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Abstract: Disinformation refers to false rumors deliberately fabricated for certain political or
economic conspiracies. So far, how to prevent online disinformation propagation is still a severe
challenge. Refutation, media censorship, and social bot detection are three popular approaches to
stopping disinformation, which aim to clarify facts, intercept the spread of existing disinformation,
and quarantine the source of disinformation, respectively. In this paper, we study the collaboration
of the above three countermeasures in defending disinformation. Specifically, considering an online
social network, we study the most cost-effective dynamic budget allocation (DBA) strategy for the
three methods to minimize the proportion of disinformation-supportive accounts on the network with
the lowest expenditure. For convenience, we refer to the search for the optimal DBA strategy as the
DBA problem. Our contributions are as follows. First, we propose a disinformation propagation
model to characterize the effects of different DBA strategies on curbing disinformation. On this
basis, we establish a trade-off model for DBA strategies and reduce the DBA problem to an optimal
control model. Second, we derive an optimality system for the optimal control model and develop a
heuristic numerical algorithm called the DBA algorithm to solve the optimality system. With the DBA
algorithm, we can find possible optimal DBA strategies. Third, through numerical experiments, we
estimate key model parameters, examine the obtained DBA strategy, and verify the effectiveness of the
DBA algorithm. Results show that the DBA algorithm is effective.
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1. Introduction

1.1. Background

Undoubtedly, today’s online social networks (OSNs), such as Weibo and Twitter, have dramatically
accelerated information diffusion. However, as a double-edged sword, OSNs also speed up the spread
of rumors, posing a potential threat to human society. According to the motivation, false rumors can be
classified into two categories: those deliberately fabricated for political or economic conspiracies and
those emerging spontaneously without plotters or profound purposes. Generally, the former is referred
to as disinformation [1], whereas the latter is referred to as misinformation [2]. In this paper, we focus
on the prevention of online disinformation propagation.

In most cases, disinformation campaigns are premeditatedly launched by resource-sufficient
organizations, which can often be sponsored by commercial competitors, terrorists, and even hostile
political powers [3, 4]. Launching a disinformation campaign can typically be sketched by the
following three steps [5, 6]. First, the plotter buys a large number of social bots (namely, a type of
software agent that can autonomously publish online comments as if human beings [7]) from
underground darknets. Second, the plotter employs a group of immoral journalists to fabricate
convincing fake news by elaborately distorting the facts. Third, the plotter releases fabricated fake
news through its own social bots to deceive online users as many as possible and further manipulate
public opinions. Once the plotter’s conspiracy is successful, there can be serious consequence,
ranging from corporation reputation damage to country fragmentation [8]. Hence, it is indispensable
to curb disinformation.
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Figure 1. A diagram of refutation, media censorship, and social bot detection in preventing
the propagation of online disinformation.

Roughly speaking, OSN carriers can choose three popular approaches to stop disinformation
propagation. The first approach is refutation [9, 10]. Refutation means clarifying existing
disinformation to inform deceived people of the truth and protect ignorant people from potential
deception. OSN carriers may employ righteous journalists to collect evidence of the facts and write
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defensive materials to debate existing disinformation. The second approach is media
censorship [11, 12], which aims to intercept the spread of disinformation by censoring and filtering
malicious online comments. Practically, this is realized by computer programs. OSN carriers may
need to deploy dedicated cloud servers to run disinformation filtering procedures, which are typically
supported by natural language processing (NLP) and topic extraction techniques [13, 14]. The third
approach is social bot detection [15, 16]. As the name suggests, this method intends to identify
malicious bots and permanently suspend them to make them unavailable—if a bot is suspended, it can
no longer publish any comment on the OSN and becomes useless in affecting other users. Because
disinformation is mainly released from malicious bots, the bot detection method can weaken the
plotter’s attacking strength at the root. In addition, bot detection is realized by automatic programs as
well. OSN carriers may deploy bot detection procedures on cloud servers to analyze users’ behaviors,
recognize who have done certain abnormal operators (e.g., sending the same tweet to a large number
of other users in a short space of time [17]), and remove them from the OSN. A diagram illustrating
the three approaches is given in Figure 1.

Also, the above three countermeasures come at different costs. Recall that refutation requires a
group of righteous journalists to write defensive reports. Typically, the more the budget is allocated,
the faster such preparatory work can be done. Besides, because media censorship and bot detection
are realized by computer algorithms, OSN carriers must buy or rent sufficient computation resources
to perform relevant automatic procedures. In many cases, the more the budget is allocated to purchase
computation resources, the more the accounts to which media censorship and bot detection can
be applied.

1.2. Problem statement

As the three countermeasures have different characteristics and costs, it is natural to ask how to
make them collaborate to control disinformation. To this end, a crucial issue is to determine an effective
budget allocation scheme for them. To our best knowledge, there is no research on the this topic. In
this paper, we intend to fill this research gap by addressing the following problem:

Dynamic Budget Allocation (DBA) problem: Suppose a piece of disinformation or a series of
disinformation with the same theme is spreading over an OSN. Consider a finite time horizon.
Develop a dynamic budget allocation scheme on this time horizon for the refutation, media
censorship, and social bot detection approaches to reduce the proportion of online
disinformation-supportive accounts as much as possible with reasonably low expenditure.

