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Abstract: The combined-unified hybrid sampling approach was introduced as a general model that
combines the unified hybrid censoring sampling approach and the combined hybrid censoring ap-
proach into a unified approach. In this paper, we apply this censoring sampling approach to improve
the estimation of the parameter via a novel five-parameter expansion distribution, which we call the
generalized Weibull-modified Weibull model. The new distribution contains five parameters and is
therefore very flexible in terms of accommodating different types of data. The new distribution pro-
vides graphs of the probability density function, e.g., symmetric or right skewed. The graph of the
risk function can have a shape similar to a monomer of the increasing or decreasing model. Using
the Monte Carlo method, the maximum likelihood approach is used in the estimation procedure. The
Copula model was used to discuss the two marginal univariate distributions. The asymptotic confi-
dence intervals of the parameters were developed. We present some simulation results to validate the
theoretical results. Finally, a data set with failure times for 50 electronic components was analyzed to
illustrate the applicability and potential of the proposed model.

Keywords: modified Weibull; generalized Weibull; maximum likelihood estimation; statistical
modeling

1. Introduction

There are many phenomena in this world that need statistical description to be more understandable
to the reader, but there is no specific statistical distribution that describes all of them. Therefore,
many researchers have recently tried to develop new families by adding one, two or three parameters,
e.g., [1–5]. By adding two additional parameters β and γ, Cordeiro et al. [6] introduced the generalized
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Weibull distribution family. We continue this line of research by proposing a novel family, namely, a
generalized Weibull-modified Weibull model. A model was developed that can fit real data because
the model has great flexibility in representing nonlinear dynamics. The model is useful for studying
data science through statistical modeling and it has been applied to engineering data. Its application in
engineering shows that the developed model is adaptable and flexible in terms of ability to represent
complex data. For any cumulative function (CDF) W(x) and probability density function (PDF) w(x),
the CDF and the PDF of the proposed family are respectively given by

𭟋(x; β, γ) = 1 − exp
[
−β(− log[1 −W(x)])γ

]
, x ∈ R; β, γ > 0, (1.1)

and

f (x; β, γ) =
βγw(x)

1 −W(x)
(− log[1 −W(x)])γ−1 exp

(
−β

(
− log (1 −W(x))

)γ) , x ∈ R; β, γ > 0. (1.2)

Type-I and Type- II -censorship schemes are the two most common and popular censorship schemes.
Type-I and type- II censorship schemes were merged by Epstein [7] in the hybrid censorship scheme.
For a more brief review of censoring schemes, we refer the reader to [8–14]. Balakrishnan et al. [15]
have proposed a unified hybrid censoring method. Huang and Yang [16] have considered a combined
hybrid censoring sample. Emam and Sultan [17] combined the unified hybrid censoring sampling
method and the combined hybrid censoring sampling method into a unified approach known as C-
UHCS(m, r; T1,T2), which refers to the combined-unified hybrid censoring method. The likelihood
function of C-UHCS(k, r; T1,T2) is

L(Ω|xk) =
n!

(n − k)!
[1 − F(T )]n−k

k∏
i=1

f (xi), (1.3)

where k and T can be chosen as:
L(C) (Ω|x) L(U) (Ω|x)

Cases k T k T
1 : 0 < T1 < Xk:n < T2 < Xr:n m Xm:n D2 T2

2 : 0 < T1 < Xk:n < Xr:n < T2 m Xm:n r Xr:n

3 : 0 < T1 < T2 < Xk:n < Xr:n D2 T2 m Xm:n

4 : 0 < Xk:n < Xr:n < T1 < T2 r Xr:n D1 T1

5 : 0 < Xk:n < T1 < Xr:n < T2 D1 T1 r Xr:n

6 : 0 < Xk:n < T1 < T2 < Xr:n D1 T1 D2 T2

Then, for a parameter space Ω, the likelihood function of C-UHCS(m, r; T1,T2), which represents
all possible likelihood functions under different values of k, T , and xk = (x1, x2, ..., xk), can be written
as

L(Ω|xk) =
n!

(n − k)!

 k∏
i=1

f (xi)

 (1 − F(T ))n−k . (1.4)

The authors believe that this problem deserves investigation. The main motivations for using the
GMW-X family in practice are as follows: 1) It is an excellent way to enter additional parameters
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to create an extended version of the basic model. 2) It can improve the properties of the traditional
distributions. 3) It can create symmetric, right-skewed and left-skewed distributions. 4) It can provide
a consistently better fit than other models. This was a good incentive to study the problem, and this
was supported by the numerical results, which confirmed the superiority of the new model over many
of the basic and competing models.

