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Abstract: Community governance is the basic unit of social governance, and it is also an important 
direction for building a social governance pattern of co-construction, co-governance and sharing. 
Previous studies have solved the problems of data security, information traceability and participant 
enthusiasm in the process of community digital governance by building a community governance 
system based on blockchain technology and incentive mechanisms. The application of blockchain 
technology can solve the problems of low data security, difficulty in sharing and tracing and low 
enthusiasm on the part of multiple subjects regarding participation in community governance. The 
process of community governance involves the cooperation of multiple government departments and 
multiple social subjects. Under the blockchain architecture, the number of alliance chain nodes will 
reach 1000 with the expansion of community governance. The existing consensus algorithms for 
coalition chains are difficult to meet the high concurrent processing requirements under such large-
scale nodes. An optimization algorithm has improved the consensus performance to a certain extent, 
but the existing systems still cannot meet the data needs of the community and are not suitable for 
community governance scenarios. Since the community governance process only involves the 
participation of relevant departments in users, all nodes in the network are not required to participate 
in the consensus under the blockchain architecture. Therefore, a practical Byzantine fault tolerance 
(PBFT) optimization algorithm based on community contribution (CSPBFT) is proposed here. First, 
consensus nodes are set according to different roles of participants in community activities, and 
participants are given different consensus permissions. Second, the consensus process is divided into 
different stages, and the amount of data processed by each consensus step is reduced. Finally, a two-
level consensus network is designed to perform different consensus tasks, and reduce unnecessary 
communication between nodes to reduce the communication complexity of consensus among nodes. 
Compared with the PBFT algorithm, CSPBFT reduces the communication complexity from O(N2) to 
O(N2/C3). Finally, the simulation results show that, through rights management, network level setting 
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and consensus phase division, when the number of nodes in the CSPBFT network is 100–400, the 
consensus throughput can reach 2000 TPS. When the node in the network is 1000, the instantaneous 
concurrency is guaranteed to be above 1000 TPS, which can meet the concurrent needs of the 
community governance scenario. 

Keywords: community digital governance; blockchain; consensus algorithm; high concurrency; 
throughput 
 

1. Introduction  

With the rapid development of modern information technology and the virtual society, using big 
data, the Internet and other technologies to build community digital governance models, provide 
accurate personalized services and reshape the community governance structure has become a 
mainstream activity [1]. However, there are many problems and challenges in the process of 
community digital governance, including low data security, difficulty in sharing and tracing and low 
enthusiasm on the part of multiple subjects regarding participation in community governance [2,3]. 

The emergence of blockchain technology [4] provides new technical ideas for building digital 
governance models. Some studies [3,5] have applied blockchain technology to community governance 
and solved the problems existing in traditional digital governance by utilizing the characteristics of 
blockchain (e.g., multi-party data storage, data tamper-resistance, data traceability). Applying 
blockchain to community governance scenarios can enable secure and credible data management, 
promote data sharing and build an incentive system [6,7] based on blockchain to improve the 
enthusiasm of multiple subjects to participate in governance. The process of community governance 
involves the cooperation of multiple government departments and multiple social subjects, which 
belongs to the alliance chain scenario. With the expansion of the scale of community governance, its 
number of nodes can reach 1000 nodes. The large-scale node environment puts forward higher 
requirements for the efficiency of the blockchain consensus algorithm. 

Moreover, the performance of the systems built in these studies is greatly limited when they are 
applied to large user groups involving high population density and wide administrative areas. Owing 
to the large number of user roles in the community, there are problems of malicious identity nodes and 
node disconnection. When applying blockchain technology to community digital governance, it is 
necessary to use the Byzantine fault-tolerant consensus algorithm. The performance of existing 
Byzantine fault-tolerant consensus algorithms, such as the practical Byzantine fault tolerance (PBFT) 
algorithm, can no longer meet the needs of community digital governance scenarios. When the number 
of nodes exceeds 100, the performance of this algorithm drops rapidly. 

In order to improve the performance of the PBFT algorithm, researchers have proposed various 
schemes, including WBFT [8] and mPBFT [9], and optimized them in different ways relating to the 
complexity of network communication, token settings and consensus message content. When the 
number of nodes exceeds 100, existing methods can effectively suppress the problems of reduced 
blockchain throughput and rapid increase in consensus time delay. However, in the case of community 
scenarios with more than 50,000 inhabitants, the concurrent demand of blockchain will exceed 1000 TPS 
Although the existing research has optimized the coalition chain consensus algorithm, it still cannot 
meet the high concurrency processing requirements of large-scale nodes in the community governance 
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scenario. In addition, the community governance process only involves the participation of relevant 
departments and users, and it does not require all nodes in the network to participate in the consensus 
under the blockchain architecture. In response to the above problems, this paper proposes a PBFT 
optimization algorithm based on community contribution. Specifically, this work makes the following 
two contributions: 

1) According to the difference between community user identity and work contribution, and by 
setting different consensus permissions for user nodes, the consensus work is divided into three stages, 
where each consensus stage only agrees on relevant data in that stage, thereby reducing the amount of 
consensus data and communication pressure. 

