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Abstract: In this paper, we examine the stability of an endemic equilibrium in a chronological age-
structured SIR (susceptible, infectious, removed) epidemic model with age-dependent infectivity. Under
the assumption that the transmission rate is a shifted exponential function, we perform a Hopf bifurcation
analysis for the endemic equilibrium, which uniquely exists if the basic reproduction number is greater
than 1. We show that if the force of infection in the endemic equilibrium is equal to the removal rate, then
there always exists a critical value such that a Hopf bifurcation occurs when the bifurcation parameter
reaches the critical value. Moreover, even in the case where the force of infection in the endemic
equilibrium is not equal to the removal rate, we show that if the distance between them is sufficiently
small, then a similar Hopf bifurcation can occur. By numerical simulation, we confirm a special case
where the stability switch of the endemic equilibrium occurs more than once.
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1. Introduction

In the field of mathematical epidemiology, the SIR epidemic model is known as one of the most
basic epidemic models, in which the host population is divided into three classes called susceptible,
infective and removed [1]. In the study of epidemic models, the basic reproduction number R0 is one
of the key concepts, and it is defined by the expected value of secondary cases produced by a typical
infective individual in a totally susceptible population [2]. Mathematically, R0 is defined by the spectral
radius of the next generation operator, and the method of numerical computation of R0 has been studied
for structured epidemic models [3]. In a simple SIR epidemic model given by a system of ordinary
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differential equations, R0 completely determines the model dynamics in the sense of global stability
of each equilibrium: If R0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable,
whereas if R0 > 1, then the endemic equilibrium is globally asymptotically stable [4, Section 5.5.2]. On
the other hand, in some more complicated epidemic models, a stable endemic equilibrium can exist
even if R0 < 1 due to a backward bifurcation [5]. Also, an endemic equilibrium can be destabilized,
and a stable periodic solution can arise for R0 > 1 due to a Hopf bifurcation [6]. Periodic solutions in
epidemic models have attracted much attention because they can describe non-seasonal oscillations of
epidemics. Some of the known causes of the periodicity in epidemic models are periodic coefficients,
time delay, nonlinear incidence and age structure [7–10]. In this study, we consider the periodicity in
an age-structured SIR epidemic model. Age-structured epidemic models have been widely applied for
epidemiological considerations in the era of COVID-19 [11].

In the field of mathematical epidemiology, the time elapsed since the infection is called the infection
age, whereas the time elapsed since the birth is called the chronological age. For an infection age-
structured SIR epidemic model, a complete threshold property of R0 in the sense of the global stability
of each equilibrium was shown by constructing a suitable Lyapunov function [12]. In contrast, for a
chronological age-structured SIR epidemic model, the complete threshold property of R0 does not hold
in general. More precisely, although the global stability of the disease-free equilibrium for R0 < 1 was
proved in [13], some additional conditions were needed to guarantee the local or global asymptotic
stability of the endemic equilibrium for R0 > 1 [13, 14], and the possibility of the instability of the
endemic equilibrium for R0 > 1 was studied in [15–18].

In [15], Thieme showed that the unique endemic equilibrium can be unstable for R0 > 1 in a
chronological age-structured SIR epidemic model with age-dependent infectivity. However, the
existence of periodic solutions and the occurrence of Hopf bifurcation have not yet been proved for
this model. The purpose of this study is to tackle this problem when the transmission rate has a
specific form. More precisely, we assume that the transmission rate is a shifted exponential function
(see (A5) in the next section) and perform a Hopf bifurcation analysis regarding the infimum of
the support of the function as a bifurcation parameter. Epidemiologically, such a shifted exponential
function represents the case where infected people do not have infectivity until a certain critical age,
and the infectivity decreases in an exponential sense after the critical age. This function enables us to
consider a special case studied in [15], where the product of the transmission rate and the stable age
distribution is highly concentrated in a particular age class. In this paper, we obtain concrete sufficient
conditions for a Hopf bifurcation.

This paper is organized as follows: In Section 2, we introduce the model in this study. In Section 3, we
give some preliminaries for the analysis, including the existence and uniqueness of the endemic equilibrium
for R0 > 1. In Section 4, we perform a Hopf bifurcation analysis for a special case where the force of
infection in the steady state is equal to the removal rate. We show that there always exists a critical value
such that a Hopf bifurcation occurs when the bifurcation parameter reaches it. In Section 5, we perform
a more general analysis for the case where the force of infection in the steady state is not equal to the
removal rate. We obtain a similar Hopf bifurcation result as in Section 4 when the distance between the
force of infection and the removal rate is sufficiently small. Moreover, we numerically confirm a special
case where the stability switch of the endemic equilibrium occurs more than once. Finally, Section 6 is
devoted to a discussion.
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Figure 1. Flow diagram of model (2.1).

2. Model

Let S (t,a), I(t,a) and R(t,a) be the susceptible, infective and removed populations of age a at time t,
respectively. In this paper, we consider the following SIR epidemic model with chronological age structure:

(
∂

∂t
+
∂

∂a

)
S (t, a) = −Λ(t)S (t, a) − µ(a)S (t, a), t > 0, a > 0,(

∂

∂t
+
∂

∂a

)
I(t, a) = Λ(t)S (t, a) − [µ(a) + γ]I(t, a), t > 0, a > 0,(

∂

∂t
+
∂

∂a

)
R(t, a) = γI(t, a) − µ(a)R(t, a), t > 0, a > 0,

S (t, 0) =
∫ ∞

0
b(a)P(t, a)da, I(t, 0) = 0, R(t, 0) = 0, t > 0,

(2.1)

where µ(a) is the mortality rate, γ is the removal rate, b(a) is the birth rate, P(t, a) := S (t, a) + I(t, a) +
R(t, a) is the population age density, and

Λ(t) :=
1∫ ∞

0
P(t, a)da

∫ ∞

0
β(a)I(t, a)da

is the force of infection with the transmission rate β(a). We assume γ > 0, and the following

(A1) µ ∈ L1
+,loc(0,∞), and

∫ ∞
0
µ(a)da = ∞.

(A2)
∫ ∞

0
b(a)ℓ(a)da = 1, where ℓ(a) := e−

∫ a
0 µ(σ)dσ is the survival probability.

(A3) The population has attained the stable age distribution, that is, P(t, a) = P∗(a) := Nℓ(a)/L for all
t > 0 and a > 0, where N > 0 is the stationary population size, and L :=

∫ ∞
0
ℓ(a)da is the life

expectancy.

Let

S̃ (t, a) :=
S (t, a)
P∗(a)

, Ĩ(t, a) :=
I(t, a)
P∗(a)

.
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For notational simplicity, dropping the tildes on S̃ and Ĩ, we obtain the following normalized SI system:

(
∂

∂t
+
∂

∂a

)
S (t, a) = −Λ(t)S (t, a), t > 0, a > 0,(

∂

∂t
+
∂

∂a

)
I(t, a) = Λ(t)S (t, a) − γI(t, a), t > 0, a > 0,

S (t, 0) = 1, I(t, 0) = 0, t > 0,

(2.2)

where

Λ(t) =
1
N

∫ ∞

0
β(a)P∗(a)I(t, a)da.

Note that these S and I are the normalized age-densities satisfying 0 ≤ S , I ≤ 1, and we can omit the
equation of R as it does not affect the dynamics of system (2.2).

In [15], Thieme investigated the stability of the endemic equilibrium of system (2.2) when it uniquely
exists. He analytically showed that it can be destabilized if β(a)P∗(a) is highly concentrated in a
particular age class. However, the problem of the existence of periodic solutions when the endemic
equilibrium is unstable was unsettled. In this paper, we deal with this problem by applying the method
of local Hopf bifurcation theory. In [15], it was assumed that there exist constants c1, c2 > 0 such that
β(a)ℓ(a) ≤ c1e−c2a for all a > 0. In this paper, we make the following additional assumptions:

(A4) µ(a) = µ > 0 for all a > 0.

(A5) There exist β0 > 0 and τ, k ≥ 0 such that

β(a) =
{

0, a < τ,
β0e−ka, a ≥ τ.

