
MBE, 20(6): 10200–10222.
DOI: 10.3934/mbe.2023447
Received: 29 December 2022
Revised: 05 March 2023
Accepted: 10 March 2023
Published: 30 March 2023

http://www.aimspress.com/journal/MBE

Research article

PBFT optimization algorithm based on community contributions

Pengpeng Wang, Xu Wang, Yumin Shen, Jinlong Wang* and Xiaoyun Xiong

School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520,
China

* Correspondence: Email: qdwangjinlong@163.com; Tel: +8613605324107.

Abstract: Community governance is the basic unit of social governance, and it is also an important
direction for building a social governance pattern of co-construction, co-governance and sharing.
Previous studies have solved the problems of data security, information traceability and participant
enthusiasm in the process of community digital governance by building a community governance
system based on blockchain technology and incentive mechanisms. The application of blockchain
technology can solve the problems of low data security, difficulty in sharing and tracing and low
enthusiasm on the part of multiple subjects regarding participation in community governance. The
process of community governance involves the cooperation of multiple government departments and
multiple social subjects. Under the blockchain architecture, the number of alliance chain nodes will
reach 1000 with the expansion of community governance. The existing consensus algorithms for
coalition chains are difficult to meet the high concurrent processing requirements under such large-
scale nodes. An optimization algorithm has improved the consensus performance to a certain extent,
but the existing systems still cannot meet the data needs of the community and are not suitable for
community governance scenarios. Since the community governance process only involves the
participation of relevant departments in users, all nodes in the network are not required to participate
in the consensus under the blockchain architecture. Therefore, a practical Byzantine fault tolerance
(PBFT) optimization algorithm based on community contribution (CSPBFT) is proposed here. First,
consensus nodes are set according to different roles of participants in community activities, and
participants are given different consensus permissions. Second, the consensus process is divided into
different stages, and the amount of data processed by each consensus step is reduced. Finally, a two-
level consensus network is designed to perform different consensus tasks, and reduce unnecessary
communication between nodes to reduce the communication complexity of consensus among nodes.
Compared with the PBFT algorithm, CSPBFT reduces the communication complexity from O(N2) to
O(N2/C3). Finally, the simulation results show that, through rights management, network level setting

10201

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

and consensus phase division, when the number of nodes in the CSPBFT network is 100–400, the
consensus throughput can reach 2000 TPS. When the node in the network is 1000, the instantaneous
concurrency is guaranteed to be above 1000 TPS, which can meet the concurrent needs of the
community governance scenario.

Keywords: community digital governance; blockchain; consensus algorithm; high concurrency;
throughput

1. Introduction

With the rapid development of modern information technology and the virtual society, using big
data, the Internet and other technologies to build community digital governance models, provide
accurate personalized services and reshape the community governance structure has become a
mainstream activity [1]. However, there are many problems and challenges in the process of
community digital governance, including low data security, difficulty in sharing and tracing and low
enthusiasm on the part of multiple subjects regarding participation in community governance [2,3].

The emergence of blockchain technology [4] provides new technical ideas for building digital
governance models. Some studies [3,5] have applied blockchain technology to community governance
and solved the problems existing in traditional digital governance by utilizing the characteristics of
blockchain (e.g., multi-party data storage, data tamper-resistance, data traceability). Applying
blockchain to community governance scenarios can enable secure and credible data management,
promote data sharing and build an incentive system [6,7] based on blockchain to improve the
enthusiasm of multiple subjects to participate in governance. The process of community governance
involves the cooperation of multiple government departments and multiple social subjects, which
belongs to the alliance chain scenario. With the expansion of the scale of community governance, its
number of nodes can reach 1000 nodes. The large-scale node environment puts forward higher
requirements for the efficiency of the blockchain consensus algorithm.

Moreover, the performance of the systems built in these studies is greatly limited when they are
applied to large user groups involving high population density and wide administrative areas. Owing
to the large number of user roles in the community, there are problems of malicious identity nodes and
node disconnection. When applying blockchain technology to community digital governance, it is
necessary to use the Byzantine fault-tolerant consensus algorithm. The performance of existing
Byzantine fault-tolerant consensus algorithms, such as the practical Byzantine fault tolerance (PBFT)
algorithm, can no longer meet the needs of community digital governance scenarios. When the number
of nodes exceeds 100, the performance of this algorithm drops rapidly.

In order to improve the performance of the PBFT algorithm, researchers have proposed various
schemes, including WBFT [8] and mPBFT [9], and optimized them in different ways relating to the
complexity of network communication, token settings and consensus message content. When the
number of nodes exceeds 100, existing methods can effectively suppress the problems of reduced
blockchain throughput and rapid increase in consensus time delay. However, in the case of community
scenarios with more than 50,000 inhabitants, the concurrent demand of blockchain will exceed 1000 TPS
Although the existing research has optimized the coalition chain consensus algorithm, it still cannot
meet the high concurrency processing requirements of large-scale nodes in the community governance

10202

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

scenario. In addition, the community governance process only involves the participation of relevant
departments and users, and it does not require all nodes in the network to participate in the consensus
under the blockchain architecture. In response to the above problems, this paper proposes a PBFT
optimization algorithm based on community contribution. Specifically, this work makes the following
two contributions:

1) According to the difference between community user identity and work contribution, and by
setting different consensus permissions for user nodes, the consensus work is divided into three stages,
where each consensus stage only agrees on relevant data in that stage, thereby reducing the amount of
consensus data and communication pressure.

2) A two-level consensus network is designed. This reduces unnecessary communication between
nodes in different stages to reduce communication complexity, so as to optimize the throughput and
consensus delay of the blockchain and provide a higher concurrency and response speed for
community digital governance.