2) A two-level consensus network is designed. This reduces unnecessary communication between 
nodes in different stages to reduce communication complexity, so as to optimize the throughput and 
consensus delay of the blockchain and provide a higher concurrency and response speed for 
community digital governance. 

The rest of this paper is organized as follows. Section 2 summarizes existing related work; Section 3 
elaborates on the scheme of this paper; and Section 4 verifies and evaluates the performance of the 
consensus algorithm designed in this paper, as well as analyzes the security of the scheme. Finally, 
Section 5 concludes the paper. 

2. Related work 

2.1. Blockchain community governance 

With the advancement of economic development and urbanization, the scale of communities 
continues to expand, leading to a rapid increase in livelihood problems. A more efficient community 
governance model is needed to improve the work efficiency of the government and communities. 

A digital platform in this context is a community digital governance model built with the help of 
big data, the Internet and other information technologies. It enables community governance affairs to 
be networked, thereby facilitating coordinated mobilization among and within the government, society 
and citizens, as well as improving the effective utilization of government and social resources [10]. 
Community digital governance has the benefits of quickly solving governance problems, improving 
governance efficiency, optimizing governance networks, etc., but it still faces many challenges in 
practical application [2], such as low data security, difficulty in sharing and tracing and low enthusiasm 
on the part of multiple subjects regarding participation in community governance. 

The concept of the blockchain was first proposed by Satoshi Nakamoto [4]. It is a trustless and 
decentralized distributed ledger technology jointly maintained by multiple nodes. Once the data have 
been verified by the blockchain nodes and uploaded to the block after the chain, they are permanently 
stored and cannot be subjected to tampering. Owing to the characteristics of multi-party data storage, 
the difficulties of data tampering and data traceability, the applicability of blockchain technology in 
community governance has been studied from various different perspectives. Garcia-Garcia et al. [11] 
introduced five scenarios involving the use of blockchain technology in collaborative processing with 
community issues and made comparative references to the dimensions of the blockchain platform 
architecture, modeling language, intelligence and execution engine. Han [3] analyzed the application 
prospects of blockchain in community governance and designed a community governance mechanism 
based on blockchain, which could help to promote scientific community governance decision-making, 
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service precision and management refinement. Elisa et al. [5] proposed an e-government system 
framework based on blockchain technology, which could ensure data security in the process of dealing 
with community issues and improve the privacy of data and the credibility of governmental departments. 

Previous studies have integrated blockchain technology into community digital governance 
platforms, which effectively solved the problems of low data security, difficulty in sharing and tracing 
and low enthusiasm on the part of multiple subjects regarding participation in community governance 
faced by traditional community governance. However, in the case of a large administrative area and a 
large number of people, the performance limitations of the blockchain will not be able to meet the 
operational demands of community digital governance services. Therefore, the data management 
efficiency of the blockchain needs to be optimized. 

2.2. Consensus algorithm 

The Asa blockchain consists of many nodes, and malicious attacks are possible, which can lead 
to Byzantine problems. According to the different settings of node identities in the blockchain network, 
consensus algorithms can be divided into Byzantine algorithms [12] and non-Byzantine algorithms [13]. 
Consensus errors in non-Byzantine algorithms are generally related to system failures that occur in 
distributed systems, such as machine downtime and node reporting errors, but there are no malicious 
nodes in the system that interfere with the distributed system. When malicious nodes in the system 
carry out malicious activities such as tampering with data, non-Byzantine fault-tolerant algorithms 
cannot guarantee data security and system stability. Existing non-Byzantine algorithms, such as Paxos, 
VR and Raft, are difficult to apply to open networks with many nodes and have low reliability. 

Byzantine fault-tolerant consensus algorithms can solve various limitations of non-Byzantine 
consensus algorithms, including their inability to deal with malicious nodes and the difficulty of 
applying them to the open Internet environment. To this end, researchers have designed a series of 
Byzantine fault-tolerant consensus algorithms that can solve any type of error in distributed systems 
to a certain extent and ensure the security and stability of the distributed system [14,15]. Byzantine 
fault-tolerant consensus algorithms can deal with the existence of malicious nodes in the environment 
and ensure the security and activity of the system. However, the complex consensus verification logic 
leads to a high network communication cost of existing Byzantine consensus algorithms. For example, 
when the PBFT consensus algorithm is applied to community governance, owing to the large number 
of nodes in the blockchain network, it cannot achieve efficient transactions. 

