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Abstract: Nowadays, with the rapid development of rail transportation systems, passenger demand 
and the possibility of the risks occurring in this industry have increased. These conditions cause 
uncertainty in passenger demand and the development of adverse impacts as a result of risks, which 
put the assurance of precise planning in jeopardy. To deal with uncertainty and lessen negative impacts, 
robust optimization of the train scheduling problem in the presence of risks is crucial. A two-stage 
mixed integer programming model is suggested in this study. In the first stage, the objective of the 
nominal train scheduling problem is to minimize the total travel time function and optimally determine 
the decision variables of the train timetables and the number of train stops. A robust optimization model 
is developed in the second stage with the aim of minimizing unsatisfied demand and reducing 
passenger dissatisfaction. Additionally, programming is carried out and the set of optimal risk response 
actions is identified in the proposed approach for the presence of primary and secondary risks in the 
train scheduling problem. A real-world example is provided to demonstrate the model’s effectiveness 
and to compare the developed models. The results demonstrate that secondary risk plays a significant 
role in the process of optimal response actions selection. Furthermore, in the face of uncertainty, robust 
solutions can significantly and effectively minimize unsatisfied demand by a slightly rise in the travel 
time and the number of stops obtained from the nominal problem. 
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1. Introduction  

The railway transportation system is a highly complicated system that may be exposed to 
catastrophic risks. For instance, the most significant recent train accidents, which resulted in a total 
of 1142 fatalities, occurred in Great Britain in 1999, Australia in 2003, the United States in 2008 and 
Spain in 2013 [1]. Despite being relatively infrequent compared to other catastrophes in the transport 
industry, these catastrophic incidents cause enormous costs, injuries and delays. Traditional methods, 
however, are no longer able to handle the growing complexity of such contemporary social-technical 
systems. Therefore, instead of waiting for catastrophic events to occur, a control and risk reduction 
approach is necessary [2]. Due to its numerous commonalities in safety requirements, risk management 
may be very effective in the rail transport industry. Delays, incidents and other risks with diverse 
outcomes are frequent in the rail transport industry almost everywhere in the world. It is crucial to 
analyze contributory components and identify risk situations in order to avoid accidents. Numerous 
factors that put trains in danger and create delays can be avoided, or they can do less harm overall. 
Because the major objectives of the risk management approach are to decrease the chance of fatalities, 
reduce costs and improve passenger satisfaction, it is vital to pay attention to this approach [3]. To 
minimize risk to an acceptable level, risk management is an organized and systematic approach to risk 
identification and estimation. Additionally, it is highly useful in selecting the appropriate response 
actions to manage and control the identified risk variables and achieve the desired outcomes [4]. The 
majority of risk response action selection methods concentrate on reducing primary risks. However, it 
should be emphasized that secondary risks may also be produced through the use of risk response 
strategies, which might have destructive effects comparable to primary risks. Determining which 
primary risk response actions should not be performed to avoid secondary risks and what the secondary 
risk response actions should be in the event of secondary risks are therefore crucial [5]. 

On the other hand, the scheduling problem, which is an optimization problem in the rail transport 
industry, enables the selection of the best schedule for the arrival and departure of trains at the stations 
so that passengers and companies gain maximum productivity at the lowest cost possible. The 
development of train schedules is regarded as one of the most crucial and challenging tasks; this 
difficulty is brought on by the large and expanding range of real problems as well as the presence of 
various operational constraints. In addition to the challenges associated with developing rail 
transportation systems, customers now expect a higher quality of service. Therefore, the significance 
of the train scheduling issue has doubled as a result of the rise in passenger demand and the expansion 
of railway lines [6]. Optimization issues in the real world are frequently uncertain. There is seldom an 
area that is immune to measurement errors, implementation faults, system disruption flaws, or 
inadequate data at the moment, all of which can render definitive answers scientifically useless. 
Numerous strategies have been developed to cope with such uncertainty as a result. Recently, robust 
optimization has drawn a lot of interest since its major objective is to select solutions that can deal 
with uncertain data [7]. 

The literature to date reveals that researchers have not focused on the study of train scheduling 
robust optimization with consideration of response actions to primary and secondary risks. In order to 
reduce train travel time and choose the best course of action in the event of both primary and secondary 
risks, this article will construct a train scheduling model in the presence of risks. The rest of the paper 
is organized as follows. In Section 2, a review of the literature on risk in the field of the rail 
transportation industry, train scheduling and robust optimization is reviewed. Section 3 describes the 
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problem. Furthermore, in this section, first, the nominal train scheduling problem in the presence 
of primary and secondary risks is formulated and then, a Robust optimization model is developed. 
Section 4 provides a real case study and clarifies the application of the proposed model. Finally, the 
conclusion is presented in Section 5. 

2. Review of the literature  

2.1. Risk and rail transportation industry 

An increase in the number of fatalities and accidents in the transportation system has recently 
coincided with an expansion in supply in the rail transport industry, both for freight and passenger 
transport. Because of the variety of risks in the system, achieving a safety management system 
necessitates a systematic review of risks and planning to minimize their effects. All of these demands 
are satisfied by the risk management approach, which is the vanguard and essential component of 
safety management.  Risk management is a dynamic system that addresses several challenges, 
including case identification, value estimation, planning, evaluating risk mitigation initiatives and risk 
control principles. Risk is one of the major factors causing time delays and monetary losses. It is 
recognized as the primary risk in the literature which must be identified for proper analysis [5].  

By identifying the primary risk, it is possible to determine its likelihood of occurrence and the 
severity of it, allowing for the implementation of appropriate response actions and the effective control 
of the primary risk.  The implementation of response actions to the primary risk generates another 
category of risk known as secondary risk, and to control this type of risk, appropriate response actions 
must be developed. The impact of the secondary risk should not be outweighed by the primary risks. 
Otherwise, the action to respond to the primary risk that caused the secondary risk should not be taken, 
or a different primary risk response action should be chosen. 

The rail transport industry consists of several components, each of which can have an impact on 
other components and individuals. There are risks associated with each of these components, some of 
which are independent and others dependent. The management of rail transport must be aware of and 
control the relevant risk factors. It can be argued that this industry needs to implement a risk 
management approach due to its high sensitivities and irreparable costs because there is a lack of a 
comprehensive model for identifying risks and estimating the amount of risk in the transport industry, 
which is one of the most accident-prone industries, particularly in the rail transportation industry, 
which has so far had the least systemic view of safety [3]. 