The rest of this work is presented here as follows. The generalized Weibull-modified Weibull dis-
tribution (GWMWD) is presented in Section 2. The bivariate extension of the generalized Weibull-
modified Weibull model is discussed in Section 3. Based on C-UHCS(m, r; T1,T2), Section 4 is de-
voted to applying the maximum likelihood approach to the GWMWD. Section 5 presents the Monte
Carlo procedure. Section 6 applies the GWMWD to a data set of 50 electronic component failures.
Section 7 shows some conclusions.

2. Generalized Weibull-modified Weibull model

Let X be a random variable (R.V.) with the modified Weibull distribution (ω, θ, ν) distribution sug-
gested by Sarhan and Zaindin [18]; then, its CDF is

W(x;ω, δ, ν) = 1 − exp (−ωx − δxν) , x > 0, (2.1)

and its PDF is given by

w(x;ω, δ, ν) =
(
ω + δνxν−1

)
exp (−ωx − δxν) , x > 0, (2.2)

where ω ≥ 0 is a scale parameter, while δ ≥ 0 and ν > 0 are shape parameters such that ν + δ > 0.
The generalized Weibull distribution family generalizes the generalized Weibull normal distribu-

tion when β = γ = 1, the generalized Weibull Gumbel distribution when the generalized Weibull
family βγ = 1, and the generalized Weibull logistic distribution. The GWMWD is defined from (1.1)
by replacing W(x) and w(x) with W(x;ω, δ, ν) and w(x;ω, δ, ν), respectively. The CDF and PDF of
GWMWD, respectively, are

𭟋(x; β, γ, ω, δ, ν) = 1 − e−β(xω+xνδ)γ , x > 0; β, γ, ω, δ, ν > 0, (2.3)

and

f (x; β, γ, ω, δ, ν) = e−β(xω+xνδ)γβγ
(
ω + xν−1δν

)
(xω + xνδ)γ−1 , x > 0; β, γ, ω, δ, ν > 0. (2.4)

The survival function (SF) and hazard rate function (HRF) via the GWMWD of time t, respectively,
are

S (t; β, γ, ω, δ, ν) = e−β(tω+tνδ)γ , (2.5)

and

H(t; β, γ, ω, δ, ν) = βγ (tω + tνδ)γ−1
(
ω + tν−1δν

)
. (2.6)

In particular, the GWMWD generalizes the generalized Weibull-Weibull distribution (when ω = 0),
the generalized Weibull-Rayleigh distribution (when ω = 0 and ν = 2), the generalized linear Weibull
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exponential distribution (when ν = 2 and δ = ω/2, ω > 0), and the generalized Weibull exponential
distribution (for ν = 0). In what follows, an R.V. X with the GWMWD PDF (2.4) is written as
X ∼ GWMWD(β, γ, ω, δ, ν).
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Figure 1. Plots for different CDFs, PDFs and HRFs for GWMWD (β, γ, ω, δ, ν).

Some possible behaviors of the CDF, PDF, and HRF for GWMWD (β, γ, ω, δ, ν) are shown in Figure
1. The left panel shows GWMWD (10.2,10.9, 0.50,12.9, 4.20), GWMWD(0.20, 0.90, 0.50,1.90, 0.20),
GWMWD (10.20, 6.90, 0.50,1.90, 0.20), GWMWD (1.20, 3.90, 0.65, 0.90, 0.20), and GWMWD
(0.20,12.9, 0.30,1.10, 0.01), while the right panel shows GWMWD (10.2, 10.9, 0.50, 12.9, 4.20)
,GWMWD (7.20, 8.90, 1.50,12.9, 4.20), GWMWD (8.20, 7.90, 3.90, 10.9,3.50), GWMWD (8.20,
6.90, 7.50, 12.9, 4.20), and GWMWD (1.20,9.90, 2.50, 12.9, 4.20). From Figure 1, it can be seen
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that the CDF increases faster with increasing x for the parameters β and δ > 1 ; then, it is constant
and the graph grows exponentially, the PDF increases faster with increasing x for the parameters β and
δ > 1, and the proposed GWMWD has strong spurs; the HRF is constant and then increases faster with
increasing x when the parameters β, γ, δ and α > 1. The PDF shape is at times very flexible. It appears
to approximate a bell curve with some twist. At other times it appears to have strong tails. Because of
the divergent behavior of the proposed model, it could be a good candidate for modeling semi-normal
and strong-tailed data in various industrial, financial, and medical applications.