The rest of this paper is organized as follows. Section 2 summarizes existing related work; Section 3
elaborates on the scheme of this paper; and Section 4 verifies and evaluates the performance of the
consensus algorithm designed in this paper, as well as analyzes the security of the scheme. Finally,
Section 5 concludes the paper.

2. Related work

2.1. Blockchain community governance

With the advancement of economic development and urbanization, the scale of communities
continues to expand, leading to a rapid increase in livelihood problems. A more efficient community
governance model is needed to improve the work efficiency of the government and communities.

A digital platform in this context is a community digital governance model built with the help of
big data, the Internet and other information technologies. It enables community governance affairs to
be networked, thereby facilitating coordinated mobilization among and within the government, society
and citizens, as well as improving the effective utilization of government and social resources [10].
Community digital governance has the benefits of quickly solving governance problems, improving
governance efficiency, optimizing governance networks, etc., but it still faces many challenges in
practical application [2], such as low data security, difficulty in sharing and tracing and low enthusiasm
on the part of multiple subjects regarding participation in community governance.

The concept of the blockchain was first proposed by Satoshi Nakamoto [4]. It is a trustless and
decentralized distributed ledger technology jointly maintained by multiple nodes. Once the data have
been verified by the blockchain nodes and uploaded to the block after the chain, they are permanently
stored and cannot be subjected to tampering. Owing to the characteristics of multi-party data storage,
the difficulties of data tampering and data traceability, the applicability of blockchain technology in
community governance has been studied from various different perspectives. Garcia-Garcia et al. [11]
introduced five scenarios involving the use of blockchain technology in collaborative processing with
community issues and made comparative references to the dimensions of the blockchain platform
architecture, modeling language, intelligence and execution engine. Han [3] analyzed the application
prospects of blockchain in community governance and designed a community governance mechanism
based on blockchain, which could help to promote scientific community governance decision-making,

10203

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

service precision and management refinement. Elisa et al. [5] proposed an e-government system
framework based on blockchain technology, which could ensure data security in the process of dealing
with community issues and improve the privacy of data and the credibility of governmental departments.

Previous studies have integrated blockchain technology into community digital governance
platforms, which effectively solved the problems of low data security, difficulty in sharing and tracing
and low enthusiasm on the part of multiple subjects regarding participation in community governance
faced by traditional community governance. However, in the case of a large administrative area and a
large number of people, the performance limitations of the blockchain will not be able to meet the
operational demands of community digital governance services. Therefore, the data management
efficiency of the blockchain needs to be optimized.

2.2. Consensus algorithm

The Asa blockchain consists of many nodes, and malicious attacks are possible, which can lead
to Byzantine problems. According to the different settings of node identities in the blockchain network,
consensus algorithms can be divided into Byzantine algorithms [12] and non-Byzantine algorithms [13].
Consensus errors in non-Byzantine algorithms are generally related to system failures that occur in
distributed systems, such as machine downtime and node reporting errors, but there are no malicious
nodes in the system that interfere with the distributed system. When malicious nodes in the system
carry out malicious activities such as tampering with data, non-Byzantine fault-tolerant algorithms
cannot guarantee data security and system stability. Existing non-Byzantine algorithms, such as Paxos,
VR and Raft, are difficult to apply to open networks with many nodes and have low reliability.

Byzantine fault-tolerant consensus algorithms can solve various limitations of non-Byzantine
consensus algorithms, including their inability to deal with malicious nodes and the difficulty of
applying them to the open Internet environment. To this end, researchers have designed a series of
Byzantine fault-tolerant consensus algorithms that can solve any type of error in distributed systems
to a certain extent and ensure the security and stability of the distributed system [14,15]. Byzantine
fault-tolerant consensus algorithms can deal with the existence of malicious nodes in the environment
and ensure the security and activity of the system. However, the complex consensus verification logic
leads to a high network communication cost of existing Byzantine consensus algorithms. For example,
when the PBFT consensus algorithm is applied to community governance, owing to the large number
of nodes in the blockchain network, it cannot achieve efficient transactions.

To solve the problem of low consensus efficiency, it is necessary to achieve consensus and
improve transaction efficiency through reasonable consensus master node selection methods and
optimized consensus methods. WBFT [8] dynamically weights the nodes participating in the consensus,
distinguishing malicious nodes and reducing the impact of malicious nodes, but it fails to solve the
problem of consensus data redundancy and cannot effectively improve consensus efficiency. mPBFT [9]
adjusts the probability of nodes participating in block production according to the reliability of nodes
and reduces network operating costs, but it lacks a method for evaluating node reliability and cannot
be applied in real scenarios. SG-PBFT [16] uses a fractional grouping mechanism in an Internet of
Vehicles scenario, which reduces the communication complexity between nodes and optimizes
consensus efficiency. The above consensus algorithms assign different weights to nodes in the network
based on equity, reliability and ratings as reference certificates, etc., and differentiate each node by
weight when selecting a consensus master node. However, the reference certificates set in the network

10204

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

do not have reasonable distribution rules, so effective incentives cannot be provided based on
community user contributions. DPN-PBFT [17], SHBFT [18] and other consensus algorithms
reconstruct the blockchain network communication method and divide the nodes in the network into
node organizations according to factors such as geographical scope, network access time or user
identity, reducing the number of consensus communications between nodes and improving the overall
consensus efficiency. DPN-PBFT and SHBFT grant the same authority to nodes in the network,
without distinguishing node roles, and are not suitable for community digital governance scenarios
where user permissions are differentiated. tPBFT [19] compresses the consensus message by
simplifying the content of information sent between nodes in each stage of the consensus process,
thereby reducing the consensus communication time and the delay and success of block generation by
nodes. Rate and other factors measure the credibility of a node in the network and serve as a reference
for selecting the master node for subsequent block production work. However, the tPBFT algorithm
lacks the step of ordinary nodes participating in consensus certification and does not fully realize
decentralized management.