In other words, the transmission rate β(a) is a shifted exponential function. One can then see that
β(a)ℓ(a) ≤ c1e−c2a for all a > 0 holds for c1 = β0 and c2 = µ + k. If both β0 and k are large, we can
say that β(a)P∗(a) is highly concentrated in a particular age τ as in the case studied in [15]. Here, we
remark that we can consider a different situation where β(a)P∗(a) is exponentially distributed for a ≥ τ.
Regarding τ as a bifurcation parameter, we investigate the existence of a critical value τc > 0 such that a
Hopf bifurcation occurs, and a periodic solution bifurcates from the endemic equilibrium when τ = τc.

3. Preliminaries

Let X := L1(0, a†) and X+ := L1
+(0, a†). It is easy to see that system (2.2) always has the disease-free

equilibrium E0 = (1, 0) ∈ X+ × X+. Let E∗ = (S ∗, I∗) denote an endemic equilibrium of system (2.2). It
then holds 

dS ∗(a)
da

= −Λ∗S ∗(a), a > 0,

dI∗(a)
da

= Λ∗S ∗(a) − γI∗(a), a > 0,

S ∗(0) = 1, I∗(0) = 0,

(3.1)
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where the endemic force of infection obeys

Λ∗ =
1
N

∫ ∞

0
β(a)P∗(a)I∗(a)da. (3.2)

Solving (3.1), we obtain

S ∗(a) = e−Λ
∗a, I∗(a) =

∫ a

0
e−γ(a−σ)Λ∗S ∗(σ)dσ = Λ∗e−γa

∫ a

0
e(γ−Λ∗)σdσ. (3.3)

Substituting the equation of I∗ into the right-hand side of (3.2) and dividing both sides by Λ∗, we obtain

1 =
1
N

∫ ∞

0
β(a)P∗(a)e−γa

∫ a

0
e(γ−Λ∗)σdσda. (3.4)

Since the right-hand side of (3.4) is monotone decreasing for Λ∗, we see that a unique Λ∗ > 0
satisfying (3.4) exists if and only if R0 > 1, where

R0 =
1
N

∫ ∞

0
β(a)P∗(a)e−γa

∫ a

0
eγσdσda =

1
γN

∫ ∞

0
β(a)P∗(a)(1 − e−γa)da

is the basic reproduction number [2] for system (2.2). More precisely, we obtain the following
proposition.

Proposition 3.1. If R0 > 1, then system (2.2) has a unique endemic equilibrium E∗ = (S ∗, I∗) ∈
X+ × (X+ \ {0}).

Proof. As explained above, if R0 > 1, then there exists a unique Λ∗ > 0 such that (3.4) is satisfied. We
then obtain S ∗(a) and I∗(a) from (3.3). This completes the proof. □

In what follows, we assume R0 > 1 and investigate the local stability of the endemic equilibrium E∗.
Let

U(t, a) := S (t, a) − S ∗(a), V(t, a) := I(t, a) − I∗(a),

be the perturbation from E∗. We then have the following linearized system.

(
∂

∂t
+
∂

∂a

)
U(t, a) = −Λ∗U(t, a) −

S ∗(a)
N

∫ ∞

0
β(a)P∗(a)V(t, a)da, t > 0, a > 0,(

∂

∂t
+
∂

∂a

)
V(t, a) = Λ∗U(t, a) +

S ∗(a)
N

∫ ∞

0
β(a)P∗(a)V(t, a)da − γV(t, a), t > 0, a > 0,

U(t, 0) = 0, V(t, 0) = 0, t > 0.

(3.5)

Substituting U(t, a) = eλtu(a) and V(t, a) = eλtv(a) (λ ∈ C) into (3.5) and dividing each equation by eλt,
we have 

(
λ +

d
da

)
u(a) = −Λ∗u(a) − wS ∗(a), a > 0,(

λ +
d

da

)
v(a) = Λ∗u(a) + wS ∗(a) − γv(a), a > 0,

u(0) = 0, v(0) = 0, w =
1
N

∫ ∞

0
β(a)P∗(a)v(a)da.

(3.6)

We first show that λ = 0 is not an eigenvalue.
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Lemma 3.1. If λ = 0, then there exists no (u, v) , (0, 0) satisfying (3.6).

Proof. For λ = 0, recalling that S ∗(a) = e−Λ
∗a, we obtain

u(a) =
∫ a

0
e−Λ

∗(a−σ)[−wS ∗(σ)]dσ = −we−Λ
∗aa,

v(a) =
∫ a

0
e−γ(a−σ)[Λ∗u(σ) + wS ∗(σ)]dσ = we−γa

∫ a

0
e(γ−Λ∗)σ(1 − Λ∗σ)dσ.

Substituting the equation of v(a) into w = N−1
∫ ∞

0
β(a)P∗(a)v(a)da and dividing both sides by w, we have

1 =
1
N

∫ ∞

0
β(a)P∗(a)e−γa

∫ a

0
e(γ−Λ∗)σ(1 − Λ∗σ)dσda.

However, by (3.4), we have

1
N

∫ ∞

0
β(a)P∗(a)e−γa

∫ a

0
e(γ−Λ∗)σ(−Λ∗σ)dσda = 0,

which is a contradiction. This completes the proof. □

By Lemma 3.1, we can focus on λ , 0. Recalling that S ∗(a) = e−Λ
∗a, we obtain

u(a) = − w
∫ a

0
e−(λ+Λ∗)(a−σ)S ∗(σ)dσ = −we−Λ

∗a 1 − e−λa

λ
,

v(a) =
∫ a

0
e−(λ+γ)(a−σ)[Λ∗u(σ) + wS ∗(σ)]dσ = we−(λ+γ)a

∫ a

0
e(λ+γ−Λ∗)σ

(
1 − Λ∗

1 − e−λσ

λ

)
dσ

=
we−(λ+γ)a

λ

∫ a

0

[
(λ − Λ∗)e(λ+γ−Λ∗)σ + Λ∗e(γ−Λ∗)σ

]
dσ.

Substituting the equation of v(a) into w =
∫ ∞

0
β(a)P∗(a)v(a)da and dividing both sides by w, we have

1 =
1
N

∫ ∞

0
β(a)P∗(a)

e−(λ+γ)a

λ

∫ a

0

[
(λ − Λ∗)e(λ+γ−Λ∗)σ + Λ∗e(γ−Λ∗)σ

]
dσda.

Under assumptions (A4) and (A5), this equation can be rewritten as

1 =
β1

λ

∫ ∞

τ

e−(λ+p)a
∫ a

0

[
(λ − Λ∗)e(λ+γ−Λ∗)σ + Λ∗e(γ−Λ∗)σ

]
dσda, (3.7)

where β1 := β0/L and p := k + µ + γ. Eq (3.7) is the starting point of our Hopf bifurcation analysis.

4. Hopf bifurcation analysis (Λ∗ = γ)

We now consider a special case where Λ∗ = γ. In this case, Eq (3.7) can be rewritten as

1 =
β1

λ

∫ ∞

τ

e−(λ+p)a
∫ a

0

[
(λ − γ)eλσ + γ

]
dσda. (4.1)
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Since we are interested in a Hopf bifurcation at which Reλ = 0, we restrict our attention to λ such that
Reλ > −p. We can then rewrite (4.1) as

1 =
β1

λ

∫ ∞

τ

e−(λ+p)a
[
λ − γ

λ
(eλa − 1) + γa

]
da

=
β1

λ2

[
(λ − γ)

(
e−pτ

p
−

e−(λ+p)τ

λ + p

)
+ γλ

e−(λ+p)τ

λ + p

(
τ +

1
λ + p

)]
. (4.2)

On the other hand, from Eq (3.4), we have

1 = β1

∫ ∞

τ

ae−pada = β1

(
τ

p
+

1
p2

)
e−pτ,

and thus,

β1 =
p2epτ

pτ + 1
. (4.3)

Substituting (4.3) into (4.2), we obtain

1 =
p2

(pτ + 1)λ2

[
(λ − γ)

(
1
p
−

e−λτ

λ + p

)
+ γλ

e−λτ

λ + p

(
τ +

1
λ + p

)]
=

1
(pτ + 1)λ2(λ + p)2

{
p(λ − γ)(λ + p)2 + p2 [

−(λ − γ)(λ + p) + γτλ(λ + p) + γλ
]
e−λτ

}
,

which is equivalent to

(pτ + 1)λ2(λ + p)2 = p(λ − γ)(λ + p)2 + p2 [
−(λ − γ)(λ + p) + γτλ(λ + p) + γλ

]
e−λτ.

