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Abstract: Burns constitute one of the most common injuries in the world, and they can be very
painful for the patient. Especially in the judgment of superficial partial thickness burns and deep
partial thickness burns, many inexperienced clinicians are easily confused. Therefore, in order to
make burn depth classification automated as well as accurate, we have introduced the deep learning
method. This methodology uses a U-Net to segment burn wounds. On this basis, a new thickness burn
classification model that fuses global and local features (GL-FusionNet) is proposed. For the thickness
burn classification model, we use a ResNet50 to extract local features, use a ResNet101 to extract
global features, and finally implement the add method to perform feature fusion and obtain the deep
partial or superficial partial thickness burn classification results. Burns images are collected clinically,
and they are segmented and labeled by professional physicians. Among the segmentation methods,
the U-Net used achieved a Dice score of 85.352 and IoU score of 83.916, which are the best results
among all of the comparative experiments. In the classification model, different existing classification
networks are mainly used, as well as a fusion strategy and feature extraction method that are adjusted
to conduct experiments; the proposed fusion network model also achieved the best results. Our method
yielded the following: accuracy of 93.523, recall of 93.67, precision of 93.51, and F1-score of 93.513.
In addition, the proposed method can quickly complete the auxiliary diagnosis of the wound in the
clinic, which can greatly improve the efficiency of the initial diagnosis of burns and the nursing care of
clinical medical staff.
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1. Introduction

Burn injuries are among the most devastating of all injuries and a major global public health crisis
that can be deadly or cause a victim to suffer extremely if not treated appropriately [1]. Catastrophic
burn injuries constitute extremely distressing and physically devastating type of trauma that impact
approximately every major organ [2]. The World Health Organization estimates that 180,000 people
die from burns each year, and in 2004, approximately 11 million people worldwide suffered from severe
burns that required treatment [3]. Radiation, electricity, heat, excessive cold, chemical elements, etc.,
can cause severe burn injuries, and treatments must be ensured carefully according to its severity [4].
The survival rate of burn patients can be greatly improved with early and adequate treatment. In the
early stages of burn wound treatment, excision, skin grafting and skin replacement are typical treatment
techniques. Through these approaches, the outcomes of severely burned patients can be improved by
reducing mortality and length of hospital stay. And if the right treatment is not done at the right time, it
can have serious consequences. For example, poor wound healing, infection, discomfort, hypertrophic
scarring, organ failure, and even death may ensue [5].

While superficial and full thickness burns are straightforward to diagnose based on visual
appearance, clinicians have difficulty with accurate differentiation between superficial partial and
deep partial thickness burns [6]. The experience of the clinician and the fact that these burns can
dynamically increase in severity (i.e., burn wound conversion) during the initial 48-h period lead to
higher clinician error [7]. Both wound types are associated with similar characteristics, and both
involve the epidermis and dermis. Superficial partial-thickness burns involve injury of the papillary
dermis and are associated with intact blisters, moderate edema, a moist surface under the blisters, a
bright pink or red color, and blanching with a fast capillary refill after pressure is applied. Deep
partial-thickness burns involve injury of both the papillary and reticular dermis and are associated
with broken blisters, substantial edema, a wet surface, a mixed red or waxy white color, and blanching
with a slow capillary refill after pressure is applied [8]. These problems will make clinicians misjudge
when judging the depth of burns, but there is currently no effective method to quickly assist
physicians in making accurate diagnoses. With the widespread use of computer methods in the
medical field in recent years [9], we see the possibility of applying computer methods to this
classification task.

However, many current judgment methods require more equipment and technologies, such as burn
wound biopsy [10], hyperspectral imagery [11], ultrasound imagery [12] and polarized light
photography images [13], which have been used for artificial intelligence models of burn depth.

Aiming at some addressing problems and the current research status in the field of burn diagnosis,
this paper mainly focuses on the following three aspects:

• First-time use of a deep learning method that focuses on the deep and superficial classification of
partial-thickness burns to aid diagnosis.
• According to the characteristics of burn depth classification, a fusion model combined with a

segmentation network is proposed to improve the classification accuracy of deep and superficial
partial-thickness burns.
• It is of practical significance to conduct experiments on the dataset collected clinically, so the

proposed method is easy to practice clinically.
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2. Related works

