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Abstract: To solve the problem of missing data features using a deep convolutional neural network 
(DCNN), this paper proposes an improved gesture recognition method. The method first extracts the 
time-frequency spectrogram of surface electromyography (sEMG) using the continuous wavelet 
transform. Then, the Spatial Attention Module (SAM) is introduced to construct the DCNN-SAM 
model. The residual module is embedded to improve the feature representation of relevant regions, and 
reduces the problem of missing features. Finally, experiments with 10 different gestures are done for 
verification. The results validate that the recognition accuracy of the improved method is 96.1%. 
Compared with the DCNN, the accuracy is improved by about 6 percentage points. 
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1. Introduction 

With the frequent occurrence of diseases, traffic accidents, and natural disasters, the number of 
patients with physical disabilities is gradually increasing. The most significant proportion of patients 
have some upper limb disabilities [1]. The rehabilitation robot for assisting movement using surface 
electromyography (sEMG) is becoming a hot issue of research. By exploring different recognition 
methods, sEMG is used to control intelligent prosthetics more efficiently and accurately. Intelligent 
prosthetics can help people complete simple tasks in many daily activities. For example, intelligent 
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prosthetics can help disabled patients finish hand rehabilitation training. SEMG reflects 
neuromuscular activity and contains some vital information with muscle activity [1–3]. SEMG is 
one of the most widely used signals for identifying gestures due to being easily acquired [3]. 

Although the original sEMG contains a large amount of information about the intention of hand 
movements, it cannot be directly applied to recognition due to the non-smooth and non-periodic nature 
of the signal [2]. Features of sEMG are very important, and they can determine the performance of the 
recognition method. It is not easy to extract significant features from sEMG. The traditional manual 
extraction method can only extract some low-level features of sEMG. So, extracting meaningful 
features of sEMG has been a huge challenge for gesture recognition. Many researchers are trying to 
explore new methods for extracting sEMG features [3]. sEMG contains a large amount of noise, due 
to the differences between individuals and the influence of the collection environment. Therefore, the 
raw sEMG needs to be preprocessed. In recent years, researchers have explored new networks to 
improve gesture recognition accuracy. As the depth of some networks increases, some factors affecting 
network performance appear [2–5]. This paper explores a new gesture recognition algorithm by 
improving CNN to reduce the adverse effects of network deepening. 

CNN-based methods can capture local features in 2D or 3D spaces [3]. Na Duan from Fudan 
University preprocessed the sEMG using short-time Fourier transform, and extracted the spectrum 
diagram of sEMG, to extract the depth features [4]. However, the receptive field of convolutions limits 
CNNs [3]. The depth of a CNN can affect its ability to extract features. Especially, the gradient’s 
disappearance and the increasing depth of the network can cause a lack of data feature information, 
and result in lower identification accuracy [5]. 

In order to solve the above problems, many researchers focused on various preprocessing methods 
for improved CNN models to enhance the recognition accuracy [6–9]. Liukai Xu et al. changed the 
energy kernel phase map of sEMG into grayscale images. The grayscale images were used as the input 
of a CNN to recognize different gestures [8]. In the latest study, Mehmet Akif Ozdemir et al. obtained 
time-frequency images of sEMG by applying short-time Fourier transform, continuous wavelet 
transform, and Hilbert-Yellow transforms. The pre-trained ResNet-50 network was used for gesture 
classification, and the best recognition accuracy was 93.75% [9]. Although the accuracy of gesture 
recognition has improved, it is still far from being usable for practical applications. 

This paper proposes continuous wavelet transform combined with a deep convolutional neural 
network-spatial attention module (DCNN-SAM) model to realize gesture recognition. The main 
content of the paper is as follows. 

● sEMG is preprocessed by filtering, and then the time-frequency graph of sEMG is extracted 
by using continuous wavelet transform. 

● The DCNN-SAM model is designed, and the model can enhance the feature expression of 
crucial regions and reduce features loss of sEMG. The time-frequency graph of sEMG is used as the 
input of the model. 

● An experiment is designed to verify the effectiveness of the proposed method using the sEMG 
collected from 10 subjects. 