Nowadays, one of the primary goals of international transportation companies is risk management 
knowledge and its application in the transportation and safety industry. In most advanced countries 
around the world, risk management is utilized as a dynamic and systematic process to evaluate the 
degree of safety in different sub-sectors and areas and check compliance with a standard framework 
to assure safety and reduce risks in the rail transport industry. Bubbico et al. [8] introduced an approach 
based on geographic information systems for the road and rail transportation of hazardous materials 
that enables quick risk assessment for multiple materials, trips and travel plans. Saat and Barkan [9] 
developed an optimization model based on the tank car safety design model that allows for the 
evaluation of all safety design improvement choices. Furthermore, its output reduces the risks of 
transporting hazardous materials via rail. Tian and Wang [10] investigated the preventive maintenance 
schedule of subway train components that optimized the perspective of failure risk using a game model. 
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2.2. Train scheduling and robust optimization 

One of the most significant and affordable options for transporting individuals and goods is the 
usage of railways. Due to the significant expenses involved in extending the lines, existing 
infrastructure in the rail transport industry must be utilized as optimally as possible. One of the most 
crucial things that aid in maximizing the utilization of current infrastructure is optimizing the 
scheduling problem on railway lines. Scheduling specifies when each train arrives at each station when 
it departs, and at which stations it stops. The train scheduling problem has therefore captured the 
interest of scholars due to its great importance in exploiting railway systems. There are two 
approaches—nominal and robust approaches—are typically used in the literature review to address 
this particular set of problems. The robust optimization approach seeks to find solutions that are nearly 
insensitive to uncertainties, whereas the nominal approach helps to optimize objectives like decreasing 
travel time and maximizing passenger satisfaction. In other words, robust optimization allows for more 
precise planning. Additionally, numerous additional costs, time deviations and inconsistencies will all 
be considerably minimized. 

Numerous studies in the area of nominal scheduling problems have been conducted recently. 
Burdett and Kozan [11] addressed a train scheduling problem by utilizing composite buffers to keep 
line occupancy levels at a high standard when trains are allowed to pass through intersections without 
making extra routing decisions. To develop a feasible train timetable with the flexibility to reschedule 
the train, Yalçnkaya and Bayhan [12] developed a simulation-based train scheduling scheme. To boost 
efficiency and reduce the net energy consumption of the railway line, Li and Lo [13] suggested a 
dynamic train scheduling and control system based on the Kuhn-Tucker approach. An integrated model 
that concurrently optimizes train scheduling and circulation plan by demand analysis was reported by 
Wang et al. [14] and simulation studies demonstrated that the optimized results outperform solutions 
designed by planners. To satisfy passenger demand, Mo et al. [15] suggested a flexible train scheduling 
model using a modified Tabu search solution algorithm and their objectives are to reduce energy costs 
and passenger waiting times. Rokhforoz and Fink [16] put forth train scheduling and predictive 
maintenance as a planning problem. Dual decomposition and mechanism design were used to build a 
hierarchical distributed learning algorithm to address this problem, and the effectiveness of the model 
in analyzing a rail network was confirmed. Considering train timetabling and coupling, Feng et al. [6] 
introduced an integrated optimization approach to operationally manage daily fluctuating demand. 

Furthermore, the robust optimization approach to train scheduling has garnered a lot of interest 
in recent years. One of the latest methods in mathematical programming, robust optimization aims to 
select solutions with the capacity to handle uncertain data. This method assumes that the uncertain data 
are limited and unknown, and that the uncertainty space is often thought of as convex. Additionally, 
robust optimization differs from conventional programming in that it does not require knowledge of 
the probability distribution of uncertain data [17]. The operational level deviations in train scheduling 
lead to an infeasible nominal timetable. However, compared to the basic plan, using robust 
optimization can reduce the severity of deviations. To boost robustness, Kroon et al. [18] developed a 
stochastic optimization model that deals with the allocation of buffer time in the train timetable. For 
high-speed trains, Li et al. [19] developed a robust sampled-data cruise control scheduling that 
analyzes the stability of time-varying delay systems and also ensures the trains’ optimal speed and 
safety. Jamili and Pourseyed-Aghaee [20] introduced a non-linear robust model to determine the 
optimal stop pattern in urban rail transit systems to manage uncertain passenger arrival and departure 
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demand. Jovanović et al. [21] allocated the optimal buffer times based on the sensitivity of their delay 
and the impact of the delay on all other events to improve the robustness of the train schedule. This 
strategy was developed based on the well-known knapsack problem. 

A multi-objective model for Robust Skip-Stop Scheduling with consideration of Earliness and 
Tardiness Penalties was put forth by Rajabighamchi et al. [22] and it could effectively reduce 
passengers’ overall travel time while stabilizing train timetables. To reduce the number of people 
waiting in subway systems, Zhou et al. [23] expanded a robust scheduling optimization approach based 
on two heuristic algorithms. Cacchiani et al. [24] developed robust optimization models that 
simultaneously minimize the uncertainty in demand and limit the worsening of the objective function 
values of the nominal problem. 

Finally, to clarify the implementation of the study of the robust optimization of train scheduling 
with consideration of response actions to primary and secondary risks, Figure 1 provides the 
development roadmap to illustrate the summarized steps of the approach. 

 

Figure 1. Development roadmap of the robust optimization of train scheduling with 
consideration of response actions to risks. 
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3. Problem description and mathematical models 

3.1. Problem description 

A set of stations S along the railway lines and a set of trains K moving in the same direction are 
thought of as a railway network. According to each train 𝑘 ∈ 𝐾, the set of stations is divided into 
several subset of stations Sk ሺ𝑆௞ ⊆ 𝑆ሻ. For each train 𝑘 ∈ 𝐾, we define a subset Sk of stations that the 
train visits, which include its fixed origin station Ok and its fixed destination station Dk. Passengers 
with demands Qij intends to travel between stations i and j ሺ𝑖, 𝑗 ∈ 𝑆, 𝑖 ് 𝑗ሻ. The number of train stops, 
as well as the train departure and arrival times at each visited station, must be properly determined to 
satisfy the demand. Therefore, a decision must be made as to whether or not the train would stop at 
station s. When the train stops in a small subset of stations, the quality of service decreases while 
passengers’ satisfaction with the likelihood of reaching the destination faster increases. To improve 
service quality and satisfy passengers with travel time, the maximum number of stops Nk that a train 
can have throughout its journey is determined in advance for each train k, and the minimum number 
of trains that should stop at the station numi is established in advance for each station i. Another way 
to increase quality is to have the same number of seats as passengers. As a result, the capacity of the 
train Ck should be considered at the time of satisfying passenger demand. 

The train k departs from its origin station Ok at the time Tk, and to correct the train departure time, 
a maximum allowable delay time 𝛥𝑇௞is determined. After train k departs, the travel time 𝑡௞௜

௧௥ from 
station i to station i + 1 is determined. If train k arrives at station i, it stays there for time 𝑡௞௜

ௗ௪௘௟௟. Only 
at stops may trains be overtaken. In order to avoid trains from colliding at a station, the minimum 
departure headway time hdep and the minimum arrival headway time harr  must also be defined. 

