Datasets (ADFA-WD) were created using system call traces, but attackers can hide their tracks.
Canadian Institute for Cybersecurity Intrusion Detection System (CIC-IDS) 2017 had 80 network
parameters from a five-day simulated test but had missing values and no information on multi-stage
attacks. TUIDS, developed by Tezpur University, used a hybrid of packet and flow formats but
couldn’t simulate multi-step attacks.

The new Multi-Step Cyber Attack (MSCAD) [47] dataset overcomes the limitations of prior
methods by serving as a new benchmark for IDS. The MSCAD stands out with its ability to detect
complex, multi-stage attacks, which are carried out through a variety of techniques such as
volume-based DDoS, site crawling, and network-based DDoS. This dataset is built on a full network
infrastructure and contains no duplicates or missing data, making it ready for use in training IDS
systems without any further cleaning [48]. The attributes of the MSCAD have been compared to those
in the literature, including the dataset used, evaluation measures, k-fold validation, balancing strategy,
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and response time, as presented in Table 1.

Table 1. Comparison of previous literature.

Author Dataset Evaluation measure K-Fold validation Balancing strategy Response time
[32] Modbus, OPC-UA Accuracy, Precision, Recall, F-1 score No No High
[38] SCADA network Accuracy, Precision Yes No Medium
[39] Industrial robot Accuracy No No Low
[40] SCADA network Accuracy No No Medium
[35] NSL-KDD, UNSW-NB15 Accuracy, Precision, Recall, F-1 score Yes No Medium
[34] PCP from IAE Accuracy, Precision, Recall, F-1 score No No High
[41] SCADA network Accuracy, F-1 score No No Medium
[33] NSL-KDD, CIC-IDS 2017 Accuracy, Precision, F-1 score Yes Yes High
[42] NSL-KDD Accuracy, Precision, Recall, F-1 score No No Medium
[36] Collected data from industry production line Accuracy No No Medium
Proposed Model Multi-step cyber attack dataset Accuracy, Precision, Recall, F-1, G-mean score Yes Yes Low

3. Proposed methodology

The following section comes up with a comprehensive overview of the proposed methodology. The
data has undergone pre-processing and has been trained and tested. The diagram in Figure 2 showcases
the general structure and flow of the model. The implementation involves the use of two DL algorithms,
with a thorough explanation of how the CNN and DBN components are integrated into the proposed
scheme.

3.1. Dataset

There are several public network datasets available for intrusion detection, such as KDD-98, NSL-
KDD [43], CAIDA [44], UNIBS [45], ISCX 2012 [46], DDos 2016, ADFA-LD and ADFA-WD, CIC-
ID 2017, and TUIDS. This experiment makes use of the MSCAD [20] dataset for industrial networks,
as it is the latest dataset available and features a variety of attack scenarios that are well-suited for
detecting multi-step attacks, as demonstrated in Table 2.

Table 2. Multi-step cyber attack dataset.

Classe Encoding Records
Brute force 0 88,502
HTTP DDoS 1 641
ICMP flood 2 45
Normal 3 28,501
Port scan 4 11,081
Web crawler 5 28

3.2. Data processing

3.2.1. Cleaning

Before analyzing a data set, it must undergo data cleaning, which consists of correcting or
removing any incorrect, redundant, or otherwise undesired information. Data cleansing aims to
remove ambiguity and other issues from your data. We must have clean data (i.e., information that our
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costly data analysis tools can process [49]).
Each dataset consists of many entries. Before training a model, inspecting a dataset for missing

and undefined entries is essential. Training the model will produce errors if any data record includes
an unexpectedly blank or undefined value. We should ensure that the dataset does not have any
confusing data before training a model by cleaning it first. Several approaches [50, 51] are available
for removing redundant or unclear entries from data sets. The dataset was cleansed using Python
libraries (Pandas and NumPy) [52] and functions that provide true or false Boolean values to test for
missing and enduring values. If this is true, then some of the values in the dataset are missing or
infinite; however, if it is false, then the cleaning of the dataset is completed. The datasets were cleaned
by converting all undefined records into blank spaces. Once the undefined values were transformed,
the dataset was further refined by removing all empty entries and replacing any remaining undefined
values with empty ones.