To solve the problem of low consensus efficiency, it is necessary to achieve consensus and 
improve transaction efficiency through reasonable consensus master node selection methods and 
optimized consensus methods. WBFT [8] dynamically weights the nodes participating in the consensus, 
distinguishing malicious nodes and reducing the impact of malicious nodes, but it fails to solve the 
problem of consensus data redundancy and cannot effectively improve consensus efficiency. mPBFT [9] 
adjusts the probability of nodes participating in block production according to the reliability of nodes 
and reduces network operating costs, but it lacks a method for evaluating node reliability and cannot 
be applied in real scenarios. SG-PBFT [16] uses a fractional grouping mechanism in an Internet of 
Vehicles scenario, which reduces the communication complexity between nodes and optimizes 
consensus efficiency. The above consensus algorithms assign different weights to nodes in the network 
based on equity, reliability and ratings as reference certificates, etc., and differentiate each node by 
weight when selecting a consensus master node. However, the reference certificates set in the network 
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do not have reasonable distribution rules, so effective incentives cannot be provided based on 
community user contributions. DPN-PBFT [17], SHBFT [18] and other consensus algorithms 
reconstruct the blockchain network communication method and divide the nodes in the network into 
node organizations according to factors such as geographical scope, network access time or user 
identity, reducing the number of consensus communications between nodes and improving the overall 
consensus efficiency. DPN-PBFT and SHBFT grant the same authority to nodes in the network, 
without distinguishing node roles, and are not suitable for community digital governance scenarios 
where user permissions are differentiated. tPBFT [19] compresses the consensus message by 
simplifying the content of information sent between nodes in each stage of the consensus process, 
thereby reducing the consensus communication time and the delay and success of block generation by 
nodes. Rate and other factors measure the credibility of a node in the network and serve as a reference 
for selecting the master node for subsequent block production work. However, the tPBFT algorithm 
lacks the step of ordinary nodes participating in consensus certification and does not fully realize 
decentralized management. 

The existing Byzantine consensus optimization algorithms have improved on the performance of 
the PBFT algorithm to a certain extent, but they have no clear means of dividing the identity and role 
of the nodes in the network. When they are applied to a community governance scenario, they cannot 
provide sufficient throughput, resulting in a block. There are also problems such as poor concurrency 
and long delay time when accessing services on the chain. 

3. CSPBFT consensus algorithm 

In order to meet the high concurrent access requirements of community digital governance 
scenarios and solve the shortcomings of existing Byzantine optimization algorithms, we used the work 
contribution of users in community governance as a carrier to design a PBFT optimization algorithm 
based on community contributions (PBFT Optimization Algorithm Based on Community Contribution, 
referred to as CSPBFT). Since the community governance process only involves relevant departments 
and users, the relevant data do not require all nodes in the network to participate in the consensus. The 
CSPBFT algorithm organizes and divides the blockchain network and divides the consensus work into 
stages, where each stage runs periodically. This reduces the complexity of communication between 
nodes during consensus work. The verification department in community governance forms the 
monitoring node, and the departments responsible for the organization of each community cluster form 
the initial subnet master node. The initial subnet master node invites the work department to join the 
regional sub-organization as an ordinary node. When a node joins the network, the subnet master node 
conducts identity verification. The node settings and division in the network are shown in Figure 1. 
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Figure 1. Consensus network design. 

As shown in Figure 1, the consensus network consists of two levels. SubworkerA-X forms the 
consensus main network, and the consensus subnetwork is composed of subworker nodes and ordinary 
nodes: for example, SubworkerA and peerA1 to peerA3 form a subnetwork. The nodes in the 
subnetwork participate in the first stage of CSPBFT, and the subworker nodes in the subnetwork 
are elected. Subworker nodes in each sub-network participate in the second and third stages of 
CSPBFT for data consensus. 

3.1. Consensus global settings 

In the online community governance scenario, the total number of nodes in the network is N, and 
the node types can be divided into the following five categories according to the functions of users 
participating in the consensus work: 1) consensus master node (primary node); 2) subnet master nodes 
(subworker node); 3) subnet common node (peer node); 4) monitoring node (check node); 5) candidate 
node (candidate node). CSPBFT sets up corresponding node accounts for each community governance 
user. Each user’s account has three asset certificates: credit certificate (CTN), consensus asset (CAS) 
and temporary consensus asset (CAST). Users can convert part of the CTN into a temporary consensus 
asset CAST as part of the consensus contributions used. In CSPBFT, the consensus network consists 
of a two-layer network. The main network is composed of subnet master nodes responsible for 
generating blocks, and the subnet master node list is composed of C subworker nodes. Each subworker 
node is elected by peer nodes in the subnetwork. The CSPBFT network consensus communication 
process is shown in Figure 2. 
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Figure 2. CSPBFT consensus communication process. 

The consensus work of various nodes in the network is as follows: 
1) Consensus master node: belongs to the subnet master node and is responsible for the current 

round of consensus block production. 
2) Subnet master nodes (L1–L4): the nodes in the subnetwork that participate in the information 

consensus work are elected and rotated by the community manager of each area in the community. 
During the term of office, they will perform identity verification and network access for new access 
nodes in the organization to which they belong. 

3) Subnet common node (P1–P4): composed of ordinary users in the community and community 
manager, they communicate with the subnet master node and participate in the election and voting for 
the new subnet master node after the end of the term of the subnet master node (election to become 
the subnet master node). 

4) Monitoring node (H1 and H2): responsible for various regulatory departments of the 
government; the final determination is made during the consensus process, and the consensus results 
of the consensus master nodes are verified. 

5) Candidate node (L4): serves as the rotation community manager for the next term. Ordinary 
nodes in the subnetwork become master nodes of the subnetwork through the voting mechanism. During 
the voting process, peer nodes temporarily become candidate nodes until the voting is completed. 

