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Abstract: Background：Non-small cell lung cancer (NSCLC) is heterogeneous. Molecular subtyping 

based on the gene expression profiles is an effective technique for diagnosing and determining the 

prognosis of NSCLC patients. Methods: Here, we downloaded the NSCLC expression profiles from 

The Cancer Genome Atlas and the Gene Expression Omnibus databases. ConsensusClusterPlus was 

used to derive the molecular subtypes based on long-chain noncoding RNA (lncRNA) associated 

with the PD-1-related pathway. The LIMMA package and least absolute shrinkage and selection 

operator (LASSO)-Cox analysis were used to construct the prognostic risk model. The nomogram 

was constructed to predict the clinical outcomes, followed by decision curve analysis (DCA) to 

validate the reliability of this nomogram. Results: We discovered that PD-1 was strongly and 

positively linked to the T-cell receptor signaling pathway. Furthermore, we identified two NSCLC 

molecular subtypes yielding a significantly distinctive prognosis. Subsequently, we developed and 

validated the 13-lncRNA-based prognostic risk model in the four datasets with high AUC values. 

Patients with low-risk showed a better survival rate and were more sensitive to PD-1 treatment. 

Nomogram construction combined with DCA revealed that the risk score model could accurately 

predict the prognosis of NSCLC patients. Conclusions: This study demonstrated that lncRNAs 

engaged in the T-cell receptor signaling pathway played a significant role in the onset and 

development of NSCLC, and that they could influence the sensitivity to PD-1 treatment. In 

addition, the 13 lncRNA model was effective in assisting clinical treatment decision -making and 

prognosis evaluation.  
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1. Introduction  

Lung cancer is responsible for the world’s highest mortality rate [1], accounting for > 25% of 

cancer death; 82% of those deaths are caused by smoking [2]. Approximately 85% of the lung cancer 

tissue types are non-small cell lung cancer (NSCLC) [3]. As lung cancer does not display obvious 

symptoms in its early stages, a majority of the patients have progressed to the advanced stages. 

Metastasis occurs early in these patients with a poor overall survival rate [4]. Despite the recent 

advances in early detection, radiotherapy, chemotherapy, and surgical biopsy and treatment, lung 

cancer patients still show a poor prognosis. 

Some of the NSCLC treatment strategies include the development of particular antibodies 

against the cytotoxic T lymphocyte-related protein 4 receptor, programmed death (PD-1) receptor 

and programmed death ligand-1 (PD-L1), and the implementation of these strategies in the first and 

second lines of treatment has significantly improved the survival rate of NSCLC patients [5]. For 

patients with advanced NSCLC and without molecular derivatives, conventional dual drug-based 

chemotherapy has been replaced by combined or non-combined chemotherapy with immunotherapy 

as the first treatment strategy [6]. 

The earlier reports have indicated that the implementation of the PD-1/PD-L1 strategy, in 

particular, has considerably increased the survival rate of the NSCLC patients. It was noted that the 

treatment with anti-PD-1/PD-L1 interrupted the association between PD-1 and its ligand, disrupted 

inhibitory signal transduction, restored T cell viability, thereby reactivating the anti-tumor 

immunological response [7]. However, the efficacy of PD-1/PD-L1 inhibitors differs due to high 

variation in the molecular immune subtypes and immunological microenvironment [8]. Several 

factors like the neoantigens, tumor infiltrating lymphocytes, PD-L1 expression levels, tumor 

mutation burden, and driver gene mutations, influence the success of the anti-PD-1/PD-L1 therapy. 

Hence, additional investigation into the biomarkers could help to select the most appropriate form of 

therapy for the patients and to correctly predict the efficiency of anti-PD-1/PD-L1 treatment [8]. 

Long noncoding RNA (lncRNA) is described as the type of RNA that has a length of > 200 

nucleotide units [9]; however, it cannot encode complete proteins. Owing to the success of the 

Human Genome Project and wide application of second-generation sequencing, many researchers 

have begun to recognize the significant role of lncRNAs in many human diseases, particularly in 

cancers [10]. A few studies have identified their involvement in the pathophysiological processes of 

different cancers or their roles as diagnostic or clinical prognostic markers [11]. LncRNAs can 

regulate gene expression at RNA transcription, post transcription and epigenetic levels. Abnormal 

expression of lncRNAs in NSCLC patients is closely related to the onset and development of lung 

cancer. It can alter the drug resistance and radiation sensitivity of NSCLC patients by acting as an 

oncogene or tumor suppressor gene, regulating the proliferation, invasion and migration of lung 

cancer cells via various mechanisms. Currently, the predictive role of lncRNA gene characteristics 

remains poorly elucidated in patients with NSCLC. Hence, further investigation is needed to 

discover novel lncRNA gene characteristics for prognosis and treatments for NSCLC patients [12]. 