There are a number of risks R in the railway network. Where a subset of risks Ri ሺ𝑅௜ ⊆ 𝑅ሻ is 
allocated based on the main risk set for each station i. Each primary risk r ሺ𝑟 ∈ 𝑅௜ሻ that occurs at 
station i imposes expected time delays 𝐷௜௥

௧௜௠௘ and expected monetary loss𝐿௜௥
௖௢ to the respective station, 

the values of which are determined by experts based on the significance of station i and the effect of 
risk r. Risk response actions that are sustainable should be implemented to mitigate the negative effects 
of risks. As a result, a set of risk A response measures is identified. Based on the set of original risk 
response actions, a subset of primary risk response actions Ai ሺ𝐴௜ ⊆ 𝐴ሻ is allocated to each station i. 
The implementation of response action a to reduce the effect of the primary risk r at station i incurs a 
cost 𝑐௜௥௔

௔௖௧. The estimated number of days and the estimated cost that are reduced after acting and are 
represented by 𝑒௜௥௔

௧௜௠௘ and 𝑒௜௥௔
௖௢ , respectively. 

By selecting primary risk response actions, a subset of potential secondary risks stemming from 
taking the actions is created and identified. It is assumed that the station i would experience the 
expected time delays 𝐷௜௥௔

௦௧௜௠௘ and monetary losses L as a result of the secondary risk r caused by the 
implementation of action a at station. In addition, actions Ai ሺ𝐴௜ ⊆ 𝐴ሻ have been developed in advance 
to respond to secondary risks. Analogous to the primary action, estimated number of days 𝑒௜௥௔

௦௧௜௠௘ and 
estimated cost 𝑒௜௥௔

௦௖௢ can be diminished by implementing the secondary action at the cost of 𝑐௜௥௔
௦௔௖௧. In 

addition, for each station i established values of the maximum permitted delays 𝑡௜
∗ and cost Bi  have 

been taken into consideration in order to manage the time delays and the risk-related costs as efficiently 
as possible. 

According to this statement of the problem, the nominal problem’s objective is to satisfy 
passenger demand while reducing the overall travel time of the TT train when both primary and 
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secondary risks are present. This is considered to one of the most crucial factors for passengers and 
one of the most important objectives in the matter of train schedules. To satisfy passenger demand, 
timetables and the number of train stops, as well as the choice of risk response strategies, should be 
made in a way that ensures the minimum travel time. However, if passenger demand exceeds the level 
of service offered, it may result in poor service or an infeasible solution to the nominal problem. 
Therefore, in addition to obtaining the minimum travel time, handling the additional unexpected 
passenger demand should be taken into consideration when selecting the timetables and the number of 
train stops. 

The desired protection level may be considered for the number of extra passengers who want to 
travel from station i to station j by expanding the nominal problem into a robust problem. The slack 
variable is specified as an integer that reflects the number of people that cannot travel between station 
i and station j in order to keep the problem in the feasible condition when the protection level is not 
reached. Therefore, the objective of the robust problem is to minimize the number of these passengers. 
Adding more passengers will result in longer travel times and more stops. As a result, we have a robust 
solution with low efficiency. To resolve this issue, the nominal problem objective needs to be put in 
the robust problem to provide a robust and efficient solution. To this end, constraints on the total travel 
time of the train in the nominal problem and the total number of stops in the nominal problem are 
applied and added to the robust optimization model to avoid their values worsening. 

3.2. Mathematical models 

First, in Subsection 3.2.1, the nominal train scheduling problem is formulated in the presence of 
primary and secondary risks, and then in Subsection 3.2.2, the robust optimization model is developed. 

3.2.1. Nominal train scheduling problem 

The model of Qi et al. [25] is used in this study to develop and formulate the nominal train 
scheduling problem and to propose the problem of train schedule in the presence of primary and 
secondary risks. The decision variables in this problem fall into five categories: the times of departure 
from and arrival at the station, the order of the trains to prevent accidents, the number of stations at 
which the train stops, the number of passengers in each train and the number of actions taken in 
response to primary and secondary risks. To describe the nominal scheduling problem, it is assumed 

that the variables are non-negative integers 𝑡௞௜
ௗ௘௣  ሺ𝑘 ∈ 𝐾, 𝑖 ∈ 𝑆௞\ሼ𝐷௞ሽሻ  and 𝑡௞௜

௔௥௥  ሺ𝑘 ∈ 𝐾, 𝑖 ∈

𝑆௞\ሼ𝑂௞ሽሻ, which represent the departure time of train k from station i and the arrival time of train k at 
station i respectively. The number of passengers who want to travel by train k from station i to station 

j is represented by a non-negative integer variable 𝑞௜௝
௞ . The binary variable ykli reflects the order of 

trains between consecutive stations and also has a value of 1 if train k departs from station i earlier 
than train l or reaches station i + 1 earlier than train l, otherwise, it has a value of 0 ሺ𝑘, 𝑙 ∈ 𝐾, 𝑘 ൏ 𝑙, 𝑖 ∈
𝑆௞\ሼ𝐷௞ሽ ∩ 𝑆௟\ሼ𝐷௟ሽሻ. The binary variable xki also indicates the number of train stops, with a value of 1 
if train k stops at station i and a value of 0 otherwise. Finally, zira  and z’ira  are binary variables that 
denote the number of primary and secondary risk response actions, respectively. If the primary risk 
response action a is chosen to reduce risk r at station i the value of zira  is 1, otherwise, it is 0. Also, if 
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the secondary risk response action a is chosen to reduce risk r at station i the value of z’ira  is 1, 
otherwise, it is 0. The following is the mathematical model for the nominal train scheduling problem: 

 

𝑀𝐼𝑖𝑛𝑇் ൌ ∑ ሺ𝑡௞஽ೖ
௔௥௥ െ 𝑡௞ைೖ

ௗ௘௣ሻ௞∈௄   (1) 

Subject to:  

𝑥௞ைೖ
ൌ 𝑥௞஽ೖ

ൌ 1, 𝑘 ∈ 𝐾  (2) 

∑ 𝑞௜௝
௞ ൌ 𝑄௜௝, 𝑖, 𝑗 ∈ 𝑆, 𝑖 ൏ 𝑗௞∈௄:௜,௝∈ௌೖ

  
(3) 

 

෍ 𝑞௜௝
௞

௝∈ௌೖ,௜ழ௝

൑ ෍ 𝑄௜௝

௝∈ௌೖ,௜ழ௝

𝑥௞௜ ; 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑆௞\ሼ𝐷௞ሽ (4) 

 