3.2. Consensus node selection 

In the election stage of the CSPBFT consensus principle, the candidate nodes in the subnetwork are 
selected according to consensus by voting. The verification work in the consensus process and the result 
verification stage are carried out by the consensus master node and the monitoring node responsible for 
block generation. This section explains the methods used to select candidate nodes, consensus master 
nodes and monitoring nodes. 
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3.2.1. Candidate node selection 

When the CSPBFT network is constructed, subworker nodes are selected from each subnetwork 
in the secondary network to form the initial subnetwork master node list. In the subsequent consensus 
process, peer nodes in the subnetwork vote to update the subworker nodes in their respective 
subnetworks. Regarding this article’s settings, the subworker node in the subnetwork performs one 
block production or a term is re-elected. The subworker node voting in the subnetwork is divided into 
three stages: 1) becoming a candidate node; 2) voting by peer nodes in the subnetwork; 3) candidate 
nodes becoming subworker nodes. The client selects candidate nodes following the PBFT selection 
rules; the calculation method is shown in Eq (1): 

� = �����                 (1) 

where k is the current term number of the subnetwork. When the tenure is updated, the lth community 
manager node in the subnetwork is converted from a normal node to a candidate node, and the client 
sends election information to the candidate node. If the current candidate node fails and the client 
response times out, the term number k will be automatically incremented by 1, the next term will be 
entered and the election work will be sent to the new candidate node again. 

3.2.2. Consensus and verification node selection 

In the consensus process, this method divides nodes into consensus nodes and monitoring nodes 
according to the business scenarios of community governance. Nodes follow the PBFT election rules 
for selection rules. 

The consensus node selection process is as follows. The subworker node list and the block node 
list in the CSPBFT network are set to record the subworker nodes of C organizations in the network 
and the block nodes of the last 2C/3 blocks. The calculation method used for the client to select the 
current block consensus master node is shown in Eq (2): 

� = �����               (2) 

where v is the current consensus round, and the consensus master node of this round is the lth node in 
the subworker node list. When selecting the lth node as the consensus master node, it is necessary to 
verify the list of block-producing nodes. The same consensus master node is allowed to continuously 
perform the blocking of two blocks. In order to avoid the problem that there are malicious nodes in the 
subworker node and a large number of illegal blocks being continuously generated, it is necessary to 
ensure that the number of blocks produced by a consensus master node in the last 2C/3 blocks does 
not exceed two. 

The monitoring node selection process is as follows. When selecting a monitoring node for 
secondary verification of the consensus result, the selection principle is the same as that for the 
consensus master node. The CSPBFT network sets the verification master node list and the verification 
node list to respectively record the S verification master nodes in the network and the verification 
master nodes of the last 2S/3 blocks. The calculation method used by the client to select a monitoring 
node is shown in Eq (3): 

� = �����                            (3) 
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The monitoring node for this round of verification is the lth node in the list. According to the 
CSPBFT settings, when selecting the lth node as the verification master node, it is necessary to ensure 
that the number of verifications performed by a verification master node in the latest 2S/3 blocks does 
not exceed three. 

3.3. CSPBFT consensus principle 

In order to improve the efficiency of consensus among nodes and ensure the accuracy of 
consensus, while resisting the attack of malicious nodes and speeding up the process of reaching 
consensus, the CSPBFT presented here is designed as a consensus algorithm consisting of three stages: 
election stage, consensus process and result verification. This section explains the functions and 
principles of the three stages. 

3.3.1. Election stage 

The first stage of the CSPBFT consensus algorithm is the election stage, which is used to elect 
the subnet master nodes in each subnetwork. The election phase consists of four steps: requestE, send, 
election and vote. The election process of the subnet master node is shown in Figure 3. 

requestE: the client sends an election message to the candidate node in the election subnet, and 
the candidate node processes the received client requestE message and performs the next operation. 

send: in an election cycle, the peer node is converted to a candidate node and sends election 
notifications to other peer nodes in the subnetwork. 

election: after the peer node receives the election message from the candidate node, it verifies the 
content of the message, votes for the candidate node after the message is verified and sends a 
verification message to other nodes in the subnetwork (including the candidate node). 

vote: after each node in the subnetwork receives the verify message, it counts the weights of the 
received nodes whose verification is true or false and sends the majority selection result to the client. 

 

Figure 3. Election process. 

