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Abstract: The vibration suppression control of a flexible manipulator system modeled by partial 
differential equation (PDE) with state constraints is studied in this paper. On the basis of the 
backstepping recursive design framework, the problem of the constraint of joint angle and boundary 
vibration deflection is solved by using the Barrier Lyapunov function (BLF). Moreover, based on the 
relative threshold strategy, an event-triggered mechanism is proposed to save the communication 
workload between controller and actuator, which not only deals with the state constraints of the 
partial differential flexible manipulator system, but also effectively improves the system work 
efficiency. Good damping effect on vibration and the elevated system performance can be seen under 
the proposed control strategy. At the same time, the state can meet the constraints given in advance, 
and all system signals are bounded. The proposed scheme is effective, which is proven by simulation 
results.  

Keywords: state constraints; partial differential equations; event-triggered control; Barrier Lyapunov 
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1. Introduction 

As computer technology and machinery manufacturing technology develops, people are 
expecting more and more from production automation. Since the last century, the manipulator system 
has gradually replaced human beings to complete the dangerous and repetitive work in various 
fields [1–4]. At the same time, the manipulator system can also significantly improve the production 
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efficiency [5–7]. The flexible manipulator has better performance of high stability, high precision, 
high efficiency and low energy consumption than the traditional rigid manipulator [8–11]. 
Consequently, it is more adapted to the complex and changeable working environments in various 
fields. For example, for the sake of improving the automation level of agricultural production, the 
flexible manipulator system is adopted to pick fruit and vegetable crops in the field of agriculture, so 
as to further ensure the safety of agricultural products and improve the production efficiency in the 
process of processing and production. However, the flexible manipulator is characterized by its 
complex structure, low control accuracy, difficult control, etc. These defects may lead to vibration of 
the flexible manipulator system, which greatly affects the stability of the actual production. Thus, 
improving its stiffness and control accuracy, and suppressing the vibration of the flexible manipulator 
system have become the focus of current research. 

By referring to the literature, we can know that the manipulator system with special flexible 
structure is a typical infinite dimensional distributed parameter system [12–14]. Most of the 
existing studies of the manipulators are based on the ordinary differential equation (ODE) dynamic 
models [15–18]. Nevertheless, these ODE models limit the system to a few key patterns, greatly 
affecting system performance [19]. For getting the accurate description of the flexible manipulator 
systems, the model cannot be constructed only through a single ODE; otherwise, there will be 
spillover instability [20]. Therefore, it is necessary to introduce partial differential equations (PDEs) 
in the flexible connection systems. At present, there are some research achievements on flexible 
systems described by PDEs. In [21], for the sake of the achievement of control goals, a boundary 
controller with input backlash is constructed based on the infinite-dimensional dynamic model. For 
the single flexible link manipulator system in [22], a sliding mode boundary controller is designed 
based on the adaptive radial basis function (RBF) neural network (NN) to drive the joint to the 
required position and quickly suppress the vibration on the beam. Then, an adaptive fault-tolerant 
control method is raised by using RBFNN and LaSalle’s invariance principle to solve the failure 
problem of the actuator of the single-link flexible manipulator in [23]. 

Over the past two decades, systems modeled by PDEs have attracted more and more 
researchers because of their wide application in various fields, and numerous methods have been 
reported [24–28]. However, these results [21–28] all ignored the constraint problem. In fact, many 
real-world systems are limited by constraints in various ways [29]. It is possible that such constraints 
are due to physical restriction of systems, or caused by the requirements of safe operation [30]. 
Motivated by progress in constraints, lots of state constraint problems have been researched for ODE 
systems [31–33]. With the rise of the research on PDE systems, some scholars also put their attention 
to the problem of state constraints of PDE flexible mechanical systems. In [34], a class of flexible 
riser systems with backlash modeled by PDEs is considered. In order to solve its position and 
velocity constraints, logarithmic BLF is used. In [35], the state feedback control problem of moving 
vehicle-mounted manipulator modeled by PDE with output constraint is studied. Under the action of 
the designed control scheme, the position control and vibration suppression are effectively improved. 
For the uncertain PDE flexible manipulator system in [36], a NN fault-tolerant control scheme under 
state constraints is proposed. In the design process, the tangent BLF is utilized to handle the 
constraint problem, and get a good control. 