The existing Byzantine consensus optimization algorithms have improved on the performance of
the PBFT algorithm to a certain extent, but they have no clear means of dividing the identity and role
of the nodes in the network. When they are applied to a community governance scenario, they cannot
provide sufficient throughput, resulting in a block. There are also problems such as poor concurrency
and long delay time when accessing services on the chain.

3. CSPBFT consensus algorithm

In order to meet the high concurrent access requirements of community digital governance
scenarios and solve the shortcomings of existing Byzantine optimization algorithms, we used the work
contribution of users in community governance as a carrier to design a PBFT optimization algorithm
based on community contributions (PBFT Optimization Algorithm Based on Community Contribution,
referred to as CSPBFT). Since the community governance process only involves relevant departments
and users, the relevant data do not require all nodes in the network to participate in the consensus. The
CSPBFT algorithm organizes and divides the blockchain network and divides the consensus work into
stages, where each stage runs periodically. This reduces the complexity of communication between
nodes during consensus work. The verification department in community governance forms the
monitoring node, and the departments responsible for the organization of each community cluster form
the initial subnet master node. The initial subnet master node invites the work department to join the
regional sub-organization as an ordinary node. When a node joins the network, the subnet master node
conducts identity verification. The node settings and division in the network are shown in Figure 1.

10205

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

Figure 1. Consensus network design.

As shown in Figure 1, the consensus network consists of two levels. SubworkerA-X forms the
consensus main network, and the consensus subnetwork is composed of subworker nodes and ordinary
nodes: for example, SubworkerA and peerA1 to peerA3 form a subnetwork. The nodes in the
subnetwork participate in the first stage of CSPBFT, and the subworker nodes in the subnetwork
are elected. Subworker nodes in each sub-network participate in the second and third stages of
CSPBFT for data consensus.

3.1. Consensus global settings

In the online community governance scenario, the total number of nodes in the network is N, and
the node types can be divided into the following five categories according to the functions of users
participating in the consensus work: 1) consensus master node (primary node); 2) subnet master nodes
(subworker node); 3) subnet common node (peer node); 4) monitoring node (check node); 5) candidate
node (candidate node). CSPBFT sets up corresponding node accounts for each community governance
user. Each user’s account has three asset certificates: credit certificate (CTN), consensus asset (CAS)
and temporary consensus asset (CAST). Users can convert part of the CTN into a temporary consensus
asset CAST as part of the consensus contributions used. In CSPBFT, the consensus network consists
of a two-layer network. The main network is composed of subnet master nodes responsible for
generating blocks, and the subnet master node list is composed of C subworker nodes. Each subworker
node is elected by peer nodes in the subnetwork. The CSPBFT network consensus communication
process is shown in Figure 2.

10206

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

Figure 2. CSPBFT consensus communication process.

The consensus work of various nodes in the network is as follows:
1) Consensus master node: belongs to the subnet master node and is responsible for the current

round of consensus block production.
2) Subnet master nodes (L1–L4): the nodes in the subnetwork that participate in the information

consensus work are elected and rotated by the community manager of each area in the community.
During the term of office, they will perform identity verification and network access for new access
nodes in the organization to which they belong.

3) Subnet common node (P1–P4): composed of ordinary users in the community and community
manager, they communicate with the subnet master node and participate in the election and voting for
the new subnet master node after the end of the term of the subnet master node (election to become
the subnet master node).

4) Monitoring node (H1 and H2): responsible for various regulatory departments of the
government; the final determination is made during the consensus process, and the consensus results
of the consensus master nodes are verified.

5) Candidate node (L4): serves as the rotation community manager for the next term. Ordinary
nodes in the subnetwork become master nodes of the subnetwork through the voting mechanism. During
the voting process, peer nodes temporarily become candidate nodes until the voting is completed.

3.2. Consensus node selection

In the election stage of the CSPBFT consensus principle, the candidate nodes in the subnetwork are
selected according to consensus by voting. The verification work in the consensus process and the result
verification stage are carried out by the consensus master node and the monitoring node responsible for
block generation. This section explains the methods used to select candidate nodes, consensus master
nodes and monitoring nodes.

10207

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

3.2.1. Candidate node selection

When the CSPBFT network is constructed, subworker nodes are selected from each subnetwork
in the secondary network to form the initial subnetwork master node list. In the subsequent consensus
process, peer nodes in the subnetwork vote to update the subworker nodes in their respective
subnetworks. Regarding this article’s settings, the subworker node in the subnetwork performs one
block production or a term is re-elected. The subworker node voting in the subnetwork is divided into
three stages: 1) becoming a candidate node; 2) voting by peer nodes in the subnetwork; 3) candidate
nodes becoming subworker nodes. The client selects candidate nodes following the PBFT selection
rules; the calculation method is shown in Eq (1):

� = ����� (1)

where k is the current term number of the subnetwork. When the tenure is updated, the lth community
manager node in the subnetwork is converted from a normal node to a candidate node, and the client
sends election information to the candidate node. If the current candidate node fails and the client
response times out, the term number k will be automatically incremented by 1, the next term will be
entered and the election work will be sent to the new candidate node again.

3.2.2. Consensus and verification node selection

In the consensus process, this method divides nodes into consensus nodes and monitoring nodes
according to the business scenarios of community governance. Nodes follow the PBFT election rules
for selection rules.