෍ 𝑞௝௜
௞

௝∈ௌೖ,௜வ௝

൑ ෍ 𝑄௝௜

௝∈ௌೖ,௜வ௝

𝑥௞௜ ; 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑆௞\ሼ𝐷௞ሽ (5) 

∑ ∑ 𝑞௜ ′௝
௞ ൑ 𝐶௞, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑆௞\ሼ𝐷௞ሽ௝∈ௌೖ,௜ழ௝௜ ′∈ௌೖ,௜ ′ஸ௜   (6) 

∑ 𝑥௞௜௜∈ௌೖ
൑ 𝑁௞, 𝑘 ∈ 𝐾  (7) 

∑ 𝑥௞௜௞∈௞:௜∈ௌೖ
൒ 𝑛𝑢𝑚௜, 𝑖 ∈ 𝑆  (8) 

∑ 𝐿௜௥
௖௢

௥∈ோ೔ െ ∑ ∑ 𝑒௜௥௔
௖௢ 𝑧௜௥௔௔∈஺೔ ൅௥∈ோ೔ ∑ ∑ 𝑐௜௥௔

௔௖௧𝑧௜௥௔௔∈஺೔௥∈ோ೔ ൅ ∑ ∑ 𝐿௜௥௔
௦௖௢𝑧௜௥௔௔∈஺೔௥∈ோ೔  

െ ∑ ∑ 𝑒௜௥௔
௦௖௢𝑧௜௥௔

′
௔∈஺೔௥∈ோ೔ ൅ ∑ ∑ 𝑐௜௥௔

௦௔௖௧𝑧௜௥௔
′

௔∈஺೔௥∈ோ೔ ൑ 𝐵௜, 𝑖 ∈ 𝑆 
(9) 

∑ 𝐿௜௥
௖௢

௟∈ோ೔ െ ∑ ∑ 𝑒௜௥௔
௖௢ 𝑧௜௥௔௔∈஺೔௥∈ோ೔ ൅ ∑ ∑ 𝑐௜௥௔

௔௖௧𝑧௜௥௔௔∈஺೔௥∈ோ೔ ൒ ∑ ∑ 𝐿௜௥௔
௦௖௢𝑧௜௥௔௔∈஺೔௥∈ோ೔  

∑ ∑ 𝑒௜௥௔
௦௖௢𝑧௜௥௔

′ ൅ ∑ ∑ 𝑐௜௥௔
௦௔௖௧𝑧௜௥௔

′
௔∈஺೔௥∈ோ೔ , 𝑖 ∈ 𝑆௔∈஺೔௥∈ோ೔  

(10)

∑ 𝐷௜௥
௧௜௠௘

௥∈ோ೔ െ ∑ ∑ 𝑒௜௥௔
௧௜௠௘𝑧௜௥௔௔∈஺೔௥∈ோ೔ ൒

∑ ∑ 𝐷௜௥௔
௦௧௜௠௘𝑧௜௥௔௔∈஺೔ െ௥∈ோ೔ ∑ ∑ 𝑒௜௥௔

௦௧௜௠௘𝑧௜௥௔
′ , 𝑖 ∈ 𝑆௔∈஺೔௥∈ோ೔   

(11)
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∑ 𝐷௜௥
௧௜௠௘

௥∈ோ೔ െ ∑ ∑ 𝑒௜௥௔
௧௜௠௘𝑧௜௥௔ ൅௔∈஺೔௥∈ோ೔ ∑ ∑ 𝐷௜௥௔

௦௧௜௠௘𝑧௜௥௔௔∈஺೔ െ௥∈ோ೔ ∑ ∑ 𝑒௜௥௔
௦௧௜௠௘𝑧௜௥௔

′
௔∈஺೔௥∈ோ೔ ൌ

𝑡௜
௥௜௦௞, 𝑖 ∈ 𝑆  

(12)

0 ൑ 𝑡௜
௥௜௦௞ ൑ 𝑡௜

∗, 𝑖 ∈ 𝑆  (13)

𝑧௜௥௔ ൒ 𝑧௜௥௔
′ , ∀𝑖 ∈ 𝑆, ∀𝑟 ∈ 𝑅௜, ∀𝑎 ∈ 𝐴௜  (14)

𝑡௞௜ାଵ
௔௥௥ െ 𝑡௞௜

ௗ௘௣ ൌ 𝑡௞௜
௧௥ ൅ 𝑡௜

௥௜௦௞, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑆௞\ሼ𝐷௞ሽ  (15)

𝑇௞ ൑ 𝑡௞ைೖ

ௗ௘௣ ൑ 𝑇௞ ൅ 𝛥𝑇௞, 𝑘 ∈ 𝐾  (16)

𝑡௞௜
ௗ௘௣ െ 𝑡௞௜

௔௥௥ ൒ 𝑡௞௜
ௗ௪௘௟௟𝑥௞௜, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑆௞\ሼ𝑂௞, 𝐷௞ሽ  (17)

𝑡௞௜
ௗ௘௣ ൅ ℎௗ௘௣ ൑ 𝑡௟௜

ௗ௘௣ ൅ 𝑀ሺ1 െ 𝑦௞௟௜ሻ, 𝑖 ∈ ሺ𝑆௞\ሼ𝐷௞ሽሻ ∩ ሺ𝑆௟\ሼ𝐷௟ሽሻ, 𝑘, 𝑙 ∈ 𝐾, 𝑘 ൏ 𝑙  (18)

𝑡௟௜
ௗ௘௣ ൅ ℎௗ௘௣ ൑ 𝑡௞௜

ௗ௘௣ ൅ 𝑀𝑦௞௟௜, 𝑖 ∈ ሺ𝑆௞\ሼ𝐷௞ሽሻ ∩ ሺ𝑆௟\ሼ𝐷௟ሽሻ, 𝑘, 𝑙 ∈ 𝐾, 𝑘 ൏ 𝑙  (19)

𝑡௞௜ାଵ
௔௥௥ ൅ ℎ௔௥௥ ൑ 𝑡௟௜ାଵ

௔௥௥ ൅ 𝑀ሺ1 െ 𝑦௞௟௜ሻ, 𝑖 ∈ ሺ𝑆௞\ሼ𝐷௞ሽሻ ∩ ሺ𝑆௟\ሼ𝐷௟ሽሻ, 𝑘, 𝑙 ∈ 𝐾, 𝑘 ൏ 𝑙  (20)

𝑡௟௜ାଵ
௔௥௥ ൅ ℎ௔௥௥ ൑ 𝑡௞௜ାଵ

௔௥௥ ൅ 𝑀𝑦௞௟௜, 𝑖 ∈ ሺ𝑆௞\ሼ𝐷௞ሽሻ ∩ ሺ𝑆௟\ሼ𝐷௟ሽሻ, 𝑘, 𝑙 ∈ 𝐾, 𝑘 ൏ 𝑙  (21)