Here, we have derived the gene expression data from different public databases like the Gene 

Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). The PD-1-related immune 
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pathways were identified by using single sample gene set enrichment analysis (ssGSEA), and we 

determined the molecular subtypes of NSCLC based on the lncRNA of the PD-1-associated immune 

pathways. Also, we assessed the association between the different molecular subtypes and the 

clinical features and prognosis of this disease. To assess the NSCLC prognosis, a prognostic risk 

model was developed by using the differential expressed genes (DEGs) among NSCLC subtypes. 

Furthermore, we constructed a nomogram to assist clinical decision-making and prognosis 

evaluation. Variations between the molecular subtypes and immunotherapy/ chemotherapy 

sensitivity were analyzed. 

2. Materials and methods 

2.1. Collection of the gene expression profile data and their preprocessing 

In this study, we downloaded the RNA-Seq data, clinical survival data and all of the information 

regarding the characteristics of 993 TCGA-LUAD and LUSC samples, as based on the TCGA GDC 

API. Thereafter, we downloaded the GSE31210 dataset (226 samples), GSE19188 (82 samples) and 

GSE50081 (181 samples) chip datasets from the GEO database. 

For the TCGA-LUAD and LUSC data, the fragments per kilobase of transcript per million 

fragments mapped values were converted to transcripts per million values. We eliminated samples 

that did not have any clinical follow-up data, survival times, or status. Human GFF3 annotation files 

from the Gencode website (https://www.gencodegenes.org/) were downloaded to extract the 

corresponding relationship between ensemble IDs and gene symbols: we then converted ensemble 

IDs to the gene symbols. Expression of multiple gene symbols was considered as their mean value. 

We used the removeBatchEffect function of the LIMMA package (Version 3.44.3) [13] to eliminate 

the batch effect between various datasets (Figure S1). 

The following steps were implemented to process the NSCLC-GEO dataset: a) Retain the 

NSCLC tissue samples; b) Eliminate samples that did not present any clinical follow-up data; c) 

Eliminate samples that had no information regarding the survival time; d) Eliminate samples with no 

status; e) Convert the probe to symbols based on the annotation data file. The sample clinical 

statistics after data pre-processing is described in Table S1. 

2.2. ssGSEA 

The ssGSEA algorithm analyses for 29 immune gene sets include all genes associated with 

various cells involved in the immune system, as well as their pathways, functions and checkpoints. In 

this study, we applied the ssGSEA algorithm via the R package (GSVA (Version 1.30.0), GSEABase 

(Version 1.38.0) and LIMMA) for systematical assessment of the immunological features of each 

sample used in this study [14,15]. 

2.3. Identification of molecular subtypes 

We used the TCGA expression profile to derive the expression levels of the 479 

immune-associated genes. The univariate Cox analysis (P < 0.01) was utilized to acquire the genes 

associated with the NSCLC prognosis by using the Cox function in the Survival R package (Version 
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2.38-2) (https://mran.microsoft.com/web/packages/survival/index.html). We consistently clustered 

the 993 TCGA-NSCLC samples by using the ConsensusClusterPlus (Version 1.48.0) R package 

(parameters used: pFeature = 1, pItem = 0.8, reps = 100, distance = Minkowski) [16]. The accurate 

cluster number was determined based on the cumulative distribution function (CDF) and CDF delta 

area. The Pam algorithm was applied as a clustering algorithm and the Minkowski distance was the 

distance measure in the study. 

2.4. Identification and functional analysis of the DEGs 

We extracted the data related to the DEGs from the different molecular subtypes, i.e., C1 and 

C2 groups, of the TCGA dataset by using the LIMMA package [13]. The following filter criteria 

were set: false discovery rate (FDR) < 0.05 and |log2fold change (FC)| > 1.5. Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway analysis and gene ontology (GO) functional enrichment 

analysis were performed by applying the DEG data for subtype grouping using the WebGestaltR 

package (Version 0.4.2). 