The consensus node selection process is as follows. The subworker node list and the block node
list in the CSPBFT network are set to record the subworker nodes of C organizations in the network
and the block nodes of the last 2C/3 blocks. The calculation method used for the client to select the
current block consensus master node is shown in Eq (2):

� = ����� (2)

where v is the current consensus round, and the consensus master node of this round is the lth node in
the subworker node list. When selecting the lth node as the consensus master node, it is necessary to
verify the list of block-producing nodes. The same consensus master node is allowed to continuously
perform the blocking of two blocks. In order to avoid the problem that there are malicious nodes in the
subworker node and a large number of illegal blocks being continuously generated, it is necessary to
ensure that the number of blocks produced by a consensus master node in the last 2C/3 blocks does
not exceed two.

The monitoring node selection process is as follows. When selecting a monitoring node for
secondary verification of the consensus result, the selection principle is the same as that for the
consensus master node. The CSPBFT network sets the verification master node list and the verification
node list to respectively record the S verification master nodes in the network and the verification
master nodes of the last 2S/3 blocks. The calculation method used by the client to select a monitoring
node is shown in Eq (3):

� = ����� (3)

10208

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

The monitoring node for this round of verification is the lth node in the list. According to the
CSPBFT settings, when selecting the lth node as the verification master node, it is necessary to ensure
that the number of verifications performed by a verification master node in the latest 2S/3 blocks does
not exceed three.

3.3. CSPBFT consensus principle

In order to improve the efficiency of consensus among nodes and ensure the accuracy of
consensus, while resisting the attack of malicious nodes and speeding up the process of reaching
consensus, the CSPBFT presented here is designed as a consensus algorithm consisting of three stages:
election stage, consensus process and result verification. This section explains the functions and
principles of the three stages.

3.3.1. Election stage

The first stage of the CSPBFT consensus algorithm is the election stage, which is used to elect
the subnet master nodes in each subnetwork. The election phase consists of four steps: requestE, send,
election and vote. The election process of the subnet master node is shown in Figure 3.

requestE: the client sends an election message to the candidate node in the election subnet, and
the candidate node processes the received client requestE message and performs the next operation.

send: in an election cycle, the peer node is converted to a candidate node and sends election
notifications to other peer nodes in the subnetwork.

election: after the peer node receives the election message from the candidate node, it verifies the
content of the message, votes for the candidate node after the message is verified and sends a
verification message to other nodes in the subnetwork (including the candidate node).

vote: after each node in the subnetwork receives the verify message, it counts the weights of the
received nodes whose verification is true or false and sends the majority selection result to the client.

Figure 3. Election process.

After the execution of the four steps in the election phase (the pseudo-code is shown in Algorithm 1),
the elected subnet master node participates in the information consensus work during this term.

10209

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

Algorithm 1: Election Phase Start
Step1: RequestE

r := new(Requeste)// Create a RequestE object for parsing messages from clients
tenureIDAdd()//，enter a new term
signInfo := RsaSignBySha256(r , node.rsaPrivKey)// Encrypt message content
s := Send(*r , d , tenureID , signInfo)// Build the Send object
broadcast(kSend , s , P)// Send election information to P (candidate node), Communication
times:

Step2: Send
s := new(Send) // Create a Send object for parsing the election information from the

client, Communication times:1
thisresult := RsaVerifySignBySha256(s , { d , tenureID , getPubKey(nodeId) , …})//

Verify the message body, message digest, term number, signature ciphertext and other
information in the received message

if thisresult is true:
sign := RsaSignBySha256(r , node.rsaPrivKey)// sign the message
e := Election(d , tenureID, nodeId , t , sign)// Build the Election
object
broadcast(kElection , e , signlistsub)// Publish voting information to other nodes in the

subnetwork to which it belongs, Communication times:
Step3: Election

e := new(Election)// Build an Election object for parsing voting messages from candidate
nodes
result := RsaVerifySignBySha256(e , { d , tenureID , getPubKey(nodeId) , …})// Verify the

message body, message digest and other information in the received voting message
for electionget(){}

thisresult := Complete(len(nodelist)/2 , sumele)// Verify whether the user votes in the
subnet are more than half

if result && thisresult is
true
v := Vote(d , tenureID, nodeId , sign , result , …)// Build the Vote object
broadcast(kVote , e , P)// Send election results to candidate nodes, Communication times:
Step4: Vote
v := new(Vote)// get election news

broadcast(krequest , thisresult , clientAdder)// Return the election result to the client,
Communication times: end

In the election phase, after the client receives a voting message from each node in the subnetwork,
it counts the weight of the node whose message is selected as true or false. If Rtrue (pass votes) >
Rfalse (negative votes), then it sends the master node’s election success message and the transaction
content that needs consensus to the candidate node, as well as sends the subworker node replacement
message to the peer node in the subnetwork.

10210

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

3.3.2. Consensus process

After the election of the subnet master nodes of each subnetwork in the CSPBFT consensus
network has been completed, the nodes participate in the information consensus work in the current
term. The consensus process consists of four steps: requestP, pre-prepare, prepare and commit. The
process of information consensus is shown in Figure 4.

Figure 4. Information consensus process.

request: the client sends the consensus information to the master node of this round of consensus,
and the consensus master node carries out follow-up work in the consensus network after processing
the information.

pre-prepare: after the consensus master node receives the information from the client, it
preprocesses the message, simplifies the message and publishes it to other subnet master nodes.

prepare: after each subnet master node in the network receives the pre-prepare message sent by
the consensus master node, it analyzes and checks the credibility of the message and publishes the
check results to other subnet master nodes.

commit: after the master node of the subnet receives the prepare message indicating that more
than half of the master nodes of the subnet have been successfully verified, it sends a commit message
confirming successful verification to the consensus master node.

After the consensus phase of the CSPBFT algorithm (its pseudo-code is shown in Algorithm 2),
the consensus master node analyzes the commit information and enters the result verification phase.

