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Abstract: A binary wealth exchange mechanism, which involves the influence of the epidemic envi-
ronment and agents’ psychology on trading decisions, is introduced to discuss the wealth distribution
of agents under the background of an epidemic. We find that the trading psychology of agents may
affect wealth distribution and make the tail of the steady-state wealth distribution slimmer. The steady-
state wealth distribution displays a bimodal shape under appropriate parameters. Our results suggest
that government control measures are essential to curb the spread of epidemics, and vaccination may
help to improve the economy, while contact control measures may aggravate wealth inequality.
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1. Introduction

The spread of infectious diseases threatens people’s health and social stability. To control the spread
of the epidemic, governments usually take some measures, such as developing vaccines and isolating
patients carrying the virus. Before the successful promotion of the vaccine, the government’s non-
pharmaceutical control measures, which reduce people’s contact rate through lockdown and isolation,
play a leading role in controlling the epidemic. However, it cannot relieve people’s fear of the virus
and may deteriorate the national or regional economy [1, 2].

Mathematical models are useful tools to analyze the formation of social and economic phenomena
under various backgrounds. In recent years, the Boltzmann-type equation, which uses the collision
theory to study the statistical distribution of rarefied gas molecules [3], is adopted to investigate the
socio-economic phenomena of multi-agent systems, such as opinion formation and wealth distribution
(see [4–8]). To discover the socio-economic impact of epidemics, researchers extend the classical
Susceptible-Infectious-Recovered (SIR) epidemic model [9–12], in which agents are separated into
three categories: susceptible (S), infected (I) and recovered (R), and integrate the SIR model with
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the socio-economic phenomena of multi-agent systems, such as people’s social contact and wealth
exchange behavior [13, 14].

The description of socio-economic features involves knowledge of mathematics, sociology, eco-
nomics, psychology and other fields [15–18]. In the physical-economic dynamic models, the wealth
distribution is determined by the continuous trading features of a large number of agents according to
a wealth exchange mechanism, which is characterized by the saving (exchange) propensity of agents
and uncertain elements. The uncertainty includes market risks and speculative risks [5]. Saving means
that agents are risk-conscious and only use part of their wealth for trading. The saving (exchange)
propensity reflects agents’ trading decision-making. Decision-making problems are common in life,
such as commodity selection, product evaluation, company management, etc. (see [19–21]). Persons’
decision-making behaviors are affected by psychological preferences, health status, wealth and other
factors (see [5, 13, 22–26]).

Dimarco et al. [13] introduce a kinetic system consisting of three Boltzmann-type equations to
describe how a wealth distribution might evolve under the course of an epidemic. In the kinetic system,
the transport parts reflect the movement of individuals in different infection statuses and the Boltzmann
collision operators depict the change in wealth distributions caused by the wealth exchange behaviors.
The wealth exchange mechanism is depicted by the Cordier-Pareschi-Toscani (CPT) model

w
′

= (1 − PL)w + PJw∗ + ηLJw , (1.1a)

w
′

∗ = (1 − PJ)w∗ + PLw + η̃LJw∗ . (1.1b)

In (1.1), the pre-trade wealth (w,w∗) of two agents with infection status L, J ∈ {S , I,R} becomes (w
′

,w
′

∗)
after the transaction, and the constant PJ ∈ [0, 1] is exchange propensity for the class of agents with
the infectious state J. The random variables ηLJ and η̃LJ stand for the uncertain impact of market risks.
Dimarco et al. [13] find that epidemics affect wealth distribution.

In [13], agents in the same infection state have the same exchange propensity (see (1.1)) without
considering the psychological differences of people when trading. In addition, the impact of govern-
ment policies and measures on wealth distribution is not considered. Based on the work in [13], the
motivation in our work includes two points. Firstly, we explore wealth distribution when the agent’s
trading decision is influenced by psychology. Secondly, we discuss the impact of contact control mea-
sures and vaccination on wealth distribution.

In a speculative market with one stock and two populations of chartists and fundamentalists, Mal-
darella and Pareschi [27] consider the influence of agents’ behavioral and psychological factors on their
investment. The psychological impact is represented by an appropriate value function corresponding to
the prospect theory in Kahneman and Tversky [28]. The prospect theory is applied to dynamic models
of social and biological phenomena, such as social contacts, alcohol consumption, the age of first mar-
riage, the size of cities, tumor growth, etc. (see [14, 29–31]). In these studies, the micro modification
of the social trait x is expressed as a single interaction model

x∗ = x − Φε
δ(

x
x̄

)x + ηx , (1.2)

where x∗ denotes the value of the trait after the interaction, and η is a random variable with mean zero
and bounded variance. For the variable s = x/x̄, the general function Φε

δ(s) is given by

Φε
δ(s) = µ

eε(sδ−1)/δ − 1
eε(sδ−1)/δ + 1

. (1.3)
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The constant parameters x̄, µ ∈ (0, 1), δ ∈ [−1, 1] and ε > 0 are related to the phenomenon in society.
The parameter δ plays a key role in determining the properties of the value function (1.3) and the

trait’s macroscopic features under the updating rule (1.2). Provided that δ 7→ 0, the value function (1.3)
is concave, and the stationary solution of the Boltzmann-type kinetic model is a lognormal density
describing situations of call center service time and human behaviors (see [30, 32, 33]). When δ , 0,
(1.3) possesses properties of the prospect theory in [28, 34]. For example, the value function (1.3) is
concave above x̄ and convex below it. In the case of δ > 0, the stationary distribution of the trait x is a
generalized gamma distribution depicting the alcohol consumption in [29]. δ < 0 leads to an Amoroso-
type distribution, which depicts the formation of social elites caused by social climbing activities [35].

In this paper, to study the influence of epidemics and the psychology of agents on wealth distribu-
tion, we will generalize the CPT model (1.1) in [13]. Assuming that agents’ trading behavior is affected
by their characteristics (such as health state and wealth level) and the prevalence of infectious diseases,
we extend the constant exchange propensity of (1.1) as a function of the infected fraction and wealth.
Firstly, as a response to the severity of the epidemic, we multiply the constant exchange propensity
PJ by a function of the infected fraction at time t to describe a possible way for agents to reduce the
exchange propensity PJ. Secondly, considering that the rich have better anti-risk abilities than the poor,
unlike the assumption that agents in the same infection state have the same trading propensity in [13],
in this paper, we assume that the rich tend to use more wealth for trading to obtain better life enjoyment
or investment return, while the poor tend to save wealth to ensure future life needs. We adopt a func-
tion Φ(·) (see (2.4)), which is a generalized form of (1.3) with δ = 1, as a component of the exchange
propensity to represent the disturbance of these psychological factors when making trading decisions.
We introduce an additional parameter on the denominator of (1.3) to avoid the extreme situation that
the increased investment proportion is too large (small) when the wealth level is high (low).