In addition to the state constraint problem, in today's society, production resources are also tight. 
While meeting the quality of control, saving resources has become an important aspect that needs to 
be consider. In recent years, the event triggered control [37–40], as an effective method that can not 
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only achieve control objectives, but also save resources, has raised the broad interest of all 
researchers. The event triggered control is a control mechanism of sampling on demand. System 
resources can only be used when necessary, and can meet the expected control performance 
indicators. In [41], a collaborative design scheme consisted of switching event triggering mechanism 
and mode dependent adaptive control law is proposed which solves the mismatch problem and 
avoids the Zeno behavior. In [42], for nonlinear uncertain systems, besides the design methods on the 
basis of fixed threshold strategy and relative threshold strategy, a new switching threshold strategy is 
proposed. However, the above results are only applicable to the system modeled by ordinary 
differential methods. When these methods are directly applied to the control system modeled by 
partial differential methods, it may lead to the failure of control strategy, and even bring huge losses 
to practical engineering. In addition, in the actual production and life, many control systems need to 
be modeled by partial differential method to achieve better control effect. Among them, the flexible 
manipulator system modeled by partial differential method is widely used in [43–45]. Therefore, in 
order to make efficient use of resources, the event-triggered control of flexible manipulator systems 
modeled by PDEs under state constraints is a significant topic of study that has inspired our own 
research.  

It can be seen from the above analysis that although researchers have put forward many research 
results for flexible manipulator system, there are still some limitations. Therefore, the event-triggered 
control of a PDE flexible manipulator with constraints will be taken as the research object in this 
paper, and the control goal of saving communication resources will be achieved by designing 
event-triggered controllers. On the premise of achieving the stable performance of the system, good 
vibration suppression effect of the flexible manipulator will be maintained. On account of the above 
discussion, the innovation of this article is given below: when dealing with the state constraint of 
PDE flexible manipulator system, an event trigger control strategy is introduced.  

In this paper, an event-triggered control design problem is studied for flexible manipulator 
systems with full state constraints. Under frameworks of adaptive backstepping control design 
technique, an event-triggered control scheme is proposed for flexible manipulator systems. The main 
contribution of the paper is summarized as follows: 

1) In this paper, the design problem of event-triggered control is studied for flexible manipulator 
system with full state constraints and an event-triggered control method is proposed. Different from 
the constraint control scheme in [31,32], the event-triggered control strategy proposed in this paper 
can save unnecessary control signal transmission and improve the system performance. 

2) An event-triggered mechanism with relative threshold is designed, and the control signal 
update is event-driven under well-established event-triggered strategy. The proposed event-triggered 
control scheme effectively reduces the communication burden in the controller-to-the-actuator 
channel and still ensures the system stability, and it achieves the control objective.  

The main contents of Sections 2 to 6 are as follows: Section 2 is the partial differential system 
model, and it gives the assumption and control objectives. The design procedure of the event trigger 
controllers based on Tan-BLF and backstepping technique is introduced in Section 3. Section 4 is the 
system stability analysis process. In Section 5, the effectiveness of the proposed method is further 
demonstrated with the help of a simulation example. Finally, the conclusion is given in Section 6. 

Notations. To simplify and differentiate, notations    r
r     ,           throughout 

this paper. In the same way,  rr
  means   22 r   ,     33

rrr
r      and     44

rrrr
r     ,    
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  22     . In addition,  T  stands for transposition of   . 