10211

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

Algorithm 2: Consensus Process Start
Step1: RequestP

r := new(Requestp)// Create a RequestP message for parsing consensus messages
sequenceIDAdd()//,Enter a new round of consensus work

signInfo := RsaSignBySha256(r , node.rsaPrivKey)// Encrypt the consensus message
Requestp

pp := PrePrapre(*r , d , sequenceID , signInfo)// Create PrePrepare for sending messages
broadcast(kPrePrepare , s , L)// Send a consensus message to L (consensus master node

address), Communication times:
Step2: Pre-Prepare

pp := new(PrePrepare)// Create a PrePrepare object for receiving consensus messages
thisresult := RsaVerifySignBySha256(pp , { d , sequenceID , getPubKey(nodeId) , …})//

Verify the message body, consensus round, encrypted ciphertext and other information data in the
consensus message

if thisresult is true
sign := RsaSignBySha256(r , node.rsaPrivKey)// Encrypt the verification result of this step
pre := Prepare(d , sequenceID, nodeId , t , sign)//Create Prepare for sending messages
broadcast(kPrepare , pre , pamlistsub)// Send consensus messages to other subnet master

nodes, Communication times:
Step3: Prepare

pre := new(Prepare)// Create a Prepare object for parsing messages from the consensus master
node

c := Commit(d , sequenceID , sign , …)// Build the Commit message body after performing
the same consensus message verification in Step2

broadcast(kCommit , c , pamlistsub)// Send the verification result of this step to other subnet
master nodes in the network, Communication times:
Step4: Commit

c := new(Commit)// Build a Commit object to receive messages from each subnet master node
for preget(){}// Count the number of messages received and passed the verification
thisresult := Complete(len(pamlist)*2/3 , sumpre) && Check(nodeinplist) < 2// Execute

consensus master node identity verification
if thisresult is true
next->broadcast:publish// Proceed to the next stage of broadcasting: result verification,

Communication times:
end

3.3.3. Result verification

After the subnetwork master nodes in the CSPBFT consensus network have completed the
consensus process on the message, in order to prevent the consensus master node from performing
malicious activities when publishing blocks, the monitoring nodes in the network will perform
verification. The verification steps are shown in Figure 5.

10212

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

Figure 5. Verification process.

The result verification phase of CSPBFT consists of three steps: publish, verify and reply. The
consensus master node sends the final consensus result publish message to the subnet master nodes of
each subnetwork, and the subnet master node analyzes the results and sends the verify message of the
analysis results to the current round of monitoring nodes. The monitoring node makes statistics on the
analysis results of the master nodes of each subnet and returns the final result to the client.

4. Experimental analysis

This section presents the analysis and testing of the consensus characteristics and performance of
the CSPBFT algorithm proposed in this paper, as well as a comparison with the existing Byzantine
algorithm. First, in Section 4.1, the communication cost of the CSPBFT algorithm is analyzed and
compared and the security of the CSPBFT algorithm is analyzed and explained; second, in Section 4.2, the
time delay and throughput of the CSPBFT algorithm are tested; finally, in Section 4.3, the performance
test results are compared with those obtained for the existing Byzantine algorithm.

4.1. CSPBFT characteristic analysis

This section divides the network communication cost according to the consensus principle of
CSPBFT and compares it with the communication cost of the existing Byzantine consensus algorithm.
The possibility of malicious node attacks in each phase of the CSPBFT consensus algorithm and
corresponding solutions are also analyzed.

4.1.1. Internet communication costs

Taking the total number of nodes in the network to be N, the results of the comparisons of
CSPBFT with the existing optimization algorithm in terms of communication complexity, token type,
storage cost and fault tolerance are shown in Table 1.

The broadcast stage in the CSPBFT consensus process needs to update the subworker node at the
end of the term. The maximum numbers of network communications in each step when the subnetwork
votes for the subworker node and performs consensus work, as well as the consensus verification, are
determined as follows.

1) Subnet master node generation phase: requestE: 1; send: N/C; election:(N/C)2; vote: N/C. C is
the number of subnetworks set in the network.

2) Consensus stage: requestP:1; pre-prepare: C-1; prepare: (C-1)2; commit: C-1.
3) Verification phase: publish: C-1; verify: C-1; reply: 1. The round term of each subworker

participating in the consensus work is C times.

10213

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

In the voting phase, the subworker node has a tenure of C. After participating in C consensus
tasks, it enters the next term’s election. The communication cost for CSPBFT to complete a consensus
work is N2/C3+N/C2+C2+3C, and the communication complexity is O(N2/C3).

According to the comparison between the scheme proposed here and the existing Byzantine
consensus, the communication cost of the CSPBFT consensus process is low. This reduces the pressure
on the local data storage of consensus nodes and confers strong fault tolerance, which helps to improve
the throughput of blockchain network transactions and reduce consensus time delay.

Table 1. Comparison of communication consumption with existing Byzantine consensus algorithms.

Consensus Communication
Complexity

Token Type Storage Cost Fault-Tolerant

CSPBFT O(N2/C3) CTN、CS、CAS Low 49% N

PBFT O(N2) Null High f (f = N/3-1)

WBFT O(N2) Weight High 1/3N

mPBFT O(N2/3) or O(2N/3) Reliability Middle 1/3 N or 16.7% N

SG-PBFT O(N2/4) Score High f (f = N/3-1)

DPN-PBFT O(N) Null Middle 49% N

SHBFT O(N2/M) Null High f (f = N/3-1)

tPBFT O(N2) Null Middle f (f = N/3-1)

4.1.2. Security analysis

There may be malicious or faulty nodes in the CSPBFT consensus network, which will lead to
malicious attacks or consensus failures during consensus work. The analysis and processing methods
for addressing malicious attacks and consensus failures during the consensus process are as follows.