1.3. Contributions

In this paper, we are devoted to addressing the DBA problem. Specifically, our contributions are as
follows.

• From a mathematical modeling perspective, we reduce the DBA problem to an optimal control
model. First, we formalize DBA strategies and establish a trade-off model to evaluate different
DBA strategies. Then, we propose a disinformation propagation model to estimate the trade-
offs of different DBA strategies. On this basis, we formulate an optimal control problem with
DBA strategies as decision variables, the trade-off model as the objective functional, and the
disinformation propagation model as a constraint.
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• By applying Pontraygin Maximum Principle, we derive a set of necessary conditions for the
optimality of the formulated optimal control model. Then, we convert the optimal control model
to a two-point-boundary-value problem and develop a heuristic numerical algorithm called the
DBA algorithm to iteratively solve it. By running the DBA algorithm, we can attain a possible
optimal DBA strategy.
• We conduct a series of numerical experiments to verify the DBA algorithm. First, we estimate

crucial parameter values for the disinformation propagation model with a commonly used rumor
dataset. Second, with the estimated parameters, we examine the possible optimal DBA strategy
attained by running the DBA algorithm. Third, we compare the possible optimal DBA strategy
with other common heuristic strategies in terms of their trade-offs and effectiveness. Results
show that the possible optimal DBA strategy outperforms other heuristic strategies and thus can
be considered effective in practice.

The remainder of this paper is structured by the following manner. Section 2 reviews the related
work and highlight the novelty of our work. Section 3 formulates a mathematical optimization model.
Section 4 discusses the solution to the optimization model. Section 5 shows a series of numerical
experiments. Section 6 closes this paper.

2. Related works

This section discusses the related work and highlights the novelty of our work.
Recall that OSNs have greatly accelerated the spread of rumors and posed a potential threat to

society. In this context, developing effective strategies to stop rumors has become an urgent task.
Optimal control theory is a widely used methodology in this field, using which optimal dynamic anti-
rumor strategies can be obtained. Because our work is an application of optimal control theory, in this
section, we focus on the related studies that aim to develop anti-rumor strategies with optimal control
theory. In addition, as rumors can be divided into misinformation and disinformation according to their
motivations, in the following we mainly review the recent contributions that use optimal control theory
to contain these two types of rumors.

To date, research on developing anti-misinformation strategies is rich. Misinformation refers to
false rumors spontaneously emerging without a plotter or a profound purpose—usually,
misinformation is started just for someone’s mischief [2]. According to the essential intentions,
existing anti-misinformation strategies can be roughly classified into conversion-based [18–20] and
isolation-based [21–23]. The former aims to convert deceived people to misinformation-aware people
by using all kinds of possible measures, e.g., clarifying the truth to deceived people, whereas the latter
intends to isolate deceived people from the OSN by filtering misinformation-supportive online
comments or suspending misinformation-supportive accounts to intercept the spread of
misinformation. Also, as different countermeasures have different characteristics, recently there has
been a trend to develop collaborative anti-misinformation strategies based on multiple
countermeasures. Theoretically, multi-countermeasure strategies can outperform
single-countermeasure strategies, because the latter can be considered as a particular instance of the
former. See [24–28] for some examples.

However, though misinformation and disinformation are both false rumors and have similar
characteristics, existing anti-misinformation strategies may not be perfectly applied to the
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containment of disinformation. Different from misinformation, disinformation is generally fabricated
by a certain plotter for illicit political or economic benefits, and is deliberately diffused onto OSNs
through malicious social bots controlled by the plotter [1]. In this process, malicious social bots, as
the source of disinformation, play a crucial role in disinformation spread. Therefore, the design of
anti-disinformation strategies has to emphasize the influences of malicious social bots and take
measures to remove them to destroy the source of disinformation. Unfortunately, as far as we know,
there exists no research on developing anti-disinformation strategies which specially consider the
elimination of malicious social bots.

To fill this research gap, in this paper, we consider the effect of eliminating malicious social bots and
propose an anti-disinformation strategy based on multiple countermeasures. Specifically, we develop
a collaborative anti-disinformation strategy combining the refutation, media censorship, and social bot
detection countermeasures simultaneously. To our best knowledge, this is the first time to make such
an attempt, so our work is of novelty.

3. Problem formulation

This section reduces the DBA problem to an optimal control model. First, we formalize the
mathematical form of DBA strategies and establish a trade-off model to evaluate different DBA
strategies. Second, we propose a disinformation propagation model to estimate the trade-offs of
different DBA strategy. Third, we formulate an optimal control problem to represent the DBA
problem from a mathematical modeling perspective, with DBA strategies as decision variables, the
trade-off model as the objective functional, and the disinformation propagation model as a constraint.
After solving the optimal control model, a cost-effective DBA strategy can be obtained.

