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Abstract: For the problems of blurred edges, uneven background distribution, and many noise 
interferences in medical image segmentation, we proposed a medical image segmentation algorithm 
based on deep neural network technology, which adopts a similar U-Net backbone structure and 
includes two parts: encoding and decoding. Firstly, the images are passed through the encoder path 
with residual and convolutional structures for image feature information extraction. We added the 
attention mechanism module to the network jump connection to address the problems of redundant 
network channel dimensions and low spatial perception of complex lesions. Finally, the medical 
image segmentation results are obtained using the decoder path with residual and convolutional 
structures. To verify the validity of the model in this paper, we conducted the corresponding 
comparative experimental analysis, and the experimental results show that the DICE and IOU of the 
proposed model are 0.7826, 0.9683, 0.8904, 0.8069, and 0.9462, 0.9537 for DRIVE, ISIC2018 and 
COVID-19 CT datasets, respectively. The segmentation accuracy is effectively improved for medical 
images with complex shapes and adhesions between lesions and normal tissues. 
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1. Introduction 

Medical images can reflect the anatomical structure or functional tissues of the human body, 
mainly through imaging techniques such as Computed Tomography (CT), Magnetic Resonance 
Imaging (MRI), and X-ray. However, due to the constraints of the internal environment of organ 
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tissues, the formed medical images are usually characterized by low contrast, blurred boundaries, and 
inaccurate image edge recognition. Medical image segmentation is one of the key steps to realize 
medical image visualization, and different image segmentation regions are often closely related to 
the related diseases and organs [1]. By segmenting medical images into other regions and sections, 
they are then provided to physicians for different diagnostic tasks such as lesion location 
determination, symptom identification, tissue and organ localization, description of anatomical 
structures, and treatment planning [2]. Therefore, medical image segmentation assists doctors in 
disease diagnosis, reduces the workload, improves the effectiveness and quality of treatment, and is 
widely used in disease diagnoses such as liver segmentation [3], cell segmentation [4], brain tumor 
segmentation [5], and COVID-19 [6]. 

Early medical image segmentation algorithms mainly used manually formulated rules for 
segmenting medical images. Zhang et al. [7] modified and optimized the objective function of the 
traditional fuzzy c-mean algorithm and achieved better performance. Ng et al. [8] combined the 
k-means algorithm with an improved watershed algorithm and applied it to medical image 
segmentation to greatly reduce the number of segmentation maps generated. Mohamed et al. [9] 
improved the fuzzy c-mean classification for the segmentation of brain images. Prabin et al. [10] 
combined the region-growing algorithm and contextual clustering technique and applied it to the 
lung CT image segmentation task. 

This method of relying on manual methods for segmentation is costly and time-consuming, and 
the accuracy of segmentation markers cannot be guaranteed [11]. With the widespread use of deep 
learning techniques in the field of medical image segmentation, a series of research results have been 
achieved. Zhang et al. and Irfan et al. [12,13] proposed SNELM and HDNNs network structures for 
COVID-19 recognition. Long et al. [14] proposed the Fully Convolutional Network (FCN) to obtain 
a finer segmentation map by replacing the fully connected layer with a convolutional layer. 
Ronneberger et al. [15] proposed a classical medical image segmentation algorithm for U-Net 
networks based on FCN networks. Zhou et al. [16] proposed a U-Net++ network for medical image 
segmentation by adding new jump connections to transmit more image feature information. Oktay et 
al. [17] introduced the attention module into the jump connection in U-Net to improve the accuracy 
of pancreas segmentation. Peng et al. [18] proposed a local context-perception Net (LCP-Net) to 
obtain rich image feature information by parallel inflated convolution. Chen et al. [19] proposed a 
cross-scale residual network (CSR-Net) to achieve feature fusion of different layers by cross-scale 
residual connections. Wang et al. [20] proposed an adaptive, fully dense connected network 
(AFD-UNet); this network is based on Unet++, which adaptively and effectively uses shallow and 
deep features. Feng et al. [21] proposed U-Net based residual network (URNet) for image denoising 
to extract more detailed image features. Ge et al. [22] proposed a multi-input dilated U-Net 
(MD-Unet) for segmenting bladder cancer. 

Various improved networks based on U-Net have improved the effectiveness of medical image 
segmentation. Still, medical images inherently suffer from problems such as category imbalance and 
noise factors that require the introduction of an attention mechanism to improve network 
segmentation performance. The attention mechanism is characterized by helping U-Net to better 
learn the interrelationships between multiple content modalities and thus better represent this 
information, overcoming its uninterruptable and thus difficult to design drawbacks. 