In recent years, computer technology has been continuously applied in the medical domain,
especially in clinical practice, which has a very good auxiliary effect in terms of improving the
clinical diagnosis ability of doctors [14]. And all over the world, there are studies that have used
various computing techniques to automatically classify burn images, and judge the severity of burn
injuries in real time based on the captured damage images [15]. In the field of image classification,
machine learning methods are one of the most widely used techniques. Generally speaking, machine
learning methods analyze and retrieve key information from a large amount of heterogeneous data,
and then they use this information to autonomously detect and classify different categories [16].
Therefore, employing various machine learning techniques for burn severity assessment is gaining
traction nowadays. For example, the work [17] had proposed a method for categorizing burn photos
into the second, third, and fourth degrees of severity, in which they used a combination of image
processing techniques concentrating on color feature extraction from the images and then support
vector machine (SVM) classifiers to categorize the images. And, a group [18] used 105 burnt photos
to develop an automatic segmentation-based classification method to categorize burn images into
healthy skin, burned skin, and background, for which they employed four types of clustering
approaches for image segmentation and then applied several traditional machine learning
classification techniques with an aim of exploring the best-performing classifier. In the study of [19],
the authors utilized 74 burn images to develop a feature extraction model with several digital image
processing steps; they then classified the images into two classes using a SVM classifier. Another
group [20] proposed a real-time technique for classification of burn depth employing moderate
sample sizes based on ultrasound images. They constructed the textural feature set by using a
grey-level co-occurrence matrix derived from the ultrasound images of the burn tissue; they then
utilized a nonlinear SVM and kernel Fisher discriminant analysis. Finally, they completed the
validation of the classification effect by using pig skin tissue under four different burn scenarios.

With the increasing popularity of deep learning in recent years, some studies have also applied
deep learning technology in the fields of burn classification and severity detection. For example, the
authors developed a deep learning-based system in [21], and it included precise burn area
segmentation and burn depth labeling; they also proposed a framework for enhanced burn area
segmentation and automated burn depth diagnosis based on deep learning methods. And, the authors
of [22] proposed a predictive model based on a deep neural network, recurrent neural network(RNN)
and convolutional neural network (CNN) to determine degree 1, degree 2 and degree 3 of burn images
depending on the severity of the burn for a dataset of 104 images. In another study [23], the authors
presented a DenseMask regional CNN technique, which combined a mask-region based convolution
neural network with dense pose estimation for segmenting the region of interest of a skin burn area
from images based on the severity of the burn damage. Another work proposed in [24] applied a deep
n eural network with transfer learning using two pre-trained models ResNet50 and VGG16 for the
feature extraction from images; the method then applied an SVM classification approach to classify
the images into four categories, i.e., healthy skin, first-degree, second-degree and third-degree burns
on 2080 RGB input images. Also, the authors of [25] proposed a novel method that employs a
state-of-the-art deep learning technique to segment the burn wounds in the images. They designed this
deep learning segmentation framework based on the mask regions with a convolutional neural
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network (Mask R-CNN) and obtained very good results.
However, it can be found that the machine learning and deep learning methods mentioned above

focus on classifying burns in four degrees. At present, there are few studies that have focused on deep
partial-thickness and superficial partial-thickness burns. At the same time, although the existing studies
have segmented local wounds, they lack a method to connect local and global features. Therefore, we
propose the GL-FusionNet to try to do some research work in response to these problems.

3. Method

In this paper, we summarize some of the features of previous studies on trauma segmentation and
classification. Based on the burn trauma segmentation results obtained using the segmentation
network of U-Net, we carried out research related to the classification and area measurement of deep
and superficial partial-thickness burns. In the classification study, to obtain more accurate results, we
used an ResNet101 and ResNet50 to extract the global and local features of the original image and
segmentation results respectively and then weighted the two features to superimpose them; we finally
used the fused features for classification, achieving better results.

3.1. Network architecture

As shown in Figure 1, the network structure of our main classification network consists of two
stages. The first stage is to use the segmentation network to segment the original input burn wound
image to obtain a segmentation mask. The segmentation mask is then superimposed on the original
image to obtain an image containing only the wound portion (referred to as the segmentation result
image in the later section). The second stage involves using our proposed classification network to
perform the classification of deep and superficial partial-thickness burn depths. Both the original image
and the segmentation result image obtained in the first step were used as input to the second stage,
where we considered the features extracted directly from the original image as global features and the
segmentation result image as local features. The global and local features are then combined and fed
into the classifier to obtain the final classification result. Of course, at each input and output of the
network, we have adapted the structure of the input and output to suit our dataset.

For each of the extracted features in segmentation and classification, we tried different models to
achieve the best results. ResNet101 was used to extract the global features, while ResNet50 was
used to extract the local features from the segmented images. The features extracted from both were
eventually superimposed using certain fusion strategies, resulting in a fused feature of the original
image (combining global and local).

Finally, the resulting fused features (in Figure 1) were compressed by using a fully connected layer,
and the output was a two-category compressed feature. The resulting features were then transformed
into the output using the softmax function (two output classes).
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Figure 1. Framework of the burn depth classification network. The framework comprises
two steps. The first step is the burn injury segmentation stage, and the second step is the burn
depth classification stage.