3.1. DBA strategy

Suppose a piece of disinformation or a series of disinformation with different contents but the same
theme is spreading over an OSN. Suppose we intend to control disinformation in the finite time horizon
[0,T ] by collaboratively using the refutation, media censorship, and social bot detection approaches.
At any time t ∈ [0,T ], denote the expenditure rates (i.e., the average financial expenditure per unit
time) of refutation, media censorship, and social bot detection by u1(t), u2(t), and u3(t), respectively.
Then, we refer to the function

u(t) = (u1(t), u2(t), u3(t)), 0 ≤ t ≤ T, (3.1)

as the mathematical form of DBA strategies.
Assume that DBA strategies are piecewise continuous functions defined on the time horizon [0,T ].

Denote the space of all 3-dim piecewise continuous functions on [0,T ] by Ω. Denote umax as the total
budget per unit time. By definition, the feasible set of DBA strategies is

U =

u ∈ Ω
∣∣∣∣∣ ui(t) ≥ 0, i = 1, 2, 3,

3∑
i=1

ui(t) ≤ umax, 0 ≤ t ≤ T

 . (3.2)

In order to select the best DBA strategy from the feasible set U, we need to establish a trade-off
model as a criterion to evaluate different DBA strategies. For a given DBA strategy, a reasonable
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trade-off model should account for both the effectiveness of the strategy on controlling disinformation
propagation and the cost of conducting the strategy. In this paper, the goal of controlling disinformation
is to minimize the proportion of online accounts which support disinformation. In this context, the
effect of a DBA strategy can be reflected by the change in the proportion of disinformation-supportive
accounts before and after conducting the strategy. Denote y(t) as the proportion of disinformation-
supportive accounts at time t. Then, we calculate the effect of the strategy u by

E(u) = y(0) − y(T ). (3.3)

Besides, by definition, the cost of conducting the strategy u is calculated as

C(u) =
∫ T

0

3∑
i=1

ui(t)dt. (3.4)

Hence, the trade-off of the strategy u is set to be

J(u) = ωE(u) −C(u) = ω[y(0) − y(T )] −
∫ T

0

3∑
i=1

ui(t)dt, (3.5)

where ω is a weight coefficient that quantifies the financial gain due to eliminating all disinformation-
supportive users on the network.

3.2. Disinformation propagation model

Notice that the trade-off model J(u) in (3.5) is dependent on y(0) and y(T ) together. Next, we need
to estimate these values for any given strategy u.

Suppose there are another two possible attitudes to disinformation besides the supportive attitude:
reserved and denying. Denote R(t), S (t), and D(t) as the number of human users who hold the
reserved, supportive, and denying attitudes at time t, respectively. Besides, denote B(t) as the number
of unsuspended social bots at time t. Denote the total number of active (i.e., unsuspended) accounts
on the OSN (including human users and unsuspended bots) as N(t) = R(t) + S (t) + D(t) + B(t). Let

r(t) =
R(t)
N(t)
, s(t) =

S (t)
N(t)
, d(t) =

D(t)
N(t)
, b(t) =

B(t)
N(t)
, 0 ≤ t ≤ T. (3.6)

Because r(t) + s(t) + d(t) + b(t) ≡ 1 for all t, we refer to the function

x(t) = (s(t), d(t), b(t)), 0 ≤ t ≤ T, (3.7)

as the network state trajectory for convenience.
In addition, suppose a user can contact (e.g., browsing the latest published tweets) averagely k other

users per unit time. Let α′ be the average rate at which a user transitions from a reserved attitude to a
supportive attitude because of contacting a user who holds a supportive attitude. Let β′ be the average
rate at which a user transitions from a reserved attitude to a denying attitude because of contacting
a user who holds a denying attitude. Let γ′ be the average rate at which a user transitions from a
supportive attitude to a denying attitude because of contacting a user who holds a denying attitude.
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For convenience, let α = α′k, β = β′k, and γ = γ′k. Also, denote f1(u1) as the average rate at which
anti-disinformation stories are released on the OSN when the budget for refutation is u1. Denote f2(u2)
as the proportion of disinformation-supportive tweets filtered due to media censorship when the budget
for media censorship is u2. Denote f3(u3) as the average rate at which the proportion of unsuspended
bots decreases due to bot detection when the budget for bot detection is u3. A diagram illustrating the
changes in the number of various types of accounts is shown in Figure 2.
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human users

( )D t

Reserved-attitude

human users

( )R t

Supporting-attitude

human users

( )S t

2 2[1 ( ( ))]f u t 1 1( ( ))f u t
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bots

( )B t

3 3( ( ))f u t

Figure 2. A diagram of the changes in the number of various types of accounts.

Remark 1. In Figure 2, it is seen that all the attitude transitions are considered to be unidirectional,
namely, the trajectory of attitude transitions is either “reserved-supporting-denying” or
“reserved-denying”, and the attitude will ultimately reach “denying”. This is because the term
“disinformation” in this paper refers to a single piece of tweet or a series of tweets with different
contents but the same theme. In this context, we think the power of refuting information far exceeds
that of disinformation, such that online users will not be deceived by disinformation again once they
have been informed of the truth (as if they have gained long-term immunity to disinformation). In fact,
this assumption derives from some existing rumor propagation models (see [29–31]), from which we
can find similar thoughts of mathematical modeling. In addition, as there are essential similarities
between disinformation propagation and virus spreading, unidirectional attitude transitions can be
analogically explained by a classical epidemic SIR model introduced in [32]. Nonetheless, it is worth
mentioning that if disinformation refers to tweet variants with different themes such that users cannot
gain long-term immunity from refuting information, user attitude transitions can be bidirectional. An
example for this topic can be found in the rumor propagation model proposed in [33].

