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Abstract: In this study, we examine the impact of vaccination and environmental transmission on
the dynamics of the monkeypox. We formulate and analyze a mathematical model for the dynamics
of monkeypox virus transmission under Caputo fractional order. We obtain the basic reproduction
number, the conditions for the local and global asymptotic stability for the disease-free equilibrium of
the model. Under the Caputo fractional order, existence and uniqueness solutions have been determined
using fixed point theorem. Numerical trajectories are obtained. Furthermore, we explored some of the
sensitive parameters impact. Based on the trajectories, we hypothesised that the memory index or
fractional order could use to control the Monkeypox virus transmission dynamics. We observed that
if the proper vaccination is administrated, public health education is given, and practice like personal
hygiene and proper disinfection spray, the infected individuals decreases.
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1. Introduction

Over 100 nonendemic nations globally reported an unprecedented and unexpected increase in the
number of human monkeypox cases in 2022 [1]. The monkeypox virus (MPXV), which is responsible
for this zoonotic disease also known as monkeypox (MPOX), was formerly endemic in sub-Saharan
Africa countries [1–3]. Prior to the present of 2022 MPOX outbreak, MPXV was only mildly spread-
ing, mostly in endemic nations with secondary attack rates that only ever went above 10% [3–5]. With
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over 80,000 cases reported in more than 100 formerly nonendemic countries in 2022, the dynam-
ics of MPOX spread have significantly changed [2, 6]. The World Health Organization (WHO) was
compelled by this circumstance to proclaim the 2022 MPOX outbreak a public health emergency of
worldwide concern on July 23, 2022 [7].

The first MPXV case in humans was reported in sub-Saharan Africa country, the Democratic Repub-
lic of Congo in 1970 [2,3,6], and the MPXV was initially identified at an animal facility in Denmark in
1958 [2,3,6]. The majority of cases of MPOX have only been reported in sub-Saharan Africa. In 2003,
the disease spread outside of the sub-Saharan Africa. The lack of smallpox vaccination programmes af-
ter variola eradication presumably reduced immunity, there were more encounters between people and
wildlife, and MPXV may have changed to allow for sustained human-to-human transmission [7–11].
One of the main modes of transmission for the MPXV is the environmental viral load. Direct con-
tact with items or materials contaminated with MPXV contributes considerably to the transmission of
the MPOX. Virus particles can survive for many months if contaminated material is kept in a low-
humidity, low-temperature environment that is shielded from UV light [12,13]. Some people who may
have contracted MPOX have fever, headache, muscle aches, backaches, swollen lymph nodes, chills,
and fatigue. The bulk of deaths from MPOX occur in children under the age of ten, accounting for up
to 10% of those who contract the disease [9]. The need for suitable response measures is mandated
by the evolving epidemiology of MPOX [10]. These actions include giving vaccinations to high-risk
groups and engaging in educational initiatives to raise MPOX awareness and knowledge [2, 11].

The WHO emphasized the significance of strong public health control measures to stop the spread
of MPXV [14], despite the fact that there is no specific vaccine or medication for the management
and prevention of MPOX [9]. This entails improving the ability of healthcare professionals to rec-
ognize cases by implementing early diagnosis and delivering organized, efficient medical care [14].
One requirement for limiting this outbreak is the general public to comprehend MPOX. Prior stud-
ies have shown that the populace of Saudi Arabia, Indonesia, and Jordan have a generally low level
of knowledge about MPOX [15–17]. Nearly one-quarter of dental practitioners in a recent poll in a
northern Indian state said they had never heard of MPOX [18]. Concerns were expressed about the
population’s level of MPOX immunisation during the epidemic. Therefore, it is essential to ascertain
the population’s readiness to receive vaccinations and willingness to pay for them before widespread
immunisation. A poll carried out in Indonesia revealed that 96% of the frontline doctors were open to
receiving a free MPOX vaccination [19]. Currently, a survey [20] for the Chinese population’s knowl-
edge of MPOX and vaccination intention revealed that more knowledge of MPOX was associated with
greater willingness to take vaccine. People who suffered from chronic diseases and had high salaries
were more willing to pay more for immunisations.

Fractional order modeling is a powerful method that has been used to study the nature of dis-
eases transmissions. Recently, some authors have used fractional models to study infectious and non-
infectious diseases transmission dynamics. This is because the dynamic transmissions that take place
in biological models can be accurately modeled using fractional calculus. Additionally, the fractional
order derivation has a global dimension as opposed to the local identity shared by the integer order
derivation. The most efficient and useful techniques for representing the nonlinear processes that show
up in countless applications to real-world settings are now fractional derivative order differential prob-
lems. The fractional calculus has improved the modelling precision of many phenomena in the physical
sciences. Primarily, Caputo fractional derivative, the Caputo-Fabrizio (CF) derivative, and Atangana-
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Baleanu-Caputo (ABC) have lately been used in the field of mathematical biology. The only reason that
Caputo, CF, and ABC differed from one another in terms of their fractional derivatives was that Caputo
is defined by a power law, CF is defined by utilising an exponential decay rule, and ABC is defined by
the Mittag-Leffler law [21–25]. These operators have numerous works recently, for instance, in [26],
the Mittag-Leffler type kernel modeling for Ebola-malaria co-infection was investigated. In [27], Sin-
gular and non-singular fractional operators was used to explore the COVID-19 model. In [28], math-
ematical model for HIV/AIDS using the Mittag-Leffler type kernel was investigated. Furthermore, in
the context of MPOX transmission dynamics, the authors in [39] used real data from Nigeria to study
the dynamics of the transmission of MPOX virus using fractional calculus. They studied the infec-
tion control policies which will help the general public comprehension of the importance of control
parameters in the extinction of the disease. Also, in [30] and [31] studied the transmission dynamics
of the MPOX virus with non-pharmaceutical intervention. The Caputo derivative, as opposed to the
Riemann Liouville fractional derivative, permits the use of conventional beginning and steady state in
the derivation and has the advantage that the derivative of a constant is 0. Due to this advantage many
researchers in the field of mathematical biology take into consideration. The authors in [32] modelled
giving up smoking mathematically under Caputo fractional derivative. In [33], the authors investigated
Caputo fractional model for Middle East Lungs Coronavirus dynamism transmission. For more papers
on Caputo fractional derivative see, for instance, [34, 35] and references therein.

This study aims to investigate the public health approach based on vaccination campaigns and envi-
ronmental transmission controls in the successful control of the MPXV. For the purpose of this study,
we assume vaccinated vaccine as JYNNEOS, a 2-dose vaccine with 79% efficacy. Although some
mathematical models have been developed to evaluate the effectiveness of isolation and quarantine-
based anti-MPXV control techniques. The aforementioned articles made it clear that no mathematical
model for the MPXV considered how vaccination and environmental transmission impact the disease
spread. In light of this, the current study creates a mathematical model for the dynamics of MPXV
transmission that improved upon earlier studies in the following areas:

i. A novel Caputo fractional epidemiological model that takes vaccination and environmental trans-
mission into account is taken into consideration and studied.

ii. Employing the fixed point theorem, the existence and uniqueness of the solution of the MPXV
transmission dynamics incorporating vaccination and environmental transmission has been
achieved.

iii. When recollection of the prior history of the MPXV transmission is taken into consideration
through simulations, we showed the rich transmission dynamics of the MPXV using the Caputo
fractional order derivative.

v. We emphasize the significance of vaccine rate and efficacy, rates of viral contribution from human
and rodent to environment, and the rate at which humans are exposed to certain classes of infection
on the MPXV transmission dynamics when the fractional order is 0.95.