After the execution of the four steps in the election phase (the pseudo-code is shown in Algorithm 1), 
the elected subnet master node participates in the information consensus work during this term. 
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Algorithm 1: Election Phase Start 
Step1: RequestE  

r := new(Requeste)// Create a RequestE object for parsing messages from clients 
tenureIDAdd()//，enter a new term 
signInfo := RsaSignBySha256(r , node.rsaPrivKey)// Encrypt message content 
s := Send(*r , d , tenureID , signInfo)// Build the Send object 
broadcast(kSend , s , P)// Send election information to P (candidate node), Communication 
times: 

Step2: Send 
s := new(Send) // Create a Send object for parsing the election information from the 

client, Communication times:1 
thisresult := RsaVerifySignBySha256(s , { d , tenureID , getPubKey(nodeId) , …})// 

Verify the message body, message digest, term number, signature ciphertext and other 
information in the received message  

if thisresult is true: 
sign := RsaSignBySha256(r , node.rsaPrivKey)// sign the message  
e := Election(d , tenureID, nodeId , t , sign)// Build the Election 
object 
broadcast(kElection , e , signlistsub)// Publish voting information to other nodes in the 

subnetwork to which it belongs, Communication times:  
Step3: Election  

e := new(Election)// Build an Election object for parsing voting messages from candidate 
nodes 
result := RsaVerifySignBySha256(e , { d , tenureID , getPubKey(nodeId) , …})// Verify the 

message body, message digest and other information in the received voting message  
for electionget(){}  

thisresult := Complete(len(nodelist)/2 , sumele)// Verify whether the user votes in the 
subnet are more than half  

if result && thisresult is 
true 
v := Vote(d , tenureID, nodeId , sign , result , …)// Build the Vote object 
broadcast(kVote , e , P)// Send election results to candidate nodes, Communication times:  
Step4: Vote 
v := new(Vote)// get election news 

broadcast(krequest , thisresult , clientAdder)// Return the election result to the client, 
Communication times: end 

In the election phase, after the client receives a voting message from each node in the subnetwork, 
it counts the weight of the node whose message is selected as true or false. If Rtrue (pass votes) > 
Rfalse (negative votes), then it sends the master node’s election success message and the transaction 
content that needs consensus to the candidate node, as well as sends the subworker node replacement 
message to the peer node in the subnetwork. 
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3.3.2. Consensus process 

After the election of the subnet master nodes of each subnetwork in the CSPBFT consensus 
network has been completed, the nodes participate in the information consensus work in the current 
term. The consensus process consists of four steps: requestP, pre-prepare, prepare and commit. The 
process of information consensus is shown in Figure 4. 

 

Figure 4. Information consensus process. 

request: the client sends the consensus information to the master node of this round of consensus, 
and the consensus master node carries out follow-up work in the consensus network after processing 
the information. 

pre-prepare: after the consensus master node receives the information from the client, it 
preprocesses the message, simplifies the message and publishes it to other subnet master nodes. 

prepare: after each subnet master node in the network receives the pre-prepare message sent by 
the consensus master node, it analyzes and checks the credibility of the message and publishes the 
check results to other subnet master nodes. 

commit: after the master node of the subnet receives the prepare message indicating that more 
than half of the master nodes of the subnet have been successfully verified, it sends a commit message 
confirming successful verification to the consensus master node. 

After the consensus phase of the CSPBFT algorithm (its pseudo-code is shown in Algorithm 2), 
the consensus master node analyzes the commit information and enters the result verification phase. 
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Algorithm 2: Consensus Process Start 
Step1: RequestP 

r := new(Requestp)// Create a RequestP message for parsing consensus messages 
sequenceIDAdd()//,Enter a new round of consensus work 

signInfo := RsaSignBySha256(r , node.rsaPrivKey)// Encrypt the consensus message 
Requestp 

pp := PrePrapre(*r , d , sequenceID , signInfo)// Create PrePrepare for sending messages 
broadcast(kPrePrepare , s , L)// Send a consensus message to L (consensus master node 

address), Communication times:  
Step2: Pre-Prepare 

pp := new(PrePrepare)// Create a PrePrepare object for receiving consensus messages 
thisresult := RsaVerifySignBySha256(pp , { d , sequenceID , getPubKey(nodeId) , …})// 

Verify the message body, consensus round, encrypted ciphertext and other information data in the 
consensus message 

if thisresult is true 
sign := RsaSignBySha256(r , node.rsaPrivKey)// Encrypt the verification result of this step 
pre := Prepare(d , sequenceID, nodeId , t , sign)//Create Prepare for sending messages 
broadcast(kPrepare , pre , pamlistsub)// Send consensus messages to other subnet master 

nodes, Communication times:  
Step3: Prepare 

pre := new(Prepare)// Create a Prepare object for parsing messages from the consensus master 
node 

c := Commit(d , sequenceID , sign , …)// Build the Commit message body after performing 
the same consensus message verification in Step2 

broadcast(kCommit , c , pamlistsub)// Send the verification result of this step to other subnet 
master nodes in the network, Communication times:  
Step4: Commit 

c := new(Commit)// Build a Commit object to receive messages from each subnet master node 
for preget(){}// Count the number of messages received and passed the verification 
thisresult := Complete(len(pamlist)*2/3 , sumpre) && Check(nodeinplist) < 2// Execute 

consensus master node identity verification 
if thisresult is true 
next->broadcast:publish// Proceed to the next stage of broadcasting: result verification, 

Communication times:  
end 

3.3.3. Result verification 

After the subnetwork master nodes in the CSPBFT consensus network have completed the 
consensus process on the message, in order to prevent the consensus master node from performing 
malicious activities when publishing blocks, the monitoring nodes in the network will perform 
verification. The verification steps are shown in Figure 5. 
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Figure 5. Verification process. 