2. System description and preliminaries 

Based on the Hamiltonian principle [37], the dynamic model of the flexible manipulator system 
is solved as follows 

  2

1

0
t

k pt
E E W dt        (1) 

where    means the variation of   . The expressions of kinetic energy kE , potential energy 

pE  and work W  produced in the operation of the system are respectively listed as 

 
     2 2 2

0

1 1 1
, ,

2 2 2

L

k hE I Y r dr mY X      
  (2) 

 
 2

0

1
,

2

L

p rrE EI r dr  
  (3) 

        ,W O Y X     
  (4) 

where hI  stands for the hub inertia;    represents the joint angle;   and Y  are the mass per 

unit length and the arc length at r  of the  flexible manipulator, respectively, where 

     , ,Y r r r    ; the mass of the payload is m ; the bending stiffness is denoted by EI ; 

the manipulator length and the connecting rod vibration deflection at r  are expressed by X  and 
( , )r  ; the torque input of the joint motor and the force input of the actuator are represented with 

   and  O  , respectively. 

Combined with the Hamiltonian principle, through a series of derivations, the system PDE 
model can be written as follows: 

    , ,rrrrY r EI r  
  (5) 

      0,h rrI EI    
  (6) 

      , ,rrrO mY X EI X   
  (7) 

      0, 0, , 0r rr X      
  (8) 

Furthermore,    and  ,X   are the system outputs, and they meet  
1dk   and 

 
2

, dX k    with 
1dk  and 

2dk  being constants. There are two constants 
1ck  and 

2ck  such that 

following formulas hold: 

    
11 0 0 d cz k      (9) 

      
23 0 ,0 ,0d cz X X k      (10) 
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where  1 dz    , d  is the ideal angle position, and d  is a constant, and 

   3 , ,dz X X    ,  ,d X   means the required vibration. 

Assumption 1 [46]. Suppose that the parameters  0,rr   and  ,rrr X   are attainable. 

Control objective: The event-triggered controllers are designed to realize the following control 
objectives: 

1) suppresses the vibration of the manipulator and stabilizes it in the desired position.  
2) the joint angle    and boundary vibration diversion  ,X  are confined within the 

constraints.  
3) the system signals are all bounded. 
4) it can effectively avoid the occurrence of the Zeno behavior. 

3. Design of the event-triggered boundary control 

The following Eqs (11) and (12) are the system boundary errors: 

    1 dz    
  (11) 

      2z     
  (12) 

      3 , ,dz X X    
  (13) 

      4 ,z X    
  (14) 

where    1 1k z     and    3 3k z     are virtual  controls with 0d   and 0d  , 

1 0k   and 3 0k  . 

Taking the derivative of (11)–(14), and combining (5)–(8), one has 

          1 2 2 1 1dz z z k z          
  (15) 

         2 0, /rr hz EI I            (16) 

            3 4 4 3 3,dz z X z k z          
  (17) 

           4 ( , ) 0, /rrr rrz O EI X X EI m                  (18) 

where hm I  . 

Choose the following Lyapunov function: 

    
1

1

2

1 2 2
1

1
log

2
c

c

k
V

k z




 
    

  (19) 

Then, taking the derivative of  1V   based on  1z  , one gets 
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    
 

   
 

1 1

2
1 1 2

1 1 2 2 2 2
1 1c c

z z z
V k

k z k z

  


 
  

 
   (20) 

In order to eliminate the    1 2z z   in (20), the Lyapunov function  2V   is selected in the 

following form: 

      2
2 1 2

1

2 hV V I z      (21) 

The derivative of  2V   along time is  

    
 

   
          

1 1

2
1 1 2

2 1 22 2 2 2
1 1

0,rr h
c c

z z z
V k z EI I

k z k z

  
     

 
      

 
    (22) 

The boundary controller is designed as 

        
   

1

1
2 22 2

1

0,rr h
c

z
EI I k z

k z



   


     


   (23) 

where 2 0k   is a constant. Substituting (23) into (22) yields 

    
   

1

2
1 2

2 1 2 22 2
1c

z
V k k z

k z


 


  


   (24) 

Construct the following Lyapunov function,  3V  , as  

      
2

2

2

3 2 2 2
3

1
log

2
c

c

k
V V

k z
 



 
     

  (25) 

Then, from (17), the  3V   can be obtained as 

 