3.2.2. Numericalization

To achieve numericalization, one must first construct a string-to-integer encoding system and then
individually apply it to each string. Typically, the attributes or labels of the datasets we work with,
are available throughout multiple columns. These labels can be composed of either words or numbers.
Typically, training data is labeled with either a phrase that makes it understandable or in a human-
readable format. The process of label encoding [53] involves transforming human-readable labels into
a format that can be processed by computers. This allows machine learning [54] algorithms to make
more informed decisions based on these labels and is an essential step in the preparation of structured
datasets for supervised learning. The label encoder searches for labels ranging from zero to n-1 and
gives numerical values to these labels. This experiment quantifies categorical attributes using the label
encoder method.

3.2.3. Normalization

During machine learning model training, data normalization reduces the impact of feature scales.
Thus, our model can converge to accurate weights, therefore enhancing its accuracy. Normalization
increases the model’s capacity to predict outputs by bringing the features into a condition of
homogeneity. The process of rescaling a numeric attribute with a real value to the interval 0 to 1 is
what normalization means. This decreases the effect of the feature size on the training procedure [55].
Consequently, this leads to improved coefficients following the training. Normalization is a technique
applied to datasets with varying value ranges, such as when one feature has values ranging from 0 to 1
and another has values ranging from 100 to 1000. This helps to equalize the data and makes it easier
for the machine-learning model to be trained effectively.

The selected dataset in this experiment has features with varied range values; for example, some
features have extremely high range values while others have extremely low range values. If we train the
model using these variables, it will fail. This problem can be addressed by employing the normalization
approach, which can be done by this equation to transform all non-zero values into one.

Xnorm =
X − Xmin

Xmax − Xmin
(3.1)
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3.2.4. Balancing strategies

The experiment’s model is based on a dataset with a substantial number of records. Prior to training
and testing the model, it’s critical to guarantee that each class has the same amount of examples. This
can be achieved through the use of balancing techniques such as oversampling and undersampling.
Oversampling raises the minority class’s percentage to the majority class, whereas undersampling
decreases the majority class’s share to match the minority class. However, oversampling can lead to
overfitting because it involves repetitive data. The dataset used for this experiment was imbalanced, so
we applied two balancing techniques, the Synthetic Minority Oversampling Technique (SMOTE) [56]
and SMOTETomek, to ensure that the dataset was representative of the entire population.

SMOTE generates synthetic information using a k-nearest neighbor algorithm. The first phase of
SMOTE involves randomly selecting data from the minority class and then determining those data’s k-
nearest neighbors. Then, the random data and the k-nearest neighbor are utilized to generate synthetic
data. There is a version of the SMOTE called the Borderline-SMOTE. The name implies a connection
to borders, which is indeed the case. In Borderline-SMOTE, synthetic data are generated only along the
decision boundary between the two classes, whereas in SMOTE, they are generated randomly between
the two classes [57]. The SMOTEENN and SMOTETomek sampling methods include oversampling
(SMOTE) and undersampling (ENN, Tomek). SMOTE generates synthetic class samples to establish a
statistical parity, whilst the latter is used to clean redundant information at the boundary of two classes
to increase separation.
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3.3. Proposed model

We have proposed an integrated intrusion detection model that is a combination of CNN and DBN.
The proposed model contains three layers: CNN, DENSE, and DBN, which are depicted in Figure 2.
All of the models utilized in the proposed model’s layers are extensively explained for understanding.
The model enhanced the performance for the detection of attacks [58] and reduced the response and
training time in industrial networks.