Then, by applying [32] directly, we propose a disinformation propagation model as follows.

Theorem 1. Given the initial network state x(0) = x0 = (s0, d0, b0), the network state trajectory x(t) is
determined by the dynamic system (3.8).

ds
dt

(t) = α[1 − f2(u2(t))][1 − s(t) − b(t) − d(t)][s(t) + b(t)] − γs(t)d(t) − f1(u1(t))s(t), 0 ≤ t ≤ T,

dd
dt

(t) = βd(t)[1 − s(t) − b(t) − d(t)] + γs(t)d(t) + f1(u1(t))[1 − d(t) − b(t)], 0 ≤ t ≤ T,

db
dt

(t) = − f3(u3(t))b(t), 0 ≤ t ≤ T.
(3.8)
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Proof. See Appendix. □

Through the dynamic system (3.8), we can predict the network state x(t) for any time t. By
definition, the proportion of accounts which support disinformation at time t can be obtained by

y(t) = s(t) + b(t), 0 ≤ t ≤ T. (3.9)

3.3. Optimal control problem

With the feasible set (3.2), the trade-off model (3.5), the disinformation propagation model (3.8),
and the relationship (3.9), we formulate the following optimal control model to represent the DBA
problem from a mathematical modeling perspective.

max
u∈U

J(u) = ω[y(0) − y(T )] −
∫ T

0

3∑
i=1

ui(t)dt

s.t


s(t), d(t), b(t) satisfy the disinformation spread model (3.8),
x(0) = x0,

y(t) = s(t) + b(t), 0 ≤ t ≤ T.

(3.10)

After solving it with appropriate optimization methods, the optimal DBA strategy can be attained.

4. Solution

In the previous section, we reduced the DBA problem to the optimal control model (3.10). In this
section, we discuss the solution to the optimal control model (3.10). First, we derive a set of necessary
conditions for the optimality of the optimal control problem by applying Pontraygin Maximum
Principle (PMP) [34], and then convert the optimal control problem to a two-point boundary value
(TPBV) problem [35]. Second, we develop a heuristic algorithm for solving the TPBV problem
iteratively.

According to PMP, we construct the following Hamiltonian function for the optimal control
model (3.10).

H(u, x, λ) = −
3∑

i=1

ui(t) + λs ds
dt
+ λd dd

dt
+ λb db

dt
+ λz dz

dt

= −

3∑
i=1

ui(t) + λs[α(1 − f2(u2))(1 − s − b − d)(s + b) − γsd − f1(u1)s]

+ λd[βd(1 − s − b − d) + γsd + f1(u1)(1 − d − b)] − λb f3(u3)b,

(4.1)

where λ = (λs, λd, λb) is a co-state vector. Then, we derive the following necessary conditions for the
optimality of the optimal control problem (3.10).

Theorem 2. Let u(·) denote the optimal solution to the optimal control problem (3.10), x(·) denote
the network state trajectory with respect to u(·), and λ(·) denote the co-state function with respect to
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u(·) and x(·). Then, x(·) must satisfy the disinformation propagation model (3.8), λ(·) must satisfy the
dynamic system

dλs

dt
(t) = −λs(t){α[1 − f2(u2(t))][1 − 2s(t) − 2b(t) − d(t)] − γd(t) − f1(u1(t))} − (γ − β)λd(t)d(t),

0 ≤ t ≤ T,

dλd

dt
(t) = λs(t){α[1 − f2(u2(t))][s(t) + b(t)] + γs(t)} + λd(t)[βd(t) − γs(t) + f1(u1(t))], 0 ≤ t ≤ T,

dλb

dt
(t) = −αλs(t)[1 − f2(u2(t))][1 − 2s(t) − 2b(t) − d(t)] + λd(t)[βd(t) + f1(u1(t))] + λb(t) f3(u3(t)),

0 ≤ t ≤ T.
(4.2)

with λ(T ) = (−ω, 0,−ω), and u(·) must satisfy the condition

u(t) ∈ arg max
u′∈U′

H(u′, x(t), λ(t)), 0 ≤ t ≤ T, (4.3)

where

U′ =

u′ ∈ R3
∣∣∣∣∣ u′i ≥ 0, i = 1, 2, 3,

3∑
i=1

u′i ≤ umax

 . (4.4)

Proof. See Appendix. □

The results of Theorem 2, including the condition (4.3) and the dynamic systems (3.8) and (4.2),
are referred to as the optimality system of the optimal control problem (3.10). Normally, it is difficult
to directly find the optimal solution to an optimal control problem. A more practical approach is to
find the solutions that satisfy all the known necessary conditions for optimality and then eliminate the
obtained solutions by examining their effectiveness. Thus, the optimality system plays an important
role in solving the optimal DBA strategy because it helps us search the optimal DBA strategy indirectly.
Any solution that satisfies the optimality system is called a possible optimal DBA strategy.