2.5. Establishment and assessment of the immune subtype-associated lncRNA prognostic risk scoring 

system 

We randomly sampled and divided the samples from the TCGA dataset into training and testing 

datasets at the ratio of 3:2. Univariate Cox regression and LASSO-Cox regression analyses were 

used to develop a novel prognostic risk model based on the DEGs in the various subtypes. The 

penalty parameter (λ, lambda) for the model was determined via tenfold cross-validation following 

the minimum criteria (i.e., the value of λ corresponding to the lowest partial likelihood deviance). 

When lambda = 0.02160913, genes were selected for further analysis. For decreasing gene numbers 

contained in the model, the stepwise Akaike information criterion (stepAIC) process was applied. 

This step-by-step regression considers the statistical fitting degree of this model and determines the 

parameters used for the data fit. In the stepAIC process, which was implemented by using the MASS 

package (Version 7.3-54), a complicated model is initially generated, and one variable is deleted to 

decrease the AIC. This model was developed by using the “glmnet” R package (Version 3.0-2) based 

on the formula for the risk score: Σβi × Expi, where β, i.e., the Cox regression coefficient is the 

respective gene, I denotes the prognosis-related lncRNA and Exp is the expression level of the 

prognostic lncRNA. The efficiency of the model was improved when the value was smaller. This 

indicated that the model acquired an appropriate fitting degree with fewer parameters [17]. 

Thereafter, we calculated the risk scores for every sample included in the TCGA training, TCGA 

testing, TCGA dataset and external GEO datasets, respectively. Then, the optimal cut-off value was 

determined by using the “surv_cutpoint” function in the “survminer” R package. Finally, 

Kaplan-Meier (KM) curves were generated for survival analysis. The “survivalROC” R package was 

used to generate time-dependent receiver operating characteristic (ROC) curves to assess the 

predictive power. 

2.6. Development and validation of the nomogram 

The nomogram could visually and effectively present all results of the above risk model and 
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prediction. This nomogram used the line length to define the effects of various factors and their 

values on the final results. We constructed the nomograph model based on the univariate and 

multivariate analytical results [18]. 

2.7. Predicting the benefit of each subclass from immunotherapy 

We used the published the data of the lung cancer patients who received immunotherapy to 

predict the efficiency of the immunotherapy in their subclass. Based on the SubMap algorithms 

(https://cloud.genepattern.org/gp) in Gene Pattern 2.0, we compared the gene expression profiles of 

the same significant genes in our subtypes with another published dataset containing lung cancer 

patients who received immunotherapy [19]. 

2.8. Statistical analysis 

We conducted the data visualization and the statistical analysis using R software (Version 3.6.3, 

https://www.r-project.org/ ver. 3.6.3). Bonferroni correction was performed to compare the 

differences in the SubMap analysis of anti-PD-L1. The distributions of immune scores or IC50 

values between the two subtypes were compared by using Wilcoxon testing. Log-rank testing was 

employed to determine the significant differences for KM curves. Univariate and the multivariate 

Cox regression analyses were used to screen features that were significantly associated with 

prognosis in the risk model. P < 0.05 was considered to be significant. 

3. Results 

3.1. Identifying the immune lncRNAs related to PD-1 

We used the ssGSEA process to score the KEGG pathways using the TCGA data, and we 

estimated the relationship between the PD-1 (i.e., PDCD1) and the KEGG pathways. The results 

indicated that the PD-1 and KEGG-T cell receptor signaling pathways were significantly related 

(Figure 1A). Then, the TCGA dataset was applied to screen 479 lncRNAs that were significantly 

related to the score of the KEGG-T cell receptor signaling pathway. We noted that 301 lncRNAs 

were positively related to each other, whereas 178 lncRNAs were not related. Then, a heat map was 

developed for the gene expression changes of the 479 lncRNAs based on the score of the KEGG-T 

cell receptor signaling pathway, as arranged from high to low values (Figure 1B). 
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Figure 1. Identification and clustering of the PD-1 related immune lncRNAs. (A): 

Correlation between the PD-1 and KEGG T-cell receptor signaling pathways in the 

TCGA dataset; (B): Changes in lncRNA gene expression that are significantly related to 

the KEGG-T cell receptor signaling pathway; (C-D): CDF curve and the CDF delta area 

curve for the TCGA queue samples, respectively, where the delta area curve for the 

consensus clustering indicates the difference in the area under the CDF curve for every 

category number, k, compared to k-1; (E): A sample clustering heat map if k = 2; (F): 

KM curve for the prognosis relationship between two subtypes in the TCGA dataset. 
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3.2. Molecular subtyping of immune-related lncRNAs 

The TCGA dataset was first used to calculate the univariate analysis of 479 lncRNA genes. 