The result verification phase of CSPBFT consists of three steps: publish, verify and reply. The 
consensus master node sends the final consensus result publish message to the subnet master nodes of 
each subnetwork, and the subnet master node analyzes the results and sends the verify message of the 
analysis results to the current round of monitoring nodes. The monitoring node makes statistics on the 
analysis results of the master nodes of each subnet and returns the final result to the client. 

4. Experimental analysis 

This section presents the analysis and testing of the consensus characteristics and performance of 
the CSPBFT algorithm proposed in this paper, as well as a comparison with the existing Byzantine 
algorithm. First, in Section 4.1, the communication cost of the CSPBFT algorithm is analyzed and 
compared and the security of the CSPBFT algorithm is analyzed and explained; second, in Section 4.2, the 
time delay and throughput of the CSPBFT algorithm are tested; finally, in Section 4.3, the performance 
test results are compared with those obtained for the existing Byzantine algorithm. 

4.1. CSPBFT characteristic analysis 

This section divides the network communication cost according to the consensus principle of 
CSPBFT and compares it with the communication cost of the existing Byzantine consensus algorithm. 
The possibility of malicious node attacks in each phase of the CSPBFT consensus algorithm and 
corresponding solutions are also analyzed. 

4.1.1. Internet communication costs 

Taking the total number of nodes in the network to be N, the results of the comparisons of 
CSPBFT with the existing optimization algorithm in terms of communication complexity, token type, 
storage cost and fault tolerance are shown in Table 1. 

The broadcast stage in the CSPBFT consensus process needs to update the subworker node at the 
end of the term. The maximum numbers of network communications in each step when the subnetwork 
votes for the subworker node and performs consensus work, as well as the consensus verification, are 
determined as follows. 

1) Subnet master node generation phase: requestE: 1; send: N/C; election:(N/C)2; vote: N/C. C is 
the number of subnetworks set in the network. 

2) Consensus stage: requestP:1; pre-prepare: C-1; prepare: (C-1)2; commit: C-1. 
3) Verification phase: publish: C-1; verify: C-1; reply: 1. The round term of each subworker 

participating in the consensus work is C times. 
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In the voting phase, the subworker node has a tenure of C. After participating in C consensus 
tasks, it enters the next term’s election. The communication cost for CSPBFT to complete a consensus 
work is N2/C3+N/C2+C2+3C, and the communication complexity is O(N2/C3). 

According to the comparison between the scheme proposed here and the existing Byzantine 
consensus, the communication cost of the CSPBFT consensus process is low. This reduces the pressure 
on the local data storage of consensus nodes and confers strong fault tolerance, which helps to improve 
the throughput of blockchain network transactions and reduce consensus time delay. 

Table 1. Comparison of communication consumption with existing Byzantine consensus algorithms. 

Consensus Communication 
Complexity 

Token Type Storage Cost Fault-Tolerant 

CSPBFT O(N2/C3) CTN、CS、CAS Low 49% N 

PBFT O(N2) Null High f (f = N/3-1) 

WBFT O(N2) Weight High 1/3N 

mPBFT O(N2/3) or O(2N/3) Reliability Middle 1/3 N or 16.7% N 

SG-PBFT O(N2/4) Score High f (f = N/3-1) 

DPN-PBFT O(N) Null Middle 49% N 

SHBFT O(N2/M) Null High f (f = N/3-1) 

tPBFT O(N2) Null Middle f (f = N/3-1) 

4.1.2. Security analysis 

There may be malicious or faulty nodes in the CSPBFT consensus network, which will lead to 
malicious attacks or consensus failures during consensus work. The analysis and processing methods 
for addressing malicious attacks and consensus failures during the consensus process are as follows. 

1) Subnet master generation attack/failure: 

 

Figure 6. Candidate nodes are malicious/ offline. 
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Figure 6 shows the situation where the client sends a tenure replacement message to the 
subworker node in the organization. When the candidate node receiving the message is a malicious 
node or is in a disconnected fault state, the peer nodes in the subnetwork for the tenure update cannot 
receive the correct election message. When the candidate node is not a malicious node, it is in the 
network; when the candidate node is a faulty node, the master node update process will always be in a 
waiting state. If the client fails to receive the peer node feedback message in the subnet after the waiting 
timeout, it will resend the term replacement message to the primary node in the next term. 

 

Figure 7. Peer nodes are malicious/ offline. 

As shown in Figure 7, after the candidate node sends an election message to the peer nodes in the 
subnetwork, some peer nodes in the network are faulty nodes or malicious nodes. During the voting 
phase, some peer nodes have network failure problems; also, the candidate nodes will maintain the 
network connection to send messages and vote after the peer nodes reconnect to the network to receive 
messages. During voting selection, there may be malicious nodes in the subnetwork in addition to the 
faulty node. For example, after receiving the election message, the P4 node in Figure 7 verifies that 
the content of the message is true and valid, but it publishes the malicious message that the election is 
false in the network. After the renewal of the tenure has been completed, malicious nodes will be 
punished by deducting CAS to reduce their ability to carry out malicious activities in subsequent 
network activities. In this stage, the malicious fault tolerance is 49% and a node needs to control more 
than half of the node weights in the subnetwork to succeed in malicious attacks. 