Lan et al. [23] proposed mixed-attention based residual U-Net (MARU), which uses lightweight 
mixed attention blocks in the encoder to enhance image features effectively and suppress noise in the 
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encoding stage. Li et al. [24] proposed an attention-based nested U-Net (ANU-Net), which can 
suppress background regions irrelevant to the segmentation task. Guo et al. [25] proposed Spatial 
Attention U-Net (SA-UNet); this model adds a spatial attention module in the bottleneck layer, 
which can help the network focus on important features, suppress unnecessary features, and improve 
the network’s representation capability. 

The above algorithms achieved high classification accuracy, but there are still areas for 
improvement, such as not fully exploiting the structural advantages of the coding network and the 
attention mechanism needs to learn the semantic features of the disease fully. In this paper, we 
improve both the network structure and attention mechanism, propose a dual coding network 
structure based on multi-scale modules, and design a fully convolutional neural network model 
combining spatial and channel attention and residual modules. In the encoding and decoding feature 
extraction stages, the spatial channel attention (SCA) module is added to highlight the key feature 
information of medical images and suppress the interference of noise factors in medical images. 

The innovation points of this paper are as follows:  
1) Based on spatial and channel attention mechanisms analysis, an integrated attention 

mechanism module SCA is proposed, which can give different attention weights from space and 
channel dimensions so that the model can focus more on the image segmentation task. The model 
can be integrated into the mainstream neural network segmentation task.  

2) Considering that the increase in network depth will lead to network degradation and other 
problems, this paper introduces the residual network structure and integrates it into the U-net 
backbone network with the SCA module. While maintaining the network depth, it pays attention to 
the segmentation task of the target area, enhances the transmission of feature information and 
gradient information between different levels of networks, learns more detailed feature information 
of medical images, and improves the segmentation accuracy.  

3) The multi-model and multi-perspective comparative analysis of three different medical 
datasets is conducted to objectively analyze and evaluate the algorithms proposed in this paper. 

2. Related works 

This section is about medical image segmentation algorithms, including traditional medical 
image segmentation algorithms and medical image segmentation algorithms based on deep learning 
techniques. 

2.1. Traditional methods 

Traditional medical image segmentation methods mainly segment images based on physical 
features such as the shape, angle, and edge structure of medical images.  

The region-based image segmentation method mainly uses the similarity and difference of 
features in the image region for medical image segmentation. The threshold method is simple in 
calculation and fast in segmentation, but when the gray values of medical images are similar, the 
segmentation effect could be better. The region-growth method introduces spatial information based 
on the threshold method, but it must manually select the initial point. The clustering method is 
sensitive to parameters and easy to falls into local optimization. The random walk method iterates by 
randomly selecting the initial points, and its randomness leads to extremely unstable segmentation 
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performance.  
Bernal et al. [26] designed a model based on the appearance of polyps using the median depth 

of the valley accumulation window. Soltani-Nabipour et al. [27] introduced an improved algorithm 
that can automatically detect the threshold, update the threshold information, and accurately segment 
medical images in a shorter time. Chong et al. [28] used a clustering-based lung nodule algorithm to 
classify the lung nodule. Savic et al. [29] proposed a segmentation algorithm based on a fast 
marching method to segment the lung nodule image. 

Bruntha et al. [30] used an image segmentation algorithm with edge-free active contours. By 
preprocessing, segmenting, and detecting lung nodules in the CT image, the segmentation accuracy 
reached 91.5%. Manickavasagam et al. [31] proposed a gradient-driven active contour algorithm, 
which uses normalization and gray co-occurrence matrix to extract nodule shape, and finally uses a 
support vector machine algorithm to detect and classify pulmonary nodules.  

To sum up, the traditional segmentation method has a fast segmentation speed. Still, it is 
sensitive to parameters and cannot accurately segment lung regions that adhere to each other, so it 
needs rich prior information to obtain more accurate segmentation results. In addition, this method 
has great uncertainty for the segmentation results of different case images. Because of the complex 
and changeable structure of medical images, noise, partial volume effect, and other factors, image 
segmentation is generally combined with many traditional methods. 

2.2. Deep learning  

The traditional segmentation methods can no longer meet the clinical requirements for the 
current medical image segmentation tasks with a large amount of data and higher accuracy and time 
requirements. But the deep learning algorithm has been greatly improved in the accuracy of 
segmentation and the degree of automation of the algorithm. The deep learning method is divided 
into three categories according to its network structure. 