The stationary solution of the conservative socio-economic dynamic model, whose form is deter-
mined by the micro-interaction rules, plays a significant role in describing the large-time behavior of
the trait under investigation. In this work, we utilize the Boltzmann system [13] to describe the evolu-
tions of wealth distributions, and generalize the constant contact rate in [13] to a time-dependent func-
tion. Under the modified binary wealth exchange mechanism proposed in this paper, the Boltzmann
system is transformed into the Fokker-Planck equations with quadratic drift and diffusion coefficients
by using the quasi-invariant asymptotic limit method [7]. Specifically, the stationary wealth distribu-
tion of susceptible (recovered) agents f∞L (w), L ∈ {S ,R} in this work satisfies an ordinary differential
equation in the form

σ

2
d2

dw2

[
w2 f∞L (w)

]
+

d
dw

[
(bw2 + ãLw − c) f∞L (w)

]
= 0 , (1.4)

where the non-negative coefficients σ, ãL, b, and c > 0 rely on the parameters involved in the exchange
rule and the epidemic environment. The solution of (1.4) is in the form of the product of an inverse
gamma function and an exponential function. Since the microscopic interaction of the trait (alcohol
consumption) in [29] is not a binary interaction, the stationary distribution in [29] satisfies Eq (1.4)
with b , 0 and c = 0. The stationary distribution in [13] satisfies Eq (1.4) with b = 0 and c , 0.
Compared with the work in [13], in our work, the new quadratic term bw2 in the drift coefficient of
(1.4) is due to the nonlinear value function Φ(·) adopted in the exchange propensity.

The contributions of this paper are summarized as follows. 1) We supplement the exchange
propensity form in the wealth distribution literature. Compared with the constant exchange propen-
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sity (see [6, 13,22,36,37]), the varying exchange propensity in our model reflects people’s psycholog-
ical features. Compared with the exchange propensity in [5], which is a monotone function of wealth,
we take into account the asymmetry of the agent’s trading psychology at different wealth levels. 2)
We supplement the description of the steady-state wealth distribution function in the literature. Polk
and Boghosian [38] point out that the expression form of the wealth distribution’s tail is not universal.
Based on the classical wealth exchange CPT model, if the dynamic model is involved in the feedback
control, taxation and redistribution implemented by the government, or the heterogeneity of agents,
the steady-state wealth distributions are inverse gamma function (see [5, 6, 13, 22, 39, 40]). Compared
with the inverse gamma wealth distribution obtained in [13], the presence of the exponential function
part in the solution of (1.4) makes the wealth distribution curve decay faster as w 7→ ∞, namely, the
slimmer of the tail. This phenomenon corresponds to the decline in the number of super-rich. 3) We
verify that the epidemic affects wealth distribution, contact control measures can curb the epidemic
and aggravate wealth inequality. Ashraf [41] finds that the increase of COVID-19 confirmed cases has
a negative impact on the stock market. Ashraf [2] discovers that social distancing measures are bad
for the economy. Dosi et al. [42] point out that COVID-19 and contact controls may aggravate wealth
inequality. 4) We illustrate that vaccination can curb the spread of epidemics and help to improve the
economy. Hansen and Mano [43] find that vaccination can increase the mobility of the workplace, help
to improve the economy and reduce inequality.

The rest of the paper is constructed as follows. In Section 2, we set up the Boltzmann-type system
describing the evolution of wealth distribution involving an epidemic environment, and introduce a
wealth exchange mechanism containing the environment and agents’ psychology. The macroscopic
properties of the wealth exchange model, such as the proportion of each group population and their
mean wealth, are discussed in Section 3. We obtain a Fokker-Planck system to describe the evolution of
wealth distributions in Section 4, and acquire the steady-state wealth distribution under the background
of the SIR model. In Section 5, we introduce the government’s contact control measures and vaccina-
tion into the Boltzmann-type system of wealth distributions and discuss their impact on epidemics and
wealth distributions. In addition, we numerically analyze the effect of agents’ trading psychology on
wealth distribution and verify the existence of bimodal stationary wealth distribution. Conclusions are
given in Section 6.

2. Wealth exchange in a SIR epidemic model

In this paper, under the framework of the SIR epidemic model [10, 11], we investigate how wealth
distribution might evolve under the course of an epidemic. In the SIR model [11], agents are separated
into the susceptible (S), infected (I), and recovered (R) categories. The susceptible group refers to in-
dividuals who have no immunity and may be infected by the disease, the infected group includes those
who are infectious, and the recovered group includes those who are cured or permanently immunized.

2.1. The Boltzmann system of wealth distribution

As assumed in the wealth exchange dynamics in [5], we regard that agents are indistinguishable. In
addition to the difference of infection status, each agent’s state at any time t is characterized by wealth
w ≥ 0. We denote Ω = {S , I,R}. Let fL(w, t) with L ∈ Ω represent the wealth distribution of agents in
group L at time t. In the SIR epidemic model, the birth and mortality factors are not considered, which
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is a simplification of the actual epidemic dynamics. Then, the whole agent system’s wealth distribution
is f (w, t) =

∑
L∈Ω

fL(w, t), and satisfies the normalization condition
∫
R+

f (w, t)dw = 1.

Following the idea of wealth exchange dynamics in [13], the wealth distribution fL(w, t), L ∈ Ω

satisfies an integro-differential system of three Boltzmann-type equations

∂ fS (w, t)
∂t

= −Π(w, t) fS (w, t) + QS (w, t) , (2.1a)

∂ fI(w, t)
∂t

= Π(w, t) fS (w, t) − r fI(w, t) + QI(w, t) , (2.1b)

∂ fR(w, t)
∂t

= r fI(w, t) + QR(w, t) , (2.1c)

where

QL(w, t) =
∑
J∈Ω

1
τLJ

Q( fL, fJ)(w, t) , L ∈ Ω ,

is a combination of collision operators, and represents the interaction between heterogeneous
agents [22, 44]. The collision term Q( fL, fJ) describes the changes in wealth distribution resulting
from the microscopic interactions between individuals from groups L and J. The relaxation param-
eters τLJ (L, J ∈ Ω) before the collision operators depend on the behavior patterns of agents and the
share of transactions [45], reflecting the impact of the infectious disease on the frequency of wealth
exchange.