There were 59 lncRNA genes related to the prognosis in TCGA, according to a univariate survival 

analysis. ConsensusClusterPlus was used to cluster 993 NSCLC samples based on 59 lncRNAs from 

the TCGA cohort. By using the CDF, we determined the accurate cluster number. The CDF delta area 

curve showed that the cluster had relatively stable clustering results when the value of 2 was selected 

(Figure 1C,D). Thus, k = 2 was used and we obtained two related subtypes (Figure 1E). Analysis of 

the prognostic features of the 2 molecular subtypes showed significant prognostic variations. Thus, 

we concluded that C2 showed a worse prognosis than C1 (P = 0.00022, Figure 1F). Additionally, 

using the TCGA dataset, the distribution of various clinical characteristics in these two molecular 

subtypes was compared. The findings revealed significant gender disparities among the TCGA 

subtypes (Figure S2), with a majority of the male patients displaying the C1 subtype. Other clinical 

characteristics were not significantly different among subgroups. 

Here, we identified six types of immune infiltrations, which included C1 (wound healing), C2 

(predominance of INF-r), C3 (inflammation), C4 (lymphocyte depletion), C5 (immunological silence) 

and C6 (TGF-beta predominance), have been identified as the tumor suppressors from the 

corresponding tumor promoters in human malignancies. C1, C2 and C6 were associated with a poor 

prognosis [20]. A majority of NSCLC patients from the TCGA dataset had immune subtypes C1 and 

C2, while no patient had the C5 immune subtype (Figure S3A). Further comparison of the 

distribution of the samples between both the molecular subtypes and existing subtypes (Figure S3B) 

showed that the C1, C2 and C4 immune subtype had poor prognosis (Figure S3C). 

3.3. Differential gene analysis and functional identification of molecular subtypes 

A total of 642 DEGs between C1 and C2 groups were screened by using the TCGA dataset. 

Additionally, the KEGG pathway and GO functional enrichment of 642 DEGs in both subtype 

groups were analyzed. For the GO functional annotation of DEGs, we annotated 768 items with 

significantly different biological processes (BP) (FDR < 0.05), 84 cellular component (CC) items 

(FDR < 0.05) and 71 molecular function (MF) items (FDR < 0.05). Figure 2A-C shows the top 10 

items of BP, CC and MF. The differential genes were enriched by the KEGG pathway, and 52 distinct 

pathways were found to be significantly enriched (FDR 0.05), for instance, the immune pathways 

like Th17 cell differentiation and cytokine-cytokine receptor interaction, as well as the tumor-related 

pathways like the cell adhesion molecules (CAMs) and the hematopoietic cell lineages (Figure 2D), 

indicating that DEGs were involved in NSCLC through these immune-related pathways. 
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Figure 2. Functional differences of the molecular subtypes. (A): Biological process (BP) 

annotation map of the upregulated genes involved in different molecular subtypes; (B): 

cellular component (CC) annotation map of the upregulated genes involved in different 

molecular subtypes; (C): molecular function (MF) annotation map of the upregulated 

genes involved in different molecular subtypes; (D): KEGG annotation map of the 

upregulated genes involved in different molecular subtypes. 

3.4. Comparative analysis of immune microenvironment and immunotherapy / chemotherapy 

sensitivity of molecular subtypes 

As described in the heat map presented in Figure 3A, we used various techniques like 

MCP-counter, EPIC, quantiseq, ESTIMATE, and ssGSEA to analyze the distribution of the immune 

scores in various groups. Most of the five different types of immune scores had significant 

differences, and the expression was higher in the C2 group (Figure 3A). A literature review revealed 

47 immune checkpoint genes [21]. We assessed the differential expression of all genes in the two 

molecular subtype groups; we noted that a majority of the immune checkpoint (IC) genes showed 

significant variations, and that the C2 subtype showed a higher variation than C1 (Figure 3B). 
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Figure 3. Comparative analysis of the immune status of the two subtypes. (A): 

Distribution of five scoring algorithms in the TCGA dataset; (B): Expression differences 

in IC genes derived from the TCGA dataset. ANOVA was used to determine significance 

level (* P <  0.05; ** P <  0.01; *** P <  0.001; **** P <  0.0001). 

