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Abstract: To address the multi-flexible integrated scheduling problem with setup times, a multi-
flexible integrated scheduling algorithm is put forward. First, the operation optimization allocation 
strategy, based on the principle of the relatively long subsequent path, is proposed to assign the 
operations to idle machines. Second, the parallel optimization strategy is proposed to adjust the 
scheduling of the planned operations and machines to make the processing as parallel as possible and 
reduce the no-load machines. Then, the flexible operation determination strategy is combined with the 
above two strategies to determine the dynamic selection of the flexible operations as the planned 
operations. Finally, a potential operation preemptive strategy is proposed to judge whether the planned 
operations will be interrupted by other operations during their processing. The results show that the 
proposed algorithm can effectively solve the multi-flexible integrated scheduling with setup times, and 
it can also better solve the flexible integrated scheduling problem. 
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1. Introduction  

Scheduling is a critical factor for the efficiency of production manufacturing systems. The main 
studies of scheduling basically include two important stages: part processing and product assembly. 
The traditional scheduling approaches usually regard them as independent of each other, such as the 
flow shop scheduling for mass product production, the job shop scheduling (JSS) for various of types 
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of small-batch parts or components and the assembly sequence planning (ASP) for final assembly or 
subassemblies. With the pursuit of the individuation and customization of complex products, make-to-
order production has become one of the essential production modes in enterprises. Especially for some 
complex, large and heavy products such as the heavy machine tool, medical equipment and large 
military equipment, they are generally customized with single or minimal orders, and JSS and ASP 
are essential to use to shorten the makespan, reduce the manufacturing cost and improve the 
production efficiency.  

JSS is a scheduling method to generate an optimal and reasonable processing plan for components 
or parts, according to which the equipment resources are allocated to the processing operations for the 
efficient production of the enterprise. After the JSS is completed, all parts or components that need to 
be assembled are scheduled according to the optimal assembly plan generated by the ASP to achieve 
the final assembly of the product efficiently. As the critical optimization scheduling technologies, the 
approaches for JSS and ASP are widely studied and applied in production manufacturing.  

Since the JSS problem (JSSP) has been proven to be an NP-hard combinatorial optimization 
problem, it has become one of the critical research subjects in the field of production manufacturing 
in recent decades, and plenty of approaches have been designed to solve it. Valenzuela-Alcaraz et al. [1] 
studied the JSS with no-wait operations and defined a timetabling rule by using binary chains to make 
it automatically optimized during the evolution of the proposed coevolutionary algorithm. Salido et 
al. [2] proposed a model to analyze the relationship among energy efficiency, robustness and makespan, 
and they used CPLex to solve the JSSP with machines with different working speeds. Dai et al. [3] 
proposed an enhanced EDA to solve the JSSP in consideration of transportation constraints, with the 
aim of reducing energy consumption. Hao et al. [4] proposed multi-objective EDA for the bi-criteria 
stochastic JSSP. Wang and Wang [5] studied the two-objective JSS model with a hybrid genetic 
algorithm. Nguyen et al. [6] adopted cooperative coevolution genetic programming to solve the 
dynamic multi-objective JSSP. Meanwhile, the approaches for ASP (ASPP) have been studied and 
applied. Wang et al. [7] proposed a dual Q-learning-based algorithm to solve the ASPP with uncertain 
assembly times. Ying et al. [8] studied ASP in consideration of the physical characteristics of robotic 
arms in a cyber-physical assembly system. Giorgio et al. [9] proposed online reinforced learning for 
ASP with interactive guidance systems.  

With the improvement of manufacturing technology and manufacturing environments, such as 
the flexible machining center and the CNC, flexible manufacturing is becoming more and more 
common, and the research on flexible product scheduling is becoming more critical. As respective 
extensions of JSS and ASP, flexible JSS (FJSS) and flexible ASP (FASP) are applied to flexible 
manufacturing, in which an operation has at least one available machine for processing and is allowed 
to choose any machine among them. The approaches for solving the FASP problems and the FJSS 
problems are also widely investigated. 