2.2.1. CNN 

Lecun et al. [32] designed a LeNet network structure for handwritten digit recognition. The 
convolution layer is responsible for extracting image feature information, and the full connection 
layer synthesizes and classifies the previously removed features. For medical image segmentation, 
CNN continuously extracts target features and realizes feature dimensionality reduction by 
combining the convolution layer and pooling layer, then integrates local features into global features 
through a full connection layer. Finally uses activation functions, such as softmax for classification 
and output, to complete the task of segmentation. Simantiris et al. [33] used a dilated 
Convolutional Neural Network method for brain MRI. Thyreau et al. [34] used a cortical 
parcellation method for MR brain images based on Convolutional Neural Networks. Aslan et al. 
and Akila Agnes et al. [35,36] proposed a new CNN segmentation framework for the semantic 
segmentation of lung disease.  

The CNN algorithm has a simple network structure and fast operation, but the ability to extract 
image feature information is limited, which affects the image segmentation effect. 
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2.2.2. FCN 

Long et al. [14] proposed the full connection layer with convolution layer FCN based on CNN, 
which solved the problem that CNN can only extract local features. FCN uses convolution and 
pooling to achieve down-sampling in the coding process which can extract high-level semantic 
information, de-convolution to achieve up-sampling in the decoding process, and predict each class's 
score at the pixel level. Du et al. [37] introduced an novel framework for retinal vessel segmentation 
based on deep ensemble learning. Wu et al. and Xia et al. [38,39] redesigned the convolution layer. 
By expanding the convolution layer and adding multi-scale feature information, they segmented 
medical images and achieved good segmentation results. Liu et al. [40] used a residual network 
structure to segment the image of pulmonary nodules by extracting local features and context 
information. Roth et al. [41] used a two-stage method that can focus on the segmentation of organ 
and blood vessel images. 

The segmentation method based on FCN adopts the idea of down sampling and up sampling 
path designed instead of full connection and combines deep semantic information with shallow 
appearance information by designing jump connection. 

2.2.3. U-Net 

The FCN network structure is easy to lose image details, which affects segmentation results. 
Based on FCN, Ronneberger et al. [15] proposed a U-Net network including encoding and decoding 
structures. Each time the decoding is performed, the feature extraction part with the same number of 
channels is fused.  

Lin et al. [42] proposed a novel deep medical image segmentation framework called dual swin 
transformer U-Net (DS-TransUNet). Milletari et al. [43] used a suitable network V-Net for 3D image 
segmentation. Hoorali et al. [44] proposed the IRUNet segmentation network, which makes full use 
of inception and residual blocks in skip connections and combines multi-scale features to extract 
better features for segmentation. Huang et al. [45] proposed the UNet 3+ network, which uses 
full-scale jump connections to obtain multi-level feature information. Alom et al. [46] proposed the 
R2UNet network, which combines residual connectivity and circular convolution to extract 
multidimensional image information. 

Shen et al. [47] used the U-Net network as the basic framework, combined with the HarDNet 
module and attention module, for polyp image segmentation. Han et al. [48] designed the 
ConvUNeXt model to reduce the number of parameters while retaining the advantage of excellent 
segmentation. Gu et al. [49] proposed an attention-based integrated CNN (CA-Net) to achieve more 
accurate and interpretable medical image segmentation. Zhang [50] proposed the AResU-Net 
structure, which adds attention and residual network modules for brain tumor segmentation. Tong et 
al. [51] proposed an image segmentation network incorporating a triple attention mechanism to allow 
the segmentation network to focus more on the segmentation task.  

Among these three kinds of deep learning methods, U-Net is improved and developed on FCN, 
while FCN is developed and improved on CNN. Each kind of image segmentation method can be 
improved by single network architecture and segmented together with other network architectures. 
No matter which deep learning segmentation method is still faced with many challenges and tests in 
clinical application, we need further research. 
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3. The proposed architecture 

For the problems of blurred edges, uneven background distribution, and much noise interference 
in medical image segmentation, we propose a medical image segmentation algorithm based on deep 
neural network technology, which adopts a U-Net-like backbone structure and includes two parts: 
encoding and decoding, as shown in Figure 1. In the encoding process, the training image is input 
into the model. The image is passed through an encoder path with residual and convolutional 
structures to extract image feature information. The number of feature map channels will be doubled; 
down-sampling uses 2 × 2 Max-pooling convolutional layers for feature integration, and half will 
reduce the feature map size in aspect size after each down-sampling module. In the decoding process, 
the number of feature map channels will be reduced by half as each multi-branch residual block 
passes through the perceptual field of different sizes and adaptively captures the image feature 
information of different sizes; up-sampling uses Upsampling2D to double the size of the feature map. 
There is a lot of redundant information in the low-level image feature information extracted in the 
encoding stage during the jump connection. If it is directly mapped to the corresponding layer in the 
decoding stage, it will affect the segmentation effect. With the SCA module, the image features 
relevant to the segmentation task can be learned intensively during the jump connection process to 
improve the segmentation accuracy. The predicted image is the same size as the input image in the 
final output. 