1) Subnet master generation attack/failure:

Figure 6. Candidate nodes are malicious/ offline.

10214

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

Figure 6 shows the situation where the client sends a tenure replacement message to the
subworker node in the organization. When the candidate node receiving the message is a malicious
node or is in a disconnected fault state, the peer nodes in the subnetwork for the tenure update cannot
receive the correct election message. When the candidate node is not a malicious node, it is in the
network; when the candidate node is a faulty node, the master node update process will always be in a
waiting state. If the client fails to receive the peer node feedback message in the subnet after the waiting
timeout, it will resend the term replacement message to the primary node in the next term.

Figure 7. Peer nodes are malicious/ offline.

As shown in Figure 7, after the candidate node sends an election message to the peer nodes in the
subnetwork, some peer nodes in the network are faulty nodes or malicious nodes. During the voting
phase, some peer nodes have network failure problems; also, the candidate nodes will maintain the
network connection to send messages and vote after the peer nodes reconnect to the network to receive
messages. During voting selection, there may be malicious nodes in the subnetwork in addition to the
faulty node. For example, after receiving the election message, the P4 node in Figure 7 verifies that
the content of the message is true and valid, but it publishes the malicious message that the election is
false in the network. After the renewal of the tenure has been completed, malicious nodes will be
punished by deducting CAS to reduce their ability to carry out malicious activities in subsequent
network activities. In this stage, the malicious fault tolerance is 49% and a node needs to control more
than half of the node weights in the subnetwork to succeed in malicious attacks.

2) Block consensus phase:
Figure 8 shows a case where the master node responsible for this block production has a network

failure after the term update has been successfully completed and cannot send consensus messages to
other subworker nodes. The consensus will be in the waiting process. After the client waits for a
timeout, it will resend the requestP message to the subworker node of the next subnetwork and notify
the subworker that the offline subnetwork will renew its term in advance.

10215

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

Figure 8. Master node offline.

As shown in Figure 9, when the subworker verifies the message of the master node that produced
the block, it needs to verify the content of the block and check the node that produced the block. Other
nodes in the network send and receive messages to and from each other, and the allowable node failure
rate in the prepare phase is 49%. In order to avoid consensus network failure caused by too few
subworker nodes in the consensus network and partial failures that cannot continue to generate blocks,
the nodes of the same subnetwork are allowed to temporarily continue to generate blocks during the
prepare phase verification. However, in 2S/3 consecutive blocks, the number of blocks produced by a
subworker node cannot exceed two; otherwise, the subnetwork responsible for producing blocks needs
to be updated in advance, and the new subworker node will perform the task of producing blocks.

Figure 9. Subworker node is malicious.

4.1.3. Feasibility analysis

According to the needs of data security and data management efficiency in the community digital
governance scenario, the data security and consensus efficiency of CSPBFT were analyzed. In the

10216

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

context of community digital governance, blockchain technology is used to manage data such as user
information, incentive mechanisms and problem handling. It can ensure the security and integrity of
data and avoid data loss and tampering. This section presents the experimental test results for CSPBFT.
When the number of nodes is between 400 and 600 or exceeds 600, the CSPBFT algorithm still has
high throughput and low latency. While realizing efficient access to data, it can provide high
concurrency for community digital autonomy with efficient data management operations. The
CSPBFT algorithm can meet the requirements for real-time interaction of users in a community digital
governance scenario. In existing research, Decred [20] utilized a hybrid consensus mechanism that can
satisfy community application scenarios with 1000 nodes, a 10-second consensus delay and 200 M
monthly transaction volume. On the basis of ensuring that the blockchain management community
data are feasible, the ability of the blockchain to process data has been improved by CSPBFT. Finally,
the feasibility of this scheme is verified by scheme comparison and performance delay testing.

4.2. Performance testing

To assess the consensus performance of the CSPBFT algorithm, three main tests were performed:
a time-delay test for reaching consensus between nodes in the network, a throughput test for network
transactions and a performance comparison with the existing Byzantine algorithm. The time delay and
transaction throughput for nodes to reach consensus represent the consensus performance of the
CSPBFT algorithm and affect the efficiency of online community governance. In the simulation test
of the CSPBFT consensus algorithm, monitoring nodes subworker nodes and peer nodes were set to
A, D, F in each subnetwork for testing. Transaction information was sent in scenarios with different
numbers of nodes for simulation testing.

4.2.1. Experimental environment settings

In order to verify the feasibility of applying the CSPBFT algorithm to online community
governance, the subworker node and monitoring node were simulated on a PC through the docker
container, and the peer nodes in each subnetwork were simulated by opening different ports on the PC.
The hardware configuration and virtual machine configuration of the PC used in the experimental test
were as follows: PC (AMD Ryzen 7 5800H, 3.20 GHz, 16 G memory) virtual machine (four-core CPU,
main frequency 2.0 GHz, 4 GB memory). Other software environmental settings are shown in Table 2.
The experimental process occurred as follows. Start the client of the CSPBFT network. Send consensus
messages to subworker nodes, subnet master nodes, candidate nodes and monitoring nodes through
the client. Use scripts to send transaction notifications to the client, simulating the CSPBFT consensus
process for multiple transactions. The aim was to test the consensus delay and throughput of CSPBFT
consensus and compare the performances of different schemes. The consensus delay is the time of
blockchain consensus data, which determines the response efficiency of user access. Throughput is the
number of transactions processed by the zone system per unit time, usually expressed as TPS. It
determines the maximum ability of the system to process data instantaneously. The TPS is an important
indicator used to measure the ability of a blockchain to process multiple transactions concurrently.

10217

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

Table 2. Environment configuration.