𝑡௞௜
ௗ௘௣ ൒ 0,integer, k ∈ K, i ∈ 𝑆௞\ሼ𝐷௞ሽ  (22)

𝑡௞௜
௔௥௥ ൒ 0,integer, k ∈ K, i ∈ 𝑆௞\ሼ𝑂௞ሽ  (23)

𝑞௜௝
௞ ൒ 0,integer, k ∈ K, i,j ∈ 𝑆௞, 𝑖 ൏ 𝑗  (24)

𝑦௞௟௜ ∈ ሼ0,1ሽ, 𝑖 ∈ ሺ𝑆௞\ሼ𝐷௞ሽሻ ∩ ሺ𝑆௟\ሼ𝐷௟ሽሻ, 𝑘, 𝑙 ∈ 𝐾, 𝑘 ൏ 𝑙  (25)

𝑥௞௜ ∈ ሼ0,1ሽ, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝑆௞  (26)

𝑧௜௥௔, 𝑧௜௥௔
′ ∈ ሼ0,1ሽ, ∀𝑖 ∈ 𝑆, ∀𝑟 ∈ 𝑅௜, ∀𝑎 ∈ 𝐴௜.  (27)

The objective function (1) in the nominal train scheduling problem seeks to minimize the total 
travel time of trains, which is denoted as TT. Constraint (2) guarantees that each train departs at its 
origin station and stops at its destination station following its operating area. Constraint (3) is used to 
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assure the movement of full passenger demand between stations i and j. Constraint (4) specifies that if 
train k does not stop at station i no passengers will be transferred; if train k does stop at station i it will 
travel to station j at most based-on passenger demand. The requirements for the arrival of train k and 
the transfer of passengers to station i are considered in constraint (5), with definitions similar to those 
in constraint (4). Constraint (6) was used to meet the capacity of each train k at station i between i'ሺ𝑖′ ൑
𝑖ሻ and j ሺ𝑖 ൏ 𝑗ሻ, and it should be maximum Ck.. This constraint takes into consideration passengers 
who boarded at or before station i and exited after station i. Constraint (7) limits the maximum number 
of stops throughout the trip to Nk for train k, whereas constraint (8) limits the minimum number of train 
stops at station i to numi. 

Constraint (9) evaluates the costs of identifying primary and secondary risks, as well as the costs 
of conducting response actions, to a maximum of Bi to successfully implement the risk assessment 
process at station i. Constraint (10) requires that the secondary risk costs at station i be less than the 
primary risk costs. Furthermore, constraint (11) indicates that secondary risk time delays should be 
less than primary risk time delays. If constraints (10) and (11) are rejected, no actions should be taken 
to address the primary risk to avoid the emergence of secondary risks. Constraint (12) shows the 
remaining time delays after implementing the risk response actions at station i in which the value 𝑡௜

௥௜௦௞ 
is added to the train’s travel time in the problem. Constraint (13) provides a desired predetermined time 
delay value for each station i to control the time delays calculated in constraint (12). Constraint (14) states 
that secondary risk response actions are meaningful when primary risk response actions are taken 
because secondary risks come from primary risk response actions. 

Constraints (15)–(17) are concerned with train time information. Constraint (15) represents the 
train k’s travel time from station i to station i + 1 by the sum of 𝑡௞௜

௧௥ and 𝑡௜
௥௜௦௞. Constraint (16) shows 

the departure time from the origin station can be moved by at most 𝛥𝑇௞. Constraint (17) states that if 
train k stops at station i, its dwell time is at least equal to 𝑡௞௜

ௗ௪௘௟௟. Constraints (18)–(21) are in place to 
avoid train accidents. It considers the departure time of trains k and l from station i with the minimum 
hdep  time relative to each other by activating just one of the limitations (18) and (19). Similarly, by 
activating only one of the constraints (20) and (21), it takes into consideration the arrival times of trains 
k and l to station i + 1 with the minimum time harr relative to each other. Constraints (22) to (27) define 
the range of decision variables at the end of the nominal train scheduling problem. 

3.2.2. Robust optimization model 

The programming model introduced in Section 4.1 is developed into a robust optimization model 
in this subsection. The Light Robustness technique introduced by Fischetti and Monaci [26] is used 
for this purpose, which is based on inserting the desired protection level against uncertainty and using 
slack variables when the protection level cannot be guaranteed. 

The goal of this technique is to achieve maximum robustness against uncertainty by minimizing 
the sum of slack variables, while limiting, by an additional constraint, the worsening of the objective 
function value of the nominal problem. In this paper, a desired protection level Δij for the number of 
additional passengers wanting to travel from station i to station j is considered. When the desired 
protection level is not fully satisfied, a slack variable of integers is defined as 𝛾௜௝ which represents 
the number of passengers who are unable to travel between stations i and j, or the unsatisfied demand. 
As a result, the robust optimization model’s objective is to minimize the number of passengers whose 
demand is not satisfied.  In addition, to offer efficient and robust solutions, two constraints on the 
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worsening of the value of the total train travel time in the nominal problem 𝑇்
∗ and the value of the 

total number of stops are applied in the nominal problem 𝑁ௌ
∗ are applied. It should be noted that α 

and β  are percentages chosen to control the worsening of the above values. The proposed robust 
optimization model is shown as follows: 

𝑀𝑖𝑛 ∑ 𝛾௜௝௜,௝∈ௌ,௜ழ௝   (28)

Subject to:  

The constraints represented in Eqs (2) and (4)–(27) are valid here again.  

∑ 𝑞௜௝
௞ ൒ 𝑄௜௝, 𝑖, 𝑗 ∈ 𝑆, 𝑖 ൏ 𝑗௞∈௄:௜,௝∈ௌೖ

  (29)

∑ 𝑞௜௝
௞ ൅ 𝛾௜௝ ൌ 𝑄௜௝ ൅ 𝛥௜௝, 𝑖, 𝑗 ∈ 𝑆, 𝑖 ൏ 𝑗௞∈௄:௜,௝∈ௌೖ

  (30)

∑ ሺ𝑡௞஽ೖ
௔௥௥ െ 𝑡௞ைೖ

ௗ௘௣ሻ௞∈௄ ൑ ሺ1 ൅ 𝛼ሻ𝑇்
∗  (31)

∑ ∑ 𝑥௞௜௜∈ௌೖ௞∈௄ ൑ ሺ1 ൅ 𝛽ሻ𝑁ௌ
∗  (32)

𝛾௜௝ ൒ 0,integer, k ∈ K, i,j ∈ 𝑆, 𝑖 ൏ 𝑗.  (33)

The objective function (28) seeks to minimize the number of passengers who cannot travel 
between stations i and j, that is, the sum of the 𝛾௜௝ variables that are activated by constraints (30). 
Constraints (2), (4) and (27) are transferred from the nominal train scheduling problem to this model. 
Constraint (29) replaces constraint (3), which considers the potential of additional passenger 
movement in addition to satisfying the nominal passenger demand. Constraint (30) establishes a 
desired protection level Δij  for the number of additional passengers who want to go from station i to 
station j in addition to Qij. in this constraint, when the protection level is not satisfied, decision variables 
𝛾௜௝ are employed. Constraints (31) and (32) are applied to ensure the efficiency of the robust solutions. 
Constraint (31) is established to control the maximum worsening of the total train travel time in the 
nominal problem and constraint (32) is to control the maximum worsening of the total number of stops 
in the nominal problem. Finally, constraint (32) defines the domain of the slack variable. 