Hence, we obtain the following characteristic equation:

a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0 + (b2λ

2 + b1λ + b0)e−λτ = 0, (4.4)

where

a4 =pτ + 1, a3 = 2p2τ + p, a2 = p3τ − p2 + γp, a1 = −p3 + 2γp2, a0 = γp3,

b2 = − γp2τ + p2, b1 = −γp3τ + p3 − 2γp2, b0 = −γp3.

Note that although λ = 0 satisfies (4.4), we can disregard it by virtue of Lemma 3.1. We now prove the
following lemma.

Lemma 4.1. If τ = 0, then all nonzero roots λ of the characteristic Eq (4.4) have negative real parts.

Proof. If τ = 0, Eq (4.4) can be rewritten as λ4 + pλ3 + γpλ2 = 0. As λ , 0, dividing both sides by λ2,
we have λ2 + pλ + γp = 0. We then easily see that all λ have negative real parts because p and γp are
strictly positive. This completes the proof. □

Lemmas 3.1 and 4.1 imply that the endemic equilibrium E∗, which uniquely exists under R0 > 1, is
locally asymptotically stable if τ = 0. By the continuity, E∗ is locally asymptotically stable for small
τ > 0. In what follows, we investigate the existence of a τc > 0 such that E∗ is locally asymptotically
stable for τ ∈ [0, τc) and destabilized at τ = τc.
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4.1. Existence of a pair of simple pure imaginary roots

We now seek a pair of simple pure imaginary roots λ = ±iω (ω > 0) of the characteristic Eq (4.4). Since
all coefficients in (4.4) are real, if λ = iω satisfies (4.4), then λ = −iω also satisfies (4.4). Therefore, we
focus on λ = iω. Substituting λ = iω into (4.4), we have

a4ω
4 − ia3ω

3 − a2ω
2 + ia1ω + a0 +

(
−b2ω

2 + ib1ω + b0

)
e−iωτ = 0.

As e−iωτ = cosωτ − i sinωτ, we obtain the following two equations for real and imaginary parts,
respectively:  a4ω

4 − a2ω
2 + a0 = (b2ω

2 − b0) cosωτ − b1ω sinωτ,

a3ω
3 − a1ω = b1ω cosωτ + (b2ω

2 − b0) sinωτ.
(4.5)

Taking squares of both sides in the two equations of (4.5) and adding them, we obtain

(a4ω
4 − a2ω

2 + a0)2 + (a3ω
3 − a1ω)2 = (b2ω

2 − b0)2 + b2
1ω

2.

Rearranging this equation, we obtain

ω2
[
c3(ω2)3 + c2(ω2)2 + c1ω

2 + c0

]
= 0 (4.6)

(note that a2
0 − b2

0 = 0), where

c3 = a2
4, c2 = −2a2a4 + a2

3, c1 = 2a0a4 + a2
2 − 2a1a3 − b2

2, c0 = −2a0a2 + a2
1 + 2b0b2 − b2

1.

As we can rule out ω = 0 by Lemma 3.1, dividing both sides of (4.6) by ω2, we obtain

c3(ω2)3 + c2(ω2)2 + c1ω
2 + c0 = 0. (4.7)

On the existence of a positive ω > 0 satisfying (4.7), we prove the following lemma:

Lemma 4.2. The Eq (4.7) has a unique nonzero positive root ω > 0.

Proof. Let h(x) = c3x3 + c2x2 + c1x + c0. It suffices to show that h(x) = 0 has a unique positive root
x∗ > 0, for which ω =

√
x∗ > 0 is the desired root of (4.7). It is obvious that c3 = (pτ + 1)2 > 0.

Moreover, we have, using p = k + µ + γ > γ,

c2 = − 2(p3τ − p2 + γp)(pτ + 1) + (2p2τ + p)2

=2p4τ2 + 4p3τ + 3p2 − 2γp(pτ + 1)
>2p4τ2 + 4p3τ + 3p2 − 2p2(pτ + 1)
=2p4τ2 + 2p3τ + p2 > 0,

and, using b0 = −a0 and b1 = −γp3τ − a1,

c0 = − 2a0(a2 + b2) + a2
1 − (γp3τ + a1)2

= − 2γp3(p3τ + γp − γp2τ) − γ2 p6τ2 − 2γp3τa1

= − 2γp3(p3τ + γp − γp2τ) − γ2 p6τ2 − 2γp3τ(−p3 + 2γp2)
= − 2γ2 p4 − 2γ2 p5τ − γ2 p6τ2 < 0.

c0 < 0 and c2, c3 > 0 imply that h(x) = 0 has a unique positive root x∗ > 0. This completes the proof. □
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The following corollary will be used in the proof of the transversality:

Corollary 4.1. Let h(x) and x∗ be as defined in the proof of Lemma 4.2. Then, h′(x∗) > 0.

Proof. The assertion immediately follows from c0 < 0 and c2, c3 > 0. □

Note that since a2, a3, a4, b1 and b2 in (4.4) depend on τ, the root ω also depends on τ: ω = ω(τ).
Since (4.7) is a necessary condition for λ = iω to be a root of (4.4), we have to find a τc > 0 such that
ω(τc) satisfies not only (4.7) but also (4.5). By (4.5), we have

cosωτ =
(a4ω

4 − a2ω
2 + a0)(b2ω

2 − b0) + (a3ω
3 − a1ω)b1ω

(b2ω2 − b0)2 + b2
1ω

2
=: φ,

sinωτ =
−(a4ω

4 − a2ω
2 + a0)b1ω + (a3ω

3 − a1ω)(b2ω
2 − b0)

(b2ω2 − b0)2 + b2
1ω

2
=: ψ.

(4.8)

We define θ ∈ (0, 2π] by

θ :=
{

arccosφ, ψ > 0,
2π − arccosφ, ψ ≤ 0.

It then follows from (4.8) that ωτ = θ, and thus,

τ =
θ

ω
.

Note that φ, ψ and θ also depend on τ. Let f (τ) := θ(τ)/ω(τ). Then, the desired τc is a positive fixed
point of f : τc = f (τc). Before proving the existence of such τc, we give the following lemma:

Lemma 4.3. For coefficients c0, c1, c2 and c3, it holds that

lim
τ→∞

1
(pτ)2


c0

c1

c2

c3

 =

−γ2 p4

p2(p2 − γ2)
2p2

1

 .
Proof. The convergence of ci/(pτ)2 (i = 0, 2, 3) can be easily checked by using the expressions of c0, c2

and c3 given in the proof of Lemma 4.2. For c1, we have

c1 =2γp3(pτ + 1) + (p3τ − p2 + γp)2 − 2(−p3 + 2γp2)(2p2τ + p) − (−γp2τ + p2)2

=2γp4τ + 2γp3 + p6τ2 + p4 + γ2 p2 − 2p5τ + 2γp4τ − 2γp3

+ 4p5τ + 2p4 − 8γp4τ − 4γp3 − γ2 p4τ2 + 2γp4τ − p4

= − 2γp4τ − 4γp3 + p6τ2 + γ2 p2 + 2p5τ + 2p4 − γ2 p4τ2

=(p2 − γ2)p4τ2 + 2(p − γ)p4τ − 4γp3 + γ2 p2 + 2p4

=p2
[
(p2 − γ2)p2τ2 + 2(p − γ)p2τ − 4γp + γ2 + 2p2

]
,

and hence, limτ→∞ c1/(pτ)2 = p2(p2 − γ2). This completes the proof. □

We now prove the following proposition:
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Proposition 4.1. There exists a τc > 0 such that λ = ±iω(τc) is a pair of simple pure imaginary roots of
the characteristic Eq (4.4).