The block-level representation of our proposed technique is shown in Figure 2. 

 

Figure 1. The proposed architecture. 

3.1. Attention mechanism 

The input information is selectively distinguished, located, and analyzed through the attention 
mechanism. The attention mechanism will also be applied in image segmentation, target tracking, 
and behavior detection in the neural network learning process. In deep learning, we can obtain the 
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image feature information of different spaces and latitudes by giving different weight information to 
the input image. How to build an attention mechanism model and integrate it into the mainstream 
neural network structure so that the simple neural network can achieve complex and high-precision 
image segmentation tasks is one of the problems that need to be solved. 

 

Figure 2. The block-level representation of our proposed technique. 

3.1.1. Spatial attention 

After analyzing the input image, the neural network assigns more weights to the regions closely 
related to the segmentation task, making the target segmentation region more prominent. At the same 
time, the image region feature information, which has nothing to do with the segmentation task, is 
suppressed. The input feature information of the image is multiplied by the spatial attention weight 
map to get the final output result. 

 x = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝑥 ) (1) 

 x = 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑥 ) (2) 

 x = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(w ∗ (𝑐𝑎𝑡[𝑥 , 𝑥 ]) + 𝑏 ) (3) 

 x = x ∗ 𝑥  (4) 

3.1.2. Channel attention 

The feature information on each channel is different, and the importance to the global feature 
information of the whole image is also different. By analyzing the segmented image, we can assign 
weight information to each channel, it indicating the importance of the channel information to the 
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global feature description. The input feature information of the image is multiplied by the channel 
attention weight map to get the final output result. 

 𝑥 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝑥 ) (5) 

 𝑥 = 𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝑥 ) (6) 

 𝑥 = 𝑤 ∗ 𝑤 ∗ 𝑤 ∗ 𝑥 + 𝑏 + 𝑏 + 𝑏  (7) 

 𝑥 = 𝑤 ∗ 𝑤 ∗ 𝑤 ∗ 𝑥 + 𝑏 + 𝑏 + 𝑏  (8) 

 𝑥 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑤 ∗ (𝑐𝑎𝑡[𝑥 , 𝑥 ]) + 𝑏 ) (9) 

 𝑥 = 𝑥 ∗ 𝑥  (10) 

3.1.3. Spatial channel attention 

In the paper, channel and spatial attention mechanisms are combined and given different 
weights. Finally, the output image feature information processed by the SCA module is as follows: 

 x = 𝑐𝑎𝑡[x , x ] (11) 

x  represent the image feature information processed by the spatial attention mechanism. 
x  represent the image feature information through the channel attention mechanism.  

Our proposed SCA module, as shown in Figure 3, with a general design idea similar to the 
architecture proposed by Fu et al. [52] integrates spatial and channel attention integration modules 
into an improved U-net network structure. The SCA module combines spatial and channel attention 
mechanisms to get comprehensive attention mechanism information. This module enhances the 
significant features of the up-sampling process by applying attention weights to high-dimensional 
and low-dimensional features.  

The SCA module proposed in this paper can address the feature information of medical images, 
highlight more of the key feature information of medical images, and suppress the interference of 
noise factors in medical images. 

 

Figure 3. The SCA architecture. 
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3.2. Residual convolution module 

He [53] first proposed the residual network, which effectively solves the contradiction between 
neural network depth and recognition accuracy, as shown in Figure 4. 

When a neural network reaches a certain depth, the output x of that layer is already optimal, and 
further deepening the network will result in degradation. In a convolutional neural network, it is 
difficult to ensure the weight of the following layer network. In the residual structure, the F(x) only 
needs to update a small part of the weight of F(x). It is more sensitive to output changes, and the 
parameters are adjusted more widely, which can speed up the learning speed and improve the 
performance of the model. 

 y = F(x, {W }) + W 𝑥 (12) 

where W  is mainly a 1 × 1 convolution used to match the channel dimensions of the residual 
structure model input x and model output y. F(x, {W }) is the residual mapping that the network 
needs to learn. When the residual structure has the same input and output dimensions, the definition 
is as follows: 

 y = F(x, {W }) + 𝑥 (13) 

The input information x is added to the feature calculation process, combined with the feature 
information of the upper layer to enrich the feature extraction of the network layer. 

 

Figure 4. The residual architecture. 

Through the residual structure design, the degradation problem in the process of deep structure 
network training can be well solved without adding additional parameters and calculations, 
improving model run speed and segmentation performance. 