Solving a possible optimal DBA strategy from the optimality system is essentially solving a TPBV
problem, which is complex as well. A widely used approach called the indirect shooting method [36]
suggests iteratively updating the network state trajectory and the co-state function from an initial guess
until they satisfy the optimality system. In this process, a core issue is to determine a criterion for
updating the network state trajectory and the co-state function in each iteration. Based on the main idea
of the indirect shooting method, we develop a heuristic algorithm as shown in Algorithm 1, which is
called the DBA algorithm. As we have difficulty in proving the convergence of the DBA algorithm from
a theoretical perspective, we will examine the convergence explicitly in our numerical experiments
conducted in the next section.

5. Numerical experiments

This section shows a series of numerical experiments to verify the DBA algorithm developed in the
previous section. First, we estimate some key parameters involved in the disinformation propagation
model (3.8) with a widely used Twitter rumor dataset. Second, with the estimated parameters, we
examine the possible optimal DBA strategy yielded from the DBA algorithm. Third, we introduce
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Algorithm 1 DBA
Input: An initial guess of the optimal DBA strategy u(0)(·), convergence error ϵ, and the update step

length θ for each iteration.
Output: A possible optimal DBA strategy u∗(·).
1: k ← 0;
2: repeat
3: //Calculate the x(·) and λ(·) with respect to u(k)(·)
4: Calculate x(·) from the disinformation propagation model (3.8) with u(·) = u(k)(·);
5: x(k)(·)← x(·);
6: Calculate λ(·) from the dynamic system (4.2) with u(·) = u(k)(·) and x(·) = x(k)(·);
7: λ(k)(·)← λ(·);
8: // Calculate the solution u(·) for x(k)(·) and λ(k)(·)
9: Calculate u(·) from (4.3) with x(·) = x(k)(·) and λ(·) = λ(k)(·);

10: // If u(k)(·) is the optimal solution, u(k)(·) should be equal to u(·)
11: ∆←

∑3
i=1

∫ T

0
|u(k)

i (t) − ui(t)|dt;
12: if ∆ < ϵ then
13: return u(k)(·); // Break the loop and return
14: else
15: // u(k)(·) is not the optimal solution, so update the solution u(k)(·) with the step length θ
16: u(k+1)(·)← u(k)(·) + θ[u(·) − u(k)(·)];
17: end if
18: k ← k + 1;
19: until True

several heuristic DBA strategies and compare them with the possible optimal DBA strategy to verify
the effectiveness of the DBA algorithm.

5.1. Estimation of model parameters

The disinformation propagation model (3.8) involves three objectively determined parameters: the
one indicating the average rate at which ignorant people are deceived due to disinformation
propagation, called α, the one indicating the average rate at which ignorant people are informed of the
truth due to the spread of true stories, called β, and the one indicating the average rate at which
deceived people come to reason again due to the spread of true stories, called γ.

To estimate the actual values for the above three parameters, we introduce a widely-used dataset
called NERT (Newly Emerged Rumors in Twitter) [37], which results from an empirical study on the
spreading process of newly emerged rumors in Twitter. The NERT dataset is structured as a table—
each row represents an online comment relevant to the concerned rumor, and each column explains an
attribute of the comment, such as the user ID related to this comment, the published date and time of
this comment, the attitude of this comment to the concerned rumor, and so on.

From the NERT dataset, we can extract the actual curves of the changes in the proportion of users
of different attitudes to the concerned rumor, as discussed in [38]. The optimal parameter estimation
should make the results of the disinformation propagation model (3.8) match the actual curves extracted
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from the dataset as much as possible. Denote the actual proportion of disinformation-supportive human
users, disinformation-denying human users, and social bots at time t by s(t), d(t), and b(t), respectively.
Besides, denote the proportion predicted from the disinformation propagation model (3.8) by ŝ(t), d̂(t)
and b̂(t). Then, given the feasible sets α ∈ Ωα, β ∈ Ωβ, and γ ∈ Ωγ, the optimal-estimated values of the
parameters α, β, and γ can be obtained by solving

(α∗, β∗, γ∗) = arg min
α∈Ωα,β∈Ωβ,γ∈Ωγ

∫ T

0
{[s(t) − ŝ(t)]2 + [d(t) − d̂(t)]2 + [b(t) − b̂(t)]2}dt. (5.1)

Let one unit time be 6 hours. From the NERT dataset, we extract the curves of s(t), d(t), and
b(t) for a 18-hour time duration from 04:00 on Oct. 27th to 22:00 on Oct. 27th, 2018. It is worth
mentioning that, however, human users and social bots have not been distinguish in the NERT dataset.
Thus, in our experiments, we suppose the accounts that support the concerned rumor at the initial time
are all malicious social bots and the number of bots keeps constant because there is no bot detection
available in the NERT dataset. After calculating the parameters from the spaces Ωα = Ωβ = Ωγ =
{0.000, 0.001, . . . , 1.000}with the initial network state x0 = (0, 0.280901, 0.311545) given in the NERT
dataset, we attain the optimal-estimated parameters α∗ = 0.351, β∗ = 0.288, and γ∗ = 0.000. Figure 3
compares the actual and estimated proportion curves, which shows that our disinformation propagation
model can well match the actual situation.
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Figure 3. Comparison of the actual and estimated proportion curves.