Proof. By Lemma 4.2 and its proof, one can see that ω(τ) is continuous and finite for all τ ≥ 0. Thus,
θ(τ) and f (τ) are also continuous and finite for all τ ≥ 0. Moreover, it follows that f (0) = θ(0)/ω(0) > 0.
Hence, by the continuity, if limτ→∞ f (τ) < ∞, then we can conclude that there exists a τc > 0 such that
τc = f (τc).

Let {τn}
∞
n=1 be an increasing sequence in (0,∞), and let ωn := ω(τn). By dividing both sides of (4.7)

by (pτn)2, we have
c3

(pτn)2 (ω2
n)3 +

c2

(pτn)2 (ω2
n)2 +

c1

(pτn)2ω
2
n +

c0

(pτn)2 = 0.

By Lemma 4.3, we see that {ωn}
∞
n=1 converges to ω∞, which is the unique positive root of the

following equation:
(ω2
∞)3 + 2p2(ω2

∞)2 + p2(p2 − γ2)ω2
∞ − γ

2 p4 = 0.

Thus, we have limτ→∞ f (τ) ≤ 2π/ω∞ < ∞. This completes the proof. □

Proposition 4.1 guarantees the existence of a pair of pure imaginary roots at τ = τc > 0.

4.2. Transversality condition

We next investigate the transversality condition at τ = τc, that is,

dReλ
dτ

∣∣∣∣∣
λ=iωc

> 0, (4.9)

where ωc := ω(τc). Following a general result given by [19], we define g(τ) := τ − f (τ). Now, we have
the following proposition.

Proposition 4.2. If g′(τc) > 0, then (4.9) holds.

Proof. Let y(ω) be the left-hand side of (4.6):

y(ω) := ω2
[
c3(ω2)3 + c2(ω2)2 + c1ω

2 + c0

]
= ω2h(ω2).

Following a calculation in [19, Proof of Theorem 2.2] for a general characteristic equation, we can
obtain a similar result as in [19, Theorem 2.2]:

sign
{

dReλ
dτ

∣∣∣∣∣
λ=iωc

}
= sign

{
∂y(ωc)
∂ω

}
sign {g′(τc)} .

Note that from Lemma 4.2 and Corollary 4.1, it follows that h(ω2
c) = 0 and h′(ω2

c) > 0. We then have that

∂y(ωc)
∂ω

= 2ωch(ω2
c) + ω2

ch′(ω2
c)2ωc = 2ω3

ch′(ω2
c) > 0.

Hence, we have

sign
{

dReλ
dτ

∣∣∣∣∣
λ=iωc

}
= sign {g′(τc)} .

This completes the proof. □
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(a) ω(τ) and θ(τ). (b) f (τ) and g(τ) (τc ≈ 3.84).

Figure 2. Functions ω(τ), θ(τ), f (τ) and g(τ) (0 ≤ τ ≤ 8) for µ = γ = k = 1. A Hopf
bifurcation occurs at τ = τc ≈ 3.84.

As shown in the proof of Proposition 4.1, we have f (0) > 0 and limτ→∞ f (τ) < ∞. This implies
that there exists at least one τc > 0 such that g(τc) = τc − f (τc) = 0 and g′(τc) > 0. That is, a Hopf
bifurcation is always possible in model (2.2) with R0 > 1 and Λ∗ = γ. More precisely, we obtain the
following main result:

Proposition 4.3. Suppose that β1 depends on τ as for (4.3). Then, R0 > 1 and Λ∗ = γ hold for all τ ≥ 0,
and there exists a τc > 0 such that a pair of simple pure imaginary roots ±iω(τc) (=±iωc) satisfies the
characteristic Eq (4.4) and crosses the imaginary axis from left to right as τ increases over τc.

Under the condition in Proposition 4.3, there always exists a critical value τc > 0 such that a Hopf
bifurcation occurs, and a periodic solution arises when the infimum τ of the support of function β(a)
reaches τ = τc. In the next subsection, we numerically confirm this result.

4.3. Numerical experiments

For simplicity, we fix µ = γ = k = 1. Note that these parameters are technically chosen in order to
confirm the validity of Proposition 4.3, and thus, there is no biological reason for this choice. In this
case, p = 3, and we can numerically calculate functions ω(τ), θ(τ), f (τ) and g(τ), and τc ≈ 3.84 as
shown in Figure 2. Note that L = 1/µ = 1, and the force of infection is

Λ(t) =
1
N

∫ ∞

0
β(a)P∗(a)I(t, a)da =

β0

L

∫ ∞

τ

e−(k+µ)aI(t, a)da = β0

∫ ∞

τ

e−(k+µ)aI(t, a)da.

It then follows from (4.3) that β0 = β1 = p2epτ/(pτ + 1). For the normalized system (2.2), we choose
the initial condition as S (0, a) = 0.99 and I(0, a) = 0.01 for all a > 0.

For τ = 3.7 < τc, we see in Figure 3 that the numerical solutions of I(t,a) andΛ(t) converge to the positive
steady states I∗(a) and Λ∗, respectively. In particular, we can confirm that Λ∗ = γ = 1 in Figure 3 (b).

For τ = 4 > τc, we see in Figure 4 that the numerical solutions of I(t, a) and Λ(t) do not converge to
the positive steady states but to positive periodic solutions.
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Thus, we can conclude that a Hopf bifurcation occurs at τ = τc. In this case, the outbreaks occur
periodically if the length τ of the period with no infectivity is sufficiently large.

(a) Infective population I(t, a). (b) Force of infection Λ(t).

Figure 3. Time variation of infective population I(t, a) and force of infection Λ(t) in system
(2.2) for τ = 3.7 < τc ≈ 3.84. The solution converges to the endemic equilibrium.

(a) Infective population I(t, a). (b) Force of infection Λ(t).

Figure 4. Time variation of infective population I(t, a) and force of infection Λ(t) in system
(2.2) for τ = 4 > τc ≈ 3.84. The solution converges to a positive periodic solution.

5. Hopf bifurcation analysis (Λ∗ , γ)

We next consider the case where Λ∗ , γ. Let q := γ − Λ∗ , 0. Note that p − q = k + µ + Λ∗ > 0. As
in the previous section, since we are interested in a Hopf bifurcation at which Reλ = 0, we restrict our
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attention to λ such that Reλ > max(−p,−(p − q)) and λ , −q. Equation (3.7) can then be rewritten as

1 =
β1

λ

∫ ∞

τ

e−(λ+p)a
∫ a

0

[
(λ − Λ∗)e(λ+q)σ + Λ∗eqσ

]
dσda

=
β1

λ

∫ ∞

τ

[
λ − Λ∗

λ + q

(
e−(p−q)a − e−(λ+p)a

)
+
Λ∗

q

(
e−(λ+p−q)a − e−(λ+p)a

)]
da

=
β1

λ

[
λ − Λ∗

λ + q

(
e−(p−q)τ

p − q
−

e−(λ+p)τ

λ + p

)
+
Λ∗

q

(
e−(λ+p−q)τ

λ + p − q
−

e−(λ+p)τ

λ + p

)]
. (5.1)

On the other hand, Eq (3.4) can be rewritten as

1 = β1

∫ ∞

τ

e−pa
∫ a

0
eqσdσda =

β1

q

∫ ∞

τ

(
e−(p−q)a − e−pa

)
da =

β1

q

(
e−(p−q)τ

p − q
−

e−pτ

p

)
.

Thus, we have

β1 =
pq(p − q)epτ

peqτ − (p − q)
. (5.2)

Let Q = Q(q, τ) := (eqτ − 1)/q. Note that Q(q, τ) > 0 for all q ∈ R \ {0} and τ > 0, and

lim
q→0

Q(q, τ) = τ for each fixed τ > 0, lim
τ→0

Q(q, τ) = 0 for each fixed q , 0.