4. Case study for a light rail transit line 

In this section, the light rail transit (LRT) line of Kermanshah, located in the west of Iran, is 
considered as a practical example from the real world to demonstrate the effectiveness and efficiency 
of the proposed models. This line includes 13 stations, 12 routes, A and B operating areas and 6 LRT 
trains. Operating region A contains the stations from Taqebstan to Ferdowsi, where LRT1 to LRT4 
trains run at a speed of 80 km/h, while operating region B includes the stations from Nowbahar to 
Ferdowsi, where LRT5 and LRT6 trains run at a speed of 100 km/h. Figure 2 shows the light rail transit 
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line of Kermanshah. 

 

Figure 2. Layout of the Kermanshah light rail transit line. 

Table 1. Travel time for each LRT on each route. 

Route LRT1, LRT2, LRT3 and LRT4 LRT5 and LRT6 
Taqebostan–Karmandan 9 - 
Karmandan–Fadak 6 - 
Fadak–Shahed 10 - 
Shahed–Simetri2 7 - 
Simetri2–Nowbahar 5 - 
Nowbahar–Ziba 7 5 
Ziba–Azadi 8 6 
Azadi–Bazar 8 6 
Bazar–Modares 10 7 
Modares–Jahad 8 6 
Jahad–Showra 7 5 
Showra–Ferdowsi 7 5 
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Some basic input data should initially be defined to apply the case study. The expected 
departure times for LRT1, LRT2, LRT3, LRT4, LRT5 and LRT6 from their respective origin 
stations are 10, 20, 30, 40, 25 and 35 minutes, respectively, and the 10-minute maximum delay from 
the scheduled departure time for each train is taken into consideration. Table 1 shows the travel time 
of each train along each route of the light rail transit line along the direction of the destination. 

Table 2. Passenger demand for each pair of selected origin and destination stations. 

Origin/Destination 

Ta
qe

bo
st

am
 

K
ar

m
an

da
n 

F
ad

ak
 

Sh
ah

ed
 

S
im

et
ri

2 

N
ow

ba
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r 

Z
ib

a 

A
za

di
 

B
az

ar
 

M
od

ar
es

 

Ja
ha

d 

S
ho

w
ra

 

F
er

do
w

si
 

Taqebostam - 105 138 120 57 61 70 18 84 34 117 73 381 

Karmandan - - 109 91 129 63 8 52 80 12 62 28 137 

Fadak - - - 145 146 176 56 60 11 55 111 107 38 

Shahed - - - - 72 44 29 54 19 17 75 78 141 

Simetri2 - - - - - 117 16 60 45 88 46 160 238 

Nowbahar - - - - - - 324 161 300 300 30 146 345 

Ziba - - - - - - - 141 121 176 122 98 232 

Azadi - - - - - - - - 88 11 115 247 214 

Bazar - - - - - - - - - 343 64 279 233 

Modares - - - - - - - - - - 76 300 243 

Jahad - - - - - - - - - - - 172 294 

Showra - - - - - - - - - - - - 120 

Ferdowsi - - - - - - - - - - - - - 

Trains with a capacity of 850 people have been selected to successfully transfer passengers from 
the origin to the destination, and the amount of passenger demand between each of the stations along 
the exit direction is indicated in Table 2. To improve service quality and satisfy passengers, each train 
in operating region A can make a maximum of 10 stops and each train in operating region B can make 
a maximum of 5 stops, and at least 1 train is allowed to stop at each station. In addition, the minimum 
departure headway time and the minimum arrival headway time are both set to 3 to prevent trains from 
clashing at the same stop. Loading and unloading passengers, changing crews and other activities at 
scheduled stops need a minimum dwelling time of 4 minutes for each train. 

The experts were then invited to use the checklist to determine the primary risks at each station 
and prepare effective response actions for each of them. Secondary risks that may be formed as a result 
of the selection of primary risk response actions were also discovered, and all of this information is 
provided in Table 3 . 
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Table 3. List of primary risks, primary response actions and secondary risks. 

Primary risks (PR) Primary response actions (PA) Secondary risks (SR) 

Damage to antiquities (PR1) 
Use of alternative routes around antiquities 

sites (PA1) 
- 

Disturbing residents (PR2) 
Minimizing the effects of crowd, pollution 

and noise (PA2) 
- 

The illogicality of the construction 

organizational plan (PR3) 

Employing experts to redesign the scheme 

(PA3) 
- 

Toxic gas leak (PR4) 
Dispatch of specialist forces to seal the leak 

(PA4) 
Fall (SR1) 

Pipeline explosion (PR5) 
Dispatch of specialist forces to seal the leak 

(PA4) 
Fall (SR1) 

High level of underground water 

(PR6) 
Place a series of wells or use a pump (PA5) land subsidence (SR2) 

Fall (PR7) 
Removing damaged parts with the oscillatory 

drilling and cutting machines (PA6) 
Loss of land (SR3) 

Instability of the supporting 

structure (PR8) 

Using advanced strutting system (PA7), 

Triple grouting technology (PA8) 

- 

Significant problems in the strength of 

foundation reinforcement (SR4) 

Changing the shape of the retaining 

wall (PR9) 

Demolition of deformed wall and 

reconstruction with better quality cement 

(PA9) 

landslide (SR5) 

Failure to strengthen the foundation 

(PR10) 
Triple grouting technology (PA8) 

Significant problems in the strength of 

foundation reinforcement (SR4) 

Mechanical failure (PR11) Mechanical maintenance (PA10) - 

After identifying the primary risks, the probability and impact of each risk in terms of time delays 
and monetary losses were evaluated, and the expected time delays and monetary losses imposed at 
each station were determined by multiplying these two factors together. Furthermore, to mitigate the 
negative consequences of risks, the appropriate actions to respond to the primary risk were determined, 
which include the cost of application and result in a specified level of reduction in expected time delays 
and monetary losses in each station. Table 4 displays the data for these parameters . 