The rest of this study is structured as follows: Section 2 presents briefly some key ideas, fun-
damental definitions, and preliminary findings. We formulate the suggested model both fractionally
and non-fractionally in Section 3 and briefly describe each parameters. The analysis of fundamental
mathematical models, including positivity, invariance, boundedness, disease-free equilibrium (DFE),
reproduction number, local and global stabilities, are covered in Section 4. In Section 5, we look at
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the dynamics of vaccination and environmental transmission as they relate to the existence and unique-
ness of the MPXV. Sections 6 and 7 deal with the numerical framework and simulations, respectively.
Section 8 of the paper conclude the work.

2. Preliminaries

In this section, we review several key definitions, lemmas, and concepts that are necessary to un-
derstand our suggested model.
Definition 2.1 [34, 35]. Given a function u : R+ → R, and α ∈ (n − 1, n), n ∈ N. The left Caputo
fractional derivative of order α of the function u is defined as

C
0 Dα

t (u(t)) =
1

Γ(n − α)

∫ t

0
un(Θ)(t − Θ)n−α−1dΘ

Definition 2.2 [35]. The corresponding Riemann-Liouville fractional integral associated with the
power-law kernel is defined as

C
0 Iαt (u(t)) =

1
Γ(α)

∫ t

0
(t − Θ)α−1u(Θ)dΘ, t > 0.

Lemma 2.3 [36]. Assuming there is a function u(t) ∈ C[0, η] of order α ∈ (0, 1), then the solution
of fractional differential equation

C
0 Dα

t u(t) = Υ(t, u(t)), t ∈ [0, η],
u(0) = u0,

is given by

u (t) − u (0) =
1

Γ(α)

∫ t

0
Υ(Θ, u(Θ))(t − Θ)α−1dΘ.

3. Model Formulation

We investigate the populations of humans and rodents in a closed homogeneous habitat using a
system of differential equations. A population of humans has four compartments of total size Nh(t):
Susceptible S h(t), Exposed Eh(t); Vaccinated Vh(t); Infected Ih(t); Recovered Rh(t); where Nh(t) =

S h(t) + Vh(t) + Eh(t) + Ih(t) + Rh(t). And rodent population Nr(t) is split into S r(t) Susceptible ; Er(t)
Expose ; Ir(t) Infected ; Let Nr(t) = S r(t) + Er(t) + Ir(t). We introduce another compartment L(t) that
represents the environmental factors that contributes to the emergence of the virus. The hypothesized
dynamics of virus transmission are described by the ordinary differential equations in model (3.1)
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based on the foregoing description;

dS h
dt = Ah + ηhVh − (λh + b + µh)S h,

dVh
dt = bS h − λhVh − (ηh + µh)Vh,

dEh
dt = λh(S h + Vh) − (γh + µh)Eh,

dIh
dt = γhEh − (εh + δh + µh)Ih,
dRh
dt = εhIh − µhRh,

dL
dt = m1Ih + m2Ir − µlL,
dS r
dt =

p
µr

(1 − Nr
C ) − (λr + µr)S r,

dEr
dt = λrS r − (φr + µr)Er,

dIr
dt = φrEr − µrIr,

(3.1)

where λh = βhIh + βeh
L

n+L + βrhIr, λr = βhrIh + βrIr. And with a given initial conditions are S h(0) =

S h0,Vh(0) = V0, Eh(0) = Eh0, Ih(0) = Ih0,Rh(0) = Rh0, L(0) = L0, S r(0) = S r0, Er(0) = Er0, Ir(0) = Ir0.
Table 1 provides an overview of all the model (3.1) parameters.

We recast the ordinary differential model (3.1) fractional-order system using time-dependent inte-
grals as shown below to account for the memory effect.

dS h
dt =

∫ t

t0
m∗(t − s)(Ah + ηhVh − (λh + b + µh)S h)ds,

dVh
dt =

∫ t

t0
m∗(t − s)(bS h − λhVh − (ηh + µh)Vh)ds,

dEh
dt =

∫ t

t0
m∗(t − s)(λh(S h + Vh) − (γh + µh)Eh)ds,

dIh
dt =

∫ t

t0
m∗(t − s)(γhEh − (εh + δh + µh)Ih)ds,

dRh
dt =

∫ t

t0
m∗(t − s)(εhIh − µhRh)ds,

dL
dt =

∫ t

t0
m∗(t − s)(m1Ih + m2Ir − µlL)ds,

dS r
dt =

∫ t

t0
m∗(t − s)( p

µr
(1 − Nr

C ) − (λr + µr)S r)ds,
dEr
dt =

∫ t

t0
m∗(t − s)(λrS r − (φr + µr)Er)ds,

dIr
dt =

∫ t

t0
m∗(t − s)(φrEr − µrIr)ds,

(3.2)

where m∗(t − s) is the power law correlation function that follows defines a time-dependent kernel.

m∗(t − s) =
(t − s)α−2

Γ(α − 1)
,

where 0 < α ≤ 1 and Γ(.) represents Gamma function. From here, we simply rewrite (3.2) as

dS h
dt = 1

Γ(α−1)

∫ t

t0
(t − s)α−2(Ah + ηhVh − (λh + b + µh)S h)ds,

dVh
dt = 1

Γ(α−1)

∫ t

t0
(t − s)α−2(bS h − λhVh − (ηh + µh)Vh)ds,

dEh
dt = 1

Γ(α−1)

∫ t

t0
(t − s)α−2(λh(S h + Vh) − (γh + µh)Eh)ds,

dIh
dt = 1

Γ(α−1)

∫ t

t0
(t − s)α−2(γhEh − (εh + δh + µh)Ih)ds,

dRh
dt = 1

Γ(α−1)

∫ t

t0
(t − s)α−2(εhIh − µhRh)ds,

dP
dt = 1

Γ(α−1)

∫ t

t0
(t − s)α−2(m1Ih + m2Ir − µlL)ds,

dS r
dt = 1

Γ(α−1)

∫ t

t0
(t − s)α−2( p

µr
(1 − Nr

C ) − (λr + µr)S r)ds,
dEr
dt = 1

Γ(α−1)

∫ t

t0
(t − s)α−2(λrS r − (φr + µr)Er)ds,

dIr
dt = 1

Γ(α−1)

∫ t

t0
(t − s)α−2(φrEr − µrIr)ds.

(3.3)
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From (3.3), we can see that the right-hand side is fractional integral of order (α − 2), 0 < α ≤ 1
on the interval [t, t0] as defined by t0 D−(α−1)

t . We apply Caputo fractional derivative of order (α − 1)
on both sides of (3.3) because we are aware that fractional derivatives are the left inverse of fractional
integrals. In doing so, our proposed model in the Caputo derivative is obtained. Thus;



CDα
t S h(t) = Ah + ηhVh − (λh + b + µh)S h,

CDα
t Vh(t) = bS h − λhVh − (ηh + µh)Vh,

CDα
t Eh(t) = λh(S h + Vh) − (γh + µh)Eh,

CDα
t Ih(t) = γhEh − (εh + δh + µh)Ih,

CDα
t Rh(t) = εhIh − µhRh,

CDα
t L(t) = m1Ih + m2Ir − µlL,

CDα
t S r(t) =

p
µr

(1 − Nr
C ) − (λr + µr)S r,

CDα
t Er(t) = λrS r − (φr + µr)Er,

CDα
t Ir(t) = φrEr − µrIr,

(3.4)

with the following initial conditions S h(0) = S h0 ≥ 0, Vh(0) = Vh0 ≥ 0, Eh(0) = Eh0 ≥ 0, Ih(0) = Ih0 ≥

0,Rh(0) = Rh0 ≥ 0, L(0) = L0 ≥ 0, S r(0) = S r0 ≥ 0, Er(0) = Er0 ≥ 0, Ir(0) = Ir0 ≥ 0.