3.2. Two stages and three classifications

The classification model framework proposed in this paper can be divided into two main stages.
The first stage is to segment the original image (for partial-thickness burn trauma) to obtain the exact
location of the partial-thickness burns in the original image. Also, output is performed at the end of this
stage indicating whether the original image is a partial-thickness burn, and if it is not, the algorithm
is directly terminated; if it is a partial-thickness burn, it proceeds to the next step of the categorization
and detection process. It should be noted that in the process of discriminating whether it is a partial-
thickness burn or not, the effect of mis-segmentation is excluded by setting a threshold value.

Throughout the first stage, it is the U-Net that is most predominantly used for the segmentation of
burn trauma. Traditional image segmentation algorithms generally use certain fixed common features,
such as color features, texture features, edge features, etc. Such methods have high interpretability
but low accuracy, and they often cannot complete image segmentation tasks well. So, we chose to use
the U-net of deep neural networks for the first stage of the segmentation task. Compared with other
segmentation networks with deep learning (FCN [26], Mask R-CNN, etc.), the biggest difference with
U-Net [27] is the choice of stitching for feature fusion instead of point-to-point superposition, which
forms thicker features and makes the final features richer. Combined with the multi-level feature
extraction framework, U-Net can get accurate classification results from a small number of training
images. Therefore, the U-Net has a good application scenario in the field of medical images where
data and annotation are difficult to obtain. As shown in Figure 1, the overall framework of the U-Net
has a simple structure. The left half uses a shrinkage path for feature extraction, and the right half is
upsampled by an expansion path to finally obtain the segmentation result image. In our model, the
input and output are adjusted to make them suitable for our dataset. In addition, some researchers have
also applied deep learning-based image segmentation networks in many medical fields. But, the main
research objects of previous studies [28–31] were professional CT images, while our research objects
are general images collected by ordinary equipment, and the final application also needs to be applied
to general color images. At the same time, the improved network models used in other studies [21–24]
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are more complex, and the generalization has not been widely verified. Therefore, instead of using
these improved networks, we use the classic U-Net for the first stage of wound segmentation.

And, at the end of the whole classification process, it will output whether the input image is a
deep partial-thickness or shallow partial-thickness burn trauma according to the classification result.
In other words, the classification framework designed in this study is a sub-classification framework,
in which the depth of burns is first roughly classified in two frameworks to obtain partial-thickness
burns, outputting other depths of non-second-degree burns, and further classifying superficial partial-
thickness and deep partial-thickness burns of partial-thickness burn depth in the second stage. It is
hoped that the accuracy of the final classification results can be further improved by such a method.

3.3. Local feature and global feature

Of the existing studies that address the classification of burn depth (the results of all burn
classifications are combined because there are fewer studies that focus only on the classification
within partial-thickness burns), two main types of datasets are used; one type is shown in Figure 1 and
it uses the complete picture for the study (containing some degree of environment and surrounding
skin), and the other type segments the original picture and uses the segmented picture that contains
only the wound part of the image for the study. The former can be said to use the global information
for feature extraction, so that product can be called global features, while the latter contains only the
information of the wound part, so that product can be called local features.

Global features, as a comprehensive feature, are rich in information and can describe a wound as a
whole. However, global features cannot contain spatial information and cannot know which part of the
global space is more important. At the same time, global features are easily disturbed by noisy regions,
and some background and cluttered information can have a relatively large impact on the final result.
Unlike the general local features, the local features defined in this study are also for a part of the region,
but the specific improved method is to process the original image first so that the image contains only
the wound part, and then to extract features for the image; then, the extracted information is the local
features, and the rest of the location is set as blank (no information). However, the local features lose
a lot of extra information because there is no remaining part.

The clinicians from Changhai Hospital in our team concluded based on their diagnostic experience
that clinicians should not only pay attention to the local wound surface, but should also understand
the morphological basis for judging the depth of burn wounds from images. This includes the skin,
as well as the surrounding area, which is also informative for the final depth judgment. Therefore,
combining some advantages of existing approaches, we propose the approach of wanting to combine
global features and local features to obtain highly accurate classification results.

The ResNet was proposed in 2016 by He et al. [32]. In the CNN, the deeper the network, the more
features it can obtain. Although this feature of the CNN leads to a series of breakthroughs in image
classification, it also brings a lot of new problems. For example, as the network depth increases, the
notorious problems of vanishing/exploding gradient occur. The deep residual learning network, which
adds a reference at each layer to learn the residual function, can address the degradation
problem properly.