3.3.1. CNN

Convolutional neural networks (CNNs) are a powerful tool for discovering features, as they reduce
the need for human input [59]. The primary objective of CNN is to learn the most significant features
of the input data [60]. A CNN is comprised of pooling layers, convolutional layers, and fully connected
(FC) layers [61], which can be stacked to form a CNN architecture as illustrated in Figure 3. These
layers also incorporate an activation function, which is a crucial aspect of their function [62]. The
convolutional layer performs a mathematical operation, known as the convolution, between the input
and a filter of size M × M to extract features from the input data. As the filter is moved over the input,
the dot product of its M ×M dimensions and the input is calculated, and the output is forwarded to the
succeeding layer [63].
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The pooling layer commonly comes after the convolutional layer, reduces the size of the feature
matrix, expedites training, and minimizes the number of parameters to avoid the overfitting problem.
The pooling layer typically follows the convolutional layer and serves to reduce the size of the feature
matrix, speed up training, and reduce the number of parameters to prevent overfitting issues [64].

The neurons, weights, and biases in a fully connected (FC) layer play a significant role in
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establishing connections between the neurons of consecutive layers. These layers are usually the final
ones to be added in a CNN architecture and precede the output layer. A significant aspect of CNN
models is the activation function, which determines which pieces of information from the model
should be forwarded to the output nodes and which should be disregarded, thereby making the
network less linear. The activation functions in a CNN model are responsible for determining whether
a neuron is activated or not [65].

3.3.2. DENSE

The proposed model incorporates a DENSE layer for enhanced and expedited responses. This
layer effectively combines CNN and DBN. The layer has 66 parameters on both the input and output
sides. The ReLU (rectified linear activation unit) was utilized in this experiment. To better represent
complicated relationships between the inputs and outputs of a neural network, the ReLU function
transforms the linear function’s output into a nonlinear one. The output of each neuron in a particular
layer of a neural network is transmitted into the ReLU function. The output of the ReLU function
is then utilized as the input for the subsequent neural network layer. The ReLU function efficiently
solves the vanishing gradient problem and is significantly quicker than earlier activation functions.
The vanishing gradient problem hinders the network’s ability to learn when the gradient of the loss
function with respect to the network’s weights becomes negligible. Given that the binary derivative
of the ReLU function, proves the effectiveness for non-negative values between 0 and 1, it has the
potential to address the problem of vanishing gradients in deep neural networks. This property ensures
that the gradient does not decrease excessively as the network becomes deeper. It is mathematically
represented as:

RELU(x) =
{

0 if x < 0
x if x >= 0

(3.2)

3.3.3. DBN

The machine learning technology known as a DBN differs significantly from a DNN in several
significant ways. They use a feed-forward neural network to process networks and feature a feed-
forward architecture with numerous hidden layers. DBNs were designed to replace conventional neural
networks during deeply layered network training because of their sluggish learning, the tendency to
become caught in local minima due to poor parameter selection, and a necessity for many training
datasets [66].

The deep belief network’s unsupervised learning algorithm is made up of belief networks and
restricted boltzmann machines (RBMs). DBN is a multi-layered belief network, similar to a
perceptron and backpropagation neural network, where each layer must be trained before training the
DBN as a whole. This is achieved by using the greedy algorithm, which trains the RBMs one by one
until they are all trained. DBN has a layered architecture, with the upper two levels being associative
memory and the bottom layer consisting of visible units. The relationships between the lower layers
are indicated by arrows pointing toward the layer closest to the data.

The lowest layers of the DBN use directed acyclic connections to convert the associative memory
into quantifiable data, with the lowest layer of visible units accepting either binary or real data as the
input. Like RBM, DBN has no intra-layer connections, with hidden units representing the
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characteristics that embody the relationships in the data as represented in Figure 4. The two levels are
linked by a matrix of proportional weights, W, with the units of each layer being connected to the
layer above them [66]. Common activation functions used in DBN include ReLU, SoftMax, tanH,
and sigmoid, each with a specific use. Sigmoid and SoftMax functions are typically used for binary
classification models, while SoftMax functions are used for multiclass classification using Eq (3.3).