Table 1. Parameter description and suitable values for the model.

Parameter Description Value
Ah Recruitment into susceptible human class. 450
ηh Efficacy loss rate 0.0034
µh Rates of human natural death 0.00067
µr Rates of rodents natural death 0.004
µl The natural death rate of pathogens 0.08
b The rate of vaccine and efficacy rate 0.4
C Rodent carrying capacity 0.01
γh The rate at which humans who are exposed join infection class 0.005
φr The rate at which exposed rodents join infection class 0.005
εh The rate at which humans recovery from monkey pox 0.18
δh Disease-induced mortality rate for humans 0.0013
βh Transmission rates from infected persons to susceptible humans 0.0001
m1 Rates of viral contribution from human to environment 0.0069
m2 Rates of viral contribution from rodent to environment 0.0051
p Rodent maximum growth rate 91
βeh Transmission rates of environment to susceptible population of humans 0.0061
βrh Transmission rates for susceptible humans from infected rodents 0.000041
βhr Transmission rates from the infected humans to rodents that are susceptible 0.000041
βr Rates of infection spread from infected rodents to susceptible rodent 0.000009

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10174–10199.



10180

4. Analysis of the model

4.1. Basic mathematical properties of the model

We carried out the qualitative analysis of the models (3.1) and (3.4). Since (3.1) and (3.4) depict
population of both humans and rodents during an outbreak of the MPXV, the epidemiological signif-
icant of the state variables are positive for t ≥ 0. This means that the proposed model solution for all
times t ≥ 0 with positive beginning data will remain positive.
Theorem 1. Suppose that {(S h0 ,Vh0 , Eh0 , Ih0 ,Rh0 , L0, S r0 , Er0 , Ir0) ∈ R},∃ t0 and continuous function(
S h(t),Vh(t), Eh(t), Ih(t),Rh(t), L(t), S v(t), Ev(t), Iv(t) : [0, t0)→ R

)
such that

S h(t),Vh(t), Eh(t), Ih(t),Rh(t), L(t), S v(t), Ev(t), Iv(t) satisfies our proposed MPOX model and

(S h,Vh, E, Ih,Rh, L, S r, Er, Ir)(0) = (S h0 ,Vh0 , Eh0 , Ih0 ,Rh0 , L0, S r0 , Er0 , Ir0).

Remark 2. If the unique solution obtained from Theorem 1 for the interval [0, t0], there exists t0 > 0
then, the function S h(t),Vh(t), Eh(t), Ih(t),Rh(t), L(t), S v(t), Ev(t), and Iv(t) will be bounded and for all
t ∈ [0, t0] remain positive.
Proof. Using the Classical Picard-Lindelof theorem and following the discussion of [37], we conclude
that Theorem 1 and Remark 2 hold. Hence we omit the proof.
Theorem 3. The solution of the proposed MPOX model is enclosed in the region D∗ subset R9

+, given
by

D∗ = {(S h,Vh, Eh, Ih,Rh, L, S r, Er, Ir) ∈ R9
+ : Nh(t) ≤

Ah

µh
, Nr(t) ≤

( p
µr

)
},

for the initial conditions (3.1) in D∗.
Proof. We know that { dNh(t)

dt = Ah − µhNh(t),
dNr(t)

dt = p − ( p
C + µr)Nr(t) ≥ p − µrNr(t).

(4.1)

Thus, dNh(t)
dt < 0; dNr(t)

dt < 0, if Nh(t) > Ah
µh

and Nr(t) >
p
µr

.

By a standard comparison theorem, we have

Nh(t) ≤ Nh(0)e−µh(t) +
Ah

µh

(
1 − e−µh(t)), Nr(t) ≤ Nr(0)e−µr(t) +

( p
µr

)
(1 − e−µr(t)).

And we have Nh(t) ≤ Ah
µh

and Nr(t) ≤
p
µr

if Nh(0) ≤ Ah
µh

and Nr(0) ≤ p
µr
, respectively. Then, D∗ is

invariant positively. Further, Nh(t) > Ah
µh

and Nr(t) >
p
µr
, then solution enters D∗ infinite time. Thus, D∗

attracts all solutions in R9
+. Hence, the model (3.1) is epidemiologically well-posed in D∗.

Theorem 4. Under initial conditions, the solution of proposed system (3.4) is nonnegative and bounded
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in R9
+. Therefore 

limt→∞ sup S h(t) ≤ S h∞ =
Ah+ηhVh∞
λh+b+µh

,

limt→∞ sup Vh(t) ≤ Vh∞ = bS h∞
λh+ηh+µh

,

limt→∞ sup Eh(t) ≤ Eh∞ =
λh(Vh∞+S h∞)

γh+µh
,

limt→∞ sup Ih(t) ≤ Ih∞ =
γhEh∞

εh+δh+µh
,

limt→∞ sup Rh(t) ≤ Rh∞ = εhIh∞
µh
,

limt→∞ sup L(t) ≤ L∞ = m1Ih∞+m2Ir∞
µh

,

limt→∞ sup S r(t) ≤ S r∞ =
p
µr

(1− Nr
C )

λr+µr
,

limt→∞ sup Er(t) ≤ Er∞ = λrS r∞
φr+µr

,

limt→∞ sup Ir(t) ≤ Ir∞ =
φrEr∞
µr

.

(4.2)

Proof. Using the knowledge in [38] and with the initial values provided, we derive from model (3.4)
as 

CDα
t S h(t) = Ah + ηhVh > 0,

CDα
t Vh(t) = bS h − λhVh > 0,

CDα
t Eh(t) = λh(S h + Vh) > 0,

CDα
t Ih(t) = γhEh > 0,

CDα
t Rh(t) = εhIh > 0,

CDα
t L(t) = m1Ih + m2Ir > 0,

CDα
t S r(t) =

p
µr

(1 − Nr
C ) > 0,

CDα
t Er(t) = λrS r > 0,

CDα
t Ir(t) = φrEr > 0.

(4.3)

From (4.3), the result cannot escape from the hyperplanes, since S h(0) > 0,Vh(0) > 0, Eh(0) >
0, Ih(0) > 0,Rh(0) > 0, L(0) > 0, S r(0) > 0, Er(0) > 0, Ir(0) > 0, for all t > 0. Hence, model (3.4) is
nonnegative and bounded.