Since global information tends to contain more information, ResNet101, which has a deeper
network depth, is used for feature extraction in our framework. Since only the information of some
regions needs to be extracted, a relatively shallow ResNet50 is used to extract local features.
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3.4. Feature fusion strategy

In the application of deep learning, the feature fusion strategy is actually a very common strategy.
The feature fusion method we adopted belongs to the method of early fusion, that is, the feature fusion
is performed in the stage of feature extraction; the feature fusion is performed first, and then the
classifier is trained on the fusion features. This method mainly contains two fusion methods for the
feature fusion strategy, where one is the concat method and the other is the add method.

The concat method directly connects multiple features end-to-end. If the dimensions of the two
input features are p and q, the dimension of the resulting fusion feature is p + q. This method can
fuse the information in all channels as a whole through the use of the convolutional kernel, which
can enhance the overall classification accuracy. But, this can lead to jumbled information in multiple
channels, which can be confusing. The add method directly superimposes the values of the two feature
vectors at each channel, and the final fusion feature dimension is the same as the original input. This
method needs to ensure that the feature dimensions of the two inputs are the same, and the semantic
features of the corresponding channels are similar; otherwise, it will not work. It can ensure that the
information at the corresponding channel is fused to enhance the effect.

In our study, we adopted the fusion strategy of the add method. In our framework, the features
after two-way feature extraction can be adjusted one-to-one. At the same time, the extraction of local
features and global features comes from the same original image, the information at the corresponding
channels is consistent and the use of the add method can effectively avoid the confusion of semantic
information between different channels.

In addition, since the extraction of local features in our framework comes from the original image,
the fusion strategy of the add method is actually equivalent to making the more important parts of
the local features more prominent in the global features. By analogy, it is a method similar to the
attention module. By increasing the importance and proportion of local features in the global features,
the network model can pay more attention to the wound information extracted by the local features,
and at the same time, it does not give up the wide area in the global features. This kind of method can
effectively improve the accuracy of the final classification.

Finally, our fusion method differs from the common add method by adding weighted coefficients.
According to the diagnostic experience of clinicians on our team, for the judgment of burn depth, the
information about the wound area is more important than the information about the surrounding area
and other areas. Therefore, based on the experience of clinicians, we propose three weighting ratios
of 5:5, 4:6 and 3:7 for global features and local features. After the final experiment, a weighted ratio
of 4:6 was used as the final fusion strategy.

3.5. Loss function

In our classification model framework, the calculation of the loss function mainly involves the
loss of fused features. The final output targets the classification results, and we use a feature fusion
approach; so, instead of calculating the loss of the two feature extraction branches, the loss of the fused
features is calculated uniformly.

And, we use cross-entropy loss as a loss function. The cross-entropy loss function is adopted to
convert the output of the network (logits) into probabilities using the softmax function. The output
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probability can be calculated by using Eq (3.1):

p(i)
j = Softmax(z(i)

j ) =
exp(z(i)

j )∑M
m=0 exp(z(m)

j )
(3.1)

where z(i)
j and p(i)

j denote the logit and probability values of the jth speech of the ith class, respectively,
and M is the number of classes in the training set. Thus the cross-entropy loss function is given by
Eq (3.2):

L = −
1
B

B∑
i=0

C∑
c=0

y(c)
i log p(c)

i (3.2)

where y(c)
i is the ground truth of the ith sample of the cth class, C is the number of classes and B is

the value of the batch size during training. The derivation of cross-entropy loss for multiple classes is
more straightforward and better at learning inter-class information. The gradient of the last layer is not
correlated with the derivative of the activation function, leading to a faster update of the weight matrix
and faster convergence during training.

3.6. Training details

In order to get better training results, we do not use random parameters when initializing the
parameters. In the initialization phase of the network for segmentation, as well as for classification,
we use the migration learning approach. The model weights after pre-training with ImageNet were
used as initialization parameters. The same pre-trained weights were also used as initialization
parameters to ensure the validity of the comparison experiments. Finally, the network model and
weights were fine-tuned by collecting data using a migration learning approach.

In addition, for the comparison of the classification models, we used approximately the same
training environment and parameter settings in order to fairly judge the results of the comparison
experiments and the original experiments. As shown in Table 1, the number of training epochs was
600, the batch size was 64, the optimizer was SGD, the initial learning rate was set to 1 × 10−3 and the
minimum learning rate was 1 × 10−5. The learning rate is automatically adjusted according to the
number of training epochs.

Table 1. Training parameters.