σ(−→z )i =
ezi∑K
j=1 ez j

(3.3)
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Figure 4. Architecture of deep belief network.

4. Results and discussion

4.1. Experimental setup

The proposed model is implemented using Python, version 3.9, because it is a language that is
frequently used for these kinds of studies. We used the Keras package of the TensorFlow library
because Keras is easy to implement and it is a structural package. For coding purposes, the Jupyter
Notebook was utilized since it displays the results after every code cell. In this experiment, Windows
10 Pro was used with an I5-6th Gen Laptop. The laptop contained a 2.4 GHz processor and 8 GB of
RAM.
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4.2. Evaluation measures

The model’s performance was assessed through an evaluation process. An improvement in the
model’s results leads to an increase in its performance, while subpar results reveal differences in
performance. Researchers often validate the model using accuracy, precision, recall, F1-score, and
G-mean score based on the false negative (FN), true negative (TN), false positive (FP), and true
positive (TP). The model’s performance is evaluated in terms of attack detection using various
metrics. During the model development, 80% of the dataset was utilized and pre-processed. The data
were then subjected to evaluation and the performance was analyzed based on these metrics [67].

Accuracy in a machine learning classification model refers to the fraction of accurate classifications
to the total number of negative and positive observations. Precision measures the accuracy of positive
predictions and is equivalent to reliability and positive predictive value. Recall measures the model’s
capability to identify TP results and is synonymous with the TP rate. The F1-score combines precision
and recall to provide a single metric that reflects the model’s overall performance. The geometric mean,
which is calculated by taking the nth root of the product of all numbers in a set, where n represents the
number of observations, provides a single equivalence threshold that combines the true negative rate
with the true positive rate.

GM = n
√

x1 × x2 × ...xn (4.1)

4.3. Experimental results

In our study, we carried out experiments for the proposed model using two approaches. The first
experiment involved comparing our proposed model with traditional models without utilizing any
balancing strategy. In the second experiment, we compared the proposed model with other models
using two balancing techniques: SMOTE and SMOTETomek. The proposed model was evaluated
using the Multi-Step Cyber-attack dataset.

4.3.1. Without balancing strategy

The performance of the proposed approach was evaluated against the results from [48] in terms of
the G-mean score, as depicted in Figure 5. Our proposed approach outperformed the G-mean scores
of the Decision Tree (DT) and Random Forest (RF) in [48]. During the training process, five epochs
were used. The G-mean score for the proposed approach was 0.813, which is more optimum than [48]
scores of 0.710 and 0.650. The model has been enhanced by incorporating the Adam optimizer, with
the loss function set as sparse categorical entropy. The activation function of SoftMax was used in the
output layer.

The proposed model outperformed all the other traditional models and also outperforms the
accuracy score of [47], as shown in Table 3. The comparison between the CNN and the proposed
approach is illustrated in Figure 6. The proposed model achieved the highest results for all selected
metrics among all the models, as indicated in Table 3. Furthermore, the response time of the proposed
model was less compared to other models. The proposed model was tested using 3220 instances with
a batch size of 32 and verbose set to 1.
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Figure 6. Evaluation without balancing strategy.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13824–13848.



13838

Table 3. Scores without balancing strategy.