Baykasoglu and Madenoglu [10] proposed a greedy randomized adaptive search for dynamic 
FJSS. Furthermore, Baykasoglu et al. [11] applied the greedy randomized adaptive search procedure 
for the dynamic FJSS problem by considering preventive maintenance activities. Vital-Soto et al. [12] 
built a mathematical model and proposed a hybridized bacterial foraging optimization algorithm for 
the FJSS problem with sequencing flexibility. Gong et al. [13] proposed a hybrid artificial bee colony 
(ABC) algorithm for the FJSS problem with worker flexibility. Li et al. [14,15] proposed a 
reinforcement learning-based RMOEA/D and a self-adaptive multi-objective evolutionary algorithm 
for the FJSS problem with fuzzy processing time. Liu et al. [16] proposed a hierarchical and distributed 
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architecture to achieve real-time control of the dynamic FJSS and solve the problem by using a double 
deep Q-network algorithm-based approach. Lei et al. [17] proposed an end-to-end deep reinforcement 
framework to automatically learn a policy for solving FJSS problems and embedded the local state 
encountered by using a graph neural network. Du et al. [18] proposed a hybrid multi-objective 
optimization algorithm for the estimation of distribution and a deep Q-network to solve the FJSS 
problem; it considers both the maximum completion time and total electricity price. For FASP, 
Hottenrott et al. [19] studied the flexible assembly layouts in smart manufacturing and provided a 
framework based on analytical insight and chance-constrained problem formulation. Li et al. [20] 
proposed an iterative widen heuristic beam search algorithm to minimize the makespan. Finetto et 
al. [21] proposed a mixed-model sequencing optimization algorithm for fully FASP.  

The above studies on FJSS and FASP problems only focus on pure processing and pure 
assembly, which may lead to a large gap generated by inventory time between the processing stage 
and the assembly stage during the entire production process. To avoid this problem, flexible assembly 
JSS (FAJSS) has been put forward and studied to consider the processing operations with some 
assembly operations simultaneously in flexible manufacturing to further eliminate the gap and 
shorten the makespan. 

Ren et al. [22] proposed an energy-aware hybrid algorithm based on particle swarm optimization 
(PSO) and a genetic algorithm (GA) to address the multi-objective FAJSS problem and improve 
production efficiency and minimize energy consumption. Lin et al. [23] studied the FAJSS problem in 
consideration of tight job constraints and designed a GA-based algorithm to minimize the makespan. 
Fattahi et al. [24] established a mathematical model and proposed a hybrid algorithm based on PSO 
and a parallel variable neighborhood search algorithm for the FAJSS problem with the purpose of 
minimizing the makespan. Wu et al. [25] improved the differential evolution algorithm and applied it 
to solve the FAJSS problem in a distributed environment. Zhang and Wang [26] designed a constraint 
programming model and solved the FAJSS problem considering both sequence-dependent setup times 
and part sharing in a dynamic environment, with the objective of minimizing the maximum completion 
time of all jobs. Li et al. [27] improved the ABC algorithm and applied it to solve the FAJSS problem 
with batch-scheduling to reduce switching costs in the job processing stage.  

Although the above investigations tend to study assembly operations during the processing stage, 
the processing operations and the assembly operations of these studies are usually assigned to different 
machines. Meanwhile, current research rarely considers all assembly operations and never takes the 
reprocessing operations of subassembly into account. Therefore, to further make up for the above 
deficiencies, integrated scheduling (IS) has been proposed and studied; the interaction between 
assembly operations and processing operations is fully considered simultaneously.  

Xie et al. [28] investigated an IS problem with no-wait operations and solved it with their 
proposed hybrid algorithm. Xie et al. [29] proposed a dispatching rule-based algorithm to address the 
IS problem in consideration of the maintenance of machines. Xie et al. [30] investigated an IS problem 
in two-workshop and designed an IS algorithm by considering the prescheduling of the root-subtree 
processes. Xie et al. [31] studied an IS problem with a pre-start device and proposed an idle machine-
driven-based algorithm with the objective of minimizing the completion time of products. Zhan et 
al. [32] proposed an IS algorithm based on the end time driven and processing area priority to solve a 
two-workshop collaboration IS problem. Gao et al. [33] fully considered the characters of the tree 
structure and proposed a GA-based hybrid algorithm to solve the IS problem. Wang et al. [34] applied 
a non-dominated sorting genetic algorithm-II with a hybrid chromosome coding mechanism to solve 
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the IS problem, aiming to minimize the total production completion time and the total inventory time. 
Besides the above investigations, the flexible IS problem (FISP) has been investigated to optimize 

the scheduling sequence of all operations simultaneously in flexible manufacturing,  regardless of 
whether the operation belongs to the part processing operations, the assembly operations or the 
assembly reprocessing operations. Some approaches for FISPs are as follows. 