5.2. Possible optimal DBA strategy

Next, we examine the possible optimal DBA strategy yielded from the DBA algorithm. We have to
mention that in addition to the three parameters discussed above (namely, α, β, and γ), the remaining
parameters (e.g., the weight coefficient ω) are also needed to be estimated by actual situations.
However, due to the lack of real-world datasets on these parameters, in our numerical experiments we
can only set their values by experience. The details are as follows.

First, let us set the weight coefficient ω by experience, which reflects the financial gain brought by
eliminating all disinformation-supportive users from an OSN. To estimate it, let us consider a notorious
disinformation event in 2013, in which Barack Obama was claimed to get injured in an explosion.
As [39] reports, related disinformation in this event has swept out the whole Twitter and finally wiped
out about 130 billion dollars in the stock market. So, if we can prevent all Twitter users from being
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deceived in this event, we can achieve the financial gain of 130 billion dollars. Hence, we set ω =
1.3 × 1011 (dollars).

Second, let us define the function f1 by experience. Recall that the value of f1(u1) means the average
rate at which rebuttal information is released on the OSN when the expenditure rate of refutation is u1

dollars per unit time. Particularly, we suppose the cost of producing rebuttal reports mainly comes
from employing righteous journalists to collect evidence, write reports, and so on. In this context, we
roughly assume that it can take 6 hours on average for one journalist to independently accomplish all
the preparatory work. As reports in [40], in 2013 journalists could earn 127.98 dollars on average per 6
hours. Recall that one unit time is defined as 6 hours. So, if the collaboration of multiple journalists
can be assumed as linearly accumulative, the function f1 can be considered to be f1(u1) = 1

127.98u1 (per
unit time).

Next, let us define the function f2 by experience. Recall that the value of f2(u2) means the
proportion of disinformation filtered by media censorship procedures when the expenditure rate of
renting computation resources for censorship procedures is u2 dollars per unit time. From related
references, we can learn that in 2013 there were 125 million tweets produced by users per 6
hours [41], a filtering procedure can process about 864 million tweets on average per 6 hours [42],
and running one censorship procedure on cloud servers can cost 2.608 dollars per 6 hours [43]. So, if
the collaboration of multiple filtering procedures can be considered linearly accumulative, the
function f2 can be defined as f2(u2) = 864

2.608×125u2 (per unit time), where the condition u2 ≤
2.608×125

864
must be satisfied to guarantee f (u2) ≤ 1.

Finally, let us define the function f3 by experience. Recall that the value of f3(u3) means the average
rate at which online accounts are examined by bot detection procedures when the expenditure rate
of renting computation resources for detection procedures is u3 dollars per unit time. From related
references, we can learn that a bot detection procedure needs 0.71 seconds on average to examine one
online account [44] and running one bot detection procedure on cloud servers can cost 2.608 dollars
per 6 hours [43]. So, if the collaboration of multiple detection procedures can be considered linearly
accumulative, the function f3 can be defined as f3(u3) = 1

0.71×60×60×6×2.608u3 =
1

6666.048u3 (per unit time).

Table 1. A summary for experiment settings.

Parameter Meaning Value Unit References
ω the expected financial gain of reducing all

disinformation-supportive accounts from
an OSN.

1.3 × 1011 dollar [39]

f1(u1) the average rate at which rebuttal reports
are published on an OSN when the
expenditure rate is u1.

1
127.98u1 per unit time [40]

f2(u2) the proportion of which disinformation is
filtered by censorship procedures when
the expenditure rate is u2.

864
2.608×125u2 per unit time [41–43]

f3(u3) the average rate at which online accounts
are examined by bot detection procedures
when the expenditure rate is u3.

1
6666.048u3 per unit time [43, 44]
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According to the above discussions, a summary for experiment settings is given in Table 1. Then,
we conduct the following experiment:

Experiment 1. Consider the parameters displayed in Table 1. Besides, suppose OSN carriers intend
to control disinformation in 3 hours with a maximum budget rate of 10,000 dollars per 6 hours (i.e.,
T = 0.5, umax = 10, 000). Then, run the DBA algorithm with the convergence error ϵ = 0.001 and step
length θ = 0.1. The results are shown in Figures 4 and 5.
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Figure 4. Results of Experiment 1: (a) a possible optimal DBA strategy u∗; (b) the network
state trajectory x∗ with respect to u∗.
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Figure 5. The convergence curve of the DBA algorithm with respect to Experiment 1.