     
 

   
 

 
     

 
   

 

2 2

1 2 2

2
3 3 4

3 2 3 2 2 2 2
3 3

2 2
1 3 3 42

1 2 2 32 2 2 2 2 2
1 3 3

c c

c c c

z z z
V V k

k z k z

z z z z
k k z k

k z k z k z

  
 

 

   


  

  
 

    
  

 

  (26) 

Select  4V   as 

      2
4 3 4

1

2
V V mz      (27) 

Then, the differential coefficient of  4V   is 
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       
 
     

 
   

 
           

1 2 2

4 3 4 4

2 2
1 3 3 42

1 2 2 32 2 2 2 2 2
1 3 3

4 ( , ) 0,

c c c

rrr rr

V V mz z

z z z z
k k z k

k z k z k z

z O EI X X EI m

   

   


  

        

 

    
  

     

  



  (28) 

The desired boundary controller is designed as 

            
   

2

3
4 42 2

3

, 0,rrr rr
c

z
O EI X X EI m k z

k z


       


        


  (29) 

where 4 0k   is a constant.  

From (29) and (28), one has 

    
     

   
1 2

2 2
1 32 2

4 1 2 2 3 2 42 2 2 2
1 3c c

z z
V k k z k k z

k z k z

 
  

 
    

 
   (30) 

The event trigger mechanism is proposed so that the communication resources are 
commendably reduced. 

Under the event-triggering mechanism, the boundary control strategy is designed as follows 

      0 1 1, ,k k k        
  (31) 

 
    1 1 1 0 1infk e          

  (32) 

      0 2 1, ,s s sO        
  (33) 

 
    1 2 2 0 2infs e O         

  (34) 

where      1 1 0e     ,      2 2 0e O    , 1 , 2 , 10 1  , 20 1   are all 

positive design parameters. ,k k  , and ,s s   are the moments when the event is triggered. 

The times will be respectively marked as 1k   and 1s   whenever (32) and (34) are triggered, and 

the control values  0 1k   and  0 1sO    will be applied to the system.  

Design  1   and  2   as follows: 

 
           2 1 2 1

1 1 1 1
1 1

1 tanh tanh
z z

a a

    
    

    
       

     


  (35) 

 
           4 2 4 2

2 2 2 2
2 2

1 tanh tanh
z z

a a

    
    

    
       

     


  (36) 

where  
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       
   

1

1
1 2 22 2

1

0,rr h
c

z
EI I k z

k z


     


    


  

       
       

   
1 2

1 3
2 2 2 4 42 2 2 2

1 3

,rrr h
c c

z z
EI X X I k z m k z

k z k z

 
         

 


 
           

  

0, 1,2ia i  , and  1 , 1,2i i i i     . 

According to (32) and (34), it holds that      1 0 1 0 1         

and      2 0 2 0 2O O       , for  1,k k      and  1,s s     . Then, there are 

parameters  1 1     2 1   ,  1 1    and  2 1   , such that 

         1 1 1 0 2 11          
  (37) 

         2 1 2 0 2 21 O         
  (38) 

Then, we get 

 
   

 
 
 

1 2 1
0

1 1 1 11 1

   


     
  

 


  (39) 

 
   

 
 
 

2 2 2
0

1 2 1 21 1
O

   


     
 

 


  (40) 

Further,  2V   and  4V   can be rewritten as 

   
 

   
 

   
 

 
 

   

1 1

2
1 1 2

2 1 2 2 2 2
1 1

1 2 1
2

1 1 1 1

(
1 1

0, )

c c

rr h

z z z
V k

k z k z

z

EI I

  


 

   


     

  

  
 

 
 

 







                (41) 

Note that，for n R   and 0, 1,2ia i  , one has  tanh 0in n a  . Then, based on (35), one 

has 

    2 1 0z      (42) 

In addition, due to  1 1    and  2 1   , (41) and (42) hold 

 

   
 

   2 1 2 1

1 1 11 1

z z   
   


 

 

  (43) 