Parameters Values
Epoch 600
Batch Size 64
Optimizer SGD
Learning Rate 1 × 10−3

Min Learning Rate 1 × 10−5

Finally, it should be noted that we directly uses the original images and the corresponding
segmentation annotations (called ground truth) from the first stage in the training phase of the
classification model in order to make the best training results. That is, a set of corresponding original
images and ground truth are used as the input of the classification stage, and one final output of the
classification results will be obtained.
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4. Experimental Result

The results of the experiments in this paper are divided into two main sections, including the results
of the segmentation experiments and the results of the classification experiments. Each part of the
experiment also included a comparison experiment and an ablation experiment.

4.1. Dataset

Starting in 2021, we began collaborating with the Burn Department of Shanghai Changhai
Hospital on the collection and labeling of data. The study was approved by the Shanghai Changhai
Hospital Ethics Committee, and all methods were performed in accordance with the relevant
guidelines and regulations. Written informed consent was obtained from all patients for sample
collection. During the data collection phase, nurses in the burn unit at Changhai Hospital used
smartphones to collect images of patients’ burns. At the same time, all images were captured with the
same equipment. The equipment model was Honor Magic 2, the focal length was set to 27 mm and
the imaging size is 3456 × 4608. Thinking of standardization of data collection, we have established a
number of rules for capturing burn images, including selecting deep and superficial partial-thickness
burn wounds to photograph; photographing vertically directly above the wound; photographing under
normal lighting conditions (not overexposed); and photographing to avoid gauze, blood, etc., in the
image. For professionalism and accuracy in annotation, postgraduate students from the Naval Medical
University, under the guidance of nurses and physicians, used Lableme (software used for annotation)
to form accurate annotations, as shown in Figure 2, including a delineation of burn expectancy and a
classification of burn depth results. Ultimately, we collated and annotated 500 original
partial-thickness burn images, 268 deep partial-thickness burn images and 278 superficial
partial-thickness burn images. Furthermore, it is important to note that the images chosen contain
only one depth of the wound. Finally, for training convenience, all images were resized to 512 × 512.

Figure 2. Annotation tool with annotations including segmented annotations and the depth of
wounds. Annotation by several professionals using Labelme, an open-source annotation tool.
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Due to the difficulties of data acquisition and the lack of data volume, we used data augmentation
methods, including the generation of slightly modified copies of images from the original training
samples, as an effective strategy to reduce data scarcity, improve performance and to minimize
prediction errors. We used three methods based on geometric transformations, including flipping,
random rotation and random cropping. The final augmented dataset of 3264 images had been
generated by applying augmentation techniques.

At the same time, it should be noted that, in order to ensure the reliability of the experiment, all
experiments in this study were carried out using a 50-fold cross-validation method. First, the dataset
was evenly divided into five parts (to ensure that the number of each classification in each part was
roughly the same). Then we took one of them as the test set each time without repeating, used the
other four parts as the training set to train the model, and verified it on the taken-out test set. Finally,
we calculated the average value of five training and verification times as the final result. This approach
can yield a good effect on the small dataset used in this study and it has a good verification effect in
terms of the generalization and accuracy of the model.

4.2. Metrics

For the classification model, several common metrics were selected to measure the accuracy and
generalization of the model in combination. The classification process of a dataset produces four
categories of detection results TP (true positive), FP (false positive), FN (false negative) and TN (true
negative). The four evaluation metrics selected therein are obtained by using arithmetic (all metrics
selected are of higher value, representing better model effectiveness). The accuracy rate, as shown in
Eq (4.1), is the most intuitive indicator, directly calculating the ratio of correct data to total data.

Accuracy =
T P + T N

T P + FP + FN + T N
(4.1)

Precision, as shown in Eq (4.2), represents the proportion of true positive samples in the precision
results, and it allows you to assess how well the classifier has been able to classify the data based on
success.

Precision =
T P

T P + FP
(4.2)

Recall, as shown in Eq (4.3), is the proportion of all positive cases that are correctly predicted, and
it is used to assess the coverage of the classifier over all samples classified.

Recall =
T P

T P + FN
(4.3)

Where, since precision and recall cannot be high in most cases, the F1-score is used to combine
precision and recall, as shown in Eq (4.4). and it is the harmonic mean of precision and recall.

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4.4)

Due to the difference between segmentation and classification, all segmentation experiments in this
study use the Dice score [33] and Intersection-over-Union (IoU) score, which are commonly used in
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segmentation experiments, to evaluate the model’s performance. The calculation formulas of the Dice
score and IoU score are respectively shown in Eqs (4.5) and (4.6).

Dice =
2 | X ∩ Y |
| X | + | Y |

(4.5)

IoU =
| X ∩ Y |

| X | + | Y | − | X ∩ Y |
(4.6)

In detail, X is the predicted result, Y is the actual result, X ∈ [0, 1], Y ∈ [0, 1], ∩ is the intersection
between the two, which can be approximated as the dot product between the prediction map and the
ground truth, Dice ∈ [0, 1] and IoU ∈ [0, 1].