4.2. Disease free equilibrium (DFE)

In order to determine the equilibrium level at which the epidemic completely eliminated the popu-
lation. Setting Eh = Ih = L = Er = IR = 0 and reducing the right hand side of the model equation to
zero, leads to; 

Ah + ηhVh0 − (b + µh)S h0 = 0,
bS h − λhS h0 − (ηh + µh)Vh0 = 0,
p(1 − Nr

C ) − (+µr)S r0 = 0.
(4.4)

Then by rearranging model (4.4) and after the manipulation we obtain ,
S h0 = Ah

(b+µh) ,

S h0 = bAh
(b+µh)(ηh+µh) =

Ahρ

(b+µh) ,

S r0 = p(1 − Nr
µrC

),
(4.5)

where ρ = b
(η1+µh) . Hence the disease DFE point of our proposed model is given as

E0 = (S h,Vh, Eh, Ih,Rh, L, S r, Er, Ir) =
(

Ah
(b+µh) ,

Ahρ

(b+µh) , 0, 0, 0, 0, p(1 − Nr
µrC

), 0, 0
)
. (4.6)
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4.3. Basic reproduction number

The average number of secondary infections that an infected person causes during his infectious
period is the basic reproduction number. Using the next-generation operator approach in a dynamical
system with the rate of emergence of new infections F and the rate of individual transmission V at the
steady-state disease-free condition, this is calculated as

E0 =
(

Ah
(b+µh) ,

Ahρ

(b+µh) , 0, 0, 0, 0, p(1 − Nr
µrC

), 0, 0
)

(4.7)

is

F =


0 βh

Ah(1+ρ)
(b+µh) βeh

Ah(1+ρ)
(b+µh) 0 βrh

Ah(1+ρ)
(b+µh)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 p(1 − Nr

µrC
)(βhr + βr)

0 0 0 0 0


, (4.8)

V =


γh + µh 0 0 0 0
γh εh + δh + µh 0 0 0
0 −m1 µl −m2 0
0 0 0 φr + µr 0
0 0 0 −φr µr


, (4.9)

V−1 =



1
γh+µh

0 0 0 0
γh

(γh+µh)(εh+δh+µh)
1

εhδh+µh
0 0 0

m1γh
(γh+µh)(εh+δh+µh)

m1
(γh+µh)µl

1
µl

m2
φr+µr

0
0 0 0 1

φr+µr
0

0 0 0 φr
(φr+µr)µl

1
µr


. (4.10)

Thus, the basic reproduction number R is the spectral radius of FV−1

R =
Ah(1 + ρ)γr(m1βeh + βrµl)

(b + µh)(γh + µh)(εh + δh + µh)µl

4.4. Existence and stability of the endemic equilibrium point

We denote the endemic equilibrium of the MPOX model as (S ∗h,V
∗
h , E

∗
h, I
∗
h,R

∗
h, L

∗, S ∗r , E
∗
r , I
∗
r ) such

that

S ∗h =
Ah + ηhV∗h
λ∗h + b + µh

; V∗h =
bS ∗h

λ∗h + ηh + µh
; E∗h =

λ∗h(V∗h + S ∗h)
γh + µh

I∗h =
γhE∗h

εh + δh + µh
=

γhλ
∗
h(V∗h + S ∗h)

(εh + δh + µh)(γh + µh)
= p1λ

∗
h(V∗h + S ∗h);

R∗h =
εhI∗h
µh

; L∗ =
m1I∗h + m2I∗r

µh
=

m1 p1λ
∗
h(V∗h + S ∗h) + m2 p2E∗r

µl

S ∗r =
p(1 − Nr

C )
λ∗r + µr

; E∗r =
λ∗rS ∗r
φr + µr

; I∗r =
φrE∗r
µr

= p2E∗r ,
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where λ∗h = βhI∗h + βeh
L∗

n+L∗ + βrhI∗r , λ
∗
r = βhrI∗h + βrI∗r , p1 =

γh
(εh+δh+µh)(γh+µh) , p2 =

φr
µr

. Further, we have

λ∗h = βh p1λ
∗
h(V∗h + S ∗h) + βeh

m1 p1λ
∗
h(V∗h + S ∗h) + m2 p2E∗r

nµl + m1 p1λ
∗
h(V∗h + S ∗h) + m2 p2E∗r

+ βrh p2E∗r ,

upon further simplification, we have(
βh p1λ

∗
h + βehm1 p1λ

∗
h − m1 p1λ

∗2
h
)(

V∗h + S ∗h
)

+
(
βehm2 p2 + βrh p1 − m2 p2λ

∗
h
)
E∗r − µlnλ∗h = 0,

and
λ∗r = βhr p1λ

∗
h(V∗h + S ∗h) + βr p2E∗r ,

but (V∗h + S ∗h) =
E∗h(γh+µh)

λ∗h
. By substitution, we have(

βh p1 + βehm1 p1 − m1 p1λ
∗
h
)
E∗h(γh + µh) +

(
βehm2 p2 + βrh p1 − m2 p2λ

∗
h
)
E∗r − µlnλ∗h = 0,

so that
λ∗r = βhr p1E∗h(γh + µh) + βr p2E∗r > 0,

whenever λ∗h > 0. Therefore, the existence of endemic equilibrium point is obtained by substituting the
unique values of λ∗h and λ∗r .
Theorem 5. Suppose that R > 1, then endemic equilibrium E∗∗ of the model (3.1) is globally asymp-
totically stable.
Proof. We employ the Lyapunov approach to demonstrate the endemic equilibrium’s asymptotically
global stability and unstable if R < 1. We consider Lyapunov function

F (S ∗h,V
∗
h , E

∗
h, I
∗
h,R

∗
h, L

∗, S ∗r , E
∗
r , I
∗
r ) = (S h − S ∗h − S ∗h ln

S h

S ∗h
) + (Vh − V∗h − V∗h ln

Vh

V∗h
)

+ (Eh − E∗h − E∗h ln
Eh

E∗h
) + (Ih − I∗h − I∗h ln

Ih

I∗h
)

+ (Rh − R∗h − R∗h ln
Rh

R∗h
) + (L − L∗ − L∗ ln

L
L∗

)

+ (S r − S ∗r − S ∗r ln
S r

S ∗r
)(Er − E∗r − E∗r ln

Er

E∗r
)

+ (Ir − I∗r − I∗r ln
Ir

I∗r
).

(4.11)

Now find the derivative of F

dF
dt

= (1 −
S ∗h
S h

)
dS h

dt
+ (1 −

V∗h
Vh

)
dVh

dt
+ (1 −

E∗h
Eh

)
dEh

dt
+ (1 −

I∗h
Ih

)
dIh

dt
+ (1 −

R∗h
Rh

)
dRh

dt

+ (1 −
L∗

L
)
dL
dt

+ (1 −
S ∗r
S r

)
dS r

dt
+ (1 −

E∗r
Er

)
dEr

dt
+ (1 −

I∗r
Ir

)
dIr

dt
.

(4.12)

Substituting the value of dS h
dt ,

dVh
dt ,

dEh
dt ,

dIh
dt ,

dRh
dt ,

dL
dt ,

dS r
dt ,

dEr
dt ,

dIr
dt from the model, the following is obtain
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dF
dt

=
(
1 −

S ∗h
S h

)[
Ah + ηhVh − (λh + b + µh)S h

]
+ (1 −

V∗h
Vh

)
[
bS h − λhVh − (ηh + µh)Vh

]
+ (1 −

E∗h
Eh

)
[
λh(S h + Vh) − (γh + µh)Eh

]
+ (1 −

I∗h
Ih

)
[
γhEh − (εh + δh

+ µh)Ih
]
+ (1 −

R∗h
Rh

)
[
εhIh − µhRh

]
+ (1 −

L∗

L
)
[
m1Ih + m2Ir − µlL

]
+ (1 −

S ∗r
S r

)
[ p
µr

(1 −
Nr

C
) − (λr + µr)S r

]
+ (1 −

E∗r
Er

)
[
λrS r − (φr + µr)Er

]
+ (1 −

I∗r
Ir

)
[
φrEr − µrIr

]
.