Then, we determined the differences between the sensitivity of the C1 and C2 molecular 

subtypes to chemotherapy and immunotherapy. Here, we used the subclass mapping technique to 

compare the similarities between both the defined subtypes and the immunotherapy patients in the 

GSE78220 and IMvigor210 datasets. A lower p-value indicated a higher similarity (GSE78220 was 

treated with anti-PD-1, while IMvigor210 was treated with PD-L1). The results showed that, in the 

TCGA dataset, the C2 subtype was similar to anti-PD-1-NR, and it is similar to sd/pd treated by 

PD-L1 (Figure 4A,B). At the same time, the response degree of different subtypes to traditional 

chemotherapy drugs was also analyzed. It was found that subtype C1 was more sensitive to 

rapamycin, pyrimethamine, bortezomib, vinorelbine (Figure 4C), whereas sunitinib, bexarotene, 

midostaurin and bleomycin were more influential on the C2 subtype (Figure 4D). 
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Figure 4. Responsiveness to immunotherapy / chemotherapy of the two molecular 

subtypes. (A): TCGA SubMap analysis using anti-PD-L1 (GSE78220) 

(Bonferroni-corrected P < 0.05); (B): TCGA SubMap analysis of anti-PD-1 (IMvigor210) 

(Bonferroni-corrected P < 0.05); (C): Drugs that are more sensitive to the C1 subtype; 

(D): Drugs that are more sensitive to C2 subtypes, with a complete response (CR), partial 

response (PR), response (R), no response (NR), progressive disease (PD) and stable 

disease (SD). ANOVA was used to determine the significance level (* P <  0.05; ** P < 

 0.01; *** P <  0.001; **** P <  0.0001). 

3.5. Development of the prognostic risk model based on the immune subtype-related lncRNA genes 

First, according to the TCGA dataset, we screened 792 DEGs between C1 and C2 groups, and 

then we conducted the univariate analysis to obtain 52 genes based on their prognosis (P < 0.05). 

Then, LASSO was used to select the best gene, and 28 genes were obtained according to the 

minimum lambda = 0.02160913 (Figure 5A). These 28 genes were analyzed based on multiple 

factors. To reduce the number of genes, the stepAIC technique was applied to obtain 13 lncRNA 

genes (LINC00944, TRG-AS1, AC133552.5, ZNF674-AS1, AP006621.3, LINC01607, APTR, 

ITGB1-DT, AC022144.1, AC025569.1, LINC00857, LINC01806, and XIST) and calculate the risk 

coefficient for the associated genes (Figure 5B). Then, we estimated the risk scores for every sample 

in the TCGA training and validation datasets, respectively, categorized them into the high-risk and 
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low-risk groups using the optimal cutoff score and then developed their KM and ROC curves, 

respectively. We noted that the high-risk patients showed a worse prognosis, while the ROC curve of 

the risk score showed a higher AUC (Figure 5C–G). 

 

Figure 5. Establishment and evaluation of a prognostic risk model. (A): LASSO coefficient 

profile for 40 prognostic RNAs derived from the TCGA training dataset. We developed the 

coefficient profile plot by using a log (Lambda) sequence; (B): Results of the multifactor 

analysis of the genes in the final model; (C): KM and ROC curves for the model derived 

from a TCGA training dataset (596 samples); (D): KM and ROC curves for the model 

derived from the TCGA testing dataset (397 samples); (E): KM and ROC curves for the 

model derived from all TCGA datasets (993 samples); (F): KM and ROC curves for the 

model derived from the GSE31210 dataset (226 samples); (G): KM and ROC analysis of the 

model derived from all GSE19188 datasets (82 samples). ANOVA was used to determine the 

significance level (* P <  0.05; ** P <  0.01; *** P <  0.001; **** P <  0.0001). 
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We also compared the risk score distribution for the TCGA among the various clinical feature 

groups, and we noted that the subtypes, gender groups and the N and T stages showed significant 

difference (P < 0.05). The risk score is higher in the later stage of the tumor, and the C2 risk score 

with poor prognosis in the subtype is higher. The C1 subtype with better prognosis has a lower risk 

score. Furthermore, the male patients showed a higher risk score than the female ones. No significant 

difference was noted between other clinical feature groups (Figure S4). TCGA datasets were grouped 

according to clinical characteristics, and the survival effects of our risk groups on different clinical 

characteristics were plotted. The results showed that our risk group had fine results in different 

clinical groups. Additionally, the high-risk patients showed a worse prognosis than the low-risk 

patients, which proved the reliability of our risk group (Figure S5). 

3.6. Risk Score and clinical features to construct a nomogram and forest map 

To determine the independent application of the risk scoring model in clinical applications, 

univariate and multivariate survival analysis was conducted to examine the factors that were 

significantly related to patient’s survival by using the complete clinical data in the TCGA dataset. 