3. Bivariate GWMWD

The copula model was introduced by Morgenstern [19] to represent the joint CDF of the two
marginal univariate distributions. Let 𭟋

(
x j

)
be the CDF of X j, j = 1, 2. Conway [20] introduced

the joint CDF and PDF of the copula model, respectively, as

𭟋 (x1, x2) = 𭟋 (x1) 𭟋 (x2)
[
1 + ρ (1 − 𭟋 (x1)) (1 − 𭟋 (x2))

]
, − 1 < ρ < 1, (3.1)

and

f (x1, x2) = f (x1) f (x2)
[
1 + ρ (1 − 2𭟋 (x1)) (1 − 2𭟋 (x2))

]
, (3.2)

where ρ is the dependence measure between X1 and X2. Let the R.V.s X1 ∼GWMWD (β1, γ1, ω1, δ1, ν1)
and X2 ∼ GWMWD (β2, γ2, ω2, δ2, ν2); then, the corresponding joint CDF and PDF are, respectively,
given by

𭟋 (x1, x2) =
(
1 − e−β1(x1ω1+xν11 δ1)

γ1 ) (
1 − e−β2(x2ω2+xν22 δ2)

γ2 )
×

(
1 + ρe−β1(x1ω1+xν11 δ1)

γ1−β2(x2ω2+xν22 δ2)
γ2 )
, (3.3)

and

f (x1, x2) =β1β2γ1γ2e−β1(x1ω1+xν11 δ1)
γ1−β2(x2ω2+xν22 δ2)

γ2 (
x1ω1 + xν11 δ1

)γ1−1

×
(
x2ω2 + xν22 δ2

)ω1−1 (
ω1 + xν−11

1 δ1ν1

) (
ω2 + xν−12

2 δ2ν2

)
×

(
1 + ρ

(
1 − 2e−β1(x1ω1+xν11 δ1)

γ1
β1γ1

(
x1ω1 + xν11 δ1

)γ−12
(
ω1 + xν−11

1 δ1ν1

))
×

(
1 − 2e−β2(x2ω2+xν22 δ2)

γ2
β2γ2

(
x2ω2 + xν22 δ2

)γ−12
(
ω2 + xν−12

2 δ2ν2

)))
. (3.4)

Figure 2 presents the CDF for the bivariate GWMWD (0.1, 0.8, 4.4,6.1,3.20) and GWMWD (0.1, 0.8,
4.4,6.1,0.20) when the parameter ν increases, and for ρ = 0.2.
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Figure 2. CDF for the bivariate GWMWD (0.1,0.8,4.4,6.1,3.20) and GWMWD
(0.1,0.8,4.4,6.1,0.20).

The copula function is a way to construct bivariate distributions. Other methods can be reviewed and
may be helpful to introduce some new bivariate distributions (see, Xu et al. [21] and Luo et al. [22].)

4. Likelihood function under C-UHCS

Suppose that {x1, x2, ..., xk} is an observed sample from X ∼ GWMWD(β, γ, ω, δ, ν). The likelihood
function of β, γ, ω, δ, and ν becomes

l =
n!

(n − k)!
e−β(n−k)(Tω+T νδ)γ (βγ)k e−β

∑k
i=1(xiω+xνi δ)

γ
k∏

i=1

(
ω + xν−1

i δν
) (

xiω + xνi δ
)γ−1 ,

(4.1)

and the log-likelihood function (L) is

L = log
[

n!
(n − k)!

]
− β(n − k) (Tω + T νδ)γ + k log[βγ] − β

k∑
i=1

(
xiω + xνi δ

)γ
+

k∑
i=1

log
[
ω + xν−1

i δν
]
+ (γ − 1)

k∑
i=1

log
[
xiω + xνi δ

]
. (4.2)

Let Q(x) = ωx + δxν. The first partial derivatives of (4.2) with respect to β, γ, ω, δ and ν are given by

∂L
∂β
=

k
β
− (n − k)Q(T )γ −

k∑
i=1

Q(xi)γ, (4.3)

∂L
∂γ

=
k
γ
− (n − k)βQ(T )γ log Q(T ) +

k∑
i=1

log Q(xi)

−β

k∑
i=1

Q(xi)γ log Q(xi), (4.4)
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∂L
∂ω