4.3. Segmentation results

Common segmentation models are used as a comparison to conduct experiments. The specific
segmentation experimental results are shown in Table 2. It can be seen that the segmentation model
using U-Net has achieved the highest scores in both Dice and IoU on the wound dataset, and this result
also verifies the correctness of choosing U-Net as the segmentation model. It should be noted that the
segmentation tasks here only performed the segmentation of second-class burn wounds, and did not
directly perform multi-classification of superficial and deep partial-thickness burns. In comparative
experiments, we used the U-Net, Res-UNet, DeepLabV3 with MobileNet, and U-Net with MobileNet.
At the same time, we implemented the FP-U-Net++ [31] for testing, and the effect on our dataset was
not much different from the general U-Net results. This is why we finally chose to use a U-Net with a
simpler network model.

Table 2. Segmentation result. Bold entries indicate the best-performing experiments.

Method Dice (%) IoU (%)
U-Net 92.587 88.726
Residual U-Net 92.413 86.782
U-Net (MobileNetV2) 77.875 72.856
DeepLabV3+ (MobileNetV2) 87.632 84.583
FP-U-Net++ 92.451 88.863

Also, as shown in Figure 3, we compared the effects of various segmented networks. It can be said
that the U-Net we used has the best segmentation results on wounds of various sizes.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 10153–10173.



10164

Figure 3. Performance of different segmentation methods.

Finally, the change in the number of training loss iterations is shown in Figure 4. In general, the
network converges at a low loss level after training, and it can be said that the obtained model has been
fully trained.

Figure 4. Training time and convergence curve with iterations for U-Net training. The x axis
represents the number of iterations and the y axis represents the value of loss.
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4.4. Multi-class segmentation results

The current segmentation model can also directly perform multi-classification tasks in addition to
binary classification (superficial and deep partial-thickness burns), so experiments with
multi-classification segmentation were also conducted to verify the segmentation results. The results
are shown in Table 3, and it can be seen that, although the segmentation model using the U-Net still
achieved the highest scores in terms of average Dice and IoU, there was a significant decrease in
overall accuracy relative to the results of the binary classification segmentation. It can be seen that,
although the multi-class segmentation can directly achieve the ultimate goal, it is not effective enough
to achieve a certain level of classification. It should be noted that the network model that performed
better in the binary segmentation experiments was selected for this part of experiment (the U-net
(MobileNetV2) network model, which did not work as well, was dropped).

Table 3. Multi-class segmentation result. Bold entries indicate the best-performing
experiments.

Method Dice (%) IoU (%)
U-net 85.352 83.916
Residual U-Net 77.167 76.244
DeepLabV3+(MobileNetV2) 79.195 75.354

4.5. Classification results

For the classification experiments, we designed three types of comparative experiments, including
using only global features, using only local features and using our fusion model. Since the results of
the three types of experiments have the same meaning, we display the three types of experiments in the
same table for clear presentation. In this part, we used ResNet34,ResNet50, ResNet101, ResNet152,
VGG16, VGG19, EfficientNet-B0 and EfficientNet-B7.

As shown in Table 4, it can be seen that our model using fused features achieved the best value for
each evaluation metric among all of the models. At the same time, it can be found that the results of the
model using only local features were overall better than those of the model using only global features.
In the model that uses local features, the model with deeper network layers will get better results. In
contrast, in the model that only uses global features, the model with more shallow network layers will
get better results. This also verifies the accuracy of our approach of using deep networks to extract
global features and shallow networks to extract local features.

Finally, to further measure the generalization of our method, we used the receiver operating
characteristic (ROC) and area Under the receiver operating characteristic curve (AUC) for evaluation.
As shown in Figure 5, our method achieved the best result on the AUC, reaching 0.97. At the same
time, it can be seen that methods using global features generalize more than methods using local
features. This shows that the global features may play a certain positive role in judging the
classification of the deep and superficial partial-thickness of depth.
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Table 4. Comparison of five-fold classification results of different models. The results of
accuracy, recall, precision and F1-score are present in this table. The results are the combined
results of five-fold cross-validation. We show the MEAN±STD (standard deviation) scores of
five trained models of each training validation fold. Bold entries indicate the best-performing
experiments.