(4.13)

At the endemic point of model (3.1), we obtain

(γh + µh) =
λh(Vh + S h)

E∗h
, (εh + δh + µh) =

γhE∗h
I∗h

, µh =
εhI∗h
R∗h

,

(λr + µr) =

p
µr

(1 − Nr
C )

S ∗r
, (φr + µr) =

λrS ∗r
E∗r

, µr =
φrE∗r

I∗r
.

(4.14)

Substituting (4.14) into (4.13), we obtain

dF
dt

=
(
1 −

S ∗h
S h

)[
Ah + ηhVh − (λh + b + µh)S h

]
+ (1 −

V∗h
Vh

)
[
bS h − λhVh − (ηh + µh)Vh

]
+ (1 −

E∗h
Eh

)
[
λh(S h + Vh) − (

λh(Vh + S h)
E∗h

)Eh
]
+ (1 −

I∗h
Ih

)
[
γhEh − (

γhE∗h
I∗h

)Ih
]

+ (1 −
R∗h
Rh

)
[
εhIh − (

εhI∗h
R∗h

)Rh
]
+ (1 −

L∗

L
)
[
m1Ih + m2Ir − µlL

]
+ (1 −

S ∗r
S r

)
[ p
µr

(1 −
Nr

C
) − (

p
µr

(1 − Nr
C )

S ∗r
)S r

]
+ (1 −

E∗r
Er

)
[
λrS r − (

λrS ∗r
E∗r

)Er
]

+ (1 −
I∗r
Ir

)
[
φrEr −

φrE∗r
I∗r

Ir
]
.

(4.15)

Let S h = S ∗h,Vh = V∗h , Eh = E∗h, Ih = I∗h,Rh = R∗h, L = L∗, S r = S ∗r , Er = E∗r , Ir = I∗r , then
dF
dt = 0. Hence by LaSalles invariance principle every solution of model (3.1) with initial condition in

Π = {(S h,Vh, Eh, Ih,Rh, L, S r, Er, Ir) ∈ R9
+} it follows that E∗∗ is globally asymptotically stable.

Theorem 6. Suppose that R < 1, then endemic equilibrium E∗∗ of the model (3.1) is locally asymptot-
ically stable.

The disease-free equilibrium point is locally stable and the population cannot be infected by the
disease if the reproduction number is less than one. Applying the proof from Theorem 2 of [39] the
proof of the above theorem is therefore valid.

5. Existence and uniqueness solution for Caputo model

In this section the existence and uniqueness solutions for Caputo model will be provided herein for
the (3.4). Supposed that a continuous real-value function denoted W(J) containing the sup norm prop-
erty is a Banach space on J = [0, η] andM = W(J)×W(J)×W(J)×W(J)×W(J)×W(J)×W(J)W(J)×
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W(J) with norm ||(S h,Vh, Eh, Ih,Rh, L, S r, Er, Ir)|| = ||S h|| + ||Vh|| + ||Eh|| + ||Ih|| + ||Rh + ||L|| + ||S r|| +

||Er|| + ||Ir||, where ||S h|| = supt∈J |S h|, ||Vh|| = supt∈J |Vh|, ||Eh|| = supt∈J |Eh|, ||Ih|| = supt∈J |Ih|, ||Rh|| =

supt∈J |Rh|, ||L|| = supt∈J |L|, ||S r|| = supt∈J |S r|, ||Er|| = supt∈J |Er|, ||Ir|| = supt∈J |Ir|. Now when we apply
the Caputo fractional integral operator to the both sides of (3.4) we obtain

S h(t) − S h(0) = CDα
t {Ah + ηhVh − (λh + b + µh)S h},

Vh(t) − Vh(0) = CDα
t {bS h − λhVh − (ηh + µh)Vh},

Eh(t) − Eh(0) = CDα
t {λh(S h + Vh) − (γh + µh)Eh},

Ih(t) − Ih(0) = CDα
t {γhEh − (εh + δh + µh)Ih},

Rh(t) − Rh(0) = CDα
t {εhIh − µhRh},

L(t) − L(0) = CDα
t {m1Ih + m2Ir − µlL},

S r(t) − S r(0) = CDα
t {

p
µr

(1 − Nr
C ) − (λr + µr)S r},

Er(t) − Er(0) = CDα
t {λrS r − (φr + µr)Er},

Ir(t) − Ir(0) = CDα
t {φrEr − µrIr}.

(5.1)

And this then lead to

S h(t) − S h(0) = H(α)
∫ t

0
(t − Θ)−αΥ1(α,Θ, S h(Θ))dΘ,

Vh(t) − Vh(0) = H(α)
∫ t

0
(t − Θ)−αΥ2(α,Θ,Vh(Θ))dΘ,

Eh(t) − Eh(0) = H(α)
∫ t

0
(t − Θ)−αΥ3(α,Θ, Eh(Θ))dΘ,

Ih(t) − Ih(0) = H(α)
∫ t

0
(t − Θ)−αΥ4(α,Θ, Ih(Θ))dΘ,

Rh(t) − Rh(0) = H(α)
∫ t

0
(t − Θ)−αΥ5(α,Θ,Rh(Θ))dΘ,

L(t) − L(0) = H(α)
∫ t

0
(t − Θ)−αΥ6(α,Θ, L(Θ))dΘ,

S r(t) − S r(0) = H(α)
∫ t

0
(t − Θ)−αΥ7(α,Θ, S r(Θ))dΘ,

Er(t) − Er(0) = H(α)
∫ t

0
(t − Θ)−αΥ8(α,Θ, Er(Θ))dΘ,

Ir(t) − Ir(0) = H(α)
∫ t

0
(t − Θ)−αΥ9(α,Θ, Ir(Θ))dΘ,

(5.2)

supposing that 

Υ1(α, t, S h(t)) = Ah + ηhVh − (λh + b + µh)S h,

Υ2(α, t,Vh(t)) = bS h − λhVh − (ηh + µh)Vh,

Υ3(α, t, Eh(t)) = λh(S h + Vh) − (γh + µh)Eh,

Υ4(α, t, Ih(t)) = γhEh − (εh + δh + µh)Ih,

Υ5(α, t,Rh(t)) = εhIh − µhRh,

Υ6(α, t, L(t)) = m1Ih + m2Ir − µlL,
Υ7(α, t, S r(t)) =

p
µr

(1 − Nr
C ) − (λr + µr)S r,

Υ8(α, t, Er(t)) = λrS r − (φr + µr)Er,

Υ9(α, t, Ir(t)) = φrEr − µrIr.

(5.3)

Now we note that Υi where i = 1, 2, 3, ..., 9 satisfies the Lipschitz condition if and only if
S h(t), Vh(t), Eh(t), Ih(t), Rh(t), L(t), S v(t), Ev(t), and Iv(t) are upper bound. Surmising that S h(t)
and S∗∗h (t) are two function, so we have

||Υ1(α, t, S h(t)) − Υ1(α, t, Sh(t))|| = ||(λh + b + µh)(S h − S
∗∗
h )||,

= (λh + b + µh)||S h − S
∗∗
h )||.