(5.2) can then be rewritten as

β1 =
p(p − q)epτ

pQ + 1
. (5.3)

Substituting this β1 into (5.1) and rearranging it, we obtain

(pQ + 1) λ =p(p − q)
[
λ − Λ∗

λ + q

(
eqτ

p − q
−

e−λτ

λ + p

)
+
Λ∗

q

(
e−(λ−q)τ

λ + p − q
−

e−λτ

λ + p

)]
=peqτλ − Λ

∗

λ + q
+ p(p − q)

[
−

λ − Λ∗

(λ + p)(λ + q)
+
Λ∗

q
eqτ(λ + p) − (λ + p − q)

(λ + p)(λ + p − q)

]
e−λτ.

We then have

(pQ + 1) λ − peqτλ − Λ
∗

λ + q
+ p(p − q)

[
λ − Λ∗

(λ + p)(λ + q)
−
Λ∗

q
eqτ(λ + p) − (λ + p − q)

(λ + p)(λ + p − q)

]
e−λτ = 0.

Multiplying by (λ + p)(λ + q)(λ + p − q) on both sides, we obtain

(pQ + 1) λ(λ + p)(λ + q)(λ + p − q) − peqτ(λ − Λ∗)(λ + p)(λ + p − q)

+ p(p − q)
{

(λ − Λ∗)(λ + p − q) +
Λ∗

q
[
(1 − eqτ)λ + p − q − peqτ] (λ + q)

}
e−λτ = 0.

Note that eqτ = qQ + 1. We then have

(pQ + 1) λ(λ + p)(λ + q)(λ + p − q) − p(qQ + 1)(λ − Λ∗)(λ + p)(λ + p − q)
+ p(p − q) {(λ − Λ∗)(λ + p − q) − Λ∗ (Qλ + pQ + 1) (λ + q)} e−λτ = 0.
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It can be rewritten as

A4λ
4 + A3λ

3 + A2λ
2 + A1λ + A0 +

(
B2λ

2 + B1λ + B0

)
e−λτ = 0, (5.4)

where

A4 = pQ + 1, A3 = (2p − q)pQ + p, A2 = [p(p − q) + Λ∗q]pQ + Λ∗p − (p − q)2,

A1 = −p(p − q)2 + Λ∗(2p − q)p(qQ + 1), A0 = Λ
∗p2(p − q)(qQ + 1),

B2 = p(p − q)(1 − Λ∗Q), B1 = p(p − q)2 − Λ∗p(p − q)(2 + pQ + qQ),
B0 = −Λ

∗p2(p − q)(qQ + 1).

We can check that (5.4) is equivalent to (4.4) if q→ 0. In fact, we have the following lemma:

Lemma 5.1. For each fixed τ > 0, it holds that

lim
q→0

(A4, A3, A2, A1, A0, B2, B1, B0) = (a4, a3, a2, a1, a0, b2, b1, b0) . (5.5)

Proof. For each fixed τ > 0, recalling that limq→0(Q,Λ∗) = (τ, γ), we obtain

lim
q→0

A4 = pτ + 1 = a4, lim
q→0

A3 = 2p2τ + p = a3, lim
q→0

A2 = p3τ + γp − p2 = a2,

lim
q→0

A1 = −p3 + 2γp2 = a1, lim
q→0

A0 = γp3 = a0,

lim
q→0

B2 = p2(1 − γτ) = b2, lim
q→0

B1 = p3 − γp2(2 + pτ) = b1, lim
q→0

B0 = −γp3 = b0.

This completes the proof. □

By Proposition 4.3 and Lemma 5.1, regarding τ as a bifurcation parameter, we see that a Hopf bifurcation
can occur as in Section 4 if |q| is sufficiently small. More precisely, we obtain the following corollary:

Corollary 5.1. Suppose that q , 0, |q| is sufficiently small, and β1 depends on τ as for (5.3). Then,
R0 > 1 and Λ∗ = γ − q > 0 hold for all τ ≥ 0, and there exists a τc > 0 such that a pair of simple pure
imaginary roots ±iΩ(τc) (= ±iΩc) satisfies the characteristic Eq (5.4) and crosses the imaginary axis
from left to right as τ increases over τc.

We next proceed to a more general case where |q| is not small. We can prove the following lemma,
which corresponds to Lemma 4.1.

Lemma 5.2. If τ = 0, then all roots λ except 0 and −q of the characteristic Eq (5.4) have negative real parts.

Proof. If τ = 0, then Q = 0, and the characteristic Eq (5.4) can be rewritten as

λ4 + pλ3 + [q(p − q) + Λ∗p]λ2 + Λ∗pqλ = 0.

This equation is equivalent to
λ(λ + q)

[
λ2 + rλ + Λ∗p

]
= 0.

If λ , 0,−q, then we have
λ2 + (p − q)λ + Λ∗p = 0.

We then see that all roots λ have negative real parts because p − q > 0 and Λ∗p > 0. This completes
the proof. □
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Using Lemma 5.2, we prove the following proposition on the local asymptotic stability of E∗ for τ = 0:

Proposition 5.1. If R0 > 1, q , 0 and τ = 0, then the endemic equilibrium E∗ of system (2.2) is locally
asymptotically stable.

Proof. By Lemma 5.2, it suffices to show that λ = 0 and −q do not affect the stability of E∗. In fact,
by Lemma 3.1, λ = 0 cannot be a characteristic eigenvalue. If q > 0, then λ = −q does not affect the
stability of the endemic equilibrium E∗. If q < 0, substituting λ = −q into the first equation in (5.1), we
obtain, for τ = 0,

1 =
β1

−q

∫ ∞

0
e−(p−q)a

[
−(q + Λ∗)a +

Λ∗

q
(eqa − 1)

]
da

=
β1γ

q

∫ ∞

0
ae−(p−q)ada +

β1Λ
∗

q2

∫ ∞

0

[
e−(p−q)a − e−(p−2q)a

]
da

=
β1γ

q
1

(p − q)2 +
β1Λ

∗

q2

(
1

p − q
−

1
p − 2q

)
=

β1

q(p − q)

(
γ

p − q
−
Λ∗

p − 2q

)
=

β1(p − q − γ)
(p − q)2(p − 2q)

.

Since β1 = p(p − q) for τ = 0, we have

1 =
p(p − q − γ)

(p − q)(p − 2q)
<

(p − 2q)(p − q)
(p − q)(p − 2q)

= 1,

which is a contradiction (note that p < p − 2q as q < 0). Hence, λ , −q. This completes the proof. □

5.1. Existence of a pair of simple pure imaginary roots

As in Section 4.1, substituting λ = iΩ (Ω > 0) into (5.4), we obtain

A4Ω
4 − iA3Ω

3 − A2Ω
2 + iA1Ω + A0 + (−B2Ω

2 + iB1Ω + B0)e−iΩτ = 0.

Dividing this equation into real and imaginary parts, we have A4Ω
4 − A2Ω

2 + A0 = (B2Ω
2 − B0) cosΩτ − B1Ω sinΩτ,

A3Ω
3 − A1Ω = B1Ω cosΩτ + (B2Ω

2 − B0) sinΩτ.
(5.6)

Taking squares of both sides in the two equations and adding them, we obtain

(A4Ω
4 − A2Ω

2 + A0)2 + (A3Ω
3 − A1Ω)2 = (B2Ω

2 − B0)2 + B2
1Ω

2.

Rearranging this equation, we have

Ω2[C3(Ω2)3 +C2(Ω2)2 +C1Ω
2 +C0] = 0 (5.7)

(note that A2
0 − B2

0 = 0), where

C3 = A2
4, C2 = −2A2A4 + A2

3, C1 = 2A0A4 + A2
2 − 2A1A3 − B2

2, C0 = −2A0A2 + A2
1 + 2B0B2 − B2

1.
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By Lemma 3.1, we can rule out Ω = 0. Hence, we obtain

C3(Ω2)3 +C2(Ω2)2 +C1Ω
2 +C0 = 0. (5.8)

As in Section 4.1, we define H(x) := C3x3 + C2x2 + C1x + C0. If H(x) = 0 has a positive root x∗ > 0,
then Ω =

√
x∗ satisfies (5.7). To find such x∗, we investigate the signs of coefficients in (5.8). We prove

the following lemma:

Lemma 5.3. C2 > 0 and C3 > 0 for all τ ≥ 0.