In (2.1), the time evolution of fL(w, t) (L ∈ Ω) is expressed as the additive coupling of collision
process and transport terms. The transport terms Π(w, t) fS (w, t) and r fI(w, t) consider the shift of
agents from one category to another, while the change in health status is due to contact with infected
persons or medical treatment. In (2.1b) and (2.1c), constant r > 0 is the recovery rate and 1/r represents
the average infection period [11]. The spread of the epidemic is governed by the local incidence growth
rate

Π(w, t) =

∫
R+

ρ(w, v, t) fI(v, t)dv ,

where ρ(w, v, t) is the contact rate of two agents possessing wealth w and v at time t.
Let L(t) =

∫
R+

fL(w, t)dw, L ∈ Ω represents the proportion of agents in group L. In this work, we
take ρ(w, v, t) = ρ(t) > ρ0 > 0, where the constant ρ0 is a lower bound of ρ(t), then Π(w, t) = ρ(t)I(t).

2.2. Binary wealth exchange model

In the background of an epidemic, we consider the binary wealth exchange model

w∗ = w −
[
PL · H(I(t)) + Φ(

w

W
)
]
w +

[
PJ · H(I(t)) + Φ(

v

W
)
]
v + ηw , (2.2a)

v∗ = v −
[
PJ · H(I(t)) + Φ(

v

W
)
]
v +

[
PL · H(I(t)) + Φ(

w

W
)
]
w + ηv . (2.2b)

In the wealth exchange rule (2.2), an agent with infection status L ∈ Ω and wealth w interacts with
another agent with infection status J ∈ Ω and wealth v, and their post-trade wealth is w∗ and v∗,
respectively.
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According to (2.2), the change of each agent’s wealth in a single interaction comes from two mecha-
nisms, the deterministic exchange part and the random fluctuation caused by market risks. The certain
exchange part of each agent’s wealth depends on the effect of infectious diseases and the impact of
the individual’s psychology on the transaction. In terms of a mathematical expression, the exchange
propensity of the agent with wealth w and infection state L is represented by PL·H(I(t))+Φ( w

W
). Specifi-

cally, PL is the exchange propensity of agents with infection state L under normal circumstances, which
is the same as that in the CPT model (1.1). H(I(t)) ≤ 1 is a non-increasing function of the infected
fraction I(t) and is used to measure the impact of the epidemic on people’s participation in economic
activities. We take H(I(t)) = 1

1+I(t) . The value function Φ( w
W

), which measures the psychological im-
pact of an agent’s wealth level on his trading decision, is an application of the prospect theory [28].
The constant W represents a reference wealth level, such as average wealth. The uncertainty is repre-
sented by the random variable η with mean zero and variance σ. To ensure that the post-trade wealth
is nonnegative, we suppose that η ≥ PL · H(I(t)) + Φ( w

W
) − 1. In addition, to guarantee that the kinetic

equations (2.1) is well posed [13], we assume that

max
L∈{S ,I,R}

{
[PL · H(I(t)) + Φ(

w

W
)]2 + [1 − PL · H(I(t)) − Φ(

w

W
)]2

}
+ σ < 1 . (2.3)

For the variable s ≥ 0, we consider the value function

Φ(s) = µ
eε(s−1) − 1
νeε(s−1) + 1

, ν ≥ 1 , (2.4)

where the constant µ ∈ [0, 1) measures the influence of individual psychology on trading decision-
making, and the constant 0 < ε < 1 denotes the intensity of the frequency of wealth interaction. For
fixed µ, ε and s, function |Φ(s)| decreases with respect to parameter ν. (2.4) is a generalization of the
value function Φε

1(s) in [29],

Φε
1(s) = µ

eε(s−1) − 1
eε(s−1) + 1

.

Compared with Φε
1(s), parameter ν > 1 in (2.4) prevents the possibility that when the wealth is large,

the proportion of increased investment is too high, and when the wealth is small, the conservative
psychology leads to little investment. The images of function Φ(s) with µ = 0.1 and different values of
parameters ν and ε are presented in Figure 1.

The Eq (2.4) satisfies the properties of the value function in [28], which are described as follows:

1) Φ(s) monotonically increases with s and has finite upper and lower bounds

lim
s→+∞

Φ(s) =
µ

ν
≥ Φ(s) ≥ lim

s→0
Φ(s) =

µ

ν

[
1 −

1 + ν

νe−ε + 1
]
< 0 . (2.5)

2) s = 1 is the reference point, i.e., Φ(s = 1) = 0.

3) In the case of ε < log ν, we have [Φ(s)]
′′

< 0 for every s ≥ 0. Namely, Φ(s) is a concave function
on R+. In the case of log ν < ε < 1, s = 1 − 1

ε
log ν ∈ (0, 1) is the inflection point, and

[Φ(s)]
′′

{
> 0, s < 1 − 1

ε
log ν,

< 0, s > 1 − 1
ε

log ν.
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Figure 1. (a): The images of function Φ(s) with different values of parameters ν and ε. (b):
The value of function Φ(s) around the reference point s = 1.

4) Since ν ≥ 1, we get

Φ(1 + ζ) < −Φ(1 − ζ) , Φ
′

(1 + ζ) < Φ
′

(1 − ζ) , ζ ∈ (0, 1) .

Property 4) states that the value function (2.4) is asymmetric to the point s = 1, which can also be
observed in Figure 1(b). It corresponds to a phenomenon that the decision-making behavior of agents
possessing wealth higher than the reference level W is more robust, namely, the fluctuation of decision-
making affected by psychology is more gentle. Moreover, this property also indicates that agents with
wealth under the reference level W tend to save more wealth.

According to the boundedness (2.5), the parameters in the binary exchange rule (2.2) satisfy PL +

µ/ν < 1, η ≥ PL + µ/ν − 1 and PL +
µ

ν
(1 − 1+ν

νe−ε+1 ) > 0 for every ε ∈ (0, 1), L ∈ Ω. Since µ

ν
( 1+ν
νe−ε+1 − 1)

increases with ε, we have PL ≥ µ
e−1
ν+e , L ∈ Ω.