= −(n − k)TβγQ(T )γ−1 +

k∑
i=1

1
ω + δνxν−1

i

+ (γ − 1)
k∑

i=1

xi

Q(xi)

−βγ

k∑
i=1

xiQ(xi)γ−1, (4.5)

∂L
∂δ
= −(n − k)T νβγQ(T )γ−1 +

k∑
i=1

νxν−1
i

ω + δνxν−1
i

+ (γ − 1)
k∑

i=1

xνi
Q(xi)

−βγ

k∑
i=1

xνi Q(xi)γ−1, (4.6)

∂L
∂ν
= −(n − k)T νβγδQ(T )γ−1 log[T ] + δ

k∑
i=1

xν−1
i + ν log [xi] xν−1

i

ω + δνxν−1
i

+(γ − 1)δ
k∑

i=1

log [xi] xνi
Q(xi)

− βγδ

k∑
i=1

log [xi] xνi Q(xi)γ−1. (4.7)

The maximum likelihood estimators β̂ML, γ̂ML, ω̂ML, δ̂ML, and ν̂ML of the GWMWD (β, γ, ω, δ, ν) param-
eters are the solutions of (4.3)–(4.7). The asymptotic confidence intervals of the parameters β, γ, ω, δ
and ν can be calculated. V̂ = V(β̂ML, γ̂ML, ω̂ML, δ̂ML, ν̂ML) is the observed variance covariance matrix,
such that

V(β, γ, ω, δ, ν) = −



∂2L
∂β2

∂2L
∂β∂γ

∂2L
∂β∂ω

∂2L
∂β∂δ

∂2L
∂β∂ν

∂2L
∂γ∂β

∂2L
∂γ2

∂2L
∂γ∂ω

∂2L
∂γ∂δ

∂2L
∂γ∂ν

∂2L
∂ω∂β

∂2L
∂ω∂γ

∂2L
∂ω2

∂2L
∂ω∂δ

∂2L
∂ω∂ν

∂2L
∂δ∂β

∂2L
∂δ∂γ

∂2L
∂δ∂ω

∂2L
∂δ2

∂2L
∂δ∂ν

∂2L
∂ν∂β

∂2L
∂ν∂γ

∂2L
∂ν∂ω

∂2L
∂ν∂δ

∂2L
∂ν2



−1

, (4.8)

where

∂2L
∂β2 = −

k
β2 , (4.9)

∂2L
∂β∂γ

=(k − n)Q(T )γ log δ2 −

k∑
i=1

Q(xi)γ log Q(xi), (4.10)
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∂2L
∂β∂ω

=(k − n)TγQ(T )γ−1 − γ

k∑
i=1

xiQ(xi)γ−1, (4.11)

∂2L
∂β∂δ

=(k − n)T νγQ(T )γ−1 − γ

k∑
i=1

xνi Q(xi)γ−1, (4.12)

∂2L
∂β∂ν

=(k − n)T νγδQ(T )γ−1 log[T ] − γδ
k∑

i=1

xνi Q(xi)γ−1 log [xi], (4.13)

∂2L
∂γ2 = −

k
γ2 (k − n)βQ(T )γ log Q(T )2 − β

k∑
i=1

Q(xi)γ log [Q(xi)]2, (4.14)

∂2L
∂γ∂ω

=(k − n)2T 2β2γQ(T )2γ−2 log Q(T )

+

k∑
i=1

xi

Q(xi)
− β

k∑
i=1

xiQ(xi)γ−1 (
1 + γ log Q(xi)

)
, (4.15)

∂2L
∂γ∂δ

=(k − n)2T 2νβ2γQ(T )2γ−2 log Q(T )

+

k∑
i=1

xνi
Q(xi)

− β

k∑
i=1

xνi Q(xi)γ−1 (
1 + γ log Q(xi)

)
, (4.16)

∂2L
∂γ∂ν

=(k − n)T νβδQ(T )γ−1 log[T ]
(
1 + γ log Q(T )

)
+

k∑
i=1

δ log [xi] xνi
Q(xi)

− βδ

k∑
i=1

xνi Q(xi)γ−1 log [xi]
(
1 + γ log Q(xi)

)
, (4.17)

∂2L
∂ω2 =(k − n)T 2β(γ − 1)γQ(T )γ−2 +

k∑
i=1

−
1

Q(xi)2

−(γ − 1)
k∑

i=1

x2
i

Q(xi)2 + βγ (1 − γ)
k∑

i=1

xi
2Q(xi)γ−2, (4.18)