 

 
 

2 1 1

1 1 11 1

   
   


 

  (44) 
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Thus, according to (35), one gets 

 
   

             2 1 2 1 2 1
2 1 2 1

1 1 1 1

tanh tanh
1

z z z
z z

a a

     
   

  
   

         

 
   (45) 

Both adding and subtracting  2 1z    and    2 1z   , one obtains 

 

   
               

         

2 1 2 1
2 1 2 1 2 1

1 1 1

2 1
2 1 2 1 2 1

1

tanh
1

tanh

z z
z z z

a

z
z z z

a

   
     

  

 
     

 
     

 
   

 

 
 


  (46) 

Consider the property of  tanh   that 

 0 tanh 0.2785
D

D D 


 
   

 
  (47) 

with D R and 0  . Therefore, one has 

 
   

       2 1
1 2 1 2 1

1 1

0.557
1

z
a z z

 
   

  
  




   (48) 

Substituting (48) into (47), one has 

 

   
   

     
 

1

2
1 2

2 1 2 2 12 2
1

2 1
2 1 2

1 1

0.557

1

c

z
V k k z a

k z

z z


 



  
  

  

   


 




  (49) 

Then, based on (44), this leads to 

 

   
   

   
1

2
1 2

2 1 2 2 12 2
1

2 1
2 1

1

0.557

1

c

z
V k k z a

k z

z
z


 



 
 



   


 




  (50) 

Further consider  1 1 11    , this leads to 

    2 1
2 1

1

0
1

z
z

 
 


  


  (51) 

Then,  2V   is further expressed as 

    
   

1

2
1 2

2 1 2 2 12 2
1

0.557
c

z
V k k z a

k z


 


   


   (52) 
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and  3V   can be rewritten as 

    
 

 
 

   
 

1 2 2

2 2
1 3 3 42

3 1 2 2 1 32 2 2 2 2 2
1 3 3

0.557
c c c

z z z z
V k k z a k

k z k z k z

   


  
     

  
   (53) 

In the same way, consider (40), and  4V   can be rewritten as 

      

       
 
     

 
   

 

   
      

   
 

1 2 2

4 3 4 4

2 2
1 3 3 42

1 2 2 32 2 2 2 2 2
1 3 3

2
1 4

1 2

2 2

1 2

 0.557 0,
1

( , )
1

c c c

rr

rrr

V V mz z

z z z z
k k z k

k z k z k z

a z X EI

EI X m

   

   


  


   

  

  
  

 






 

    
  


     


    

  





         (54) 

Note that when 2 0a   for n R  ,  2tanh 0n n a   is always true. Thus, from (36), it can 

be sure that  

    4 2 0z      (55) 

Since 1, 1,2i i   , it can be seen that 

 

   
 

   4 2 4 2

1 2 21 1

z z   
   


 

 

  (56) 

 

 
 

2 2 2

1 2 21 1

   
   


 

  (57) 

Further, according to (36), one has 

 
   

             4 2 4 2 4 2
4 2 4 2

1 2 2 2

tanh tanh
1

z z z
z z

a a

     
   

  
   

         

 
   (58) 

Then, both adding and subtracting  4 2z    and    4 2z    on the right side of (58), it 

holds that 

 

   
               

         

4 2 4 2
4 2 4 2 4 2

1 2 2

4 2
4 2 4 2 4 2

2

tanh
1

tanh

z z
z z z

a

z
z z z

a

   
     

  

 
     

 
     

 
   

 

 
 


  (59) 

Because of the property in (47), it is further known that 
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   

       4 2
2 4 2 4 2

1 2

0.557
1

z
a z z

 
   

  
  




   (60) 

Substituting (60) into (54), one has 

 

   
     

   

     
 

1 2

2 2
1 32 2

4 1 2 2 3 4 42 2 2 2
1 3

2 2
1 2 4 2 4

1 2

0.557 0.557
1

c c

z z
V k k z k k z

k z k z

a a z z

 
  

 

  
  

  

    
 

   




  (61) 