Gao et al. [35] presented a GA-based algorithm with remaining work probability selection coding 
to solve the FISP. Xie et al. [36] proposed a device-driven and essential path-based integrated algorithm 
to solve the FISP. Xie et al. [37] proposed a device-driven based conflict mediation algorithm to solve 
the FISP. Lu et al. [38] investigated the order review/release and dispatching rules to solve the FISP 
by using a simulation approach. Xie et al. [39] proposed a shorten-time-based algorithm to simplify 
the FISP into an IS problem and solved it with the allied critical path method. Xie et al. [40] adopted 
the layer priority-based integrated algorithm to solve the FISP in the reverse order. 

Actually, the high flexibility characteristic of flexible manufacturing is not only specific to the 
equipment. There can be more than 15 flexibility types in a flexible manufacturing system [41], such 
as a flexible variable disturbance [42], a flexible sequence [12], flexible workers [13] and so on. 
Furthermore, flexible manufacturing with multiple types of concurrent flexibility is called multi-
flexible manufacturing. However, most of the current research on FISPs only focuses on machine 
flexibility. For some complex products, especially those with a treelike structure, due to the complex 
product structure, the complex constraint relationship between operations and the processing 
characteristics of materials, alternative planning routes can be chosen to achieve the same processing 
effect; consequently, the tightness between some processes is enhanced. To take advantage of the 
flexibility of complex products and reduce the inventory time resulting from separate part processing 
and assembly, it is necessary to further investigate multi-flexible features for the FISP, which is much 
closer to the actual enterprise production activities. 

Therefore, it is necessary to propose an effective algorithm to optimize the scheduling sequence 
for the multi-flexible integrated problem (MFISP), to further improve the efficiency and reduce the 
cost. Thus, we investigate the multi-flexible IS problem with setup times (MFISP), which considers 
flexible machines, flexible sequential operations, flexible planning paths and operation-dependent 
setup times. To reduce the complexity of the problem and facilitate the dynamic scheduling of the 
machines and operations, the machine idle time is treated as the driven time to schedule the processing 
operation tree in the reverse order.  

The remainder of this paper is as follows. In Section 2, the problem description and mathematical 
model for the MFISP are presented. In Section 3, the design and implementation of four scheduling 
strategies are given. In Section 4, the implementation of the multi-flexible integrated scheduling 
algorithm (MFISA) is given, and the complexity analysis of the algorithm is in Section 5. In Section 6, 
experiments are carried out to test the performance and the efficiency of the proposed algorithm for 
the MFISP and FISP. Finally, the conclusions and future research work are given. 

2. Problem description and mathematical models 

2.1. Problem description 

To make IS problems more general, the assembly machines and the machining machines are not 
distinguished according to their functions, but are uniformly called machines. By default, each machine 
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can have capacities of both assembly and machining. The machining operations and the assembly 
operations are collectively known as operations. To better describe the MFISP, we introduce the 
following concepts. 

Definition 1. (Flexible planning path group) If different planning paths can be selected from one 
operation to another, then the set of all of these paths is called the flexible planning path group. The 
paths are called the flexible planning paths. 

Definition 2. (Flexible sequential operation group) If there are non-strict precedence constraints 
between the operations involved in a path from one operation to another, then the set of the involved 
operations is called the flexible sequential operation group. The involved operations are called the 
flexible sequential operations. 

Definition 3. (Flexible operation) The operations that belong to the flexible planning path group 
or the flexible sequential operation group are collectively referred to as the flexible operations. The 
first operation of a flexible planning path is called the first-position flexible operation. 

Definition 4. (Setup time) The waiting time required for the machine on which different types of 
operations are processed successively is called the setup time. 
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Figure 1. Extensive processing operation tree for the MFISP, AND sub-graph and OR sub-graph. 

In the multi-flexible IS system, at least one machine is available for each operation and the 
processing time required is not necessarily the same for each machine. Each operation can only choose 
one machine to be processed. The waiting time between different types of operations on the same 
machine should not be less than the corresponding setup times. And, the flexible planning path groups 
and the flexible sequential operation groups can be expressed by the OR sub-graphs and the AND sub-
graphs on a processing operation tree, respectively, as shown in Figure 1. The node information of a 
special-type operation becomes four components (i.e., operation number/machine number/processing 
time/operation type). The operations in the flexible sequential operation groups are for the same 
workpiece, so there is no overlapping processing time. As different planning paths in a flexible 
planning path group can achieve the same processing effect, only one planning path can be selected 
from the same flexible planning path group. 
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2.2. Mathematical model 

Table 1. Symbols and indices. 