Because secondary risks might occur during the implementation of some primary risk response 
actions, secondary risk information, like primary risk information, should be provided; these data are 
given in Table 5. Furthermore, to optimally manage time delays and risk-related costs, the 
predetermined values of 𝑡௜

∗ equaling 10 minutes and Bi  equaling 65 billion Rials are considered for 
each station. 
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Table 4. Primary risks data and primary response actions data. 

Station 
Possible Primary 

Risks 

co
irL

 

(Billion Rials)

time
irD

 

(Minute) 

act
irac

 

(Billion Rials)

co
irae

 

(Billion Rials) 

time
irae

 

(Minute) 

Taqebostan PR1 14.63 35 2.4 14.01 31 

Karmandan PR2, PR3 2.45 14 0.09 2.05 12 

Fadak - - - - - - 

Shahed PR4, PR5 35.66 40 2.7 32.16 36 

Simetri2 PR6 0.13 4 0.05 0.10 2 

Nowbahar PR7, PR8 11.82 26 2.8 9.48 22 

Ziba PR7, PR8 11.82 26 2.19 9.98 22 

Azadi PR6, PR8 9.92 25 2.02 8.64 23 

Bazar PR9 0.05 5 0.02 0.03 3 

Modares PR9, PR10, PR11 15.11 45 2.7 14.32 41 

Jahad PR9, PR10 11.05 20 1.75 10.28 18 

Showra PR6, PR9 11.8 22 3 10.28 18 

Ferdowsi - - - - - - 

Table 5. Secondary risks data and secondary response actions data. 

Station 

Possible 

Secondary Risks 

(SR) 

sco
iraL

 

(Billion 

Rials) 

stime
iraD

 

(Minute) 

sact
irac

 

(Billion 

Rials) 

sco
irae

 

(Billion 

Rials) 

stime
irae

 

(Minute) 

Taqebostan - - - - - - 

Karmandan - - - - - - 

Fadak - - - - - - 

Shahed SR1 13.64 27 2.8 13 26 

Simetri2 SR2 4.5 10 2.4 3.9 7 

Nowbahar SR3, SR4 8.5 13 3.6 8.3 12 

Ziba SR3, SR4 8.4 13 3.5 8.3 11 

Azadi SR2, SR4 4.3 17 2.08 4 17 

Bazar SR5 3.8 13 1.6 3.5 10 

Modares SR2, SR3, SR5 9.15 16 3.22 9.02 14 

Jahad SR5 7.22 14 2.38 7.09 13 

Showra SR2, SR5 7.81 14 4.11 7.62 14 

Ferdowsi - - - - - - 

After collecting the initial data, the nominal train scheduling problem was developed in GAMS 
optimization software and solved by the CPLEX solver to determine train timetables, train stops and 
optimal response actions on the risks Kermanshah light rail transit line, with the goal of minimizing 
total train travel time. Two final conditions were proposed for this purpose: stopping the solver when 
the optimality gap is smaller than 5% or when the computing time surpasses two hours. Furthermore, 
OPTCR was set to 0.05 as an index to evaluate the final solution’s quality to produce an optimal 
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solution with high quality. 
The value of the objective function was found by solving the nominal problem to be 806 minutes, 

which corresponds to the minimum total travel time of trains. In this case, trains stop at 40 stations to 
transport 9528 people. Then, a robust optimization model with the same characteristics and conditions 
as the nominal problem was developed with GAMS software to deal with the uncertainty in passenger 
demand. For this purpose, the desired protection level Δij for the additional passengers was calculated 
to be 5% of the value of Qij, so that the nominal problem’s passenger demand increases by 5%. 
Furthermore, both α and β parameters were adjusted to 5% to create a robust and efficient solution. 
The results indicated that the overall travel time of the trains increased to 846 minutes in the robust 
optimization model, during which 9887 people were transferred by stopping the trains at 42 stops. 

In terms of robustness against uncertain passenger demand, comparisons of the robust 
optimization model with the nominal problem of train scheduling reveal that the robust solution 
performs significantly better than the nominal problem in coping with additional passenger demand. 
In the nominal problem, there are 359 unsatisfied demands, but in the robust model, there are only 82. 
This indicates that the robust solution reduces unsatisfied passenger demands by about 4.5 times. Table 6 
ashows the timetable and train stop plan pattern based on the robust optimization model. The train does 
not stop at stations when the train arrival time and train departure time are the same, as illustrated by 
the train stop plan pattern. The filled black dots in the train stop plan pattern show where the trains 
stop (Figure 3). 

Table 6. Robust timetable of the Kermanshah light rail transit line. 

Station 
 LRT1  LRT2 LRT3 LRT4 LRT5  LRT6 

 tarr tdep  tarr tdep tarr tdep tarr tdep tarr tdep  tarr tdep 

Taqebostan  - 13  - 20 - 30 - 40 - -  - - 

Karmandan  26 30  33 33 43 47 53 53 - -  - - 

Fadak  38 44  41 41 55 55 61 65 - -  - - 

Shahed  54 58  51 51 65 69 75 79 - -  - - 

Simetri2  70 74  63 67 81 81 91 95 - -  - - 

Nowbahar  83 83  76 76 90 94 104 108 - 25  - 45 

Ziba  95 95  88 88 106 110 118 122 35 39  55 83 

Azadi  109 113  102 102 124 128 136 136 51 51  95 99 

Bazar  123 123  112 112 138 142 146 150 59 59  107 109

Modares  138 142  127 127 157 157 165 169 71 75  121 123

Jahad  156 160  141 141 171 175 183 183 87 91  135 135

Showra  170 174  151 155 185 185 193 197 99 99  143 147

Ferdowsi  185 -  166 - 196 - 208 - 108 -  156 - 
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Figure 3. Train stop design template of the Kermanshah light rail transit line. 

Apart from the uncertainty issue, the selection of a set of appropriate risk response actions to cope 
with possible primary and secondary risks in the light rail transit line is an essential issue in the 
successful implementation of the train scheduling problem. Equations (9) to (14) were defined for this 
reason. In this way, the set of optimal risk response actions was selected while keeping in mind the 
constraints of costs and time delays caused by primary and secondary risks. Based on this and the 
robust optimization model outputs, Table 7 reports the optimal costs and time delays produced by the 
risks in each of the stations. 

According to Table 7, it is evident that the implementation of risk response actions does not cause 
any additional risks in Taqebostan and Karmandan stations. Moreover, they perform optimally within 
the cost and delay limits that were previously specified. However, in other stations, the implementation 
of risk response actions causes secondary risks, and secondary risk response actions should also be 
implemented. At each station, the cost and time delays caused by the primary risk should be compared 
to the cost and time delays induced by the secondary risk at the same station. For example, the cost 
and time delay caused by primary risks at Simetri 2 station are 0.08 billion Rials and 2 minutes, 
respectively, whereas similar figures for secondary risks are 3 billion Rials and 3 minutes, respectively.  