The structure of the paper is as follows: The second part mainly presents the construction of 
DCNN-SAM, including the spatial attention mechanism and residual module. In section 3, the 
experiment is designed, including the preprocessing and feature extraction, as well as results and 
analysis. Finally, we conclude the full text and discuss future work. 
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2. Materials and methods 

In order to get the frequency components, sEMG is processed by continuous wavelet transform. 
DCNN-SAM is improved by embedding the residual module. Then, the time-frequency spectrogram 
of the sEMG is selected as input of the DCNN-SAM. 

2.1. Spatial attention module 

The spatial attention mechanism is used to enhance the feature representation of some critical 
regions [10]. It is essentially transforming the spatial information in the original image to another space 
through the module of spatial transformation and retains the essential information in it [11]. It generates 
a weight mask for each location and weights the output, and in turn it enhances the feature 
representation of some critical specific target regions. At the same time, features of irrelevant regions 
are also weakened [12]. Figure 1 shows the structural diagram of the spatial attention mechanism. 

 

Figure 1. Spatial attention mechanism model. 

The process is as follows: The input is an H × W × C sEMG time-frequency spectrogram. First, a 
maximization and averaging operation is performed along the dimensional direction of the channel to 
produce two feature maps representing different information. A two-dimensional convolution with a 
convolution kernel size of 1 × 1 is used to perform the feature fusion operation [12,13]. Then, the two 
feature maps are combined to obtain a feature map of H × W × 1 size. Finally, the two-dimensional 
spatial attention feature map is output after activation by the sigmoid activation function. The original 
input time-frequency spectrogram is superimposed to obtain the spatial attention output feature map [13], 
and this in turn enables the features of the target region to be enhanced and retains the critical feature 
information that helps in gesture recognition classification. 

2.2. Residual module 

The idea of the residual module is that it changes the mapping from the initial feature X to the 
learned feature Y. Finally, the learned residual feature is added to the original feature [14]. The residual 
module can contain multiple convolutional layers. The original input feature is directly connected with 
the result of the output feature by skipping some convolutional network layers. Finally, all of them are 
taken as input of the activation function to get the learning output feature [15]. Figure 2 shows the 
structure diagram of the residual module. The residual module can optimize the deep learning network, 
alleviate the problem of network degradation, and ensure the integrity of signal features. 
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Figure 2. Residual module structure. 

2.3. Network model 

The CNN is one of the classic algorithms of deep learning [14–16]. In this section, four deep 
convolutional modules are designed to build the deep convolutional neural network (DCNN). The 
spatial attention mechanism module is added to construct the DCNN-SAM model. Figure 3 shows the 
model structure diagram. 
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Figure 3. Network structure diagram. 

The DCNN contains two parts, DCNN-1 and DCNN-2. DCNN-1 carries out the convolution 
operation on the time-frequency spectrogram of the sEMG. Then, the output of DCNN-1 is used as 
input for DCNN-2 to obtain more detailed sEMG features. DCNN-1 is composed of three 
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convolutional layers. DCNN-2 is composed of one convolutional layer. A batch-normalized BN layer 
exists between each convolutional block and activation layer. A residual module is embedded 
between two substructures, and a spatial attention mechanism is introduced to ensure the integrity 
of the features in the convolution operation. Finally, the full connection and softmax layer are used 
to get the result. 

The process is divided into three stages, the input stage of data, the deep convolution stage, and 
the feature output stage. The input of the model is a time-frequency spectrogram of size 40 × 40 × 1. 
The features are extracted and learned at the deep convolution stage. Finally, the trained model is used 
to recognize the corresponding gesture. 

The convolutional module consists of two-dimensional convolutional kernels, a batch 
normalization (BN) layer, and an activation layer. The size of the convolutional kernel is 3 × 3, the 
moving step is 1, and the numbers of convolutional kernels in the four layers are 16, 32, 64 and 128, 
respectively. The BN layer improves the speed of network training by inhibiting network gradient 
disappearance or gradient explosion during network training. The activation function can better extract 
sparse features and improve the learning speed and learning accuracy by using a rectified linear unit 
(Relu). The spatial attention mechanism is added between the third and fourth convolutional modules 
to strengthen the features in specific regions. A residual module is embedded for optimizing DCNN-
SAM. The numbers of convolutional kernels of two residual structures are 64 and 128, respectively. 
The residual structure can effectively alleviate the network degradation problem by connecting the 
initial input with the output feature. Then, a global average pooling layer is used to calculate the 
average of all pixels of each channel to obtain a new 1 × 1 channel map. It can suppresses overfitting 
and reduces the redundant network parameters. Finally, a fully connected layer of size 128 is used to 
connect the data and collect the information related to the sample feature space. A softmax function is 
used as the output layer to get the final classification results. 