3.3. Loss function 

The Loss function is the index of a neural network to find the optimal weight parameters [54]. 
There are many kinds of loss functions, including single loss function and mixed loss function. We 
combine the Diceloss [55] and Focal loss [56] as the loss function in this paper. This function can 
combine the two functions' advantages and fully use semantic information to make the network 
better finds the optimal parameters for optimization learning. 

ℒ  is the loss function of Dice loss, it is mainly used to measure the degree of loss of 
similarity between the segmented image predicted by the model and the real segmented image, and 
the value range is [0,1]. The calculation formula of the function is shown in Eq (14). |X ∩ Y|  
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represent the number of intersections between an actual segmented image and a model predicted 
image, |X| and |Y| represent the number of real segmented images and model predicted images 
respectively. 

 ℒ = 1 −
| ∩ |

| | | |
 (14) 

ℒ  is a loss function to deal with the unbalanced classification of samples. According to 
the difficulty of sample resolution, different weight coefficients α are added to the samples to reduce 
the adverse effects on training loss caused by the imbalance of sample classification. 

 ℒ = −α × (1 − p) × log (𝑝) (15) 

p ∈ [0,1]  is the probability of the model predicting the positive sample. ℒ  is a 
modification of the cross entropy loss function. The total loss function proposed in this paper is 
ℒ , The formula is shown in Eq (16). 

 ℒ = ℒ + ℒ  (16) 

4. Experimental results 

The main content of this section is to compare and verify the models based on the analysis of 
three medical image data sets. First of all, the three data sets are described and pre-processed. Then it 
describes the operating parameters of the model and related evaluation indicators. Finally, the 
segmentation results of different network structures on the three data sets are compared, analyzed, 
and displayed visually, including different model segmentation results, model ACC diagrams, Loss 
diagrams, and so on. 

4.1. Datasets 

The DRIVE data set is mainly used for the study of vascular segmentation in retinal images. 
There are 40 retinal vascular images, including 33 fundus images of healthy people and seven fundus 
images of diabetic retinal lesions. The neural network needs more data to learn, so we carry on the 
data expansion operation to the picture of the training set. First of all, the input image is segmented 
into different parts. We generate a total of 100000 parts, of which 90000 are used as training sets and 
10000 as validation sets. According to the requirements of the neural network model, the size of each 
part of the picture is set to 32 × 32. 

The ISIC2018 data set is from the Kaggle [57]. The dataset has 2594 images, the original image 
size is 700 × 900, and the image size is resized to 256 × 256 as needed. 

The COVID-19 CT contains a series of CT images of lung image segmentation and the 
corresponding label data, released by Kaggle in 2017. The dataset has 301 images; the original image 
size is 512 × 512, and the image size is resized to 256 × 256 as needed. 
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4.2. Experimental environment and parameter metrics 

4.2.1. Implementation details 

All models in this paper were run on the open-source TensorFlow 2.4.1 platform and used the 
NVIDIA GeForce Gtx1080 for experiments. We all used picture rotation and flipping operations for 
the samples participating in the training to increase the data. First, rotate each image 60 degrees apart 
once, followed by a horizontal pan of 30-pixel points, and finally, a random crop once. During the 
training, we set the picture of the DRIVE data set to 32 × 32 and the ISIC2018 data set and 
COVID-19 CT data set pictures to 256 × 256. The model learning rate is 0.0001, the dropout ratio 
is 0.5, and use the Adam optimization algorithm. We set the DRIVE data set and ISIC2018 data set 
the batch size is 8 and the COVID-19 CT data set batch size to 32. 100 iterations were carried out in 
each experiment. 

To further avoid the problem of over-fitting in the model training process and reasonably 
evaluate the model’s segmentation performance, we use 5-fold cross-validation to optimize the 
whole network. 

4.2.2. Metrics 

We use several evaluation metrics, including Area under the ROC curve (AUC), Sensitivity 
(SENS), Precision (PRC), Jaccard similarity score (JS), Specificity (SPE), DICE, and IOU. 

The JS coefficient measures the similarity between the two sets of predicted and valid 
segmented pixels. 

 JS =  (17) 

The DICE coefficient measures the similarity between the predicted segmented labeled graph and 
the true segmented labeled graph. 

 Dice =  (18) 

The IOU can reflect the overlap rate between the predicted segmented label map and the real 
segmented label map. 

 Iou =  (19) 

The sensitivity calculates the proportion of correctly segmented target pixels to the target class 
pixels in the true segmented label map. 

 Sens =  (20) 

where TP is the pixels correctly segmented in the medical segmentation results, TN is the pixels 
incorrectly segmented in the medical segmentation results, FP is the background pixels incorrectly 
treated as medical pixels in the medical segmentation results, and FN is the medical pixels 
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incorrectly treated as background pixels in the segmentation results. 