Table 7. Optimal cost and delay due to primary and secondary risks. 

Station 

Primary risk Secondary risk 

Risk cost 

(Billion Rials) 

Risk delay 

(Minute) 

Risk cost 

(Billion Rials) 

Risk delay 

(Minute) 

Taqebostan 3.02 4 - - 

Karmandan 0.49 2 - - 

Fadak - - - - 

Shahed 6.20 4 3.44 1 

Simetri2 0.08 2 3.00 3 

Nowbahar 5.14 4 3.80 1 

Ziba 4.03 4 3.60 2 

Azadi 3.30 2 2.38 0 

Bazar 0.04 2 1.90 3 

Modares 3.49 4 3.35 2 

Jahad 2.52 2 2.51 1 

Showra 4.52 4 4.30 0 

Ferdowsi - - - - 
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Table 8. Optimal set of response actions of the Kermanshah light rail transit line. 

Station 

Primary risk Secondary risk 

Mitigated risks 
Selected response 

actions 
Mitigated risk Response actions

Taqebostan PR1 PA1 - - 

Karmandan PR2, PR3 PA2, PA3 - - 

Shahed PR4, PR5 PA4 SR1 Yes 
Nowbahar PR7, PR8 PA6, PA7, PA8 SR3, PSR4 Yes 

Ziba PR7, PR8 PA6, PA7, PA8 SR3, SR4 Yes 

Azadi PR6, PR8 PA5, PA7, PA8 SR2, SR4 Yes 

Modares PR9, PR10, PR11 PA8, PA9, PA10 SR2, SR3, SR5 Yes 

Jahad PR9, PR10 PA9, PA10 SR2 Yes 

Showra PR6, PR9 PA5, PA9 SR2, SR5 Yes 

As a result, because the possible negative consequences of secondary risks are greater than those 
of primary risks, primary risk response actions should not be taken to prevent such imposed negative 
effects. Similarly, the possible greater negative effects of secondary risks highlight the Bazar station’s 
lack of response actions to the primary risk. In addition, the impacts of secondary risks are crucial in 
determining the optimal response actions to the primary risk. Table 8 presents the list of reduced risks 
and appropriate risk-response actions based on the impact of secondary risks. 

Sensitivity analysis is performed to investigate the impact of changing some parameters on the 
optimal solutions of the proposed robust optimization model. First, the effect of changing parameters 
α and β is examined, which were considered to control the increase in overall train travel time and the 
total number of train stops, respectively. Table 9 displays the results obtained when two parameters 
were changed from 1% to 25%. 

Table 9. Sensitivity analysis on a maximum worsening controlled by parameters α and β. 

 
Value 

, ,
ij

i j S i j


 


 
Total travel time Number of stops Gap % CPU time 

 01% 82 814.06 42 0 00:05.058 

α 05% 82 846.30 42 0 00:08.701 

 25% 82 914.00 42 0 00:02.276 

 01% 82 846.30 40 0 10:06.143 

β 05% 82 846.30 42 0 00:08.929 

 25% 82 846.30 50 0 00:01.510 

It can be observed that the robust objective function has the same value for each variant. As a 
result, increasing the travel time and the number of stops will not increase the robustness. The reason 
for this is that the trains are nearly full to satisfy the nominal passenger demand. It is worth noting that 
by increasing the parameters by 1%, the same level of robustness may be obtained, i.e., the value of 
the robust objective function equals 82. However, reducing the effect of the parameters, particularly 
the effect of the parameter β increases the computational time required to find a robust solution. As a 
result, imposing constraints (31) and (32) is critical to ensuring the robust solution’s efficiency. The 
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desired protection level Δij is another parameter that is analyzed in the range of 1% to 25%, with the 
results shown in Table 10. 

Table 10. Sensitivity analysis on a desired protection level by parameter Δij. 

Value 

Unsatisfied demand 
Total travel 

time 

Number of 

stops 
Gap % CPU timeRobust 

solution 

Nominal 

solution 

01% 0000 0061 846.30 42 0 00:12.457

05% 0082 0359 846.30 42 0 00:08.123

25% 1077 1281 846.30 42 0 00:11.647

The nominal train scheduling problem and its robust optimization model were investigated in this 
study by taking into consideration the response actions to the primary and secondary risks. To 
demonstrate the relevance and effectiveness of the proposed models, an actual case study was 
implemented on a light rail transit line. The results demonstrated that the robust optimization model 
performs significantly better in terms of robustness when confronted with uncertain passenger demand 
because a small increase in the value of travel time and the number of stops in the nominal problem 
decreases unsatisfied passenger demand by 4.5 times. Furthermore, the risk-related programming 
demonstrated that the presence of secondary risks has a considerable impact on the choice of response 
actions to the primary risks. It indicates that these primary risk response actions are selected and 
implemented only when the negative effects of secondary risks are less severe than those of the primary 
type. Otherwise, primary response actions are ignored, or other primary response actions must be used. 
To sum up, the proposed robust optimization model can be effectively applied in environments with 
uncertain passenger demand and under the influence of primary and secondary risks. The multi-
objective design of the train scheduling problem, which takes into consideration more indicators of 
evaluation and more factors of uncertainty such as the passenger demand of each train and the travel 
time of each route, is an interesting subject worthy of continuing study efforts. On this basis, advanced 
algorithms may be designed to find robust solutions for more complicated and larger instances. 

5. Conclusions 

The nominal train scheduling problem and its robust optimization model were investigated in this 
study by taking into consideration the response actions to the primary and secondary risks. To 
demonstrate the relevance and effectiveness of the proposed models, an actual case study was 
implemented on a light rail transit line. The results demonstrated that the robust optimization model 
performs significantly better in terms of robustness when confronted with uncertain passenger demand 
because a small increase in the value of travel time and the number of stops in the nominal problem 
decreases unsatisfied passenger demand by 4.5 times. Furthermore, the risk-related programming 
demonstrated that the presence of secondary risks has a considerable impact on the choice of response 
actions to the primary risks. It indicates that these primary risk response actions are selected and 
implemented only when the negative effects of secondary risks are less severe than those of the primary 
type. Otherwise, primary response actions are ignored, or other primary response actions must be used. 
To sum up, the proposed robust optimization model can be effectively applied in environments with 
uncertain passenger demand and under the influence of primary and secondary risks. The multi-
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objective design of the train scheduling problem, which takes into consideration more indicators of 
evaluation and more factors of uncertainty such as the passenger demand of each train and the travel 
time of each route, is an interesting subject worthy of continuing study efforts. On this basis, advanced 
algorithms may be designed to find robust solutions for more complicated and larger instances. 
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