2) Block consensus phase: 
Figure 8 shows a case where the master node responsible for this block production has a network 

failure after the term update has been successfully completed and cannot send consensus messages to 
other subworker nodes. The consensus will be in the waiting process. After the client waits for a 
timeout, it will resend the requestP message to the subworker node of the next subnetwork and notify 
the subworker that the offline subnetwork will renew its term in advance. 
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Figure 8. Master node offline. 

As shown in Figure 9, when the subworker verifies the message of the master node that produced 
the block, it needs to verify the content of the block and check the node that produced the block. Other 
nodes in the network send and receive messages to and from each other, and the allowable node failure 
rate in the prepare phase is 49%. In order to avoid consensus network failure caused by too few 
subworker nodes in the consensus network and partial failures that cannot continue to generate blocks, 
the nodes of the same subnetwork are allowed to temporarily continue to generate blocks during the 
prepare phase verification. However, in 2S/3 consecutive blocks, the number of blocks produced by a 
subworker node cannot exceed two; otherwise, the subnetwork responsible for producing blocks needs 
to be updated in advance, and the new subworker node will perform the task of producing blocks. 

 

Figure 9. Subworker node is malicious. 

4.1.3. Feasibility analysis 

According to the needs of data security and data management efficiency in the community digital 
governance scenario, the data security and consensus efficiency of CSPBFT were analyzed. In the 
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context of community digital governance, blockchain technology is used to manage data such as user 
information, incentive mechanisms and problem handling. It can ensure the security and integrity of 
data and avoid data loss and tampering. This section presents the experimental test results for CSPBFT. 
When the number of nodes is between 400 and 600 or exceeds 600, the CSPBFT algorithm still has 
high throughput and low latency. While realizing efficient access to data, it can provide high 
concurrency for community digital autonomy with efficient data management operations. The 
CSPBFT algorithm can meet the requirements for real-time interaction of users in a community digital 
governance scenario. In existing research, Decred [20] utilized a hybrid consensus mechanism that can 
satisfy community application scenarios with 1000 nodes, a 10-second consensus delay and 200 M 
monthly transaction volume. On the basis of ensuring that the blockchain management community 
data are feasible, the ability of the blockchain to process data has been improved by CSPBFT. Finally, 
the feasibility of this scheme is verified by scheme comparison and performance delay testing. 

4.2. Performance testing 

To assess the consensus performance of the CSPBFT algorithm, three main tests were performed: 
a time-delay test for reaching consensus between nodes in the network, a throughput test for network 
transactions and a performance comparison with the existing Byzantine algorithm. The time delay and 
transaction throughput for nodes to reach consensus represent the consensus performance of the 
CSPBFT algorithm and affect the efficiency of online community governance. In the simulation test 
of the CSPBFT consensus algorithm, monitoring nodes subworker nodes and peer nodes were set to 
A, D, F in each subnetwork for testing. Transaction information was sent in scenarios with different 
numbers of nodes for simulation testing. 

4.2.1. Experimental environment settings 

In order to verify the feasibility of applying the CSPBFT algorithm to online community 
governance, the subworker node and monitoring node were simulated on a PC through the docker 
container, and the peer nodes in each subnetwork were simulated by opening different ports on the PC. 
The hardware configuration and virtual machine configuration of the PC used in the experimental test 
were as follows: PC (AMD Ryzen 7 5800H, 3.20 GHz, 16 G memory) virtual machine (four-core CPU, 
main frequency 2.0 GHz, 4 GB memory). Other software environmental settings are shown in Table 2. 
The experimental process occurred as follows. Start the client of the CSPBFT network. Send consensus 
messages to subworker nodes, subnet master nodes, candidate nodes and monitoring nodes through 
the client. Use scripts to send transaction notifications to the client, simulating the CSPBFT consensus 
process for multiple transactions. The aim was to test the consensus delay and throughput of CSPBFT 
consensus and compare the performances of different schemes. The consensus delay is the time of 
blockchain consensus data, which determines the response efficiency of user access. Throughput is the 
number of transactions processed by the zone system per unit time, usually expressed as TPS. It 
determines the maximum ability of the system to process data instantaneously. The TPS is an important 
indicator used to measure the ability of a blockchain to process multiple transactions concurrently. 
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Table 2. Environment configuration.  

Software configuration Software version 

Window v 10 

Ubuntu v 20.04 

Golang v 1.17.5 

Nodejs v 16.13.1 

IPFS v 0.12.0 

MySQL v 8.0 

Docker v 20.10.7 

Docker-compose v 1.25.0 

4.2.2. Consensus latency 

Four network scenarios were simulated with different numbers of nodes to test the consensus time 
delay; the test involved the simulation of sending 1000, 2000, 3000, ..., 10,000 transactions to the 
network, and 20 simulation tests were conducted for each scenario. The consensus time delay for each 
scenario was as follows (Figure 10). The number of nodes of each identity in the four scenarios was 
set as follows: Sc1 (A: 5; D: 40; F: 4), Sc2 (A: 7; D: 60; F: 6), Sc3 (A: 11; D: 80; F: 8), Sc4 (A: 13; 
D: 100; F: 8). 