3. Macro properties of kinetic model

In (2.1), the Boltzmann-type collision operator Q( fL, fL) (L ∈ Ω) denotes the binary interaction
of agents with the same infection state L, and Q( fL, fJ) with L , J (L, J ∈ Ω) represents the binary
interaction of agents with different infection states L and J. For any test function ψ(w) ∈ C∞0 (R+), we
have [13] ∫

R+

Q( fL, fJ)(w, t)ψ(w)dw =

∫
R2

+

〈ψ(w∗) − ψ(w)〉 fL(w, t) fJ(v, t)dvdw , (3.1)

where 〈·〉 is the expectation operator with respect to the random variable η.
We take the relaxation time τLJ = 1 (L, J ∈ Ω) in (2.1). Then, the weak form of the system (2.1) is

d
dt

∫
R+

fS (w, t)ψ(w)dw = −ρ(t)I(t)
∫
R+

fS (w, t)ψ(w)dw + Q̃S , (3.2a)

d
dt

∫
R+

fI(w, t)ψ(w)dw = ρ(t)I(t)
∫
R+

fS (w, t)ψ(w)dw − r
∫
R+

fI(w, t)ψ(w)dw + Q̃I , (3.2b)
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d
dt

∫
R+

fR(w, t)ψ(w)dw = r
∫
R+

fI(w, t)ψ(w)dw + Q̃R , (3.2c)

where
Q̃L =

∑
J∈Ω

∫
R+

Q( fL, fJ)(w, t)ψ(w)dw , L ∈ Ω .

Substituting ψ(w) = 1 into (3.2), we obtain that the fractions of the three agent groups satisfy

dS (t)
dt

= −ρ(t)S (t)I(t) , (3.3a)

dI(t)
dt

= ρ(t)S (t)I(t) − rI(t) , (3.3b)

dR(t)
dt

= rI(t) (3.3c)

and S (t)+I(t)+R(t) ≡ 1, which is due to the normalization condition of f (w, t). If ρ(t) = ρ is a constant,
(3.3) is the classical SIR model, which is mathematically and epidemiologically well-posed [11]. In
the SIR model, the contact number γ, which refers to the average number of contacts of an infected
person during the period of infection, is equal to the ratio of contact rate ρ(t) to recovery rate r (i.e.
γ = ρ(t)/r) [11]. Let γ0 = ρ/r. For the classical SIR model (3.3), Hethcote [10] gives the properties of
its solution, which is repeated as the following Theorem. Denote L∞ = lim

t 7→+∞
L(t), f∞L (w) = lim

t 7→+∞
fL(w, t)

with L ∈ Ω.

Theorem 3.1. ( [10]) Let (S (t), I(t)) be a solution of the classical SIR model in{(
S (t), I(t)

)∣∣∣∣∣S (t) ≥ 0, I(t) ≥ 0, S (t) + I(t) ≤ 1
}
.

If γ0S 0 ≤ 1, then I(t) decreases to zero as t 7→ ∞. If γ0S 0 > 1, then I(t) increases to a maximum
Imax = I0 + S 0 − 1/γ0 − [ln(γ0S 0)]/γ0 and then decreases to 0 as t 7→ ∞. The susceptible proportion
S (t) is a decreasing function and S∞ ∈ (0, 1/γ0) is the unique root of the equation

S 0 + I0 − S∞ +
1
γ0

ln
S∞

S 0
= 0 . (3.4)

Theorem 3.1 implies that the infected fraction I(t) tends to zero in the steady-state (i.e., I∞ = 0).
Combined with the non-negativity of the distribution function, the wealth distribution of the infected
population in the steady-state is zero, i.e., f∞I (w) = 0. Then, in the steady-state, the order moments of
wealth distribution of the infected population are zero. When I∞ = 0, we have lim

t 7→+∞
Π(w, t) = 0.

Let mL(t) =
∫
R+

w fL(w, t)dw (L ∈ Ω) represent the mean wealth of group L. According to (2.2), the
whole agent system’s wealth is conserved in the mean, i.e., 〈w∗ + v∗〉 = w + v, then

∑
L∈Ω

mL(t) := m,

t ≥ 0.
Let EL(t) =

∫
R+

w2 fL(w, t)dw (L ∈ Ω) represent the second moment of fL(w, t). Denote m∞L =

lim
t 7→+∞

mL(t) and E∞L = lim
t 7→+∞

EL(t).
Taking ψ(w) = w and substituting (2.2) into (3.1) arise∫

R+

Q( fL, fJ)(w, t)wdw = −
[
PL · H(I(t))

]
· mL(t) · J(t) +

[
PJ · H(I(t))

]
· mJ(t) · L(t)
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− J(t)
∫
R+

Φ(
w

W
)w fL(w, t)dw + L(t)

∫
R+

Φ(
v

W
)v fJ(v, t)dv .

Denote

FL(t) :=
∫
R+

Φ(
v

W
)v fL(v, t)dv .

We get

dmS (t)
dt

= −ρ(t)I(t)mS (t) +MS (t) , (3.5a)

dmI(t)
dt

= ρ(t)I(t)mS (t) − rmI(t) +MI(t) , (3.5b)

dmR(t)
dt

= rmI(t) +MR(t) , (3.5c)

where

ML(t) = H(I(t)) · L(t) ·
∑
J∈Ω

PJmJ(t) − PL · H(I(t))mL(t) + L(t)
∑
J∈Ω

FJ(t) − FL(t) , L ∈ Ω .

If I∞ = 0, we have m∞I = 0. Denote F∞J = lim
t 7→+∞

FJ(t). From (3.5a) and (3.5c), the mean wealth m∞S
and m∞R satisfy

S∞(PS m∞S + PRm∞R ) − PS m∞S + S∞(F∞S + F∞R ) − F∞S = 0 , (3.6a)
R∞(PS m∞S + PRm∞R ) − PRm∞R + R∞(F∞S + F∞R ) − F∞R = 0 , (3.6b)

where R∞ = 1−S∞ and m∞S +m∞R = m. Since Φ( v
W

) is a nonlinear function of variable v, the mean wealth
m∞S and m∞R cannot be solved explicitly from (3.6), but their upper and lower bounds can be obtained.
The value function (2.4) has an upper and lower bound (2.5), so we have F∞S ∈

[
µ e−ε−1
νe−ε+1m∞S ,

µ

ν
m∞S

]
and

F∞R ∈
[
µ e−ε−1
νe−ε+1m∞R ,

µ

ν
m∞R

]
. Then we obtain

m∞S ∈
[PR + µ e−ε−1

νe−ε+1

DRS
S∞m,

PR +
µ

ν

DS R
S∞m

]
,

m∞R ∈
[PS + µ e−ε−1

νe−ε+1

DS R
R∞m,

PS +
µ

ν

DRS
R∞m

]
,

where DS R = S∞(PR +
µ

ν
) + R∞(PS + µ e−ε−1

νe−ε+1 ) and DRS = S∞(PR + +µ e−ε−1
νe−ε+1 ) + R∞(PS +

µ

ν
).