First, let us describe the obtained experiment results. From Experiment 1, we can attain a possible
optimal DBA strategy u∗ shown in Figure 4(a). It is seen that under the possible optimal DBA strategy,
the expenditure rate of refutation (i.e., u∗1(t)) first stays at zero and then increases sharply to nearly the
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maximum after time t = 0.45, the expenditure rate of media censorship (i.e., u∗2(t)) stays at zero during
the whole time horizon, and the expenditure rate of bot detection (i.e., u∗3(t)) first stays at the maximum
and then keenly drops to zero after time t = 0.45. Besides, Figure 4(b) shows the corresponding
network state trajectory x∗. It is seen that the proportion of social bots decreases from 0.3 to nearly
0.2, the proportion of disinformation-supportive users increases at a very low speed from 0.3 to 0.35
during the time duration 0 ≤ t ≤ 0.45 and then decreases quickly to zero after the time t = 0.45, and
the proportion of disinformation-denying users first keeps stable and then increases rapidly from about
0.3 to 0.85 after the time t = 0.45.

Second, let us analyze the obtained experiment results. From the above results, we can acquire some
conclusions for the case of Experiment 1: (a) media censorship is the least important way to control
disinformation, so there is no need to allocate any budget for it; (b) in the first 2.7 hours (i.e., from t = 0
to t = 0.45), the most important thing is to reduce the number of malicious social bots to destroy the
source of disinformation, and thus bot detection is the most effective way to control disinformation; (c)
in the last 0.3 hours (i.e., from t = 0.45 to t = 0.5), because half of social bots have been suspended, the
most important thing is to clarify the truth to reduce the number of disinformation-supportive human
users, and thus refutation becomes the most effective way to control disinformation; (d) as Figure 3
shows the network state trajectory for the case of no anti-disinformation countermeasure, we can learn
from Figures 3 and 4 that the possible optimal DBA strategy can dramatically increase the number
of disinformation-denying accounts and meanwhile decrease the number of disinformation-supportive
accounts.

In addition, let us examine the convergence of the DBA algorithm. Figure 5 shows the change in
the convergence criterion ∆ of the DBA algorithm over iteration steps for the case in Experiment 1. It
is seen that the DBA algorithm converges within 600 iteration steps because the convergence criterion
∆ have approximately reduced to zero at the 600-th iteration step.

5.3. Effectiveness of the DBA algorithm

Next, we verify if the possible optimal DBA strategy yielded from the DBA algorithm is effective.
First, we introduce several commonly used heuristic DBA strategies as follows.

• No-Countermeasure (NC) strategy: Do not take any countermeasure, i.e., u(t) = 0, 0 ≤ t ≤ T .
• All-Refutation (AR) strategy: Allocate all the budget to refutation, i.e., u1(t) = umax, u2(t) = 0,

u3(t) = 0, 0 ≤ t ≤ T .
• All-Censorship (AC) strategy: Allocate all the budget to media censorship, i.e., u1(t) = 0, u2(t) =

umax, u3(t) = 0, 0 ≤ t ≤ T .
• All-Detection (AD) strategy: Allocate all the budget to bot detection, i.e., u1(t) = 0, u2(t) = 0,

u3(t) = umax, 0 ≤ t ≤ T .
• Average (Avg) strategy: Allocate the total budget to refutation, censorship, and detection equally,

i.e., u1(t) = u2(t) = u3(t) = 1
3umax, 0 ≤ t ≤ T .

Then, we perform the following experiment to calculate the trade-offs of the above five heuristic
strategies.

Experiment 2. Consider the case described in Experiment 1. Calculate the trade-offs of the NC, AR,
AC, AD, and Avg strategies. The result is shown in Figure 6.
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Let ∆y = y(0) − y(T ), where y(t) = s(t) + b(t) is defined in (3.9). The variable ∆y, which means the
change in the proportion of disinformation-supportive accounts on the network, indicates the
effectiveness of conducting a DBA strategy on curbing disinformation. Then, Figure 6 compares the
possible optimal DBA strategy and the five heuristic strategies in terms of their effectiveness and
ultimate trade-offs. From Figure 6, it is seen that the possible optimal strategy outperforms the five
heuristic strategies because the trade-off of the possible optimal strategy is much higher than those of
the heuristic strategies. Besides, by comparing the ∆y of these strategies, it is seen that the possible
optimal strategy can dramatically reduce the proportion of disinformation-supportive accounts.
Hence, the possible optimal strategy obtained from the DBA algorithm is effective.
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Figure 6. Comparison between the possible optimal DBA strategy and five proposed
heuristic strategies in terms of their effectiveness and ultimate trade-offs.

6. Conclusions

In this paper, we have addressed the DBA problem. First, we have proposed a disinformation
propagation model to characterize the influences of different DBA strategies on curbing
disinformation, and then, established a trade-off model to evaluate DBA strategies. On this basis, we
have reduced the DBA problem to an optimal control problem. Second, we have derived a set of
necessary conditions called the optimality system for the optimal DBA strategy and developed an
iterative heuristic algorithm called the DBA algorithm to numerically solve the optimality system.
Third, we have conducted massive numerical experiments to estimate key model parameters, examine
the obtained optimal DBA strategy, and verify the effectiveness of the DBA algorithm.