Type Symbol Instruction 

Index 

, ', ''i i i  Indices of operations 
, 'k k  Indices of machines 
, 'u u  Indices of flexible planning paths 
, 'j j  Indices of flexible sequential operation groups 
, 'v v  Indices of flexible planning path groups 

Set 

O Set of operations 
OF Set of operations on non-flexible planning paths 

R 
Set of operation pairs with precedence constraint, R = {(i, i’)}, where 
operation i is the predecessor of operation i’  

Ov,u Set of operations on the uth path of flexible planning path group v 
Oj Set of operations in flexible sequential operation group j 
F Set of flexible planning path groups 
Fv Set of planning paths of flexible planning path group v 
Mi Set of available machines for operation i 

Constant 
Pi,k Processing time of operation i on machine k 
W A large enough integer 

Decision 
variable 

si,k Starting time of operation i on machine k 
STi,i’,k Setup time of machine k to process operation i’ after operation i 
ci,k Completion time of operation i on machine k 
Pi Processing time of operation i 
Ci Completion time of operation i 
Si Starting time of operation i 
ai,k ai,k = 1 if operation i is selected by machine k. Otherwise, ai,k = 0. 

bi,i’,k 
bi,i’,k= 1if operation i starts earlier than operation i’ on machine k. Otherwise, 
bi,i’,k = 0. 

di,i’ di,i’ = 1 if operation i starts earlier than operation i’. Otherwise, di,i’ = 0. 

rv,u 
rv,u = 1 if the uth planning path in planning path group v is selected as the final 
path. Otherwise, rv,u = 0.  

Based on the description of the MFISP, the assumptions are as follows. 
1) The information on the machines, the processing time, the operations types, the setup times 

and the precedence constraints between operations is all given. 
2) The processing of each operation cannot be interrupted. If it is interrupted, the operation must 

be reprocessed. 
3) The breakdown of machines will not happen, and the migration time of each workpiece 

between different machines is negligible. 
Then, the constraints of the MFISP are as follows. 
1) The starting time of each operation must be no earlier than the ending time of its predecessors. 
2) The starting time of each operation cannot be earlier than the maximum completion time of 

the previous operations on the same machine. 
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3) In each flexible planning path group, only one flexible planning path can be chosen. 
4) There must be no overlapping processing times between operations in each flexible sequential 

operation group. 
According to the assumptions and constraints, the established mathematical model and symbols 

of the MFISP are described as follows, where the symbols and indices are shown in Table 1. 
Constraint conditions: 
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Equation (1) ensures that all non-flexible operations will inevitably be performed on one machine. 
Equation (2) further illustrates that some operations may not be performed. Equations (1) and (2) 
reflect the characteristics of route flexibility in the MFISP. Equations (3) and (4) ensure that the 
processing time and the starting time of each operation are only related to the selected machine. They 
reflect the characteristics of machine flexibility. Equation (5) illustrates the relationship between the 
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processing time, the starting time and the completion time of each operation. It reflects the time 
characteristics of operations. Equation (6) ensures that the operations on any flexible planning path are 
either all or not processed. Equation (7) ensures that only one flexible planning path can be selected in 
each flexible planning path group. Equations (6) and (7) reflect the constraint (3). Equations (8) and (9) 
ensure that each operation must comply with the precedence constraint between operations, that is, 
each operation can only start after the completion of its immediate predecessor operations. They reflect 
the constraint (1). Equation (10) prevents the overlapping of operations on each machine with 
consideration of setup times. It reflects the characteristics of setup times and the constraint (2). Equation 
(11) ensures that the processing times of the operations in the same flexible sequential operation group 
cannot overlap, that is, the operations are serial processing. It reflects the constraint (4). Equations (12) 
and (13) ensure that the completion time and the starting time have practical significance. 

This work was aimed to reduce the makespan of the product as the ultimate goal to solve the 
MFISP. The objective function is shown in Eq (14). 