References Mode Accuracy Precision Recall F1-score G-Mean
[47] 0.825 0.942 0.911 0.926 x
[48] DT x x x x 0.71

RF x x x x 0.65
Other techniques NB 0.787 0.462 0.627 0.313 x

DNN 0.687 0.114 0.166 0.135 x
LSTM 0.99 0.708 0.668 0.682 x
GRU 0.97 0.554 0.522 0.532 x
CNN 0.993 0.813 0.77 0.788 x
RNN 0.99 0.777 0.753 0.763 x

Proposed method CNN-DBN 0.996 0.82 0.779 0.801 0.81

4.3.2. With balancing strategy

The proposed approach was compared with [47] and with [48] using the SMOTE balancing strategy,
as shown in Figure 7. The results show that the proposed approach outperforms [47] with higher
accuracy, precision, recall, and F1-score and [48] higher G-mean scores. The training process was
conducted over five epochs and the G-mean score for the proposed approach was 0.975, while the
G-mean scores for [48] using DT and RF were 0.780 and 0.790, respectively. This indicates the
superiority of the proposed model. The sparse categorical entropy loss function was utilized in the
training process, and the model was tested on the Adam optimizer. The output layer was activated
using the SoftMax activation function for multi-class classification.

Table 4. Scores with SMOTE.

References Model Accuracy Precision Recall F1-score G-Mean
[47] 0.825 0.942 0.911 0.926 x
[48] DT x x x x 0.78

RF x x x x 0.79
Other techniques NB 0.641 0.644 0.641 0.573 x

DNN 0.166 0.027 0.166 0.047 x
LSTM 0.97 0.97 0.971 0.97 x
GRU 0.943 0.932 0.945 0.943 x
CNN 0.972 0.971 0.972 0.971 x
RNN 0.954 0.954 0.956 0.955 x

Proposed method CNN-DBN 0.976 0.976 0.975 0.975 0.97

The proposed model was compared to other traditional models, as shown in Table 4, and the results
indicate that it surpassed their performance. The comparison between the CNN and the suggested
model using SMOTE is presented in Figure 8. The proposed model exhibits the highest accuracy,
recall, precision, and F1-score score when compared to the other models, as displayed in Table 4.
Additionally, it has a faster response time than the other models. The performance of our model was
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evaluated on the MSCAD dataset, using 13,276 instances with a batch size of 32 and verbose set to
1. The results confirm that the proposed approach outperforms the other models, with 20% of the data
being used for testing.
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Figure 7. G-Mean with SMOTE.
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Figure 8. Evaluation with SMOTE.

Our proposed approach surpassed the [47] accuracy, precision, recall, and F1-score and achieved a
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SMOTETomek G-mean score of 0.978, as demonstrated in Figure 9. This score succeeds the G-mean
scores of both the DT and RF methods described in [48]. The G-mean scores for [48] DT and RF were
0.830 and 0.820, respectively, showcasing the superior performance of our model. The model was
trained using the Adam optimizer, and the activation function named SoftMax was utilized in the final
layer. The process of training took place over five epochs and utilized the sparse categorical entropy
loss function.
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Figure 9. G-Mean with SMOTETomek.

In Figure 10, we compared the performance of the proposed technique with that of a CNN using
SMOTETomek. The results are presented in Table 5, which includes the results of both the proposed
model and other traditional models. The proposed model outperforms other models in terms of F1-
score score, precision, recall, and accuracy, as demonstrated in Table 5. Additionally, our model has
a faster response time compared to other models. The model was tested on 13,233 instances using
a batch size of 32 and a verbose level of 1 on the MSCAD dataset. The results clearly show that
the suggested model produces more optimal scores than other models, even though the scores of the
CNN model are slightly lower. However, the CNN model has a longer response time compared to the
proposed approach.
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Figure 10. Evaluation with SMOTETomek.

4.4. Discussion

In comparison to previous models, the experimental results demonstrate that the proposed
approach provides optimal performance and quicker response time. As shown in Table 3, all scores
were evaluated without using any balancing strategy. The CNN accuracy is near to the proposed
approach accuracy but it takes more time to execute than our approach. With our proposed
methodology, we can also identify binary-class and multi-class attacks. The proposed model has the
best accuracy of 99.6%. It also provides a precision of 82%, recall of 77.9%, F1-score of 80.1%, and
a G-mean score of 0.813 which provides an improved solution.