∂2L
∂ω∂δ

=(k − n)T 1+νβ(γ − 1)γQ(T )γ−2 +

k∑
i=1

−
νxν−1

i(
ω + δνxν−1

i

)2

−(γ − 1)
k∑

i=1

x1+ν
i

Q(xi)2 + βγ

k∑
i=1

xi
ν+1Q(xi)γ−2 (1 − γ) , (4.19)

∂2L
∂ω∂ν

=(k − n)T 1+νβ(γ − 1)γδQ(T )γ−2 log[T ]

−(γ − 1)
k∑

i=1

δ log [xi] x1+ν
i

Q(xi)2 − δ

k∑
i=1

 xν−1
i(

ω + δνxν−1
i

)2 +
ν log [xi] xν−1

i(
ω + δνxν−1

i

)2


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+βγδ

k∑
i=1

xi
ν+1Q(xi)γ−2 log [xi] (1 − γ) , (4.20)

∂2L
∂δ2 =(k − n)T 2νβ(γ − 1)γQ(T )γ−2 −

k∑
i=1

ν2x−2+2ν
i(

ω + δνxν−1
i

)2

−

k∑
i=1

(γ − 1)x2ν
i

Q(xi)2 + βγ

k∑
i=1

x2ν
i Q(xi)γ−2 (1 + γ) , (4.21)

∂2L
∂δ∂ν

=(k − n)T νβγQ(T )γ−1 log[T ]
(
T ν(γ − 1)δ (ωT + δT ν)−1

− 1
)

+(γ − 1)
k∑

i=1

log [xi] xνi
Q(xi)

(
1 −
δ xνi

Q(xi)

)

+

k∑
i=1

xν−1
i

ω + δνxν−1
i

(
1 + ν log [xi] − νxν−1

i

(
δ
(
1 − ν log [xi]

)
ω + δνxν−1

i

))

−βγ

k∑
i=1

xνi log [xi]
(
Q(xi)γ−1 + (γ − 1)δQ(x − i)γ−2

)
, (4.22)

∂2L
∂ν2 =(k − n)2T 3νβ2(γ − 1)γ2δ3Q(T )2γ−3

(
log[T ]2

)2

+(γ − 1)
k∑

i=1

−δ2 log [xi]2 x2ν
i

Q(xi)2 +
δ log [xi]2 xνi

Q(xi)

 + 2δ log [xi] xν−1
i + δν log [xi]2 xν−1

i

ω + δνxν−1
i

−δ2
k∑

i=1

x2ν−2
i

(
1 + ν log [xi]

)  1(
ω + νxν−1

i

)2 +
ν log [xi](
ω + δνxν−1

i

)2


−βγδ

k∑
i=1

xνi Q(xi)γ−1 log [xi]
(
log [xi] +

(
xνi

)−1 (γ − 1)
)
. (4.23)

An approximate 100(1 − ϵ)% two-sided C.Is for the parameters β, γ, ω, δ and ν are

β̂ ± zϵ/2
√

V (̂β), (4.24)

γ̂ ± zϵ/2
√

V (̂γ), (4.25)

ω̂ ± zϵ/2
√

V(ω̂), (4.26)

δ̂ ± zϵ/2

√
V (̂δ), (4.27)

and
ν̂ ± zϵ/2

√
V (̂ν), (4.28)

respectively, where the diagonal elements of V̂ V(β̂), V(γ̂), V(ω̂), V(δ̂), and V(ν̂) are the estimated vari-
ances of β̂ML,γ̂ML,ω̂ML,δ̂ML, and ν̂ML, and zϵ/2 is the upper

(
ϵ
2

)
percentile of the normal(0,1) distribution.
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5. Monte Carlo simulation study

Let U have a uniform (0,1) distribution. The GWMWD can be simulated by using the solution of
the nonlinear equation

0 = 1 − u − exp−β(xω+xνδ)γ . (5.1)

We simulate the GWMWD for two sets of the parameters: Set 1: β = 1.4, γ = 3.0, ω = 0.7, δ = 1.3, ν =
0.4, and Set 2: β = 0.4, γ = 1.0, ω = 1.7, δ = 1.5, ν = 1.8. The empirical results of the Monte Carlo
simulation study are given in Table 1 for Set 1. The empirical results of the Monte Carlo simulation
study are given in Table 2 for Set 2. Suppose that the data were observed for the GWMWD under
the censoring scheme C-UHCS(m, r; T1,T2) and set the arbitrary values for termination as T = Xk and
k = 4

5n. The simulation study is carried out as follows

1) Random samples of size n = 25, 50, ..., 1000 were simulated from the GWMWD.