3. Experiments and results analysis 
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Figure 4. Experimental flow chart. 

A dataset containing ten different gestures was acquired by using the Myo EMG armband with 
ten subjects. The experimental included preprocess sliding window segmentation [15,16], continuous 



11144 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 11139–11154. 

wavelet transform, and the DCNN-SAM model training and testing [17]. Figure 4 shows the process 
diagram of the experiment. 

3.1. Acquisition of sEMG 

The Myo EMG armband was used to acquire sEMG. It has eight sEMG channels with a sampling 
frequency of 200 Hz [18,19]. The Myo EMG armband is worn on the subject’s right forearm, as shown 
in Figure 5. Before the signal acquisition, the subject is told not to do strenuous exercise to avoid the 
effects of muscle fatigue during the experiment. The skin surface is wiped with alcohol pads to remove 
the influential oil and dead skin to ensure good contact between the subject’s skin and the electrodes [20]. 

 

Figure 5. Wearing position of the Myo EMG armband. 

The data was collected from 10 healthy subjects, including 5 males and 5 females, all aged 
between 20 and 30 years. Table 1 shows the details of the subjects. All subjects were informed of the 
details of the experiment and voluntarily completed the relevant written informed consent form. 

Table 1. The information of the subjects. 

Number of subjects Male to female ratio Average height 
(cm) 

Average weight 
(kg) 

Average 
BMI (kg/m2) 

10 1:1 170.5 ± 9.2 60.17 ± 3.12 21.35 ± 3.18 

The designed ten gestures included fist, one, two, OK, open hand, praise, six, up, down, and eight. 
Figure 6 shows the gestures. Subjects wore the Myo EMG armband on the right forearm and extended 
the arm straight and perpendicular to the ground. Subjects were trained on the corresponding gestures 
before formal experiments. All gestures were repeated 15 times, and each action was recorded about 16 
s. Each gesture yields 3200 sampling points under the sampling frequency of 200 Hz. 
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(a)                (b)                (c)               (d)               (e) 

                                            

    (f)                (g)                (h)                (i)               (j) 

Figure 6. Classified gestures: (a) fist; (b) one; (c) two; (d) OK; (e) open hand; (f) praise; 
(g) six; (h) up; (i) down; (j) eight. 

3.2. sEMG data filtering and denoising 

Effective information of sEMG is mainly distributed between 20 and 200 Hz [21]. SEMG will 
be interfered with by the industrial frequency signal at 50 Hz and the low-frequency signal below 20 
Hz [20–22]. So, the Butterworth high-pass and band-pass filters were selected to process sEMG. The 
low-frequency noise below 20 Hz was filtered using the high-pass filter, and the industrial frequency 
noise at 50 Hz was filtered using the band-pass filter [23]. 

The Butterworth filter has been widely used due to being simple and easy to design [24]. The 
Butterworth high-pass filter is shown in Eq (1), where 𝑤 represents the frequency, 𝑤௖ represents the 
cut-off frequency, |𝐻(𝑤)|  represents the amplitude, and 𝑛  represents the order of the filter. We 
selected a third-order high-pass filter to filter out low-frequency noise below 20 Hz. 

 |𝐻(𝑤)|ଶ = ଵଵାቀ ೢೢ೎ቁమ೙ (1) 

A band-pass filter can block the passage of specific frequency. Equation (2) expresses an ideal 
filter, where 𝑤଴ = 50 Hz. It can filter out 50 Hz power-frequency noise. 

 ห𝐻(𝑒௝௪))ห = ൜1, 𝑤 ≠ 𝑤଴0, 𝑤 = 𝑤଴ (2) 

Figure 7 shows the spectrum of sEMG after filtering. 



11146 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 11139–11154. 

 

 

Figure 7. sEMG before and after filtering. 

3.3. Sliding window data segmentation 

SEMG must be segmented before continuous wavelet transform. The sliding window segmentation 
method is used to cut the sEMG to ensure signal continuity [25]. The number of overlapping windows 
is shown in Eq (3) [26]. 