Still, there are some open problems. First, in our numerical experiments, we have only estimated a
proportion of parameters for the proposed disinformation propagation model. So in the future
extensions, it is urgent to estimate the remaining parameters, such as the effect functions of different
countermeasures, to perform more practical experiments. In fact, many related studies (such
as [33, 45, 46]) also meet this challenge. Second, in our disinformation propagation model, the rates at
which a user transitions its current attitude from one to another are assumed to be constant for
simplicity. However, these rates can be dynamic in some cases as disinformation campaigns are
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generally driven by large organizations that can change these rates over time [47]. Hence, extending
this work by considering a dynamic-rate disinformation propagation model is valuable, though it may
introduce more complexity in system modeling and problem solving.
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Appendix

Proof of Theorem 1

Proof. Let ∆t be a small time interval. According to the methodology summarized in [32], the
following hold true for any time t ∈ [0,T ]:

• At any time t, the average rate at which a user transitions from a reserved attitude to a supportive
attitude because of contacting a user who holds a supportive attitude is α′′ = α′[1 − f2(u2(t))].
• During the time horizon [t, t + ∆t], the expected number of human users who transition from a

reserved attitude to a supportive attitude due to disinformation spread is
∆RS (t) = α′′k∆tR(t) S (t)+B(t)

N(t) .
• During the time horizon [t, t + ∆t], the expected number of human users who transition from a

reserved attitude to a denying attitude due to refutation is ∆RD1(t) = f1(u1(t))∆tR(t).
• During the time horizon [t, t + ∆t], the expected number of human users who transition from a

reserved attitude to a denying attitude due to the spread of facts is ∆RD2(t) = β′k∆tR(t) D(t)
N(t) .

• During the time horizon [t, t + ∆t], the expected number of human users who transition from a
supportive attitude to a denying attitude due to refutation is ∆S D1 = f1(u1(t))∆tS (t).
• During the time horizon [t, t + ∆t], the expected number of human users who transition from a

supportive attitude to a denying attitude due to the spread of facts is ∆S D2(t) = γ′k∆tS (t) D(t)
N(t) .

• During the time horizon [t, t + ∆t], the expected number of newly suspended bots due to bot
detection is ∆B(t) = f3(u3(t))∆tB(t).

Then, the changes in the number of various types of accounts during the time horizon [t, t + ∆t] are
calculated by 

S (t + ∆t) − S (t) = ∆RS (t) − ∆S D1(t) − ∆S D2(t), 0 ≤ t ≤ T,

D(t + ∆t) − D(t) = ∆RD1(t) + ∆RD2(t) + ∆S D1(t) + ∆S D2(t), 0 ≤ t ≤ T,

B(t + ∆t) − B(t) = −∆D(t), 0 ≤ t ≤ T.

(6.1)
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Because 

ds
dt

(t) = lim
∆t→0

S (t + ∆t) − S (t)
N(t)∆t

, 0 ≤ t ≤ T,

dd
dt

(t) = lim
∆t→0

D(t + ∆t) − D(t)
N(t)∆t

, 0 ≤ t ≤ T,

db
dt

(t) = lim
∆t→0

B(t + ∆t) − B(t)
N(t)∆t

, 0 ≤ t ≤ T,

(6.2)

the dynamic system (3.8) is obtained by calculation. The proof is complete. □

Proof of Theorem 2

Proof. According to PMP, the optimal network state trajectory x(·) satisfies

ds
dt

(t) =
∂H
∂λs (u(t), x(t), λ(t)),

dd
dt

(t) =
∂H
∂λd (u(t), x(t), λ(t)),

db
dt

(t) =
∂H
∂λb (u(t), x(t), λ(t)), (6.3)

for all 0 ≤ t ≤ T . Through calculation, the disinformation propagation model (3.8) holds true exactly.
Besides, the optimal co-state function λ(·) satisfies

dλs

dt
(t) = −

∂H
∂s

(u(t), x(t), λ(t)),
dλd

dt
(t) = −

∂H
∂d

(u(t), x(t), λ(t)),
dλb

dt
(t) = −

∂H
∂b

(u(t), x(t), λ(t)), (6.4)

for all 0 ≤ t ≤ T . Through calculation, the dynamic system (4.2) is attained. Also, as the terminal time
T is fixed whereas the terminal state x(T ) is free, there are transversality conditions

λs(T ) =
∂h
∂s

(s(T ), d(T ), b(T )), λd(T ) =
∂h
∂d

(s(T ), d(T ), b(T )), λb(T ) =
∂h
∂b

(s(T ), d(T ), b(T )), (6.5)

where h(s, d, b) = ω(s0 + b0 − s− b). So, we can attain λ(T ) = (−ω, 0,−ω). Finally, the condition (4.3)
is attained from PMP directly. The proof is complete. □

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 13113–13132.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Background
	Problem statement
	Contributions

	Related works
	Problem formulation
	DBA strategy
	Disinformation propagation model
	Optimal control problem

	Solution
	Numerical experiments
	Estimation of model parameters
	Possible optimal DBA strategy
	Effectiveness of the DBA algorithm

	Conclusions