Methods
Metrics

Accuracy Recall Precision F1-Score
Fusion (ResNet101+ResNet50)-ours 93.523±1.451 93.670±1.374 93.510±1.459 93.513±1.458
ResNet101 (Global) 85.148±2.893 82.078±2,721 82.334±1.558 81.704±1.648
ResNet50 (Global) 73.226±1.550 73.468±2.177 74.094±1.301 72.904±1.768
ResNet152 (Global) 82.500±3.446 82.610±3.486 82.270±3.446 82.328±3.444
ResNet34 (Global) 70.124±2.224 69.874±2.405 70.058±2.218 69.796±2.218
VGG16 (Global) 76.670±2.475 76.522±2.640 76.754±2.395 76.542±2.477
VGG19 (Global) 81.602±2.652 81.780±2.435 82.034±2.198 81.548±2.661
EfficientNet-B0 (Global) 69.870±4.830 69.790±4.958 70.122±4.604 69.526±5.085
EfficientNet-B7 (Global) 83.130±2.076 83.324±2.102 83.154±2.165 82.728±1.761
ResNet101 (Local) 89.053±0.796 87.467±2.391 84.703±4.095 86.976±2.836
ResNet50 (Local) 91.650±1.542 91.660±1.518 91.713±1.491 91.596±1.571
ResNet152 (Local) 74.164±2.411 74.268±2.598 74.596±2.676 73.982±2.492
ResNet34 (Local) 79.026±2.173 79.086±2.204 79.034±2.164 78.924±2.234
VGG16 (Local) 80.305±3.808 80.637±4.113 80.222±3.742 80.201±3.764
VGG19 (Local) 76.474±1.912 76.608±1.850 76.654±1.691 76.442±1.898
EfficientNet-B0 (Local) 57.842±2.286 57.996±1.909 58.154±1.892 57.588±2.125
EfficientNet-B7 (Local) 68.840±2.891 68.772±2.909 68.928±3.064 68.821±3.036

Figure 5. Some extension of ROC. The AUC is also marked in the legend.
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At the same time, the changes in the number of training loss iterations are shown in Figure 6. After
training, the network convergence is at a low level of loss, and it can be said that the obtained model
has been fully trained. But, what can be seen is that the loss is high at the beginning, and the final
convergence change is not easy to observe.

Figure 6. Training time and convergence curve with iterations for U-Net training. The x axis
represents the number of iterations and the y axis represents the value of loss.

4.6. Comparison experiments results

For our fusion feature model, there are two points that need to be verified by comparative
experiments. The first is the selection of the feature extraction network for the two types of features.
We selected the network models with better effects in the separate feature models for combination.
The experimental results are shown in Table 5, and it can be seen that our fusion method achieved the
best results for each comparative experiment.

Table 5. Comparison of five-fold classification results for our GL-FusionNet with different
branched network structures. The results of accuracy, recall, precision and F1-score are
present in this table. The results are the combined results of five-fold cross-validation. We
show the MEAN±STD scores of five trained models of each training validation fold. Bold
entries indicate the best-performing experiments.

Methods
Metrics

Accuracy F1-Score Precision Recall
Fusion (ResNet101+ResNet50) 93.523±1.451 93.670±1.374 93.510±1.459 93.513±1.458
Fusion (ResNet50+ResNet101) 73.230±3.197 72.133±3.556 73.313±4.439 73.233±3.188
Fusion (ResNet152+ResNet50) 83.386±1.593 83.267±1.563 84.263±1.869 83.346±1.594
Fusion (ResNet50+ResNet152) 61.783±2.591 61.640±2.904 62.316±2.478 61.526±1.992
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The other is the choice of weighting coefficients. Based on the judgments and suggestions of
clinicians, we verified the models of three weighted-ratio feature fusion methods respectively. The
experimental results are shown in Table 6. It can be seen that when the ratio of local to global features
is 6:4, the effect of the model is the best, which also verifies the accuracy and effectiveness
of our method.

Table 6. Comparison of five-fold classification results for our GL-FusionNet with different
weights. The results of accuracy, recall, precision and F1-score are present in this table. The
results are the combined results of five-fold cross-validation. We show the MEAN±STD
scores of five trained models of each training validation fold. Bold entries indicate the best-
performing experiments.

α
Metrics

Accuracy F1-Score Precision Recall
0.5 89.472±0.934 89.510±1.237 89.108±0.365 89.076±1.089
0.6 93.523±1.451 92.513±1.458 93.510±1.459 92.677±1.374
0.7 90.015±1.530 90.014±1.470 90.005±0.525 89.092±1.539

4.7. Results in different situations

To evaluate the clinical performance of the method proposed in this paper, we additionally
collected 100 images of partial-thickness burn wounds collected clinically. The images were
classified by specialist physicians on the team (depending on images alone). At the same time, we
classified all burn wound images in the validation set according to the cause of injury and gender and
evaluated them in different aspects.