Software configuration Software version

Window v 10

Ubuntu v 20.04

Golang v 1.17.5

Nodejs v 16.13.1

IPFS v 0.12.0

MySQL v 8.0

Docker v 20.10.7

Docker-compose v 1.25.0

4.2.2. Consensus latency

Four network scenarios were simulated with different numbers of nodes to test the consensus time
delay; the test involved the simulation of sending 1000, 2000, 3000, ..., 10,000 transactions to the
network, and 20 simulation tests were conducted for each scenario. The consensus time delay for each
scenario was as follows (Figure 10). The number of nodes of each identity in the four scenarios was
set as follows: Sc1 (A: 5; D: 40; F: 4), Sc2 (A: 7; D: 60; F: 6), Sc3 (A: 11; D: 80; F: 8), Sc4 (A: 13;
D: 100; F: 8).

Figure 10. Consensus time delay test.

According to the test results, when the transaction volume was 6000–8000, the time delay of
CSPBFT consensus work changed relatively steadily with increasing transaction volume, and the
increase was substantial. When the number of subworker nodes reached 100 in Sc4, the speed of

10218

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

consensus delay improvement was greater than that in scenarios with fewer than 100 subworker nodes.

4.2.3. Throughput

Four network scenarios were simulated with different numbers of nodes to test the consensus time
delay; the simulation involved sending 1000, 2000, 3000, ..., 10,000 transactions to the network, with 20
simulation tests for each situation; the throughput of transactions in each scenario was processed as
shown in Figure 11. The number of nodes of each identity in the four scenarios was set as follows: Sc1
(A: 5; D: 40; F: 4), Sc2 (A: 7; D: 60; F: 6), Sc3 (A: 11; D: 80; F: 8), Sc4 (A: 13; D: 100; F: 8).

Figure 11. Throughput test.

According to the test results, when the transaction volume was 6000–8000, the transaction
throughput using CSPBFT in each scenario reached its highest value; when the transaction volume
was 1000–6000, the processing throughput increased slowly. When the volume was more than 8000,
the throughput started to decrease as the transaction amount increased. When the number of subworker
nodes reached 100 in Sc4, the speed of consensus delay improvement was greater than that in scenarios
with fewer than 100 subworker nodes.

4.3. Performance comparison

According to the performance test results for CSPBFT, as the number of nodes in the network
increase, the performance will deteriorate. Simulations were performed in which there were 7000
transactions to networks with a total of 200, 400, 600 and 800 nodes, with 20 simulation tests for each
network. The test results for performance were compared with those obtained with PBFT, WBFT,
mPBFT and SG-PBFT. The final comparison results are shown in Figures 12 and 13.

The throughput comparison between the CSPBFT algorithm and the existing Byzantine algorithm
is shown in Figure 12. The transaction throughput of the CSPBFT algorithm is better than that of other
algorithms. After the number of nodes in the network increases to 600TPS, the throughput of the
existing algorithm will decrease to 100TPS, the CSPBFT algorithm can guarantee more than 1000

10219

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

TPS, and, as the number of nodes in the network increases, the decrease in throughput tends to be flat.
It can meet the data concurrency requirements of the daily work of large communities.

The results of the comparison of the consensus time delay of the CSPBFT algorithm with those
of existing Byzantine algorithms are shown in Figure 13. The time delay of the CSPBFT algorithm for
consensus work was much shorter than those of other algorithms. After the number of nodes in the
network exceeded 400, the time delay caused by the consensus rapidly increased for some algorithms;
Compared with other algorithms with slower growth rates, CSPBFT had a smaller consensus time
delay. The CSPBFT algorithm can thus ensure consensus efficiency on the basis of reducing the
hardware requirements for online community governance.

Figure 12. Byzantine consensus throughput comparison.

Figure 13. Byzantine consensus time delay test.

10220

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

5. Conclusions

The combination of blockchain and community digital governance solves the problems of low
data security, difficulty in sharing and tracing and low enthusiasm on the part of multiple subjects
regarding participation in community governance. However, it cannot provide efficient concurrent
performance. The participants in the community governance process are composed of relevant
departments and users, and the governance data do not require all nodes in the network to participate
in the consensus. Previous studies have optimized various consensus algorithms, but it has still been
difficult to meet the requirements for high-concurrency and low-latency services.

Therefore, we have proposed a PBFT optimization algorithm based on community contribution.
The consensus work is divided into three stages: election stage, consensus process and result
verification. The consensus network is divided into two levels. Based on the contribution of nodes in
the consensus network and community governance, the nodes of each subnetwork participating in the
block are selected, and the monitoring node is set to review and verify the work of the block node.
This improves the accuracy of consensus while reducing the communication cost of each round of
consensus, so as to provide higher concurrency for community governance. The performance of the
CSPBFT algorithm was tested experimentally, and we found that it is feasible to use the CSPBFT
algorithm to manage community governance data.

However, this study was not without limitations. CSPBFT can provide high concurrent access,
but the optimization of data access only compresses the consensus data. Considering the long-term
accumulation of data, it is necessary to design a more optimized data storage method. In addition, data
access security needs to be considered when optimizing data storage. Therefore, future work will
address the following aspects.

1) Owing to the large-scale user base environment, the upper-level service has high data storage
requirements that could exceed current hardware storage limitations. Sharding technology [21,22]
could be used to store CSPBFT data and reduce hardware requirements for node services. Future work
will further improve the interaction rate between users and consensus networks and improve user
efficiency.

2) When users participate in consensus to access data, data security is controlled through user
authentication policies such as authority management and identity verification to ensure data security.
Future work will eliminate the risk of data leakage and improve the credibility of community
governance data.