4.3. Analysis of experimental results 

To verify the effectiveness and superiority of the proposed Residual-Attention-Unet network, 
the segmentation experiments are carried out on DRIVE, ISIC2018, and COVID-19 CT datasets and 
compared with Attention-Unet, Dense-Unet, U-Net, Unet++, and Residual-Unet. The model test 
results are shown in Tables 1–3. 

Table 1. Segmentation results of different network structures on DRIVE. 

Model AUC PRC JS SENS SPE DICE IOU 

Unet [15] 0.9559 0.8707 0.6628 0.7348 0.9728 0.7314 0.9452 

Dense-Unet [58] 0.9725 0.8910 0.6764 0.7554 0.9867 0.7529 0.9523 

Unet++ [16] 0.9699 0.8839 0.6755 0.7627 0.9848 0.7359 0.9483 

Attention-Unet [59] 0.9759 0.8999 0.6953 0.7800 0.9858 0.7628 0.9504 

Residual-Unet [59] 0.9751 0.8996 0.6799 0.7499 0.9888 0.7451 0.9593 

Ours 0.9762 0.9034 0.7070 0.8070 0.9905 0.7826 0.9683 

Table 2. Segmentation results of different network structures on ISIC2018. 

Model AUC PRC JS SENS SPE DICE IOU 

Unet [15] 0.8557 0.8235 0.6648 0.7262 0.9452 0.8755 0.7786 

Dense-Unet [58] 0.8733 0.8765 0.7244 0.7623 0.9843 0.8835 0.7937 

Unet++ [16] 0.8770 0.8807 0.7324 0.7690 0.9850 0.8783 0.7831 

Attention-Unet [59] 0.8741 0.8750 0.7239 0.7652 0.9829 0.8791 0.7851 

Residual-Unet [59] 0.8604 0.8689 0.7026 0.7343 0.9801 0.8852 0.7743 

Ours 0.8995 0.9419 0.7680 0.8974 0.9865 0.8904 0.8069 

Table 3. Segmentation results of different network structures on COVID-19 CT. 

Model AUC PRC JS SENS SPE DICE IOU 

Unet [15] 0.9678 0.9237 0.8478 0.9669 0.9487 0.7982 0.8253 

Dense-Unet [58] 0.9916 0.9865 0.9709 0.9890 0.9942 0.9257 0.9418 

Unet++ [16] 0.9913 0.9884 0.9740 0.9866 0.9960 0.8765 0.9023 

Attention-Unet [59] 0.9905 0.9891 0.9747 0.9900 0.9970 0.8963 0.9116 

Residual –Unet [59] 0.9859 0.9849 0.9645 0.9754 0.9965 0.8769 0.9008 

Ours 0.9935 0.9915 0.9809 0.9904 0.9971 0.9462 0.9537 

As can be seen from Table 1, for the DRIVE data set, the AUC, PRC, JS, SENS, SPE, DICE, 
and IOU of the U-Net network are 0.9559, 0.8707, 0.6628, 0.7348, 0.9728, 0.7314, and 0.9452, 
respectively. Compared with U-Net, the Residual-Attention-Unet proposed in this paper increased by 
2.03, 3.27, 4.42, 7.22, 1.77, 5.12 and 2.31% on AUC, PRC, JS, SENS, DICE and IOU, respectively. 
This paper proposes that compared with these networks, the indicators of AUC, PRC, JS, SENS, SPE, 
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DICE, and IOU have been improved to a certain extent, up to 0.6, 1.95, 3.15, 5.71, 0.57, 4.67 and 
2.0%, respectively. 

As can be seen from Table 2, for the ISIC2018 data set, the AUC, PRC, JS, SENS, SPE, DICE, 
and IOU of the U-Net network are 0.8557, 0.8235, 0.6648, 0.7262, 0.9452, 0.8755, and 0.7786, 
respectively. Compared with U-Net, the Residual-Attention-Unet proposed in this paper increased by 
4.38, 11.84, 10.32, 17.12, 4.13, 1.49 and 2.83% on AUC, PRC, JS, SENS, DICE and IOU, 
respectively. This paper proposes that compared with these networks, the indicators of AUC, PRC, 
JS, SENS, SPE, DICE, and IOU have been improved to a certain extent, up to 3.91, 7.3, 6.54, 16.31, 
0.64, 1.21 and 3.26%, respectively. 