Also, the clinical data of the patients in the TCGA dataset, like sex, age, N stage, M stage, T stage, 

and the risk score were examined (Figure 6). The univariate COX regression analysis showed that 

the N stage, T stage, M stage, stage, age, and risk score from the TCGA dataset, were significantly 

correlated to the patient’s survival. Based on multivariate analysis, risk score (1.81, 95% CI = 

1.52-2.15, p < 1e-5) was influential on patient’s survival (Figure 6A,B). 

Nomography is described as a technique used to effectively display the risk model results. It can 

also be applied to predict the outcome of an application. The nomogram presents the effects of 

diverse variables, in addition to their values, on the final outcome, as based on the length of a straight 

line. We developed the nomogram by using the data of the clinical features T stage, age, N stage and 

risk score as derived from the TCGA datasets (Figure 6C). This model showed that the risk score 

feature significantly affected the prediction of the survival rate of the patients, which implies that the 

risk score model could offer a better prediction of the final prognosis. Furthermore, the nomograms 

(data for 1, 3 and 5 years) used to determine the model’s performance (Figure 6D) were analyzed. 

Decision curve analysis (DCA) refers to a basic technique for assessing clinical prediction 

models, molecular markers and diagnostic tests. The DCA diagrams for T stage, age, N stage, 

risk score and the nomogram were generated. The results showed that the nomogram had a 

greater effect (Figure 6E). 
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Figure 6. Development of a personalized prognostic nomogram for NSCLC. (A): 

Univariate Cox regression analysis of the risk score and clinicopathological features; (B): 

Multivariate Cox regression analysis of the risk score and clinicopathological features. 

(C): Nomograms for forecasting the 1-, 3- and 5-year patient survival rate based on the 

TCGA dataset; (D): Calibration chart used to forecast the 1-, 3- and 5-year NSCLC 

patient survival rate; (E): DCA diagram for the factors of age, stage, risk score and 

nomogram. ANOVA was used to determine the significance level (* P <  0.05; ** P < 

 0.01; *** P <  0.001; **** P <  0.0001). 

3.7. Difference analysis of the risk score on immunotherapy 

The differences in immunotherapy among different risk groups in the TCGA dataset were 

analyzed. Here, the subclass mapping technique was applied to compare the similarity scores 
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between the various defined risk groups and the immunotherapy patients included in the GSE78220 

and IMvigor210 data sets. A lower p-value was proportional to a higher similarity (GSE78220 was 

treated with anti-PD-1, while IMvigor210 was treated with PD-L1). The results showed that, in the 

TCGA datasets, the high group and anti-PD-1-NR were similar to the group of SD/PD treated with 

PD-L1 (Figure 7). 

 

Figure 7. Different immunotherapies used for different risk groups. (A): TCGA SubMap 

analysis of anti-PD-L1 (Bonferroni-corrected P < 0.05); (B): TCGA SubMap analysis of 

anti-PD-1 (Bonferroni-corrected P < 0.05). 

4. Discussion 

In this study, we first identified the T-cell receptor signaling pathway associated with PD-1, and 

we further screened 479 lncRNAs significantly related to the score of the T cell receptor signaling 

pathway. Additionally, 993 NSCLC samples derived from the TCGA dataset were genotyped as per 

the 59 lncRNAs. These samples were categorized into two subtypes with significantly different 

prognoses. The C2 subtype showed a significantly poor prognosis. Further analysis indicated the 

presence of significant differences in the gender-based clinical features among the different subtypes, 

where a large proportion of the C1 subtypes included male patients. Then, we conducted GO 

functional enrichment and KEGG pathway analyses on the DEGs and found that the immune-related 

pathways including the Th17 cell differentiation and cytokine-cytokine receptor interaction, as well 

as the tumor-related pathways such as the CAMs and hematopoietic cell lineage were significantly 

enriched. The results of this study suggest that the T cell receptor pathway-related lncRNAs played 

an important role in the invasion, development, immune response and the treatment of NSCLC 

patients, which may provide new insight into the progress of NSCLC and immunotherapy. 