2) The model parameters were estimated via the maximum likelihood method.

3) 1000 iterations were made to obtain the MLEs, biases and MSEs of these estimators.

4) Let ϑ̂ be the MLE of ϑ = (β, γ, ω, δ, ν). The MLEs, biases and MSEs are given, respectively, by

ϑ̂ =
1

1000

M∑
i=1

ϑ̂i, (5.2)

Bias
(
ϑ̂
)
=

1
1000

M∑
i=1

(
ϑ̂i − ϑ

)
, (5.3)

and

MS E
(
ϑ̂
)
=

1
1000

1000∑
i=1

(
ϑ̂i − ϑ

)2
, (5.4)

5) The 90% and 95% approximate confidence intervals with their width were calculated.
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Table 1. Point and interval estimation of the parameters for β = 1.4, γ = 3.0, ω = 0.7, δ =
1.3, and ν = 0.4 with different values of n.

Par. n Bias MSEs 90%L 90%U 90%W 95%L 95%U 95%W

β̂ 25 1.284 1.955 0.001 5.89 5.89 0.001 6.516 6.516
50 1.163 1.479 0.137 4.989 4.852 0.001 5.462 5.462
100 1.124 1.325 0.35 4.698 4.347 0.001 5.122 5.122
200 1.099 1.241 0.464 4.533 4.069 0.067 4.93 4.863
400 1.08 1.18 0.545 4.415 3.87 0.167 4.793 4.625
600 1.076 1.169 0.559 4.394 3.835 0.185 4.768 4.583
800 1.079 1.171 0.559 4.399 3.841 0.184 4.774 4.59
1000 1.078 1.169 0.561 4.395 3.834 0.187 4.77 4.582

γ̂ 25 -0.307 0.403 2.032 3.354 1.322 1.903 3.483 1.58
50 -0.428 0.311 2.061 3.082 1.021 1.962 3.182 1.22
100 -0.475 0.288 2.053 2.997 0.944 1.961 3.089 1.129
200 -0.502 0.281 2.038 2.959 0.921 1.948 3.049 1.101
400 -0.51 0.276 2.038 2.941 0.904 1.949 3.03 1.08
600 -0.52 0.28 2.02 2.939 0.919 1.931 3.029 1.099
800 -0.521 0.279 2.021 2.937 0.915 1.932 3.026 1.094
1000 -0.524 0.28 2.018 2.935 0.918 1.928 3.025 1.097

ω̂ 25 0.99 1.265 0.616 4.764 4.148 0.212 5.169 4.957
50 0.886 0.921 1.076 4.096 3.02 0.781 4.39 3.609
100 0.827 0.743 1.308 3.746 2.438 1.07 3.984 2.914
200 0.798 0.668 1.403 3.593 2.19 1.189 3.807 2.617
400 0.783 0.629 1.452 3.515 2.062 1.251 3.716 2.465
600 0.78 0.619 1.466 3.495 2.029 1.268 3.693 2.425
800 0.777 0.61 1.476 3.477 2.002 1.281 3.673 2.392
1000 0.772 0.601 1.486 3.457 1.971 1.294 3.649 2.355

δ̂ 25 1.102 1.355 0.379 4.824 4.445 -0.054 5.258 5.312
50 1.057 1.212 0.57 4.544 3.974 0.182 4.932 4.75
100 1.017 1.086 0.735 4.298 3.563 0.387 4.646 4.258
200 1.011 1.052 0.786 4.236 3.449 0.45 4.572 4.123
400 0.986 0.987 0.867 4.105 3.238 0.551 4.421 3.869
600 0.978 0.966 0.893 4.063 3.17 0.584 4.373 3.788
800 0.978 0.965 0.896 4.06 3.164 0.588 4.369 3.781
1000 0.977 0.961 0.902 4.052 3.151 0.594 4.36 3.765

ν̂ 25 0.4 0.16 0.938 1.462 0.525 0.886 1.514 0.627
50 0.4 0.16 0.938 1.462 0.525 0.886 1.514 0.627
100 0.4 0.16 0.938 1.462 0.525 0.886 1.514 0.627
200 0.4 0.16 0.938 1.462 0.525 0.886 1.514 0.627
400 0.4 0.16 0.938 1.462 0.525 0.886 1.514 0.627
600 0.4 0.16 0.938 1.462 0.525 0.886 1.514 0.627
800 0.4 0.16 0.938 1.462 0.525 0.886 1.514 0.627
1000 0.4 0.16 0.938 1.462 0.525 0.886 1.514 0.627
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Table 2. Point and interval estimation of the parameters for β = 0.4, γ = 1.0, ω = 1.7, δ =
1.5, and ν = 1.8 with different values of n.