As can be seen from Table 3, for the COVID-19 CT data set, the AUC, PRC, JS, SENS, SPE, 
DICE, and IOU of the U-Net network are 0.9678, 0.9237, 0.8478, 0.9669, 0.9487, 0.7982, and 
0.8253, respectively. Compared with U-Net, the Residual-Attention-Unet proposed in this paper 
increased by 2.57, 6.78, 13.31, 2.35, 4.84, 14.8 and 12.84% on AUC, PRC, JS, SENS, DICE and 
IOU, respectively. This paper proposes that compared with these networks, the indicators of AUC, 
PRC, JS, SENS, SPE, DICE, and IOU have been improved to a certain extent, up to 0.76, 0.66, 1.64, 
1.5, 0.29, 6.97 and 5.29%, respectively. 

Table 4. Comparisons against existing approaches on DRIVE, ISIC2018 and COVID-19 CT. 

Datasets Methods DICE IOU PRC SENS 

DRIVE 

DFUNet [60] 0.7962 0.9605 0.9024 0.7863 

IterNet [61] 0.7891 0.9692 0.8973 0.7735 

RV-GAN [62] - 0.9762 - 0.7927 

Ours 0.7826 0.9683 0.9034 0.8070 

ISIC2018 

TransFuse [63] 0.8927 0.8063 0.9466 0.9128 

SANet [64] 0.8859 0.7952 0.9439 0.8760 

UNeXt-S [65] 0.8833 0.7909 0.9348 0.8715 

Ours 0.8904 0.8069 0.9419 0.8974 

COVID-19 CT 

BCDU-Net [66] 0.9794 0.9477 0.9753 0.9979 

R2U-Net [46] 0.9431 0.9746 0.9729 0.9832 

MDA-Net [67] 0.9855 0.9536 0.9864 - 

Ours 0.9462 0.9537 0.9915 0.9904 

We also compare the proposed method in this paper with several recently proposed 
segmentation methods for analysis. Table 4 shows the performance of different segmentation 
methods on the DRIVE, ISIC2018 and COVID-19 CT datasets. The method proposed in this paper 
achieves good results on all three datasets. Compared with recent research methods, the method in 
this paper achieves optimal performance on some evaluation metrics on different datasets, and some 
metrics are close to the optimal segmentation performance. 

To verify the effectiveness and superiority of the proposed Residual-Attention-Unet network, 
the segmentation experiments are carried out on DRIVE, ISIC2018 and COVID-19 CT data sets and 
compared with Unet, Unet++, Dense-Unet, Residual-Unet, Attention-Unet, and 
Residual-Attention-Unet. To ensure the fairness of the experimental results, this paper runs the six 
comparison networks in the same experimental environment, and their visual effects are shown in 
Figures 5–7. 
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Figure 5. Model segmentation results in the DRIVE dataset. 

Figure 5 shows the segmentation effect of various networks on the DRIVE data set. The first 
and second columns are the original picture and the segmentation result diagram, respectively, and 
the third and eighth columns are the resulting diagram of six network segmentation, respectively. As 
seen in Figure 5, several networks can segment the details of the main part of blood vessels. Still, the 
Residual-Attention-Unet network proposed in this paper can segment the most detailed information, 
and the segmentation effect is the best. 

 

Figure 6. Model segmentation results in the ISIC2018 dataset. 
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Figure 6 shows the segmentation effect of various networks on the ISIC2018 data set. The third 
and eighth columns are the resulting diagram of six network segmentations. As seen in Figure 6, 
several networks can segment the edge information of skin cancer images. Still, the 
Residual-Attention-Unet network proposed in this paper is better than others in dealing with the edge 
part. The segmentation boundary is more precise, the structure is relatively complete, and it achieves 
the best segmentation performance. 

 

Figure 7. Model segmentation results in the COVID-19CT dataset. 

 

Figure 8. Accuracy and loss on the DRIVE dataset. 
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Figure 9. Accuracy and loss on the ISIC2018 dataset. 

 

Figure 10. Accuracy and loss on the COVID-19 CT dataset. 

Figure 7 shows the segmentation effect of various networks on the COVID-19 data set. The 
third and eighth columns are the resulting diagram of six network segmentations. From Figure 7, the 
U-Net has learned too many redundant features. There are always obvious noise points; several other 
networks also have good segmentation performance on the segmentation boundary, but it pays too 
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much attention to the image boundary, thus ignoring the internal features of the image. However, the 
Residual-Attention-Unet network proposed in this paper retains more image details, and the 
segmentation results are basically consistent with the standard segmented images. 

We also compare the accuracy and loss of the different models on the three datasets, as shown 
in Figures 8–10. 

The comparative analysis of the three figures shows that the model proposed in our paper 
converges fast on the three datasets. Finally, the model is almost converged and achieved a high 
accuracy rate. 