T cell receptors (TCRs) present on the T-cell surfaces can identify the antigen peptide presented 

by the major histocompatibility complex (MHC) on the antigen-presenting cell surface, thereby 

activating c-Jun N-terminal kinase (JNK), ERK, NF-kappa B and other signaling pathways in the T 

cells [22]. Many transcription factors involved in cell division and differentiation are activated by a 
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variety of signal pathways to control T cell proliferation, differentiation, cytokine production, 

apoptosis and other cellular processes. The typical intracellular signals of TCR activation also 

include MAPK, PKC and calcium signaling pathways. A previous experimental study has 

demonstrated that caspase cascade regulation, cell cycle arrest, the activation of MAPK and 

PI3K/Akt/mTOR signal modification contribute to the apoptosis of human leukemia Jurkat T cells [23]. 

Another study has revealed that the activation of mitochondrial reactive oxygen species-mediated Src and 

PKC pathways using low-level laser provokes MHC class II-restricted T cell immunity to tumors [24]. 

The activation of TCR signaling will not only cause the proliferation of T cells and the production of 

cytokines, but it will also encourage T cells to differentiate into effector T cells and perform 

functions [22]. In some cases, it is noted that tumor-specific immune activation can increase the survival 

rate of cancer patients. An assorted TCR library has been widely acknowledged as a necessary 

requirement for accurately predicting the adaptive immune response [25]. These findings verified that 

the activation of TCR pathways contribute to immunity in tumors.  

Immunotherapy is an important tumor therapy, widely used to treat NSCLC patients. Immune 

checkpoint (IC) inhibitors targeting the CTLA-4, PD-1, and PD-L1 molecules have been developed 

and used to treat patients with NSCLS and other types of tumors, showing promising clinical activity, 

effective toxicity features and a long-lasting response [26]. PD-1/PD-L1 is a set of important ICs that 

are involved in the tumors’ immune escape processes. Development of anti PD-1/PD-L1 immune 

molecules could help to deter the tumor cells from inhibiting the operation of the immune system 

through the PD-1/PD-L1 axis, as well as to restore its negative effects on the malignant cells. A 

recent study has confirmed that PD-1 signaling attenuated the death of leukemic stem cells induced 

by TCRs in T cell acute lymphoblastic leukemia, which provides a potential therapeutic strategy for 

treating acute lymphoblastic leukemia via PD-1 blockade [27]. The anti-PD-1/PD-L1 

immunotherapy mechanism was closely associated with the JNK, nuclear factor kappa B subunit 1, 

phosphatidylinositol 3-kinase (PI3K)/AKT (AKT serine / threonine kinase 1) pathways and other 

complicated signal pathways [28]. Moreover, as previously reported, tonsil-derived mesenchymal 

stem cells inhibit Th17-mediated autoimmune response through regulation of the PD-1/PD-L1 

pathway [29]. Therefore, regulation of immune-related pathways represents a promising 

approach for immunotherapy.  

Then, we identified 13 lncRNA genes (LINC00944, TRG-AS1, AC133552.5, ZNF674-AS1, 

AP006621.3, LINC01607, APTR, ITGB1-DT, AC022144.1, AC025569.1, LINC00857, LINC01806 

and XIST). It was noted that lncRNA-LINC00944 promoted tumorigenesis and inhibited Akt 

phosphorylation in renal cell carcinoma [30]. Immune-related lncRNA LINC00944 was seen to 

regulate the ADAR1 expression in breast cancer and to be related to its prognosis [31]. Some studies 

have shown that the TRG-AS1 gene was significantly up-regulated in lung cancer and promoted the 

invasion and propagation of lung cancer cells through the miR-224-5p/SMAD4 axis [32]. TRG-AS1 

has been shown to be an effective mediator of carcinogenicity in the tongue squamous cell carcinoma 

that was regulated by the microRNA-543/Yes-associated protein 1 axis [33]. Earlier studies showed 

the therapeutic efficacy of the ZNF674-AS1 gene in NSCLC. ZNF674-AS1 suppressed the growth of 

NSCLC, by inducing P2 and downregulating the miR-423-3p expression [34]. Additionally, it was 

noted that ZNF674-AS1 inhibited the invasion and the migration of NSCLC, as it regulated the 

miR-23a/E-cadherin axis [35]. It has been reported that Wnt signaling is associated with tumor 

heterogeneity, growth, immunity and drug resistance [36]. 

APTR is engaged in the onset and development of gynecological cancer and it has been shown 
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to promote the proliferation of the uterine leiomyoma cells as it targeted the Erα for activation of the 

Wnt/β catenin pathway [37]. ITGB1-DT was seen to be a novel biomarker related to lung 

adenocarcinoma immunity [38,39]. It promotes the progression of lung adenocarcinoma through the 

establishment of a positive feedback loop with the ITGB1/Wnt/β-catenin/MYC pathway [40]. In the 

past, the LINC00857 gene was considered to be involved in the onset and development of various 

types of cancers [41,42] because it was significantly up-regulated in lung adenocarcinoma. The 

LINC00857 gene primarily regulates the proliferation, glycolysis and the apoptosis of LUAD cells 

by targeting the miR-1179/SPAG5 axis, offering a potential target for clinically treating LUAD [43]. 