 𝑊 = ௡ି௞௦ + 1 (3) 

W is the number of windows, n is the number of sampling points, k is the window size, and s is 
the sliding step length. The sliding window and sliding step size are 200 and 100, respectively. Figure 8 
shows the schematic diagram of the sliding window segmentation. 

 

Figure 8. Schematic diagram of sliding window segmentation. 

3.4. Continuous wavelet transform (CWT) 

The wavelet transform is used for time-frequency analysis [27,28]. It can analyze information on 
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time-frequency and adapt to the requirements of time-frequency analysis automatically [29]. 
Equation (4) shows the wavelet transform. 

 𝑊𝑇(𝑎，𝜏) = ଵ√௔ ׬ 𝑓(𝑡) ∗ 𝜑ஶିஶ (௧ିఛ௔ )𝑑𝑡 (4) 

In Eq (4), 𝑎 represents the scale parameter, 𝜏 represents the time parameter, 𝑓(𝑡) represents 
the original signal, 𝑊𝑇(𝑎, 𝜏)  represents the transform value, and 𝜑(𝑡)  represents the wavelet 
transform function. Equation (4) shows that the frequency w and time T correspond to the scale [30]. 
The wavelet transform can obtain the frequency components of the signal and the moments when each 
frequency component appears [31]. Through continuous wavelet transform, the time-frequency 
spectrogram can be extracted to obtain information on the signal frequency and the time. Figure 9 
shows a channel’s sEMG map and the time-frequency spectrum map. 

 

 

Figure 9. sEMG map with the time-frequency spectrum map. 

3.5. Analysis of experimental results 

The sEMG for the experiment was divided into three parts: 70% of the data are used for 
training, 20% of the data are used for testing, and 10% of the data are used for validation. DCNN-
SAM uses an adaptive optimizer (Adam), the loss function uses an inter-class cross-entropy function, 
the random deactivation is 0.5, the initial learning rate is 0.001, and the number of iterations for 
network training is 100. 

One subject is evaluated individually to verify the feasibility of the experiment. In order to 
demonstrate the superiority of this method, the result is compared with the classification models 
commonly used. 

Figure 10 shows the accuracy and loss curves for the classification recognition with 100 iterations 
of training. From the graph, we can see that the accuracy value of the set increases rapidly, and the loss 
value decreases rapidly in the first 10 iterations. The accuracy value is greater than 90%, and the loss 
value is less than 0.2 after 10 iterations. The model can converge rapidly. The test set’s accuracy and 
loss value remain stable after the number of iterations reaches 18. 
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Figure 10. Curves of accuracy and loss functions for training and testing sets. 

The result is compared with other models, including DCNN-SAM without continuous wavelet 
transform, DCNN and CNN. We chose four measures to evaluate the recognition results: Accuracy, 
Recall, Precision, and F1-score. 

To illustrate the concept of four measures, we introduce several definitions: TP, TN, FP, and FN. 
TP is the number of correctly classified samples, TN is the number of incorrectly classified samples, 
FP is the number of incorrectly classified samples as correct samples, and FN is the number of correctly 
classified samples as incorrect samples. The accuracy is the ratio of the number of correctly predicted 
samples to the total number of samples, the precision is the ratio of the number of correctly predicted 
samples to all of the number of correctly predicted samples, the recall is the ratio of the number of 
correctly predicted samples to all of the number of correctly predicted samples, and the F1-score can 
be regarded as a weighted average of the accuracy and recall. A higher F1 score means a better 
performance of the network model. Equations (5)–(8) shows the formulas for the four measures. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ்௉ା்ே்௉ା்ேାி௉ାிே (5) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ்௉்௉ାி௉ (6) 

 𝑅𝑒𝑐𝑎𝑙𝑙 = ்௉்௉ାிே (7) 

 𝐹1 = 2 × ௉௥௘௖௜௦௜௢௡×ோ௘௖௔௟௟௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟ (8) 

Table 2 shows the results of the experiment of ten subjects. 
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Table 2. Results of ten gestures categories. 