(5.4)
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Therefore, taking ζ1 = (λh + b + µh), we have

||Υ1(α, t, S h(t)) − Υ1(α, t, Sh(t))|| ≤ ζ1||S h − S
∗∗
h )||, (5.5)

similarly, we obtain

||Υ2(α, t,Vh(t)) − Υ2(α, t,Vh(t))|| ≤ ζ2||Vh −V
∗∗
h )||,

||Υ3(α, t, Eh(t)) − Υ3(α, t,Eh(t))|| ≤ ζ3||Eh − E
∗∗
h )||,

||Υ4(α, t, Ih(t)) − Υ4(α, t, Ih(t))|| ≤ ζ4||Ih − I
∗∗
h )||,

||Υ5(α, t,Rh(t)) − Υ5(α, t,Rh(t))|| ≤ ζ5||Rh −R
∗∗
h )||,

||Υ6(α, t, L(t)) − Υ6(α, t,L(t))|| ≤ ζ6||L − L∗∗)||,
||Υ7(α, t, S r(t)) − Υ7(α, t, Sr(t))|| ≤ ζ7||S r − S

∗∗
r )||,

||Υ8(α, t, Er(t)) − Υ8(α, t,Er(t))|| ≤ ζ8||Er − E
∗∗
r )||,

||Υ9(α, t, Ir(t)) − Υ9(α, t, Ir(t))|| ≤ ζ9||Ir − I
∗∗
r )||.

(5.6)

This indicates that the Lipschitz condition is fulfilled for Υi where i = 1, 2, 3, ..., 9
Recursively, the model (5.1) yield

S hn(t) = H(α)
∫ t

0
(t − Θ)−αΥ1(α,Θ, S hn−1(Θ))dΘ,

Vhn(t) = H(α)
∫ t

0
(t − Θ)−αΥ2(α,Θ,Vhn−1(Θ))dΘ,

Ehn(t) = H(α)
∫ t

0
(t − Θ)−αΥ3(α,Θ, Ehn−1(Θ))dΘ,

Ihn(t) = H(α)
∫ t

0
(t − Θ)−αΥ4(α,Θ, Ihn−1(Θ))dΘ,

Rrn(t) = H(α)
∫ t

0
(t − Θ)−αΥ5(α,Θ,Rhn−1(Θ))dΘ,

Ln(t) = H(α)
∫ t

0
(t − Θ)−αΥ6(α,Θ, Ln−1(Θ))dΘ,

S rn(t) = H(α)
∫ t

0
(t − Θ)−αΥ7(α,Θ, S rn−1(Θ))dΘ,

Ern(t) = H(α)
∫ t

0
(t − Θ)−αΥ8(α,Θ, Ern−1(Θ))dΘ,

Irn(t) = H(α)
∫ t

0
(t − Θ)−αΥ9(α,Θ, Irn−1(Θ))dΘ,

(5.7)

with the initial conditions; S h(0),Vh(0), Eh(0), Ih(0),Rh(0), L(0), S r(0), Er(0), Ir(0). Taking the differ-
ence in the successive terms, we have

ΨS h,n = S hn(t) − S hn−1(t) = H(α)
∫ t

0
(t − Θ)−α

[
Υ1(α,Θ, S hn−1(Θ)) − Υ1(α,Θ, S hn−2(Θ))

]
dΘ,

ΨVh,n = Vh(t) − Vhn−1(t) = H(α)
∫ t

0
(t − Θ)−α

[
Υ2(α,Θ,Vhn−1(Θ)) − Υ2(α,Θ,Vhn−2(Θ))

]
dΘ,

ΨEh,n = Eh(t) − Ehn−1(t) = H(α)
∫ t

0
(t − Θ)−α

[
Υ3(α,Θ, Ehn−1(Θ)) − Υ3(α,Θ, Ehn−2(Θ))

]
dΘ,

ΨIh,n = Ih(t) − Ihn−1(t) = H(α)
∫ t

0
(t − Θ)−α

[
Υ4(α,Θ, Ihn−1(Θ)) − Υ4(α,Θ, Ihn−2(Θ))

]
dΘ,

ΨRh,n = Rh(t) − Rhn−1(t) = H(α)
∫ t

0
(t − Θ)−α

[
Υ5(α,Θ,Rhn−1(Θ)) − Υ5(α,Θ,Rhn−2(Θ))

]
dΘ,

ΨLn = L(t) − Ln−1(t) = H(α)
∫ t

0
(t − Θ)−α

[
Υ6(α,Θ, Ln−1(Θ)) − Υ6(α,Θ, Ln−2(Θ))

]
dΘ,

ΨS r,n = S r(t) − S rn−1(t) = H(α)
∫ t

0
(t − Θ)−α

[
Υ7(α,Θ, S rn−1(Θ)) − Υ7(α,Θ, S rn−2(Θ))

]
dΘ,

ΨEr,n = Er(t) − Ern−1(t) = H(α)
∫ t

0
(t − Θ)−α

[
Υ8(α,Θ, Ern−1(Θ)) − Υ8(α,Θ, Ern−2(Θ))

]
dΘ,

ΨIr,n = Ir(t) − Irn−1(t) = H(α)
∫ t

0
(t − Θ)−α

[
Υ9(α,Θ, Irn−1(Θ)) − Υ9(α,Θ, Irn−2(Θ))

]
dΘ.

(5.8)

Based on the above (5.8), we can see that

S hn(t) = Σn
j=0ΨS h,n(t), Vhn(t) = Σn

j=0ΨVh,n(t), Ehn(t) = Σn
j=0ΨEh,n(t),

Ihn(t) = Σn
j=0ΨIh,n(t), Rhn(t) = Σn

j=0ΨRh,n(t), Ln(t) = Σn
j=0ΨLn(t),

S rn(t) = Σn
j=0ΨS r,n(t), Ern(t) = Σn

j=0ΨEr,n(t), Irn(t) = Σn
j=0Ψir,n(t).

(5.9)
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In addition, by using (5.5) and (5.6), and considering

ΨS h,n(t) = S hn−1(t) − S hn−2(t), ΨVh,n(t) = Vhn−1(t) − Vhn−2(t), ΨEh,n(t) = Ehn−1(t) − Ehn−2(t),
ΨIh,n(t) = Ihn−1(t) − Ihn−2(t), ΨRh,n(t) = Rhn−1(t) − Rhn−2(t), ΨLn(t) = Ln−1(t) − Ln−2(t),
ΨS r,n(t) = S rn−1(t) − S rn−2(t), ΨEr,n(t) = Ern−1(t) − Ern−2(t), ΨIr,n(t) = Irn−1(t) − Irn−2(t),

(5.10)

we obtain the following 

||ΨS h,n(t)|| ≤ H(α)ζ1

∫ t

0
(t − Θ)−α||ΨS h,n−1(Θ)||dΘ,

||ΨVh,n(t)|| ≤ H(α)ζ2

∫ t

0
(t − Θ)−α||ΨVh,n−1(Θ)||dΘ,

||ΨEh,n(t)|| ≤ H(α)ζ3

∫ t

0
(t − Θ)−α||ΨEh,n−1(Θ)||dΘ,

||ΨIh,n(t)|| ≤ H(α)ζ4

∫ t

0
(t − Θ)−α||ΨIh,n−1(Θ)||dΘ,

||ΨRh,n(t)|| ≤ H(α)ζ5

∫ t

0
(t − Θ)−α||ΨRh,n−1(Θ)||dΘ,

||ΨLn(t)|| ≤ H(α)ζ6

∫ t

0
(t − Θ)−α||ΨLn−1(Θ)||dΘ,

||ΨS r,n(t)|| ≤ H(α)ζ7

∫ t

0
(t − Θ)−α||ΨS r,n−1(Θ)||dΘ,

||ΨEr,n(t)|| ≤ H(α)ζ8

∫ t

0
(t − Θ)−α||ΨEr,n−1(Θ)||dΘ,

||ΨIr,n(t)|| ≤ H(α)ζ9

∫ t

0
(t − Θ)−α||ΨIr,n−1(Θ)||dΘ.