Min C ={max{ Ci }}, i O  (14) 

where C indicates the completion time of the product, which is equal to the maximum completion time 
of all operations. 

3. Design and analysis of scheduling strategies 

In order to keep the makespans of the complex products in the MFISP as short as possible, it is 
necessary to select the appropriate machine for each operation on the premise of satisfying the 
precedence constraints. It is also necessary to consider the choice of the flexible planning paths and 
the serial processing relationship between the operations in each flexible sequential operation group. 
Therefore, the algorithm proposed in this paper should consider four requirements: a. Uncouple the 
flexible operations from the flexible sequential operation groups and the flexible planning paths; b. 
Reduce the backsliding and the stacking of serial operations on the critical paths; c. Reasonable 
arrangement of the parallel operations; d. Preemption of busy machines by certain operations. Hence, 
the algorithm in this paper reduces the complexity of the problem and makes the scheduling procedure 
dynamic by adopting reverse-order scheduling of the processing operation tree and driving scheduling 
events at each machine’s idle time. The idle moment for a machine is known as the driven time, at 
which a new scheduling event occurs. Meanwhile, four corresponding scheduling strategies have been 
designed and adopted: a. Flexible operation determination strategy (FODS); b. Operation optimization 
allocation strategy (OOAS); c. Parallel optimization strategy (POS); d. Potential operation preemptive 
strategy (POPS). Among these strategies, the FODS is a supplementary strategy to the dispatching 
strategies OOAS and POS. Since flexible operations are involved in each round of dispatching, it is 
necessary to determine the category of the flexible operation so as to determine whether the operation 
can be set as a planned operation for an optimal planning path or an optimal order. In addition, for the 
flexible operation of the flexible planning path group, the optimal path and the optimal machine are 
dynamic, so it is necessary to use the FODS to dynamically judge the operation to match the 
corresponding machine in order to achieve the current optimal scheduling effect. 
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3.1. Relevant concepts and definitions 

Definition 5. (Competitive operation) At a driven time, there is a schedulable operation for an 
idle machine. If the earliest completion time of the operation on this machine is earlier than the earliest 
completion time on any other available machine, then the operation is known as a competitive 
operation for the idle machine. 

Definition 6. (Planned operation) At a driven time, an operation that the idle machine plans to 
process is known as the planned operation of the idle machine. 

Definition 7. (Quasi-schedulable operation) At a driven time, an operation whose immediate 
predecessors are being processed or starting to be processed is called the quasi-schedulable operation. 

Definition 8. (Potential operation) For a planned operation, if the static starting time of a quasi-
schedulable operation on the same machine is less than its completion time, then the quasi-schedulable 
operation is known as the potential operation for the planned operation. The static starting time of an 
operation is equal to the maximum completion time of its immediate predecessors. 

Definition 9. (Relative subsequent path) The path with the longest average length involved from 
all immediate successors of operation i to the leaf nodes is called the relative subsequent path (RSP) 
of operation i. The length formula of the relative subsequent path is shown in Eq (15). 

, , '
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i g h i i
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where li indicates the length of the relative subsequent path of operation i; Oi,g,h indicates the set of 
operations on the gth path from an immediate successor of operation i to the hth reachable leaf node; 
OFi is the set of successors of operation i; Gi,h indicates the total number of paths from the immediate 
successor of operation i to the hth reachable leaf node; Mi’ is the set of the available machines of 
operation i’; | Mi’| is the number of available machines of operation i’. 

Definition 10. (Competition indicator of potential operation) The indicator to measure the 
competitiveness of potential operations i' compared to the corresponding planned operation i is called 
the competition indicator of potential operation i'. It can be computed by using Eq (16). 
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0,i kc
 is the completion time of planned operation i on machine k0 at a driven time; li indicates the length 

of the relative subsequent path of operation i; '
', ''

min( )
i

i kk M
c

  indicates the earliest completion time of 

operation i’ among all of its available machines; li’ indicates the length of the relative subsequent path 

of operation i’; 0',i kc
 is the completion time of operation i’ on machine k0 if planned operation i will not 

be processed on machine k0 at the driven time; '
,min( )

i
i kk M

c
  indicates the earliest completion time of 

operation i among all of its available machines. 