4. Fokker-Planck asymptotic analysis

The Boltzmann-like system (2.1) describes how wealth distribution evolves under the course of
an epidemic, but its explicit solutions are difficult to obtain. Utilizing the quasi-invariant limit
method [40], the Boltzmann-type equations are turned into the Fokker-Planck equations. We can
use the stationary solution of the Fokker-Planck system to depict the large-time behavior of wealth
distribution.
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Letting 0 < ε � 1 and employing the scaled quantities

PJ → εPJ , η→
√
εη , J ∈ Ω . (4.1)

The binary wealth exchange model (2.2) becomes

w∗ − w = −
[
εPL · H(I(t)) + Φ(

w

W
)
]
w +

[
εPJ · H(I(t)) + Φ(

v

W
)
]
v +
√
εηw , (4.2a)

v∗ − v = −
[
εPJ · H(I(t)) + Φ(

v

W
)
]
v +

[
εPL · H(I(t)) + Φ(

w

W
)
]
w +
√
εηv , (4.2b)

where L, J ∈ Ω.
The scaled micro wealth exchange model (4.2) indicates that a single interaction arises only small

changes in wealth. To preserve the effects of all parameters in the exchange rule (2.2) when taking the
limit ε 7→ 0, the agents need to do much more interactions within a time period, that is, to increase
the interaction frequency. Therefore, we take τLJ → ετLJ, which also makes the evolution of the
distributions independent of the scaling parameter ε. Then, the weak form of the scaled system (2.1)
reads

d
dt

∫
R+

fS (w, t)ψ(w)dw = −

∫
R+

Π(w, t) fS (w, t)ψ(w)dw + Q̃εS , (4.3a)

d
dt

∫
R+

fI(w, t)ψ(w)dw =

∫
R+

Π(w, t) fS (w, t)ψ(w)dw − r
∫
R+

fI(w, t)ψ(w)dw + Q̃εI , (4.3b)

d
dt

∫
R+

fR(w, t)ψ(w)dw = r
∫
R+

fI(w, t)ψ(w)dw + Q̃εR , (4.3c)

where

Q̃εL =
∑
J∈Ω

1
ετLJ

∫
R+

Qε( fL, fJ)(w, t)ψ(w)dw , L ∈ Ω .

Taking a Taylor expansion of ψ(w∗) around w, and substituting the expansion into the collision terms
on the right of (4.3), we obtain

1
ετLJ

∫
R+

Qε( fL, fJ)(w, t)ψ(w)dw

=
1
ετLJ

∫
R2

+

〈
ψ
′

(w)(w∗ − w) +
ψ
′′

(w)
2

(w∗ − w)2
〉

fL(w, t) fJ(v, t)dvdw + RLJ(ε) . (4.4)

The residual RLJ(ε) describes the higher-order terms of ε. In fact, for any test function ψ(w) belonging
to the second-order Hölder space C2+α

0 (R+) with α ∈ (0, 1), we have

RLJ(ε) =
1
ετLJ

∫
R2

+

〈
ψ
′′

(w̃) − ψ
′′

(w)
2

(w∗ − w)2
〉

fL(w, t) fJ(v, t)dvdw ,

= O(ε1+α) ,

where w̃ = θw∗ + (1 − θ)w for some θ ∈ (0, 1).
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Using

lim
ε 7→0

1
ε

Φ(s) = lim
ε 7→0

1
ε
µ

eε(s−1) − 1
νeε(s−1) + 1

=
µ

ν + 1
(s − 1) ≥ −

µ

ν + 1
, (4.5)

the limit of (4.4) is expressed as

lim
ε 7→0

1
ετLJ

∫
R+

Qε( fL, fJ)(w, t)ψ(w)dw

=
1
τLJ

∫
R+

{
−

∂

∂w
[
HLJ(w, t) fL(w, t)

]
+
σ

2
∂2

∂w2

[
J(t) · w2 fL(w, t)

]}
ψ(w)dw , (4.6)

where
HLJ(w, t) = −

[
PL · H(I(t)) +

µ

ν + 1
(

w

W
− 1)

]
· w · J(t)

+
[
PJ · H(I(t)) −

µ

ν + 1
]
· mJ(t) +

µ

(ν + 1)W
EJ(t) .

Substituting (4.4) into (4.3), setting τLJ = 1 (L, J ∈ Ω), taking ε 7→ 0 and combining with (4.6), we
obtain

∂ fS (w, t)
∂t

= − Π(w, t) fS (w, t) −
∂

∂w
[
BS (w, t) fS (w, t)

]
+

1
2
∂2

∂w2

[
σw2 fS (w, t)

]
, (4.7a)

∂ fI(w, t)
∂t

=Π(w, t) fS (w, t) − r fI(w, t) −
∂

∂w
[
BI(w, t) fI(w, t)

]
+

1
2
∂2

∂w2

[
σw2 fI(w, t)

]
, (4.7b)

∂ fR(w, t)
∂t

=r fI(w, t) −
∂

∂w
[
BR(w, t) fR(w, t)

]
+

1
2
∂2

∂w2

[
σw2 fR(w, t)

]
, (4.7c)

where
BL(w, t) = −

[
PL · H(I(t)) +

µ

ν + 1
(

w

W
− 1)

]
· w + H(I(t)) ·

∑
J∈Ω

PJ · mJ(t)

−
µ

ν + 1
m +

µ

(ν + 1)W

∑
J∈Ω

EJ(t) , L ∈ Ω .

The boundary conditions are

BL(w, t) fL(w, t)
∣∣∣w=+∞

w=0
= 0 ,

∂

∂w
[w2 fL(w, t)]

∣∣∣w=+∞

w=0
= 0 , t ≥ 0 , L ∈ Ω .

The system (4.7) maintains the memory of the micro-dynamic (2.2) through relevant parameters µ, ν,
W, σ and PJ (J ∈ Ω).

As a special case of explicitly finding the steady-state solution of (4.7), we suppose that the contact
rate ρ(t) = ρ > 0 is a constant. From Theorem 3.1, there are I∞ = 0, f∞I (w) = 0 and S∞ is the unique
solution of (3.4). The mean wealth m∞S and m∞R are bounded and belong to [0,m].