(5.11)

To conclude the existence and uniqueness of our proposed Caputo fractional model, we need to
prove Theorem 7.
Theorem 7. Supposing that the following conditions satisfies

H(α)
(α)

Kαζi < 1, i = 1, 2, 3, ..., 9.

Then our proposed Caputo fractional model has unique solution for all t ∈ [0,K].
Proof. We have established that S h(t), Vh(t), Eh(t), Ih(t), Rh(t), L(t), S v(t), Ev(t), and Iv(t) are upper
bound. Also from (5.5) and (5.6) as well as Υi where i = 1, 2, 3, ..., 9 satisfies Lipschitz condition, then,
using (5.11) through the recursive principle, we arrive at

||ΨS h,n(t)|| ≤ ||S h0(t)||
(
H(α)
α

Kαζ1

)n

,

||ΨVh,n(t)|| ≤ ||Vh0(t)||
(
H(α)
α

Kαζ2

)n

,

||ΨEh,n(t)|| ≤ ||Eh0(t)||
(
H(α)
α

Kαζ3

)n

,

||ΨIh,n(t)|| ≤ ||Ih0(t)||
(
H(α)
α

Kαζ4

)n

,

||ΨRh,n(t)|| ≤ ||Rh0(t)||
(
H(α)
α

Kαζ5

)n

,

||ΨLn(t)|| ≤ ||L0(t)||
(
H(α)
α

Kαζ6

)n

,

||ΨS r,n(t)|| ≤ ||S r0(t)||
(
H(α)
α

Kαζ7

)n

,

||ΨEr,n(t)|| ≤ ||Er0(t)||
(
H(α)
α

Kαζ8

)n

,

||ΨIr,n(t)|| ≤ ||Ir0(t)||
(
H(α)
α

Kαζ9

)n

.

(5.12)
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By limit principle as n → ∞, the sequence hold and exist for ||ΨS h,n(t)|| → 0, ||ΨVh,n(t)|| →
0, ||ΨEh,n(t)|| → 0, ||ΨIh,n(t)|| → 0, ||ΨRh,n(t)|| → 0, ||ΨLn(t)|| → 0, ||ΨS r,n(t)|| → 0, ||ΨEr,n(t)|| →
0, ||ΨIr,n(t)|| → 0. Also applying the triangle inequality with (5.12), for any m, we obtain

||S hn+m(t) − S hn(t)|| ≤
∑n+m

j=n+1 y j
1 =

yn+1
1 −yn+m+1

1
1−y1

,

||Vhn+m(t) − Vhn(t)|| ≤
∑n+m

j=n+1 y j
2 =

yn+1
2 −yn+m+1

2
1−y2

,

||Ehn+m(t) − Ehn(t)|| ≤
∑n+m

j=n+1 y j
3 =

yn+1
3 −yn+m+1

3
1−y3

,

||Ihn+m(t) − Ihn(t)|| ≤
∑n+m

j=n+1 y j
4 =

yn+1
4 −yn+m+1

4
1−y4

,

||Rhn+m(t) − Rhn(t)|| ≤
∑n+m

j=n+1 y j
5 =

yn+1
5 −yn+m+1

5
1−y5

,

||Ln+m(t) − Ln(t)|| ≤
∑n+m

j=n+1 y j
6 =

yn+1
6 −yn+m+1

6
1−y6

,

||S rn+m(t) − S rn(t)|| ≤
∑n+m

j=n+1 y j
7 =

yn+1
7 −yn+m+1

7
1−y7

,

||Ern+m(t) − Ern(t)|| ≤
∑n+m

j=n+1 y j
8 =

yn+1
8 −yn+m+1

8
1−y8

,

||Irn+m(t) − Irn(t)|| ≤
∑n+m

j=n+1 y j
9 =

yn+1
9 −yn+m+1

9
1−y9

,

(5.13)

where yi =
H(α)
α

Kαζi < 1, i = 1, 2, 3, ..., 9. by the assumption. Therefore, S hn ,Vhn , Ehn , Ihn ,Rhn , Ln,
S rn , Ern , Irn are Cauchy sequences in the Banach space W(J). Therefore, the state variables converges
uniformly. Hence, imposing the limit theorem in (5.7) as n→ ∞ affirms that the limit of this sequence
is the unique solution of our proposed Caputo fractional model. Hence, we conclude that the existence
of the unique solution of our proposed Caputo fractional model has been proved.

6. Numerical schemes

Here, using two-step Lagrange interpolation, we present the numerical algorithms for the Caputo
fractional epidemiological model for the MPXV that takes vaccination and environmental transmis-
sion.For more details about the numerical analysis see [40]. The formula for the Cauchy problem of
the Caputo derivative is

C
0 D

α

t u(t) = Υ(t, u(t)), (6.1)
u(0) = u0.

With the help of the Caputo integral, (6.1) can be transformed into

u (t) − u (0) =
1

Γ(α)

∫ t

0
Υ(Θ, u(Θ))(t − Θ)α−1dΘ. (6.2)

At the point tw+1 = (w + 1)h and tw = wh, w = 0, 1, 2, 3, 4, ... with h being the time step, Eq (6.2) can
be formulated as:

u (tw+1) − u (0) =
1

Γ(α)

∫ tw+1

0
Υ(Θ, u(Θ))(tw+1 − Θ)α−1dΘ. (6.3)

Which can be written as

u (tw+1) = u (0) +
1

Γ(α)

w∑
q=0

∫ tq+1

tq
Υ(Θ, u(Θ))(tw+1 − Θ)α−1dΘ. (6.4)
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We further breakdown the right hand side of Eq (6.4) and using the Lagrange polynomial, Eq (6.4)
can now be written as

uw+1 = u0 +
1

Γ(α)

w∑
q=0


Υ(tq,uq)

h

∫ tq+1

tq
(Θ − tq−1)(tw+1 − Θ)α−1dΘ

−
Υ(tq−1,uq−1)

h

∫ tq+1

tq
(Θ − tq)(tw+1 − Θ)α−1dΘ

 . (6.5)

Where Eq (6.5) can be written as

uw+1 = u0 +
1

Γ(α)

w∑
q=0

Υ(tq, uq)
h

∫ tq+1

tq
(Θ − tq−1)(tw+1 − Θ)α−1dΘ

−
1

Γ(α)

w∑
q=0

Υ(tq−1, uq−1)
h

∫ tq+1

tq
(Θ − tq)(tw+1 − Θ)α−1dΘ. (6.6)

When we solve the integral in (6.6), we get the result that follows:∫ tq+1

tq
(Θ − tq−1)(tw+1 − Θ)α−1dΘ =

hα−1

α(α + 1)

[
(w − q + 1)α(w − q + 2 + α)
−(w − q)α(w − q + 2 + 2α)

]
, (6.7)∫ tq+1

tq
(Θ − tq)(tw+1 − Θ)α−1dΘ =

hα−1

α(α + 1)

[
(w − q + 1)α+1

−(w − q)α(w − q + 1 + α)

]
. (6.8)