The oncogene XIST was significantly up-regulated in the NSCLC tissues. Several studies presented 

that XIST was involved in the invasion, proliferation, apoptosis, migration and chemosensitivity of 

NSCLC cells [44–46]. XIST played a vital role as the ceRNA in NSCLC development, even at the 

transcriptional level [47]. Collectively, these 13 lncRNA genes might reveal their contribution to the 

development and progression of NSCLC. 

Risk factors have been selected for predictive model construction in many previous studies, and 

these risk features have been verified by clinical trials or manually selected by medical experts [48]. 

However, manually selecting and validating each risk factor has been considered as tedious work. A 

machine learning approach has become a novel strategy to select robust features and improve the 

long-term prognosis in cancers or diseases. For examples, Khosla A and colleagues have 

automatically selected robust features by using a conservative mean, which stacked with support 

vector machines (SVMs) generates a greater AUC compared to classical methods [49]. Fang et al 

employed recursive feature elimination with cross-validation, which incorporated linear support 

vector classifier, a random forest classifier, an extra tree classifier, an AdaBoost classifier and a 

multinomial naïve-Bayes classifier to select robust features for stroke prognosis prediction, which 

can accurately infer the long-term prognosis of acute stroke [50]. Recently, a random forest-based 

algorithm incorporating a nested 10-fold cross-validation has been utilized to assess the presence of 

congenital heart disease (CHD). And, six robust features that have potential values for screening 

CHD have been selected [51]. Moreover, the incorporation of a segment-based convolutional neural 

network with an SVM has been adopted to recognize atrial fibrillation from electrocardiogram 

records [50]. Random forest-based benchmark models incorporating K-nearest neighbor, SVMs, 

logistic regression, stochastic gradient descent and AdaBoost have been used for risk classification in 

breast cancer patients [52]. Therefore, a machine learning approach can be used to select robust 

features and improve prognosis prediction for NSCLC patients. 

One of the advantages of this model is that compared with whole genome sequencing, targeted 

sequencing based on specific genes can significantly reduce medical costs. Secondly, we selected 

lncRNA significantly related to the PD-1 related T cell receptor signaling pathway as the target gene, 

which was seen to be important for forecasting the immunotherapeutic sensitivity of NSCLC. 

Furthermore, in clinical diagnosis and the development of a treatment strategy, we noted that the 

treatment plan and prognosis of the patients was primarily dependent on the pathological stage of the 

disease. The nomogram clinical model constructed in this study provides a basis for designing an 

individualized treatment plan for NSCLC patients. Our proposed modelling approach may be 

applicable for other diseases such as ophthalmic diseases including age-related macular degeneration 

and Stargardt diseases. These molecular subtypes and their changes in such diseases could be identified 

by using optical coherence tomography, and they could be used for modeling [53–56]. Compared with 

single-gene models, multi-gene models can comprehensively reflect the patient’s status. 
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However, there are some limitations in the current study. First, we downloaded retrospective 

transcriptome data from TCGA and GEO datasets and validated the robustness of the prognostic 

model on TCGA datasets and external datasets. The predictive value of this prognostic model should 

be validated by performing prospective studies with larger samples. Second, this prognostic 

model should be iteratively verified following long-term clinical use. Besides, although we have 

identified 13 lncRNAs associated with NSCLC, their potential mechanism in the development 

and progression should be revealed by further in vivo and in vitro studies. Meanwhile, classical 

methods were used for our model development. Novel machine learning algorithms, such as random 

forest-based algorithm can be incorporated with SVMs, k-nearest neighbor, or AdaBoost to select 

robust features, which can infer the long-term prognosis for NSCLC patients. 

5. Conclusions 

Based on the enrichment of the PD-1 related T cell receptor signaling pathway, we identified 

two lncRNA-related molecular subtypes of NSCLC. These molecular classifications facilitate the 

understanding of lncRNA in NSCLC and could be used to supplement the existing tumor TNM 

staging system. In addition, we developed and validated a novel 13-lncRNA-related prognostic 

model that could be applied to predict the prognosis and the sensitivity to PD-1 immunotherapy for 

NSCLC patients. 
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