Acknowledgments

This work was part of the research projects of the National Natural Science Foundation of China
(No. 62001262); and the Key Research and Development Foundation of Shandong Province of China
(No. 2019GGX101017), as supported by the Department of Science & Technology of Shandong
province.

Conflict of interest

All authors declare no conflict of interest regarding the publication of this paper.

10221

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

References

1. Y. W. Chai, W. B. Guo, Smart management and service of communities in Chinese cities, Prog.
Geogr., 34 (2015), 466–472. https://doi.org/10.11820/dlkxjz.2015.04.008

2. F. Zhang, Study on the holistic governance of mega city community, Urban Dev. Stud., 28 (2021),
1–4+10.

3. C. F. Han, Research on innovating mechanisms for community governance based on blockchain,
Frontiers, 2020 (2020), 66–75. https://doi.org/10.16619/j.cnki.rmltxsqy.2020.05.007

4. S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2022. Available from:
https://assets.pubpub.org/d8wct41f/31611263538139.pdf.

5. N. Elisa, L. Yang, F. Chao, Y. Cao, A framework of blockchain-based secure and privacy-
preserving E-government system, Wireless Netw., 2018. https://doi.org/10.1007/s11276-018-
1883-0

6. Y. Li, H. Y. Duan, Y. Y. Yin, H. H. Gao, Survey of crowdsourcing applications in blockchain
systems, Comput. Sci., 48 (2021), 12–27.

7. S. Zhu, Z. Cai, H. Hu, Y. Li, W. Li, Zkcrowd: A hybrid blockchain-based crowdsourcing platform,
IEEE Trans. Ind. Inf., 16 (2019), 4196–4205. https://doi.org/10.1109/TII.2019.2941735

8. H. Qin, Y. Cheng, X. Ma, F. Li, J. Abawajy, Weighted Byzantine Fault Tolerance consensus
algorithm for enhancing consortium blockchain efficiency and security, J. King Saud Univ.
Comput. Inf. Sci., 34 (2022), 8370–8379. https://doi.org/10.1016/j.jksuci.2022.08.017

9. Y. Min, The modification of pBFT algorithm to increase network operations efficiency in private
blockchains, Appl. Sci., 11 (2021), 6313. https://doi.org/10.3390/app11146313

10. J. Martins, B. Fernandes, I. Rohman, L. Veiga, The war on corruption: the role of electronic
government, in EGOV 2018: Electronic Government, (2018), 98–109.
https://doi.org/10.1007/978-3-319-98690-6_9

11. J. A. Garcia-Garcia, N. Sánchez-Gómez, D. Lizcano, M. J. Escalona, T. Wojdyński, Using
blockchain to improve collaborative business process management: systematic literature review,
IEEE Access, 8 (2020), 142312–142336. https://doi.org/10.1109/ACCESS.2020.3013911

12. Y. Meshcheryakov, A. Melman, O. Evsutin, V. Morozov, Y. Koucheryavy, On performance of
PBFT blockchain consensus algorithm for IoT-applications with constrained devices, IEEE
Access, 9 (2021), 80559–80570. https://doi.org/10.1109/ACCESS.2021.3085405

13. H. Xiong, M. Chen, C. Wu, Y. Zhao, W. Yi, Research on progress of blockchain consensus
algorithm: a review on recent progress of blockchain consensus algorithms, Future Internet, 14
(2022), 47. https://doi.org/10.3390/fi14020047

14. H. Samy, A. Tammam, A. Fahmy, B. Hasan, Enhancing the performance of the blockchain
consensus algorithm using multithreading technology, Ain Shams Eng. J., 12 (2021), 2709–2716.
https://doi.org/10.1016/j.asej.2021.01.019

15. M. Pandey, R. Agarwal, S. Shukl, N. K. Verma, Reputation-based PoS for the restriction of illicit
activities on blockchain: algorand usecase, preprint, arXiv:2112.11024.

16. G. Xu, H. Bai, J. Xing, T. Luo, N. N. Xiong, X. Cheng, et al., SG-PBFT: A secure and highly
efficient blockchain PBFT consensus algorithm for Internet of vehicles, J. Parallel Distrib.
Comput., 164 (2022), 1–11. https://doi.org/10.1016/j.jpdc.2022.01.029

10222

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10200-10222.

17. Y. Na, Z. Wen, J. Fang, Y. Tang, Y. Li, A derivative PBFT blockchain consensus algorithm with
dual primary nodes based on separation of powers-DPNPBFT, IEEE Access, 10 (2022), 76114–
76124. https://doi.org/10.1109/ACCESS.2022.3192426

18. Y. Li, L. Qiao, Z. Lv, An optimized Byzantine fault tolerance algorithm for consortium
blockchain, Peer-to-Peer Networking Appl., 14 (2021), 2826–2839.
https://doi.org/10.1007/s12083-021-01103-8

19. S. Tang, Z. Wang, J. Jiang, S. Ge, G. Tan, Improved PBFT algorithm for high-frequency trading
scenarios of alliance blockchain, Sci. Rep., 12 (2022), 4426. https://doi.org/10.1038/s41598-022-
08587-1

20. Decred btcsuite developers, in US and CA, Decred Documentation, 2023. Available from:
https://docs.decred.org/getting-started/project-history/.

21. J. L. Wang, X. Wang, Y. M. Shen, X. Y. Xiong, W. H. Zheng, P. Li, et al., Building operation
and maintenance scheme based on sharding blockchain, Heliyon, 9 (2023), E13186.
https://doi.org/10.1016/j.heliyon.2023.e13186

22. H. W. Huang, W. Kong, X. W. Peng, Z. B. Zheng, Survey on blockchain sharding technology,
Comput. Eng., 48 (2022), 1–10. https://doi.org/10.19678/j.issn.1000-3428.0063887

©2023 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