Replacing Eqs (6.7) and (6.8) into Eq (6.6), the numerical algorithm for the Caputo derivative is as
follows

uw+1 = u0 +
hα

Γ(α + 2)

w∑
q=0

Υ(tq, uq)
[
(w − q + 1)α(w − q + 2 + α)
−(w − q)α(w − q + 2 + 2α)

]

−
hα

Γ(α + 2)

w∑
q=0

Υ(tq−1, uq−1)
[

(w − q + 1)α+1

−(w − q)α(w − q + 1 + α)

]
. (6.9)

Thus, in terms of our Caputo fractional epidemiological model for the MPXV, we get:

S hw+1 = S h0 +
hα

Γ(α + 2)

w∑
q= 0

Υ(tq, S hq)
[
(w − q + 1)α(w − q + 2 + α)
−(w − q)α(w − q + 2 + 2α)

]

−
hα

Γ(α + 2)

w∑
q= 0

Υ(tq−1, S hq−1)
[

(w − q + 1)α+1

−(w − q)α(w − q + 1 + q)

]
,

Vhw+1 = Vh0 +
hα

Γ(α + 2)

w∑
q= 0

Υ(tq,Vhq)
[
(w − q + 1)α(w − q + 2 + α)
−(w − q)α(w − q + 2 + 2α)

]

−
hα

Γ(α + 2)

w∑
q= 0

Υ(tq−1,Vhq−1)
[

(w − q + 1)α+1

−(w − q)α(w − q + 1 + q)

]
,

Ehw+1 = Eh0 +
hα

Γ(α + 2)

w∑
q= 0

Υ(tq, Ehq)
[
(w − q + 1)α(w − q + 2 + α)
−(w − q)α(w − q + 2 + 2α)

]
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−
hα

Γ(α + 2)

w∑
q= 0

Υ(tq−1, S hq−1)
[

(w − q + 1)α+1

−(w − q)α(w − q + 1 + q)

]
,

Ihw+1 = Ih0 +
hα

Γ(α + 2)

w∑
q= 0

Υ(tq, Ihq)
[
(w − q + 1)α(w − q + 2 + α)
−(w − q)α(w − q + 2 + 2α)

]

−
hα

Γ(α + 2)

w∑
q= 0

Υ(tq−1, Ihq−1)
[

(w − q + 1)α+1

−(w − q)α(w − q + 1 + q)

]
,

Rhw+1 = Rh0 +
hα

Γ(α + 2)

w∑
q= 0

Υ(tq,Rhq)
[
(w − q + 1)α(w − q + 2 + α)
−(w − q)α(w − q + 2 + 2α)

]

−
hα

Γ(α + 2)

w∑
q= 0

Υ(tq−1,Rhq−1)
[

(w − q + 1)α+1

−(w − q)α(w − q + 1 + q)

]
,

Lw+1 = L0 +
hα

Γ(α + 2)

w∑
q= 0

Υ(tq, Lq)
[
(w − q + 1)α(w − q + 2 + α)
−(w − q)α(w − q + 2 + 2α)

]

−
hα

Γ(α + 2)

w∑
q= 0

Υ(tq−1, Lq−1)
[

(w − q + 1)α+1

−(w − q)α(w − q + 1 + q)

]
,

S rw+1 = S r0 +
hα

Γ(α + 2)

w∑
q= 0

Υ(tq, S rq)
[
(w − q + 1)α(w − q + 2 + α)
−(w − q)α(w − q + 2 + 2α)

]

−
hα

Γ(α + 2)

w∑
q= 0

Υ(tq−1, S rq−1)
[

(w − q + 1)α+1

−(w − q)α(w − q + 1 + q)

]
,

Irw+1 = Ir0 +
hα

Γ(α + 2)

w∑
q= 0

Υ(tq, Irq)
[
(w − q + 1)α(w − q + 2 + α)
−(w − q)α(w − q + 2 + 2α)

]

−
hα

Γ(α + 2)

w∑
q= 0

Υ(tq−1, Irq−1)
[

(w − q + 1)α+1

−(w − q)α(w − q + 1 + q)

]
. (6.10)

7. Numerical simulation and discussion

The physical outlook of our proposed model under the Caputo fractional operator is depicted in
Figures 1 and 2. Using the Adams-Bashforth method, taken account of the following initial conditions;
S h(0) = 500,Vh(0) = 300, Eh(0) = 350, Ih(0) = 200,Rh(0) = 250, L(0) = 200, S r(0) = 500, Er(0) =

400, Ir(0) = 220. From Figures 1 and 2 we observed in mathematical sense that the fractional order is
proportional to the MPXV transmission, thus when the operator α is varied the dynamism of the virus
changes. For example, when the fractional order α is lowered from 1 in Figure 1(a),(b) it captured low
susceptible and vaccination compartment. In biological sense, people have less health education, the
rate of vaccination and vaccine efficacy of the MPXV is low. In Figure 1(c),(d), we see high number
of people exposed and infected due to the Figure 1(a),(b) influence. In Figures 3 and 4 we maintain
the fractional operator to be fixed at α = 0.95 and varied some of the sensitive parameters which are
significant and need much attention. From Figure 3(a)–(f) we observed that when we increase the rate
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of vaccine and efficacy rate, people are motivated to receive vaccine which reduce infection rate. In
Figure 4(a),(b), when we increase recovery rate through practice such as offering fluids and food to
maintain adequate nutritional status, infection decrease and minimal recovery. In Figure 4(c)–(e), it is
easy to see the numerical trajectory of exposed, infection and recovery, when the parameter γh varied.
In Figure 4(f), the environmental transmission has been observed to be one of the main transmission
for the MPOX infection. When we simulate the impact of m1 and m2 with different rates, we noticed
that that the environmental transmission reduces. According to this understanding, the prevalence of
disease can be decreased by practising good personal hygiene and using appropriate disinfection sprays
to remove viruses from the environment.

8. Conclusions

We have comprehensively analyzed the MPXV transmission dynamics under Caputo fractional or-
der derivative in this paper. We have investigated the qualitative aspect of the spread of MPXV by
analysing the invariant, positiveness, boundedness, equilibrium point, and fundamental reproductive
number R. We have also examined local and global stability of our proposed model. The solution of
our proposed model existence and uniqueness are also examined using fixed point theorem. Numer-
ical trajectories are obtained for nine compartments in the fractional order model. Furthermore, we
explored some of the sensitive parameters impact. Based on the trajectories, we hypothesised that the
memory index or fractional order could use to control the MPXV transmission dynamics. It is also
seen that if the proper vaccination is administrated and practice such as personal hygiene and proper
disinfection spray, the infected individuals decreases. We think that the research presented in the study
will help the community’s health and decision-making authorities fight the disease. Future versions of
the model could be created by combining appropriate time-dependent control actions with real data.
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(a) Dynamics of Susceptible Class of humans (b) Dynamics of Vaccination Class of humans

(c) Dynamics of Exposed class of humans (d) Dynamics of Infected Class of humans

(e) Dynamics of Recovery Class of humans

Figure 1. Numerical trajectory of MPXV transmission under Caputo fractional operator.
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(a) Dynamics of Environmental transmission (b) Dynamics of Susceptible Class of Rodent

(c) Dynamics of Exposed class of Rodent (d) Dynamics of Infected Class of Rodent

Figure 2. Numerical trajectory of MPXV transmission under Caputo fractional operator.
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(a) (b)

(c) (d)

(e)

Figure 3. Numerical trajectory when one varying b against fractional operator α = 0.95.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Numerical trajectory when one varying (εh, γh, m) against fractional operator
α = 0.95.
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