From the loss diagrams of the above three data sets, we can find that after 100 rounds of 
experimental iterations, the network reaches the convergence state. The convergence rate of each 
model is also different on different data sets. Dense-Unet and Unet++ converge for DRIVE data sets 
after 40 rounds of experimental iterations. For ISIC2018 data sets, Dense-Unet and Res-Unet 
converge after 40 experimental iterations. 

 

Figure 11. Deployed proposed deep-learning model in clinical application. 

5. Discussion 

The U-Net network structure has achieved excellent performance in the field of medical image 
processing, but the U-Net network itself has problems such as incomplete feature extraction and lack 
of multi-scale feature information processing capability, therefore, researchers continue to propose 
improved segmentation networks based on the U-Net structure, such as Dense-Unet, Unet++, 
Attention-Unet, Residual-Unet, etc. The Dense-Unet segmentation network, by expanding the 
convolution with different expansion rates, expands the perceptual field without increasing the 
computational cost and effectively prevents the loss of spatial information, Dense-Unet segmentation 
network, by convolving with different expansion rates of dilation, the expanded perceptual field does 
not increase the computational cost and effectively prevents the loss of spatial information. 
attention-Unet segmentation network, by eliminating the influence of noise and invalid information 
in the image through the attention mechanism, reconstructs the contextual features in the image. 

These network structures further improve the image segmentation accuracy by extracting 
multi-scale feature information and deepening the segmentation network depth, etc. Based on these 
excellent segmentation networks, we further optimize them in two aspects: for the medical image 
feature information extracted by the small number of layers of the U-Net network is not sufficient, 
the original convolutional layers are replaced by the residual network structure, and more levels of 
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image feature information are extracted by deepening the network depth; the gradient disappearance 
problem caused by the deepening of the model is avoided while improving the network performance. 
On the other hand, in the encoding and decoding feature extraction, the network can be used to 
extract the image information. On the other hand, we add the SCA module in the encoding and 
decoding feature extraction stages. To make the network achieve a more accurate capture of the main 
part of medical images, a dual-channel attention mechanism is added to the expansion part of the 
model to highlight the key feature information of medical images and suppress the interference of 
noise factors in medical images, which can effectively improve the segmentation accuracy of the 
whole network. 

Tables 1–3 show the evaluation results of the network models of Unet, Unet++, Dense-Unet, 
Residual-Unet, Attention-Unet and Residual-Attention-Unet on the DRIVE and ISIC2018 and 
COVID-19CT datasets, respectively. Figures 5–7 show the experimental results of segmentation of 
network models such as Unet, Unet++, Dense-Unet, Residual-Unet, Attention-Unet and 
Residual-Attention-Unet on DRIVE and ISIC2018 and COVID-19CT datasets, respectively. Through 
the analysis of the above graphical results, the proposed networks in this paper have high accuracy 
and acceptable segmentation results. Meanwhile, the accuracy and loss plots of different models on 
DRIVE, ISIC2018 and COVID-19CT datasets are compared and analyzed as in Figures 8–10, the 
proposed model achieves good results in terms of accuracy and convergence speed of loss. 

Although we evaluated the performance of the network extensively on three different datasets, 
our network still needs some improvements. First, due to objective factors, we did not try to validate 
the effect of the connection method of different attention modules on the network structure; second, 
our network did not try to validate the 3D medical image segmentation dataset. 

Meanwhile, the Transformer structure, which is popular in natural language processing tasks, 
has been widely used in medical image segmentation in recent years, and we will further investigate 
the fusion of Transformer and U-Net and other network structures. 

6. Conclusions 

Based on the analysis of the U-Net segmentation network and related improved medical image 
segmentation networks, we propose an optimized medical segmentation network, which is mainly 
manifested in two aspects: for the U-Net network with few layers, the medical image feature 
information extracted is not sufficient, the original convolutional layers are replaced by the residual 
network structure, and more layers of image feature information are extracted by deepening the 
network. The network performance is improved while avoiding the problem of gradient 
disappearance caused by the deepening of the model. On the other hand, we add the SCA module in 
the encoding and decoding feature extraction stages. To make the network achieve a more accurate 
capture of the main part of the medical image, a dual-channel attention mechanism is added to the 
expansion part of the model to highlight the key feature information of the medical image and 
suppress the interference of noise factors in the medical image, which can effectively improve the 
segmentation accuracy of the whole network. The algorithm is compared and analyzed on several 
medical image datasets. The proposed network structure has improved the evaluation indexes of 
DICE, Precision, and IOU compared with other improved U-Net segmentation networks, and better 
segmentation results are obtained. We will further expand the datasets and extend the method to 3D 
medical image segmentation and accurate segmentation of other diseases in the future. 
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