Par. n Bias MSEs 90%L 90%U 90%W 95%L 95%U 95%W

β̂ 25 0.498 0.303 0.401 1.394 0.994 0.304 1.491 1.187
β̂ 25 0.498 0.303 0.401 1.394 0.994 0.304 1.491 1.187

50 0.458 0.226 0.487 1.229 0.742 0.415 1.302 0.887
100 0.437 0.197 0.514 1.161 0.647 0.451 1.224 0.774
200 0.426 0.187 0.519 1.133 0.613 0.459 1.193 0.733
400 0.41 0.177 0.519 1.101 0.582 0.462 1.158 0.695
600 0.404 0.175 0.517 1.091 0.574 0.461 1.147 0.686
800 0.396 0.171 0.516 1.077 0.561 0.461 1.131 0.67
1000 0.385 0.165 0.514 1.055 0.541 0.461 1.108 0.647

γ̂ 25 -0.098 0.073 0.783 1.021 0.238 0.76 1.044 0.284
50 -0.147 0.034 0.797 0.908 0.111 0.787 0.919 0.132
100 -0.159 0.03 0.792 0.89 0.098 0.782 0.9 0.117
200 -0.164 0.03 0.787 0.884 0.097 0.778 0.894 0.116
400 -0.16 0.028 0.794 0.885 0.091 0.785 0.894 0.109
600 -0.158 0.027 0.798 0.887 0.089 0.789 0.896 0.107
800 -0.157 0.027 0.799 0.888 0.089 0.79 0.896 0.106
1000 -0.154 0.027 0.802 0.89 0.088 0.794 0.898 0.105

ω̂ 25 -0.796 0.691 0.001 2.037 2.037 0.001 2.258 2.258
50 -0.836 0.716 0.001 2.038 2.038 0.001 2.267 2.267
100 -0.855 0.741 0.001 2.06 2.06 0.001 2.297 2.297
200 -0.849 0.737 0.001 2.059 2.059 0.001 2.295 2.295
400 -0.83 0.723 0.001 2.057 2.057 0.001 2.288 2.288
600 -0.815 0.709 0.001 2.049 2.049 0.001 2.276 2.276
800 -0.802 0.699 0.001 2.044 2.044 0.001 2.268 2.268
1000 -0.783 0.683 0.001 2.037 2.037 0.001 2.255 2.255

δ̂ 25 -0.597 0.415 0.222 1.584 1.362 0.089 1.717 1.628
50 -0.637 0.422 0.17 1.556 1.386 0.035 1.691 1.656
100 -0.654 0.436 0.131 1.561 1.43 0.001 1.701 1.709
200 -0.652 0.436 0.134 1.563 1.429 0.001 1.702 1.707
400 -0.657 0.441 0.12 1.565 1.445 0.001 1.706 1.706
600 -0.651 0.435 0.136 1.563 1.427 0.001 1.702 1.702
800 -0.638 0.428 0.161 1.564 1.403 0.024 1.701 1.677
1000 -0.627 0.421 0.183 1.563 1.38 0.048 1.698 1.65

ν̂ 25 -0.899 0.863 0.001 2.316 2.316 0.001 2.592 2.592
50 -0.941 0.904 0.001 2.341 2.341 0.001 2.63 2.63
100 -0.953 0.921 0.001 2.356 2.356 0.001 2.651 2.651
200 -0.948 0.918 0.001 2.358 2.358 0.001 2.652 2.652
400 -0.924 0.897 0.001 2.347 2.347 0.001 2.635 2.635
600 -0.905 0.876 0.001 2.332 2.332 0.001 2.612 2.612
800 -0.894 2.33 0.001 2.848 2.848 0.001 2.6005 2.601
1000 -0.874 2.319 0.001 2.785 2.785 0.001 2.59 2.59
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Table 3. Reliability engineering data summary.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.058 0.254 1.600 3.410 4.534 15.080

Table 4. Relative quality of the NG-MW vs competing models.