Then, based on (57), this leads to 

 

   
     

   

   
1 2

2 2
1 32 2

4 1 2 2 3 4 42 2 2 2
1 3

4 2
1 2 4 2

2

0.557 0.557
1

c c

z z
V k k z k k z

k z k z

z
a a z

 
  

 

 
 



    
 

   




  (62) 

Further consider  2 2 21    , and one has  

    4 2
4 2

2

0
1

z
z

 
 


  


  (63) 

Then,  4V   is further expressed as 

 
   

     
 

 
1 2

2 2
1 32

4 1 2 2 32 2 2 2
1 3

2
4 4 1 20.557 0.557

c c

z z
V k k z k

k z k z

k z a a

 
 

 



   
 

  


  (64) 

4. Stability analysis 

We can get the theorem result as below according to the above analysis process. 
Theorem 1: Consider the flexible manipulator system as shown in (5)–(8), under Assumption 1, 

and design the event-triggered controllers in (35) and (36). Then the presented approach guarantees 
that 1) the vibration of the manipulator is effectively restrained and stabilized, 2) all the signals 
displaying in the closed-loop system are bounded, 3) the joint angle    and the boundary 

vibration diversion  ,X   fulfill the constraint conditions  
1dk   and  

2
, dX k   , 

respectively, and 4) the system can effectively avoid the occurrence of the Zeno behavior. 
Proof: 
The Barrier Lyapunov function is considered as 
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       

   

1

1

2

2

2
2

4 22 2
1

2
2
42 2

3

1 1
log

2 2

1 1
l

2

 

og
2

c
h

c

c

c

k
V V I z

k z

k
mz

k z

  





 
     

 
    

  (65) 

On the basis of the above analysis, one obtains 

 

   
     

 
 

 

1 2

2 2
1 32

1 2 2 32 2 2 2
1 3

2
4 4 1 20 7

 

.557 0.55

c c

z z
V k k z k

k z k z

k z a a

cV d

 
 

 





   
 

  

  



  (66) 

where  1 2 3 4min 2 ,2 ,2 ,2hc k k I k k m , and 1 20.557 0.557d a a  . 

Multiplying ce   on both sides of (66), and integrating (66) over  0, , one can obtained that 

    0 cd d
V V e

c c
     

 
  (67) 

According to (66) and (67), the boundedness of errors , 1,2,3,4iz i   is known. Meanwhile, 

since d ,  ,  ,d X   and   are bounded, according to (11)–(14), one gets that   ,   , 

 ,X   and  ,X   are also bounded. Similarly, according to (35) and (36), the boundedness of 

 1   and  2   are obviously proved. Considering  1 de     and    3 , ,de X X     , 

we can get   1 1d dz z        and    3, ,dX z X      3 ,dz X   . According 

to (9) and (10), it holds that  
1 1c d dk k      and    

2 2
, ,c d dX k X k     , which 

means that system states are within their constraint bounds. 
Recall the definition of   , 1,2ie i  , i.e.,      1 1 0e     ,      2 2 0e U    , 

where    0 1 k     for  1,k k     , and    0 2 kO s    for  1,s s     . Then, one has 

     1 1 1 ke         

     2 2 2 se          

Here  1 k  and  2 s  can be regarded as constants at the time interval  1,k k    and 

 1,s s   , which means that  1 0k   and  2 0s  . Then, we have 

 
 1 1 1 1sign

d
e e e

d
   

  (68) 

 
 2 2 2 2sign

d
e e e

d
   

  (69) 

According to the definition of  1   and  2   in (35) and (36), we know that  1   and 
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 2   are the functions of , 1,2,3,4iz i  . From the result before, all the system signals are bounded, 

so  1  and  2  are bounded. Then, we assume that  1 1   ,  2 2    with 1  and 2  

being constants. In addition,  1 0ke   ,  2 0se    and    
1 1 1 1 0 1lim

k ke     
     , 

   
1 2 1 2 0 2lim

s se O     
    . By integrating (68) and (69) on their both sides, one gets 

  1 1 0 1 1k k T            and   1 2 0 2 2s s T O          . Thus, the Zeno behavior 

can be avoided. 
Theorem 1 is demonstrated integrally. 