Classifier Accuracy Recall Precision F1-score 
CWT+DCNN-SAM 0.961 0.963 0.973 0.958 
DCNN-SAM 0.929 0.931 0.937 0.928 
DCNN 0.900 0.904 0.911 0.898 
CNN 0.820 0.822 0.828 0.817 

From the experimental results, we can see that the method proposed significantly improved 
accuracy compared to other model methods, with an accuracy of 96.1%. Using continuous wavelet 
transform to analyze the sEMG has a more significant impact on the classification. We can see that 
continuous wavelet transform extracted the useful frequency information, helping the model improve 
the accuracy of gesture recognition by about 4 percentage points. This indicates that the improvement 
method of the Spatial Attention Module and the residual module achieve a significant effect, and it not 
only improves the recognition accuracy of the model but also avoids the problems that affect the 
classification accuracy, such as gradient disappearance due to the increased of network depth. Thus the 
model can achieve better performance. 

Recently, some SOTA algorithms have been developed in gesture recognition, including gesture 
recognition based on the postural graph convolutional network (GCN) method. The network takes 
related gestures of hand and body as the input, and then the GCN, the residual connection, and the 
residual module structure are used for classification. The pyramid structure of multi-scale features is 
extracted by using the multi-scale multi-attention time-frequency converter network (MSMHA-VTN), 
the multi-scale head attention model of the transformer. The model adopts different attention 
dimensions for each head of the transformer, and it can provide an attention mechanism at the multi-
scale level. In some recent studies, researchers proposed a new gesture recognition method based on 
AlexNet transfer learning and Adam optimizer. The classification of different configuration transfer 
learning is tested. Others proposed some new methods based on CNN, building a 12-layer CNN as the 
backbone. The improved 20-channel data enhancement method was used to avoid overfitting. CNN 
was used to recognize different gestures. We propose a new gesture recognition method of this present 
paper is compared with the SOTA algorithms mentioned above. Table 3 shows the comparison results. 
According to the data, the accuracy of our method is improved compared with the SOTA algorithms, 
indicating the feasibility of the algorithm proposed. 

Table 3. The recognition accuracy of different SOTA classification algorithms. 

Classifier Accuracy Recall Precision F1-score 
CWT+DCNN-SAM 0.961 0.963 0.973 0.958 
GCN 0.926 0.929 0.931 0.926 
MSMHA-VTN 0.912 0.912 0.918 0.910 
AlexNet+Adam 0.915 0.914 0.921 0.916 
CNNSP+CNN 0.908 0.908 0.913 0.906 

Figure 11 shows the confusion matrix of classification results, and we can see the recognition 
accuracy of each gesture. Most of the gestures have a relatively high recognition accuracy, with an 
overall concentration on the diagonal. The recognition accuracy of individual gestures is relatively low, 
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such as the two gestures of one and down. The reason may be that there are some differences in the 
strength of signals in the process of acquisition, and it affects the subsequent data processing and 
classification. In addition, the low degree of differentiation between gestures is also a reason for the 
different recognition accuracy values of different gestures, as it is easy for them to be mistaken for 
other similar gestures. The magnitude of the action varies from gesture to gesture, so the part of the 
arm muscles involved also varies, causing different recognition accuracies simultaneously. 

 

Figure 11. Confusion matrix of classification and recognition of ten gestures. 

We selected five healthy subjects without muscle diseases for a separate experimental evaluation 
of gesture recognition. The five subjects included three males and two females. Table 4 shows 
information of the five subjects. Figure 12 shows the evaluation results. 

It can be seen that the accuracy of the proposed method is significantly improved compared to 
other classification algorithms. The recognition accuracy can reach 98.5% in the experiments with a 
single subject. This shows that the algorithm also applies to the gesture recognition of a single subject. 

Table 4. Information of five healthy subjects. 

Subject Gender Age Height [cm] Weight [kg] 
Subject 1 Male 24 174 118 
Subject 2 Male 25 176 138 
Subject 3 Male 25 183 130 
Subject 4 Female 26 168 110 
Subject 5 Female 25 165 106 
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Figure 12. Measurement indexes of five subjects under different classification models. 

4. Conclusions 

We propose a DCNN-SAM model for sEMG gesture recognition. First, time-frequency analysis 
of sEMG is done using continuous wavelet transform. Then, the spatial attention mechanism is applied 
to construct the DCNN-SAM model. Finally, DCNN-SAM is optimized by embedding the residual 
module to avoid the gradient disappearance and local information loss. The experiment demonstrated 
that the method has a good recognition and classification. Although the proposed DCNN-SAM model 
improves the recognition accuracy, the training time of the model is slightly increased due to the 
deepening and increasing complexity of the network. In future research, the model can be further 
improved to reduce the training time. 
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