Proof. It is obvious that C3 = (pQ + 1)2 ≥ 1 > 0 for all τ ≥ 0. On C2, we have

C2 = − 2A2A4 + A2
3

= − 2
{
[p(p − q) + Λ∗q]pQ + Λ∗p − (p − q)2

}
(pQ + 1) + [(2p − q)pQ + p]2

= − 2
{
p2(p − q)Q − (p − q)2

}
(pQ + 1) − 2Λ∗p(qQ + 1)(pQ + 1) + [(2p − q)pQ + p]2. (5.9)

Recalling that p − q = k + µ + Λ∗ > Λ∗ and qQ + 1 = eqτ > 0, we obtain

C2 > − 2
{
p2(p − q)Q − (p − q)2

}
(pQ + 1) − 2(p − q)p(qQ + 1)(pQ + 1) + [(2p − q)pQ + p]2

=
{
−2[p(p − q) + (p − q)q] + (2p − q)2

}
(pQ)2

+
{
−2

[
p(p − q) + (p − q)(p + q) − (p − q)2

]
+ 2p(2p − q)

}
pQ

− 2
[
p(p − q) − (p − q)2

]
+ p2

=
[
2(p − q)2 + q2

]
(pQ)2 + 2

[
(p − q)2 + q2

]
pQ + (p − q)2 + q2 (5.10)

≥(p − q)2 + q2 > 0,

for all τ ≥ 0. This completes the proof. □

By Lemma 5.3, if C0 < 0 for all τ ≥ 0, then a similar argument as in the proof of Lemma 4.2 gives
the existence of the unique Ω > 0 satisfying (5.8). However, unlike the case of Λ∗ = γ in Section 4,
C0 < 0 for all τ ≥ 0 does not hold in general. To clarify this point, we investigate a special case where
the following additional condition is satisfied:

(A6) γ ≫ k + µ.

For example, if the reduction rate k of infectivity is small, then (A6) is not so unrealistic because, in
many human infectious diseases, the infection period is much shorter than the average life span (that is,
γ ≫ µ). Under assumption (A6), p ≈ γ, and coefficients in (5.4) can be rewritten as

A4 = γQ + 1, A3 = (2γ − q)γQ + γ,

A2 = [γ(γ − q) + Λ∗q]γQ + Λ∗γ − (γ − q)2 = (γ − q)
[
(γ + q)γQ + γ − (γ − q)

]
= (γ − q)

[
(γ + q)γQ + q

]
,

A1 = −γ(γ − q)2 + Λ∗(2γ − q)γ(qQ + 1) = (γ − q)
[
−γ(γ − q) + (2γ − q)γ(qQ + 1)

]
= γ(γ − q)2qQ + (γ − q)γ2(qQ + 1),

A0 = (γ − q)2γ2(qQ + 1),
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B2 = γ(γ − q)(1 − Λ∗Q) = (γ − q)
[
γ − (γ − q)γQ

]
,

B1 = γ(γ − q)2 − Λ∗γ(γ − q)[2 + (γ + q)Q] = γ(γ − q)2[−1 + (γ + q)Q],
B0 = −A0

(note that Λ∗ = γ − q > 0). We next prove the following lemma on the sign of C0:

Lemma 5.4. Suppose that (A6) holds. Then, the following properties hold:

(i) If |q| < γ/
√

2, then C0 < 0 for all τ ≥ 0. In particular, C0 is monotone decreasing for τ ≥ 0.

(ii) If q > (
√

3 − 1)γ or q < −(
√

3 + 1)γ, then C0 > 0 for all τ ≥ 0. In particular, C0 is monotone
increasing for τ ≥ 0.

Proof. Under assumption (A6), C0 can be calculated as

C0 = − 2A0(A2 + B2) + A2
1 − B2

1

= − 2(γ − q)3γ2(qQ + 1)(2qγQ + q + γ)

+ γ2(γ − q)2
{
[(γ − q)qQ + γ(qQ + 1)]2 − (γ − q)2[(γ + q)Q − 1]2

}
=γ2(γ − q)2

{
2(q − γ)[2q2γQ2 + (q2 + 3qγ)Q + (q + γ)]

+(6γ2q2 − 4γq3 − γ4)Q2 + (−2γ3 + 6γ2q − 2q3)Q + 2qγ − q2
}

=γ2(γ − q)2
[
(2q2 − γ2)(γQ)2 + 2(2q2 − γ2)γQ + (q + γ)2 − 3γ2

]
. (5.11)

If |q| < γ/
√

2, then 2q2 − γ2 < 0, and thus,

C0 < γ
2(γ − q)2[(q + γ)2 − 3γ2] = γ2(γ − q)2

[
q − (

√
3 − 1)γ

] [
q + (

√
3 + 1)γ

]
< 0,

for all τ ≥ 0 (note that
√

3 + 1 >
√

3 − 1 > 1/
√

2). The second assertion follows from (5.11) and the
fact that ∂Q/∂τ = eqτ > 0. This proves (i).

If q > (
√

3 − 1)γ or q < −(
√

3 + 1)γ, then 2q2 − γ2 > 0 (note that
√

3 − 1 > 1/
√

2), and thus,

C0 > γ
2(γ − q)2[(q + γ)2 − 3γ2] = γ2(γ − q)2

[
q − (

√
3 − 1)γ

] [
q + (

√
3 + 1)γ

]
> 0,

for all τ ≥ 0. The second assertion follows in a similar way as in (i). This proves (ii). □

Figure 5 shows an example of each case in Lemma 5.4. (k, µ, γ) = (0.01,0.01,1) is fixed so that γ≫ k+µ.
In Figure 5(a), q = 0.95γ/

√
2, and hence, |q| < γ/

√
2 holds. In this case, as stated in Lemma 5.4 (i), we

can check that C0 = H(0) is negative and monotone decreasing for each τ ≥ 0. By Lemma 5.3, as in
Lemma 4.2, there always exists a unique x∗ > 0 such that H(x∗) = 0, and hence, Ω =

√
x∗ satisfies (5.8).

In addition, one can see that H′(x∗) > 0.
On the other hand, in Figure 5(b), q = 1.1(

√
3 − 1)γ > (

√
3 − 1)γ. As stated in Lemma 5.4 (ii),

we can check that C0 = H(0) is positive and monotone increasing for each τ ≥ 0. As shown in
this figure, there can exist two positive numbers x∗+ > 0 and x∗− > 0 (x∗+ > x∗−) such that H(x∗±) = 0.
In this case, (5.8) has two positive solutions Ω =

√
x∗±. In addition, one can see that H′(x∗+) > 0 and

H′(x∗−) < 0.
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(a) q = 0.95γ/
√

2. (b) q = 1.1(
√

3 − 1)γ.

Figure 5. H(x) for (k, µ, γ) = (0.01, 0.01, 1). (a) q = 0.95γ/
√

2. H(0) = C0 is monotone
decreasing for τ, and H(x) = 0 has the unique positive root x∗ > 0 for each τ; (b) q =
1.1(
√

3 − 1)γ. H(0) = C0 is monotone increasing for τ, and H(x) = 0 has two positive roots
x∗+ > x∗− > 0 for each τ.

Note that, as in Section 4, (5.8) is a necessary condition for λ = ±iΩ to be a pair of simple pure
imaginary roots of the characteristic Eq (5.4). From (5.6), we have

cosΩτ =
(A4Ω

4 − A2Ω
2 + A0)(B2Ω

2 − B0) + (A3Ω
3 − A1Ω)B1Ω

(B2Ω2 − B0)2 + B2
1Ω

2
=: Φ,

sinΩτ =
−(A4Ω

4 − A2Ω
2 + A0)B1Ω + (A3Ω

3 − A1Ω)(B2Ω
2 − B0)

(B2Ω2 − B0)2 + B2
1Ω

2
=: Ψ,

(5.12)

and define Θ ∈ (0, 2π] by

Θ :=
{

arccosΦ, Ψ > 0,
2π − arccosΦ, Ψ ≤ 0.