5. Simulation 

In order to verify the effectiveness of the control strategy designed in this paper, a system 
simulation based on (5)–(8) is considered. The system parameters are selected as follows: 

210EI Nm , 1mX  , 10.5 kgm , 2m kg , and 21hI kgm . The other related parameters 

are chosen as 0.03d  , 0d  , 1 10k  , 2 10k  , 3 10k  , 4 10k  , 1 1  , 2 1  , 1 0.15  , 

2 0.15  , 1 2  , 2 2  , 1 0.4a  , 2 0.4a  . In order to further compare with other control 

methods, the proportional differential (PD) control        1 2.5 0, 1.5 1.5rr           , 

       2 2.5 , 1.5 , 1.5 ,rrr X X X            is proposed in this paper. The simulation results are 

given as Figures 1–9. 

 

Figure 1. Displacement  ,r   of the system without control. 

Figure 1 shows the system vibration deflection without any control. It is obvious that the 
manipulator moves freely with large amplitude. Figure 2 shows the system vibration deflection under 
the action of the event trigger controller. It can be seen from the figure that the amplitude of the 
manipulator becomes gentle within a short time, forming an obvious contrast with Figure 1. Figure 3 
is the trajectory of boundary vibration deflection  ,X   of the system with (curve) or without 

(dotted line) control. It can be seen that when the system does not apply any control,  ,X   
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changes periodically, and the amplitude is changed greatly, which will damage the flexible 
manipulator system and reduce the working accuracy. In the case of control, the boundary vibration 
deflection  ,X   gradually tends to be stable, which greatly reduces the system loss. Figures 4 

and 5 respectively indicate the trajectories of state junction angle    and state boundary 

deflection  ,X  . From the figures we can know, that    and  ,X   remain within the 

constraint boundaries. In the meantime, the tracking performances of    and  ,X   are good. 

It can be clearly seen that based on the adopted control solution; they are adjusted to the expected 
value. Figure 6 is the trajectories of event trigger controllers  1   and  2  . Figure 7 is the time 

interval for triggering events, which indicates that the Zeno phenomenon is successfully avoided. 
The displacement and the boundary output changes under state constraints with PD control are 
shown in Figures 8 and 9. Compared with the simulation results in the previous case, it is obvious 
that the control strategy proposed in this paper is smoother and more effective than PD control. 
Obviously, they are bounded. From all the analysis so far, we conclude the following result. The 
control objectives of this paper can be realized under the action of the proposed control strategy. 

 

Figure 2. Displacement  ,r   of the system with event trigger control. 

 

Figure 3. Trajectories of  ,X   under control (solid line) and without control (dotted line). 
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Figure 4. Trajectories of   , d , 
1dk  and 

1dk . 

 

Figure 5. Trajectories of  ,X  , c, 
2dk  and 

2dk . 

 

Figure 6. Trajectories of  1   and  2  . 
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Figure 7. The time intervals of the event-triggered manipulator. 

 

Figure 8. Displacement  ,r   of the system with PD control. 

 

Figure 9. Trajectories of  ,X  , c, 
2dk  and 

2dk  under PD control. 
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6. Conclusions 

A vibration suppression control algorithm with event-triggered mechanism is proposed for 
manipulator system described by PDEs with state constraints. State constraints and event-triggered 
problems are considered simultaneously in the course controller design. Based on the BLF and 
relative threshold strategy, the method we developed reduces the cost of information transmission 
and guarantees that the system signals of the under consideration are all bounded. The elastic 
vibration of flexible manipulator is well suppressed, and the constrained states do not break the 
constraint bounds. In addition, the Zeno phenomenon is successfully avoided. Simulation results 
show the validity of the proposed algorithm. At a future date, the proposed scheme can be further 
studied and spread in other partial differential practical systems with DoS attacks like in [47]. 
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