As shown in Table 7, among the collected 51 images caused by boiling water, our method performed
best. And, in the case of flame (31 images) and other (19 images) types of burns, our method also
demonstrated high accuracy. At the same time, it can be seen that the effect of our method achieved
good results on burn wounds with various causes. The phenomenon of low classification results for
flame and other types of wounds may be due to the insufficient amount of data due to the small number
of patients clinically admitted for these two types of wounds. More cases will continue to be collected
in the future to obtain more generalization results.

Table 7. Classification performance of our GL-FusionNet on burn wounds with different
causes of injury. Bold entries indicate the best-performing experiments.

Cause of burns
Metrics

Accuracy F1-Score Precision Recall
Flame 92 88 88 90
Hot water 90.32 87.09 80.64 87.09
Other 89.47 84.21 84.21 78.94

In addition, as shown in Table 8, we also classified the collected validation set by gender and
conducted experiments. Across 58 images of men and 42 images of women, our method achieved
similar conclusions and relatively high results for various metrics. Combined with the results of various
experiments, our method has achieved relatively generalized results in clinical experiments.
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Table 8. Classification performance of our GL-FusionNet on burn wounds for different
genders.

Gender
Metrics

Accuracy F1-Score Precision Recall
Male 89.65 86.21 82.75 84.48
Female 88.09 83.33 85.71 80.95

5. Conclusions and discussion

This study includes two main aspects. The first is the segmentation of partial-thickness burn
wounds, and then the further classification of deep and superficial partial-thickness burns based on the
segmentation results. Corresponding experiments and studies were carried out with respect to these
two aspects, and we achieved certain results.

Wound segmentation, which is the first step in all wound healing and intelligent diagnostic studies,
is the basis for many studies to be conducted. In this study, we selected the currently used image
segmentation frameworks, performed comparison experiments and selected the optimal U-Net as the
final segmentation method. After optimization and adjustment of the model, as well as the fine-tuning
of the training, the overall segmentation results were satisfactory enough to serve as a basis for
subsequent studies. However, since we did not make major adjustments to the model, there are still
many areas that can be improved, such as targeted model modifications for the characteristics of burns
with large area variations. Meanwhile, due to the difficulty of dataset collection, this study finally
realized only the segmentation model for partial-thickness burn wounds, and no further experiments
and comparisons were done for non-partial-thickness burn wounds.

For further classification of partial-thickness burns, we used fusion features incorporating local
features and global features to accurately classify superficial and deep partial-thickness burns, and we
also conducted comparison experiments to verify the effectiveness of our framework. It also lays a
solid foundation for further research in the follow-up. However, since the framework extracts local
and global features separately, the classification accuracy is improved, but the speed of detection and
the model size are increased due to the relatively large model. One direction of effort for future
research is to further optimize the model, reduce the number of parameters and ultimately improve the
classification efficiency. Another direction of improvement is to further collect a more complete
dataset to extend the research area. The classification of partial-thickness burns can be subsequently
extended to the classification of overall burns (mainly due to the difficulty of dataset collection and
labeling). In addition, in the process of classifying deep partial-thickness and superficial
partial-thickness burns, we found that there are actually large differences in the images of one type of
burn classification. For example, among the superficial partial-thickness burn wounds shown in
Figure 7, the wound on the right has a tendency to heal, and the overall condition is more different
compared to the wound on the left, but both wounds are classified as superficial partial-thickness burn
wounds. Therefore, we wound whether the classification of superficial and deep partial-thickness
burns could be further classified into more detailed depth classification based on the condition of the
wounds. However, this point also needs more argumentation and research, and it is a direction for
future work.

In general, our research and experiments on the above two aspects can play a certain positive role
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in the existing research fields, and it also achieved ideal results in the experiments. In the future, we
will continue to conduct in-depth research, including the use of deep segmentation methods, further
sub-classification of second-degree burns and clinical application experiments. Finally, it is hoped
that the experimental results can be applied to the clinic and provide an auxiliary role for actual
clinical diagnosis.

Figure 7. Comparison of two superficial partial-thickness burn wounds.

All in all, in this study, two main experiments were conducted; first, experiments on burn wound
segmentation were carried out and a Dice score of 92.587 was obtained on the validation set using the
U-Net model. Then, based on this, the classification problem of deep and superficial partial-thickness
burns and the study of burn wound area measurement methods were evaluated. In the classification
problem, we used deep learning to classify deep and superficial partial-thickness burn injuries for the
first time, and we proposed a new model that incorporates global and local features; finally, an average
accuracy of 93.52 was obtained on the validation set. Our proposed method is based on deep learning
and computer-based automation, which is easier than traditional methods and can greatly improve the
efficiency of burn diagnosis and care for clinical staff. It also has great benefits for hospital management
and intelligent construction.
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