Proposition 4.1. When the steady-state infected fraction I∞ = 0, the moments of the stationary solu-
tions of the Boltzmann-like system (4.3) satisfy the recursive relationship

µ

(ν + 1)W
Mn+1,∞

L =

( (n − 1)σ
2

+
µ

ν + 1
− PL

)
Mn,∞

L
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+

( ∑
J∈{S ,R}

PJm∞J −
µm
ν + 1

+
µ

(ν + 1)W

∑
J∈{S ,R}

E∞J
)
Mn−1,∞

L , (4.8)

where

Mn,∞
L =

∫
R+

wn f∞L (w)dw , L ∈ {S ,R} , n = 1, 2, 3, ... ,

denotes the n-order moment of the stationary wealth distribution of agents with infection state L.

Proof. When I∞ = 0, we have f∞I (w) = 0 and Mn,∞
I = 0.

For the case of n = 1. Substituting ψ(w) = w into (4.3), and using the scaled exchange rule (4.2),
then the steady-state mean wealth m∞L and energy E∞L satisfy( µ

ν + 1
− PL

)
m∞L −

µ

(ν + 1)
L∞m + L∞

∑
J∈{S ,R}

PJ · m∞J

=
µ

(ν + 1)W

(
E∞L − L∞

∑
J∈{S ,R}

E∞J
)
, (4.9)

which is consistent with (4.8) when n = 1.
When n ≥ 2, substituting ψ(w) = wn into (4.3) and (4.4), letting ε 7→ 0 and using (4.5), we have∑

J∈{S ,R}

∫
R2

+

{
−

[
PL +

µ

ν + 1
(

w

W
− 1)

]
w +

[
PJ +

µ

ν + 1
(

v

W
− 1)

]
v
}
wn−1 f∞L (w) f∞J (v)dvdw

+
(n − 1)σ

2

∑
J∈{S ,R}

∫
R2

+

wn f∞L (w) f∞J (v)dvdw = 0 . (4.10)

Then the recursive relation (4.8) is deduced through a simple calculation of (4.10).

In the scaling (4.1), condition (2.3) for ε 7→ 0 becomes

min
L∈{S ,I,R}

[
PL + lim

ε 7→0

1
ε

Φ(s)
]
>
σ

2
. (4.11)

Using the inequality in (4.5), a sufficient condition for (4.11) is PL −
µ

ν+1 −
σ
2 > 0 with L ∈ {S , I,R}.

Employing the Hölder’s inequality, we have

(m∞L )2

L∞
≤ E∞L ,

(E∞L )2

m∞L
≤ M3,∞

L , L ∈ {S ,R} . (4.12)

Let n = 2 in (4.8). Using (4.9) and (4.12), E∞L has an upper bound

E∞L ≤
PL −

µ

ν+1

PL −
σ
2 −

µ

ν+1

·
(m∞L )2

L∞
, L ∈ {S ,R} . (4.13)

In the case of µ , 0, according to the recursive formula (4.8) and the boundedness of the first two
moments of wealth distributions (see (4.12) and (4.13)), we can obtain the boundedness of higher-
order moments of wealth distributions in the stationary situation.
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From (4.7), the stationary distribution f∞L (w) (L ∈ {S ,R}) satisfies the ordinary differential equation

(bw2 − aLw − cL) f∞L (w) +
σ

2
d

dw
[
w2 f∞L (w)

]
= 0 ,

where

aL =
µ

ν + 1
− PL ≤ 0 ,

b =
µ

(ν + 1)W
≥ 0 ,

cL =
µ

(ν + 1)W
·

E∞L
L∞

+ (PL −
µ

ν + 1
) ·

m∞L
L∞

> 0 .

From (4.9), we have

cL =
µ

(ν + 1)W
·

E∞L
L∞

+ (PL −
µ

ν + 1
) ·

m∞L
L∞

=
∑

J∈{S ,I,R}

PJ · m∞J −
µ

ν + 1
m +

µ

(ν + 1)W

∑
J∈{S ,I,R}

E∞J := c ,

which is independent of the subscript L. Then the stationary wealth distribution of the susceptible
(recovered) group is expressed as

f∞L (w) = L∞CLw
2(aL−σ)

σ e−
2c
σ

1
w−

2b
σ w , L ∈ {S ,R} , (4.14)

where CL is a regularization parameter such that
∫
R+

f∞L (w)dw = L∞. Note that

d f∞L (w)
dw

= −
2
σ
·

1
w2 f∞L (w) ·

[
bw2 + (σ − aL)w − c

]
.

Then, f∞L (w) is a concave function in (0,+∞) and reaches the maximum value at w̃L = c/(σ−aL) in the
case of µ = 0. When µ , 0, f∞L (w) gets the maximum value at w̃L =

[
(aL−σ)+

√
(aL − σ)2 + 4bc

]
/(2b).

The whole stationary wealth distribution is given by

f∞(w) = S∞CS w
2(aS −σ)

σ e−
2c
σ

1
w−

2b
σ w + R∞CRw

2(aR−σ)
σ e−

2c
σ

1
w−

2b
σ w . (4.15)

Proposition 4.2. The combination (4.15) of two unimodal distributions (4.14) is a unimodal or bimodal
distribution.

Proof. Let
Υ(w) =

∑
L∈{S ,R}

f∞L (w) ·
[
bw2 + (σ − aL)w − c

]
.

Then

d f∞(w)
dw

= −
2
σ
·

1
w2 Υ(w) .
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Using lim
w7→0+

Υ(w) < 0 and lim
w 7→+∞

Υ(w) > 0, thus the function Υ(w) has at least one positive root, which
corresponds to the maximum point of f∞(w). Taking the derivative of Υ(w) with respect to w, we get

dΥ(w)
dw

= −
2
σ

1
w2

∑
L∈{S ,R}

f∞L (w) · φL(w) ,

where

φL(w) = b2w4 + b(σ − 2aL)w3 +
[
(
σ

2
− aL)(σ − aL) − 2bc

]
w2 − 2c(σ − aL)w + c2 . (4.16)

Since f∞S (w) ≥ 0, f∞R (w) ≥ 0 and the number of variations in the sign of the polynomial φL(w) is
2. Using the Descartes’ rule of sign, the number of positive roots of dΥ(w)/dw is 0 or 2. When
dΥ(w)/dw has no positive root, the function Υ(w) has only on positive root. When dΥ(w)/dw has two
positive roots, the function Υ(w) has three positive roots, corresponding to two maximum points and
one minimum point of f∞(w), respectively.