Model AIC CAIC BIC HQIC

GWMWD(0.058,9.986,0.005,1.239,0.056) 212.9574 214.3211 222.5175 216.5980
GWWD(1.916, 0.972, 0.326, 0.635) 213.6829 214.5718 221.3310 216.5953
GWRD(0.360, 0.246, 3.774) 221.4256 221.9473 227.1617 223.609
GLWEXPD(0.466, 0.455, 0.715) 213.2008 213.7226 218.9369 215.3852
GWEXPD(0.465, 0.640, 0.902, 0.007) 216.9577 217.8465 224.6058 219.8701

6. Reliability engineering application of the GWMWD model

This section is devoted for illustrating the GWMWD through the analysis of a reliability en-
gineering application. The data set represents the failure times of 50 electronic components (per
1000 h); see Aryal and Elbatal [23]. Suppose that the data was observed from GWMWD under
the censoring scheme C-UHCS(m, r; T1,T2), and set the arbitrary values for termination k = 45
and T = 10.943. Table 3 shows a summary of the reliability engineering data. The boxplot and
Q-Q plot for the reliability engineering data are shown in Figure 4. The estimated parameters are
β̂ = 0.058, γ̂ = 9.986, ω̂ = 0.005, δ̂ = 1.239, and ν̂ = 0.056. Plots of the fitted density and distri-
bution functions of the GWMWD model are shown in Figure 5. The likelihood probability (PP) and
Kaplan-Meier survival curve are shown in Figure 6.
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Figure 3. Boxplot and Q-Q plot for the reliability engineering data.
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Figure 4. Plots of fitted PDF and CDF of the GWMWD.

@
@ @ @ @ @ @ @ @ @ @ @ @

@ @
@ @

@ @ @ @ @ @

@
@

@

@ @

@
@ @ @

@ @ @ @ @ @ @

@
@

@ @ @
@

@ @
@ @ @

0.0 0.2 0.4 0.6 0.8 1.0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

x

P
P

 
P

lo
t

0 5 10 15

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

x

K
a

p
la

n
−

M
e

ie
r
 
s
u

r
v
iv

a
l 
p

lo
t

Figure 5. Plots of the PP and the Kaplan–Meier survival function of the GWMWD.

Table 4 compares the GWMWD based on some detection criteria, such as the Akaike information
criterion (AIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC)
and consistent Akaike information criterion (CAIC). The goodness-of-fit results of the GWMWD
model are compared with some other models, including the generalized Weibull distribution (GWWD),
the generalized Weibull-Rayleigh distribution (GWRD), the generalized linear Weibull exponential
distribution (GLWEXPD) and the generalized Weibull exponential distribution (GWEXPD). Table 5
compares the GWMWD with the Kolmogorov-Smirnov test for one sample. The results in Tables 4
and 5 suggest that the GWMWD provides a better fit than other competing models and could be chosen
as a suitable model for analyzing heavy-tailed electronic data.
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Table 5. One-sample Kolmogorov-Smirnov (KS) test.

Model KS p-value

GWMWD(0.058,9.986,0.005,1.239,0.056) 0.13263 0.3144
GWWD(1.916, 0.972, 0.326, 0.635) 0.16936 0.2247
GWRD(0.360, 0.246, 3.774) 0.14916 0.1952
GLWEXPD(0.466, 0.455, 0.715) 0.14875 0.1977
GWEXPD(0.465, 0.640, 0.902, 0.007) 0.17732 0.07589

7. Conclusions

A new extension of the Weibull distribution i.e., the generalized modified Weibull distribution with
five parameters, is presented. The model has a high degree of flexibility to fit the data appropriately.
The provided model exhibits strong tail-heavy behavior and has unimodal increasing failure rate
functions. Based on a combined-unified hybrid sample, the maximum likelihood estimators of the
intended model parameters and a Monte Carlo simulation study were obtained. To illustrate the
applicability and potential of the intended distribution, a dataset of failure times of 50 electronic
components was analyzed. The mean square errors and biases decrease with increasing sample size.
It is clear that the proposed model agrees well with the estimated PDF and CDF plots. The boxplot
shows that the electronic downtime data set has a highly right skewed tail. The new generalized
modified Weibull distribution based on the one-sample Kolmogorov-Smirnov test provides a better fit
than other competing models. The proposed model fits the Kaplan-Meier survival plot very well. The
results indicate that the generalized Weibull distribution (modified Weibull distribution) is considered
ideal for modeling the intended engineering data. For future studies, we hope to discuss the accelerated
life testing based on the new distribution by using stress-strength models (Zhang et al. [24, 25]).
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