It then follows from (5.12) that Ωτ = Θ. For each τ ≥ 0, let F(τ) := Θ(τ)/Ω(τ). Our aim is then to show
the existence of a positive fixed point F(τc) = τc > 0, which implies that λ = ±iΩ(τc) is a pair of simple
pure imaginary roots of the characteristic Eq (5.4). To this end, we now show the following lemma:

Lemma 5.5. Suppose that (A6) holds. For coefficients C0,C1,C2 and C3, it holds that

lim
τ→∞

1
(γQ)2


C0

C1

C2

C3

 =


γ2(γ − q)2(2q2 − γ2)
−2(γ − q)

[
(γ − q)γq + q3

]
2(γ − q)2 + q2

1

 .
Proof. Note that limτ→∞ Q = ∞. It then follows that

lim
τ→∞

C3

(γQ)2 = lim
τ→∞

(γQ + 1)2

(γQ)2 = 1.
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From (5.11), it follows that

lim
τ→∞

C0

(γQ)2 = lim
τ→∞

γ2(γ − q)2
[
(2q2 − γ2) +

2(2q2 − γ2)
γQ

+
(q + γ)2 − 3γ2

(γQ)2

]
= γ2(γ − q)2(2q2 − γ2).

Moreover, replacing p and Λ∗ in (5.9) by γ and γ − q, respectively, we can perform a similar calculation
as in (5.10) and obtain

lim
τ→∞

C2

(γQ)2 = lim
τ→∞

[
2(γ − q)2 + q2 +

2(γ − q)2 + 2q2

γQ
+

(γ − q)2 + q2

(γQ)2

]
= 2(γ − q)2 + q2.

For C1, we have

C1 =2A0A4 + A2
2 − 2A1A3 − B2

2

=2(γ − q)2γ2(qQ + 1)(γQ + 1) + (γ − q)2[(γ + q)γQ + q]2

− 2γ(γ − q)[(γ − q)qQ + γ(qQ + 1)][(2γ − q)γQ + γ] − (γ − q)2[γ − (γ − q)γQ]2

=2(γ − q)γ2(qQ + 1)[(γ − q)(γQ + 1) − (2γ − q)γQ − γ]

+ (γ − q)2
[
4γq(γQ)2 + 2(γ2 + q2)γQ + q2 − γ2

]
− 2(γ − q)2qγQ[(2γ − q)γQ + γ]

= − 2(γ − q)γ2(qQ + 1)(γ2Q + q)

+ (γ − q)2
[
4γq(γQ)2 + 2(γ2 + q2)γQ + q2 − γ2

]
− 2(γ − q)2qγQ[(2γ − q)γQ + γ]

=2(γ − q)
[
−γ2q + 2(γ − q)γq − (γ − q)q(2γ − q)

]
(γQ)2

+ 2(γ − q)[−(q2 + γ2)γ + (γ − q)(γ2 + q2) − (γ − q)qγ]γQ

+ (γ − q)[−2γ2q + (γ − q)(q2 − γ2)]

= − 2(γ − q)
[
(γ − q)γq + q3

]
(γQ)2

− 2(γ − q)[(γ − q)γq + (γ2 + q2)q]γQ − (γ − q)[(γ − q)γq + γ3 + q3].

We then have limτ→∞C1/(γQ)2 = −2(γ − q)[(γ − q)γq + q3]. This completes the proof. □

Using Lemmas 5.3–5.5, we prove the following proposition on the existence of a pair of simple pure
imaginary roots for |q| < γ/

√
2:

Proposition 5.2. Suppose that (A6) holds, and |q| < γ/
√

2. Then, there exists a τc > 0 such that
λ = ±iΩ(τc) is a pair of simple pure imaginary roots of the characteristic Eq (5.4).

Proof. By Lemmas 5.3 and 5.4, for each τ ≥ 0, the positive Ω(τ) > 0 uniquely exists. Hence, we have
F(0) = Θ(0)/Ω(0) > 0. As in the proof of Proposition 4.1, by the continuity, it suffices to show that
limτ→∞ F(τ) < ∞.

Let {τn}
∞
n=1 be an increasing sequence in (0,∞), and let Ωn := Ω(τn) and Qn := Q(·, τn). By dividing

both sides of (5.8) by (γQn)2, we have
C3

(γQn)2 (Ω2
n)3 +

C2

(γQn)2 (Ω2
n)2 +

C1

(γQn)2Ω
2
n +

C0

(γQn)2 = 0.

By Lemma 5.5, we see that {Ωn}
∞
n=1 converges to Ω∞, which is the unique positive root of the

following equation:

(Ω2
∞)3 + [2(γ − q)2 + q2](Ω2

∞)2 − 2(γ − q)[(γ − q)γq + q3]Ω2
∞ + γ

2(γ − q)2(2q2 − γ2) = 0.

Thus, we have limτ→∞ F(τ) ≤ 2π/Ω∞ < ∞. This completes the proof. □
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For q > (
√

3 − 1)γ or q < −(
√

3 + 1)γ, by Lemma 5.4 (ii), C0 > 0 for all τ ≥ 0, and hence, H(x) = 0
may have multiple positive roots x∗± > 0 such that H′(x∗+) > 0 and H′(x∗−) < 0 (see Figure 5(b)). In
this case, it seems difficult to show analytically the existence of a pair of simple pure imaginary roots.
Instead, we will investigate it numerically in Section 5.3.

5.2. Transversality condition

As in Section 4.2, we investigate the transversality condition of a Hopf bifurcation. Let G(τ) :=
τ − F(τ).

Lemma 5.6. Suppose that there exists a τc > 0 such that G(τc) = 0. Then, the characteristic Eq (5.4)
has a pair of simple pure imaginary roots λ = ±iΩ(τc) = ±iΩc, and

sign
{

dReλ
dτ

∣∣∣∣∣
λ=iΩc

}
= sign

{
H′(Ω2

c)
}

sign {G′(τc)} . (5.13)

Proof. As in the proof of Proposition 4.2, we have

sign
{

dReλ
dτ

∣∣∣∣∣
λ=iΩc

}
= sign

{
∂Y(Ωc)
∂ω

}
sign {G′(τc)} , (5.14)

where Y(Ω) is defined by the left-hand side of (5.7):

Y(Ω) := Ω2[C3(Ω2)3 +C2(Ω2)2 +C1Ω
2 +C0] = Ω2H(Ω2).

Now, we have
∂Y(Ωc)
∂ω

= 2Ω2
cH(Ω2

c) + Ω2
cH′(Ω2

c)2Ωc = 2Ω3
cH′(Ω2

c)

(note that H(Ω2
c) = 0). As Ω3

c > 0, we then have

sign
{
∂Y(Ωc)
∂ω

}
= sign

{
H′(Ω2

c)
}
,

and hence, (5.13) follows from (5.14). This completes the proof. □

In the case of Lemma 5.4 (i), H(x) = 0 has only one positive root x∗ > 0 such that H′(x∗) > 0 (see
Figure 5(a)). Therefore, by Lemma 5.6, we see that if λ = ±iΩc = ±i

√
x∗ is a pair of simple pure imaginary

roots of (5.4), then it crosses the imaginary axis from left to right. This together with Lemma 5.4 (i) and
Proposition 5.2 gives the following main theorem:

Theorem 5.1. Suppose that (A6) holds, q , 0, and |q| < γ/
√

2. If β1 depends on τ as for (5.3), then
R0 > 1 and Λ∗ = γ − q > 0 hold for all τ ≥ 0, and there exists a τc > 0 such that a pair of simple pure
imaginary roots ±iΩ(τc) (= ±iΩc) satisfies the characteristic Eq (5.4) and crosses the imaginary axis
from left to right as τ increases over τc.