The distribution (4.14) is the product of an inverse-gamma function and an exponential function,
which is equivalent to

f∞L (w) = C̃L · gL(w; aL, c, σ) · h(w; b, σ) , (4.17)

where

C̃L = L∞CL ·
σ

2b
· Γ(1 −

2aL

σ
) ·

(2c
σ

) 2aL
σ −1

,

gL(w; aL, c, σ) =
1

Γ(1 − 2aL
σ

)

(2c
σ

)1− 2aL
σ · w

2aL
σ −2 · e−

2c
σ ·

1
w ,

h(w; b, σ) =
2b
σ

e−
2b
σ w

and Γ(·) is the Gamma function. Note that gL(w; aL, c, σ) is the density of the inverse-gamma distribu-
tion IGL(1 − 2aL

σ
, 2c
σ

), and h(w; b, σ) is the density of the exponential distribution E(2b
σ

).
It is fascinating to note that the appearance of the exponential function part (i.e., h(w; b, σ)) is

mainly due to the function Φ(·) in (2.2). When the psychological factors are not considered in the
wealth exchange (i.e., µ = 0), (4.14) becomes an inverse-gamma function, which is the same as the
stationary wealth distribution in [13], showing polynomial decay when w 7→ ∞. The decomposition
form (4.17) suggests that, due to the exponential function h(w; b, σ), the tail of the wealth distribution
(4.15) is slimmer than that of the inverse gamma distribution curve under appropriate parameters, and
corresponds to a society with fewer super-rich people.

5. Numerical analysis

Under the framework of the SIR epidemic dynamic, by coupling the binary wealth exchange rule
(2.2) with the Boltzmann-type dynamic system (2.1), we obtain the stationary wealth distribution
(4.15), which is impacted by the epidemic-related parameters and the value function (2.4). In this
part, we introduce the government contact control measures and vaccination into the kinetic system,
and analyze the impact of different measures on epidemic dynamics and wealth distribution. Finally,
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in a fixed epidemic background, we explore the influence of the value function (2.4) on the stationary
wealth distribution, and verify the possible situation that the whole stationary wealth distribution exists
double peaks.

The Gini coefficient takes value in [0, 1] and measures wealth inequality. A larger Gini coefficient
indicates a more unequal wealth distribution. The Gini coefficient is equal to the ratio of the area
between the equality line and the Lorentz curve to the area below the equality line. Define the Lorenz
curve as [40]

L(F(w)) =

∫ w

0
v f∞(v)dv , F(w) =

∫ w

0
f∞(v)dv ,

then the Gini coefficient is

Gini = 1 − 2
∫ 1

0
L(F(w))dF(w) .

In the following simulations, if there is no special declaration, we always take ρ = 0.3, I0 = 0.01,
S 0 = 0.99, PS = 0.075, PR = 0.15, m = 1, σ = 0.1, W = 1 and ν = 3.

5.1. Epidemic dynamics and its impact on the steady-stade wealth distribution

5.1.1. The influence of contact control on the wealth distribution

Considering that the government takes non-drug containment measures to control the spread of
infectious diseases. We take ρ(t) = ρ − κI(t) > 0, where the constant κ ∈ [0,min{ρ/I(t)}) measures the
strength of contact control. Then, (3.3) is rewritten as

dS (t)
dt

= −[ρ − κI(t)]S (t)I(t) , (5.1a)

dI(t)
dt

= [ρ − κI(t)]S (t)I(t) − rI(t) , (5.1b)

dR(t)
dt

= rI(t) . (5.1c)

System (5.1) is an example of the implicit behavioral SIR model [46], and the contact rate ρ(t) decreases
with the infected fraction I(t). When κ = 0, (5.1) becomes the classical SIR model in [10]. When
κ , 0, compared with the classical SIR model, a nonlinear term κS (t)I2(t) appears in (5.1). The contact
number γ1 = [ρ − κI(t)]/r ≤ ρ/r varies with the infected fraction I(t). Because of 0 < ρ − κI(t) ≤ ρ,
S (t) ≥ 0 is monotonically decreasing. Similar to Theorem 3.1, the infected fraction in the steady-state
is zero, i.e., I∞ = 0, as verified in Figure 2(a). Then, the wealth distribution of the infected group is
zero in the steady-state, and the whole wealth distribution is still in the form of (4.15), in which S∞

and R∞ are the stationary solutions of (5.1).
Figure 2 depicts the epidemic dynamics and the wealth distribution with different values of parame-

ters κ and r. We take µ = 0. The parameter value ρ = 0.3 and r = 0.04 are close to the epidemiological
parameters estimated in [14], which are fitted from the COVID-19 data before the lockdown in three
European countries (France, Italy and Spain). Figure 2(a) shows that with the increase of the recover
rate r or the contact control strength κ, the peak value of the infected fraction becomes smaller, and
more agents keep the uninfected state. In particular, when r = 0.25, more than half of the susceptible
people have the opportunity to remain uninfected during the epidemic.
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Figure 2. Epidemic dynamics and wealth distribution with different values of κ and r. (a):
The solid line denotes susceptible proportion and the dotted line indicates infected propor-
tion. (b): The wealth distributions in epidemic backgrounds of (a). (c): The Lorentz curves
of the wealth distributions in (b).

The Gini coefficients of the wealth distributions in Figure 2(b) are Gini(r = 0.04, κ = 0) = 0.3127,
Gini(r = 0.15, κ = 0) = 0.3739, Gini(r = 0.25, κ = 0) = 0.4257, Gini(r = 0.15, κ = 0.5) = 0.3901
and Gini(r = 0.15, κ = 1) = 0.3989. In the epidemic backgrounds in Figure 2(a), the wealth distri-
bution curves and Lorentz curves in Figure 2(b) and their corresponding Gini coefficients show that
the increase in r or κ leads the wealth distribution curve shifts to the left, and aggravates the wealth
inequality. Combined with Figure 2(a), a reasonable explanation for this phenomenon is that when the
contact number γ1 is small, the susceptible agents in the steady-state take a large proportion. Affected
by the conservative exchange psychology of susceptible agents, that is, the exchange tendency of sus-
ceptible individuals is less than the tendency of recovered agents, the inequality of wealth distribution
becomes worse.