 

Figure 10. Consensus time delay test. 

According to the test results, when the transaction volume was 6000–8000, the time delay of 
CSPBFT consensus work changed relatively steadily with increasing transaction volume, and the 
increase was substantial. When the number of subworker nodes reached 100 in Sc4, the speed of 
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consensus delay improvement was greater than that in scenarios with fewer than 100 subworker nodes. 

4.2.3. Throughput 

Four network scenarios were simulated with different numbers of nodes to test the consensus time 
delay; the simulation involved sending 1000, 2000, 3000, ..., 10,000 transactions to the network, with 20 
simulation tests for each situation; the throughput of transactions in each scenario was processed as 
shown in Figure 11. The number of nodes of each identity in the four scenarios was set as follows: Sc1 
(A: 5; D: 40; F: 4), Sc2 (A: 7; D: 60; F: 6), Sc3 (A: 11; D: 80; F: 8), Sc4 (A: 13; D: 100; F: 8). 

 

Figure 11. Throughput test. 

According to the test results, when the transaction volume was 6000–8000, the transaction 
throughput using CSPBFT in each scenario reached its highest value; when the transaction volume 
was 1000–6000, the processing throughput increased slowly. When the volume was more than 8000, 
the throughput started to decrease as the transaction amount increased. When the number of subworker 
nodes reached 100 in Sc4, the speed of consensus delay improvement was greater than that in scenarios 
with fewer than 100 subworker nodes. 

4.3. Performance comparison 

According to the performance test results for CSPBFT, as the number of nodes in the network 
increase, the performance will deteriorate. Simulations were performed in which there were 7000 
transactions to networks with a total of 200, 400, 600 and 800 nodes, with 20 simulation tests for each 
network. The test results for performance were compared with those obtained with PBFT, WBFT, 
mPBFT and SG-PBFT. The final comparison results are shown in Figures 12 and 13. 

The throughput comparison between the CSPBFT algorithm and the existing Byzantine algorithm 
is shown in Figure 12. The transaction throughput of the CSPBFT algorithm is better than that of other 
algorithms. After the number of nodes in the network increases to 600TPS, the throughput of the 
existing algorithm will decrease to 100TPS, the CSPBFT algorithm can guarantee more than 1000 



10219 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 10200-10222. 

TPS, and, as the number of nodes in the network increases, the decrease in throughput tends to be flat. 
It can meet the data concurrency requirements of the daily work of large communities. 

The results of the comparison of the consensus time delay of the CSPBFT algorithm with those 
of existing Byzantine algorithms are shown in Figure 13. The time delay of the CSPBFT algorithm for 
consensus work was much shorter than those of other algorithms. After the number of nodes in the 
network exceeded 400, the time delay caused by the consensus rapidly increased for some algorithms; 
Compared with other algorithms with slower growth rates, CSPBFT had a smaller consensus time 
delay. The CSPBFT algorithm can thus ensure consensus efficiency on the basis of reducing the 
hardware requirements for online community governance. 

 

Figure 12. Byzantine consensus throughput comparison. 

 

Figure 13. Byzantine consensus time delay test. 
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5. Conclusions 

The combination of blockchain and community digital governance solves the problems of low 
data security, difficulty in sharing and tracing and low enthusiasm on the part of multiple subjects 
regarding participation in community governance. However, it cannot provide efficient concurrent 
performance. The participants in the community governance process are composed of relevant 
departments and users, and the governance data do not require all nodes in the network to participate 
in the consensus. Previous studies have optimized various consensus algorithms, but it has still been 
difficult to meet the requirements for high-concurrency and low-latency services. 

Therefore, we have proposed a PBFT optimization algorithm based on community contribution. 
The consensus work is divided into three stages: election stage, consensus process and result 
verification. The consensus network is divided into two levels. Based on the contribution of nodes in 
the consensus network and community governance, the nodes of each subnetwork participating in the 
block are selected, and the monitoring node is set to review and verify the work of the block node. 
This improves the accuracy of consensus while reducing the communication cost of each round of 
consensus, so as to provide higher concurrency for community governance. The performance of the 
CSPBFT algorithm was tested experimentally, and we found that it is feasible to use the CSPBFT 
algorithm to manage community governance data. 

However, this study was not without limitations. CSPBFT can provide high concurrent access, 
but the optimization of data access only compresses the consensus data. Considering the long-term 
accumulation of data, it is necessary to design a more optimized data storage method. In addition, data 
access security needs to be considered when optimizing data storage. Therefore, future work will 
address the following aspects. 

1) Owing to the large-scale user base environment, the upper-level service has high data storage 
requirements that could exceed current hardware storage limitations. Sharding technology [21,22] 
could be used to store CSPBFT data and reduce hardware requirements for node services. Future work 
will further improve the interaction rate between users and consensus networks and improve user 
efficiency. 

2) When users participate in consensus to access data, data security is controlled through user 
authentication policies such as authority management and identity verification to ensure data security. 
Future work will eliminate the risk of data leakage and improve the credibility of community 
governance data. 
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