Under the condition in Theorem 5.1, there always exists a critical value τc > 0 such that a Hopf bifur-
cation occurs, and a periodic solution arises at τ = τc. Note that, under assumption (A6), “sufficiently
small |q|” in Corollary 5.1 is improved to the inequality |q| < γ/

√
2 in Theorem 5.1. For the case of

Lemma 5.4 (ii), we have the following remark:
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Remark 5.1. In the case of Lemma 5.4 (ii), H(x) = 0 may have two positive roots x∗+ > x∗− > 0 such
that H′(x∗+) > 0 > H′(x∗−) (see Figure 5(b)). Therefore, by Lemma 5.6, we see that if λ = ±iΩc = ±i

√
x∗+

(resp. ±i
√

x∗−) is a pair of simple pure imaginary roots of (5.4), then it crosses the imaginary axis
from left to right (resp. from right to left). In other words, λ = ±i

√
x∗+ (resp. ±i

√
x∗−) can lead to the

destabilization (resp. stabilization) of the endemic equilibrium E∗.

In other words, in the case of Lemma 5.4 (ii), the stability switch of the endemic equilibrium E∗ can
occur more than once. We numerically confirm this point in the next subsection.

5.3. Numerical experiments

Fix the following parameters:

k = µ = 0.05, γ = 10, p = 10.1 (= k + µ + γ) .

Note that they are chosen for a technical reason to confirm the validity of Theorem 5.1 and Remark 5.1,
and there is no biological justification. We can regard γ ≫ k + µ, and thus, assumption (A6) holds. For
each q ∈ (−∞, 0) ∪ (0, γ) and τ ≥ 0, set β1 as (5.3). Then, R0 > 1, and Λ∗ = γ − q > 0 holds. To
investigate the stability of the endemic equilibrium E∗, set the initial condition as

S (0, a) = S ∗(a) = e−Λ
∗a, I(0, a) = 0.9I∗(a) = 0.9

Λ∗

q
(e−Λ

∗a − e−γa), a ≥ 0.

First, set q = 0.95γ/
√

2 ≈ 6.7175. In this case, by Theorem 5.1, there exists a τc > 0 such that a
Hopf bifurcation occurs. In fact, we can calculate τc ≈ 0.446 (see Figure 6(a)).

(a) q = 0.95γ/
√

2. (b) q = 1.36(
√

3 − 1)γ.

Figure 6. Functions F(τ), G(τ), F±(τ) and G±(τ) for k = µ = 0.05 and γ = 10. (a)
q = 0.95γ/

√
2 and τc ≈ 0.446; (b) q = 1.36(

√
3 − 1)γ and (τ+, τ−) ≈ (2.55, 8.7).

Figure 7(a) and (b) show that, for τ = 0.4 < τc, I(t, a) and Λ(t) converge to the steady states I∗(a)
and Λ∗ = γ − q ≈ 3.2825, respectively.

Mathematical Biosciences and Engineering Volume 20, Issue 7, 13036–13060.



13057

On the other hand, Figure 7(c) and (d) show that, for τ = 0.5 > τc, I(t, a) and Λ(t) converge to
positive periodic solutions. This indicates that a Hopf bifurcation occurs at τ = τc.

(a) I(t, a) for τ = 0.4 < τc. (b) Λ(t) for τ = 0.4 < τc.

(c) I(t, a) for τ = 0.5 > τc. (d) Λ(t) for τ = 0.5 > τc.

Figure 7. Infective population I(t, a) and force of infection Λ(t) for q = 0.95γ/
√

2. A
destabilization (Hopf bifurcation) of the endemic equilibrium occurs at τ = τc ≈ 0.446.

Next, set q = 1.36(
√

3 − 1)γ ≈ 9.9559. In this case, by Lemma 5.4 (ii), C0 > 0 for all τ ≥ 0, and
hence, H(x) = 0 may have two positive roots x∗+ > x∗− > 0 such that H′(x∗+) > 0 > H′(x∗−). As stated
in Remark 5.1, λ = ±i

√
x∗+ (resp. ±i

√
x∗−) can lead to the destabilization (resp. stabilization) of the

endemic equilibrium E∗. To clarify this point, let F+(τ) and G+(τ) (resp. F−(τ) and G−(τ)) be F(τ)
and G(τ) corresponding to Ω(τ) =

√
x∗+(τ) (resp.

√
x∗−(τ)), respectively. If there exists a τ+ > 0 (resp.

τ− > 0) such that G+(τ+) = 0 (resp. G−(τ−) = 0), then the destabilization (resp. stabilization) of the
endemic equilibrium E∗ can occur at τ = τ+ (resp. τ−). In fact, we can compute F±(τ) and G±(τ) as
shown in Figure 6(b) and obtain τ+ ≈ 2.55 and τ− ≈ 8.7. That is, we can predict that the endemic
equilibrium E∗ is stable for τ ∈ [0, τ+), is unstable for τ ∈ (τ+, τ−) and becomes stable again when τ
increases over τ−. Indeed, in Figure 8(a), the force of infection Λ(t) converges to the positive steady
state Λ∗ = γ − q ≈ 0.0441 for τ = 2 < τ+, whereas in Figure 8(b), τ = 3 > τ+, and Λ(t) converges to a
periodic solution.

In Figure 8(c), for τ = 8.2 < τ−, Λ(t) converges to a periodic solution, whereas in Figure 8(d), for
τ = 9.2 > τ−, Λ(t) converges to the positive steady state. That is, the stability switch of the endemic
equilibrium E∗ occurs twice at τ = τ+ and τ−.
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(a) τ = 2 < τ+. (b) τ = 3 > τ+.

(c) τ = 8.2 < τ−. (d) τ = 9.2 > τ−.

Figure 8. Force of infection Λ(t) for q = 1.36(
√

3 − 1)γ ≈ 9.9559. A destabilization (Hopf
bifurcation) of the endemic equilibrium occurs at τ = τ+ ≈ 2.55, and its stabilization occurs at
τ = τ− ≈ 8.7.

6. Discussion

In this paper, we have studied the local stability of the endemic equilibrium in a chronological
age-structured SIR epidemic model with age-dependent infectivity. We assumed that the transmission
rate is a shifted exponential function and investigated the possibility of a Hopf bifurcation regarding
the infimum of the support of the transmission rate as a bifurcation parameter. We have shown that,
if the distance between the force of infection at the endemic equilibrium and the removal rate is zero
or sufficiently small (|q| ≪ 1), then there always exists a critical value of the bifurcation parameter at
which a Hopf bifurcation occurs. Furthermore, in a special case where the removal rate is sufficiently
larger than the sum of the mortality rate and the reduction rate of infectivity, we have obtained a specific
inequality (|q| < γ/

√
2) for which a similar critical value for a Hopf bifurcation always exists. We

have performed numerical simulations and observed bifurcations of a stable periodic solution from
the endemic equilibrium. On the other hand, for the case where q > (

√
3 − 1)γ, we have numerically

confirmed that the stability switch of the endemic equilibrium can occur multiple times.
Our results have given a partial answer to a question of the possibility of a Hopf bifurcation in a

chronological age-structured SIR epidemic model with age-dependent infectivity, which was raised in [15].
As our results are restricted to a special case where the transmission rate is a shifted exponential function,
the study of other cases would be interesting future work. In particular, although we disregarded the
age-dependent susceptibility for the sake of simplicity in the analysis, it would make the model more
realistic because the assumption of the shifted exponential function could be suitable for some sexually
transmitted diseases for which people under a certain age do not have the infectivity and susceptibility.
It is an open problem whether a Hopf bifurcation still occurs if we introduce the age-dependent
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susceptibility to our model. Although it might be easily checked by numerical simulations, the analytical
proof may be a more challenging task because it may be difficult to obtain a concrete characteristic
equation like (4.4) when the force of infection depends on the age of the susceptible population.

Although our work in this paper was motivated by the mathematical analysis, periodic solutions in
autonomous systems like our model could help in understanding the mechanism of the non-seasonal
recurrent outbreaks which have been observed in many diseases such as measles. The application of our
results to epidemiological considerations would also be important future work.
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