The performance of the proposed approach utilizing SMOTE is presented in Table 4. It is evident
from the results that the proposed approach outperforms all other models and has a faster execution
time. The performance of CNN and LSTM models came closest to the suggested model, but they took
much longer to execute. Our model achieved equal precision and accuracy of 97.6%, whereas a recall
has a value of 97.5% and a G-mean score of 0.975.

The results of combining SMOTE (oversampling) and Tomek (undersampling), referred to as
SMOTETomek, are presented in Table 5. The Table depicts that the proposed model performs more
optimally than others in terms of F1-score, G-mean score, recall, accuracy, and precision. Although
the CNN model can be compared to the proposed approach, it takes a longer time to execute. The
proposed method is suitable for detecting binary as well as multi-class intrusion with a faster response
time. In contrast, the proposed model has the best accuracy of 98.1%, provides the best precision of
97.9%, recall of 97.8%, F1-score of 97.9% compared to [47], and the G-mean score of 0.973

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13824–13848.



13842

compared to [48].
The response time was also calculated for the DL models which were used with the same dataset.

Our proposed model responded faster when compared with all the models without using any balancing
strategy. The response time for the proposed model is 20 seconds, while for RNN, CNN, GRU, and
LSTM, the response time is 41 seconds, 22 seconds, 122 seconds, and 113 seconds, respectively.
In contrast to other models, the CNN exhibits a shorter response time. Therefore, we compare the
response time of the proposed model with that of the CNN to evaluate its efficiency. By employing
SMOTE, the response time for the proposed model is recorded as 14 seconds, while for the CNN, it is
17 seconds. Additionally, when utilizing SMOTETomek, the response time for the proposed model is
13 seconds, whereas, for the CNN, it is 15 seconds. These results clearly demonstrate the effectiveness
of the proposed model in terms of response time.

Table 5. Scores with SMOTETomek.

References Model Accuracy Precision Recall F1-score G-Mean
[47] 0.825 0.942 0.911 0.926 x
[48] DT x x x x 0.83

RF x x x x 0.82
Other techniques NB 0.643 0.648 0.643 0.574 x

DNN 0.167 0.278 0.166 0.047 x
LSTM 0.968 0.97 0.969 0.968 x
GRU 0.937 0.934 0.939 0.943 x
CNN 0.971 0.972 0.972 0.971 x
RNN 0.953 0.955 0.954 0.954 x

Proposed method CNN-DBN 0.981 0.979 0.978 0.979 0.98

5. Conclusions

The exponential growth of industrial networks and inadequate security assessments pave the way
for cyber attackers to cause significant losses and damage to confidential data and sensitive
information. A DL-based architecture for intrusion detection in industrial networks is presented in
this research. The model employs the use of CNN and DBN algorithms to enhance its performance
and reduce both training and response times. The proposed framework’s performance was evaluated
through experiments on the MSCAD. The experimental findings demonstrated that, in comparison to
other conventional models, the suggested approach achieves optimal results with a 99.6% accuracy
without using any balancing strategy, 97.6% accuracy using SMOTE, and 98.1% accuracy rate using
SMOTETomek for the tested dataset. This extensive research work achieves a high accuracy rate for
any anomaly in a short time. It warns the administrator of the industrial network that the system has
detected an attack. The administrator then investigates the matter to stop the attacker from getting off
the system. The network industry will benefit from this study to design attack-detection devices. In
the future, when the IDS detects any intrusion, the same IDS, also prevents the network from
intrusion and blocks it. This auto-prevention technique will save the industrial network from losing
sensitive information. When the system detects an attack, it should block the next data packet from
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getting access into the network, thus making the network safe for communication and other industrial
purposes. Moreover, other balancing techniques such as SamplePairing, ADASYN, etc will be used to
improve the performance of the proposed model in the future as well.
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