5.1.2. The influence of vaccination on the wealth distribution

One possible way to deal with the negative effect in Section 5.1.1 is vaccination. Through vacci-
nation, the susceptible agent transforms directly into the recovered person. Compared with (2.1), we
introduce a term Ξ(w, t) fS (w, t) to represent the transfer of agents from the susceptible group to the
recovered group due to vaccination. The Boltzmann-type system (2.1) is rewritten as

∂ fS (w, t)
∂t

= −Π(w, t) fS (w, t) − Ξ(w, t) fS (w, t) + QS (w, t) , (5.2a)

∂ fI(w, t)
∂t

= Π(w, t) fS (w, t) − r fI(w, t) + QI(w, t) , (5.2b)

∂ fR(w, t)
∂t

= r fI(w, t) + Ξ(w, t) fS (w, t) + QR(w, t) , (5.2c)

in which we take the transfer rate Ξ(w, t) =
∫
R+
θ(t) fI(v, t)dv. To explore the effect of vaccination on the

wealth distribution, we take the contact rate ρ(t) = ρ as a constant and θ(t) = β · Ψ{t≥T0}. The constant
β > 0 represents the vaccination rate, T0 is the time of starting vaccination and Ψ{t≥T0} denotes the
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Figure 3. The impact of vaccination on epidemic and wealth distribution. (a): The solid line
denotes the susceptible proportion, the dashed line indicates the infected proportion and the
dotted line represents the recovered proportion. (b): The wealth distributions in the epidemic
backgrounds of (a). (c): The Lorentz curves of the wealth distributions in (b).

indicator function on {t|t ≥ T0}. Integrating the Eqs (5.2) over R+ yields

dS (t)
dt

= −[ρ + θ(t)]S (t)I(t) , (5.3a)

dI(t)
dt

= ρS (t)I(t) − rI(t) , (5.3b)

dR(t)
dt

= [r + θ(t)S (t)]I(t) . (5.3c)

Since θ(t) ≥ 0, the consideration of vaccination does not affect the steady-state infected fraction I∞ = 0,
which is verified in Figure 3(a). Therefore, the stationary solution obtained from (5.2) has the same
form as (4.15), while the susceptible and recovered fractions S∞ and R∞ are calculated from (5.3).

The impact of vaccination on epidemic and wealth distribution is shown in Figure 3, in which
we take T0 = 30, r = 0.15 and µ = 0. Figure 3 indicates that as the vaccination rate β increases,
more agents become recovered. The total number of infected patients declines, and the distribution
of wealth shifts to the right, reflecting an improvement in wealth inequality. The Gini coefficients
of the wealth distributions in Figure 3(b) are Gini(β = 0) = 0.3739, Gini(β = 0.3) = 0.3551 and
Gini(β = 0.7) = 0.3395. Therefore, according to the simulations in Figure 3, we infer that vaccination
plays a role in preventing and controlling the epidemic and improving the economy. This change can
not only effectively control the spread of the epidemic and reduce the infected fraction, but also have a
positive impact on reducing wealth inequality.

5.2. The influence of value function Φ on the wealth distribution

In the exchange mechanism (2.2), the exchange propensity of agents is affected by their psychol-
ogy, which is measured by the value function (2.4). The stationary wealth distribution of susceptible
(infected) populations is obtained in the form of (4.14), which is the product of an inverse-gamma
function and an exponential function (see (4.17)). It is different from the inverse-gamma steady-state
distribution obtained from the usual socio-economic dynamic models [6, 13].
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Figure 4. The impact of value function (2.4) on the wealth distribution.

In Figure 4, we compare the wealth distribution f∞(w) with different µ. Moreover, to verify the
existence of bimodal distribution, we simulate the distribution f∞(w) with different values of the risk
parameter σ. We take PR = 0.2 and choose the epidemic background corresponding to a recovery rate
r = 0.25. The Gini coefficients of the wealth distributions in Figure 4(a) are Gini(µ = 0) = 0.4476,
Gini(µ = 0.001) = 0.4444, Gini(µ = 0.01) = 0.4258, Gini(µ = 0.05) = 0.3856 and Gini(µ = 0.08) =

0.3654. The Gini coefficients of the wealth distributions in Figure 4(b) are Gini(µ = 0) = 0.2989,
Gini(µ = 0.001) = 0.2982, Gini(µ = 0.01) = 0.2923, Gini(µ = 0.05) = 0.2712 and Gini(µ = 0.08) =

0.2591.
Figure 4 indicates that with the increase of psychological influence (i.e., the increase of µ), more

agents are at the middle wealth level, the number of agents of both low and high wealth levels has de-
clined. The Gini coefficient of different risk parameter values decreases with the increase of parameter
µ. It also verifies the improvement of wealth inequality. Additionally, Figure 4(b) illustrates that the
wealth distribution’s tail becomes slimmer with the increase of µ, which corresponds to a society with
fewer super-rich people. From the perspective of mathematical analysis, the larger the value of µ, the
smaller the shape parameter 1−2aL/σ of the inverse-gamma function gL(w; aL, c, σ). This corresponds
to a fatter tail. Therefore, the existence of exponential function h(w; b, σ) plays a key role in thinning
the tail.

6. Conclusions

Real economic behavior is complex and is affected by various factors, such as the market environ-
ment and the psychology of traders. Under the background of an epidemic, we utilizes the method of
mixed rarefied gas dynamics to investigate the distribution of wealth. In the wealth exchange mecha-
nism, the impact of agents’ psychology on trading decisions is expressed by a value function, which
satisfies the properties of the prospect theory [28]. Under the SIR epidemic, we obtain that the steady-
state wealth distribution of the susceptible (recovered) group is the product of an inverse-gamma func-
tion and an exponential function, showing a single peak. The emergence of the exponential function
part is caused by the nonlinear utility function (2.4). We prove and numerically verify that the wealth
distribution of the whole agent system presents a bimodal distribution with appropriate parameters.
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An increase in the recovery rate or the strength of contact control helps to curb the epidemic, keeping
more people uninfected and reducing the peak value of the infected fraction. However, these measures
are imperfect and may lead to economic recession, because the conservative trading psychology of
susceptible agents caused by the fear of the virus is not changed. Vaccination, which transfers the
susceptible person directly into a recovered individual, is numerically verified to have a positive impact
on curbing epidemics and reducing wealth inequality. In addition, numerical simulations state that,
with the increase of the psychological effect of agents, the population in the middle wealth level is
increased, the Gini coefficient is decreased, and the tail of the multi-agent system’s wealth distribution
becomes thinner. These results indicate a reduction in the super-rich and wealth inequality.
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