If 0 < 0', ,i i k
 <   (  is suggested to be close to 1), then it indicates that, for machine k0, potential 
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operation i' is more competitive than planned operation i, and it has the advantage of preempting it on 

machine k0; operation i is known as the interrupted operation for machine k0 at the driven time. If 0', ,i i k
 > 

 , then it means that planned operation i is more competitive and will not be preempted. 

3.2. Flexible operation determination strategy 

3.2.1. Design ideas 

At a driven time, when an operation selected by an idle machine is a flexible operation, there are 
two situations: 1) If it is the first-position flexible operation, then it indicates that the planning path in 
the flexible planning path group is not determined. One should look for other flexible planning paths 
in the flexible planning path group and calculate the earliest completion time for each flexible planning 
path. If the flexible planning path with the earliest completion time is the path to which the operation 
belongs and the idle machine is the selected machine, then the operation is determined to be the planned 
operation for the idle machine. Otherwise, the operation will not be selected by the idle machine. 2) If 
the operation is a flexible sequential operation, then one should calculate the sum of the completion 
time of the operation and the length of its relative subsequent path. One should look for other flexible 
operations in the flexible sequential operation group that have no precedence constraint with it. If there 
is at least one of the above operations, for which the sum of the earliest completion time and the length 
of the subsequent path is less than its own, then it will not be selected by the idle machine. Otherwise, 
it is determined as the planned operation for the idle machine. This strategy realizes the purpose of 
determining whether the flexible operation selected at the moment is the optimal solution and 
shortening the completion time by dynamically selecting the flexible operation with the least serial 
processing at each driven time. 

3.2.2. Implementation of the strategy 

The specific implementation steps of the FODS are as follows, and its flowchart is shown in 
Figure 2. 

1) Schedule initialization and input the information on the operations and machines, the flexible 
sequential operation groups and the flexible planning path groups. 

2) At the driven time, flexible operation i is selected by the idle machine k. 
3) If the flexible operation i is the first-position flexible operation, then go to Step 5. Otherwise, 

go to Step 14. 
4) If the flexible operation i is a flexible sequential operation, then go to Step 9. Otherwise, go 

to Step 14. 
5) Find the flexible planning path group to which operation i belongs; calculate the earliest 

completion time uC  of each flexible planning path in the group. 

The specific methods to compute uC  are as follows. At the driven time, according to the 

completion time of the determined operations on machines, and without considering the other 
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operations, if the uth flexible planning path is scheduled in the group, then the earliest completion time 

'
', ' ', '''

max(min ( ))
iu

u i k i kk Mi O
C s p


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. 

 

Figure 2. Flowchart of the FODS. 

6) Select the flexible planning path with the earliest completion time. 
7) If the flexible operation i is the first-position operation of the selected flexible planning path, 

then go to Step 8. Otherwise, go to Step 15. 
8) If the idle machine k is selected by operation i on the selected flexible planning path, then go 

to Step 14. Otherwise, go to Step 15. 
9) Calculate the sum of the completion time of operation i on machine k and the length of its 

relative subsequent path: (ci,k + li). 
10) Find the flexible sequential operation group j to which the flexible operation i belongs. 
11) If there are other flexible operations without a precedence constraint relationship with 

operation i in group j, then go to Step 14. Otherwise, go to Step 12. 
12) Calculate the sum of the earliest completion time for each operation on its available machines 

and the length of its relative subsequent path: '
', ' ''

min ( )
i
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
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13) If there is an operation i' that satisfies the condition '
', ' ' ,'

min ( )
i

i k i i k kk M
c l c l


  

, then go to Step 15. 

Otherwise, go to Step 14. 
14) If the idle machine k still chooses the flexible operation i, go to Step 16. 
15) If the idle machine k no longer selects the flexible operation i, go to Step 16. 
16) End. 

3.3. Operation optimization allocation strategy 

3.3.1. Design ideas 

At a driven time, for an idle machine, create a set of its competitive operations if they exist in the 
schedulable operation set. According to the definition of competitive operations, all operations have 
the characteristics that the completion time on the idle machine is better than that on the other available 
machines. Therefore, choosing an appropriate competitive operation can reduce the workload of the 
machine. Meanwhile, to complete the operations on the critical path as early as possible and avoid the 
accumulation of a large number of schedulable operations with priority constraints due to deferred 
processing, the principle of the relative long subsequent path (RLSP) has been designed and adopted 
in the OOAS. Select the operation with the longest relative subsequent path from the competitive 
operation set; if the operation is not unique, then select the operation with the earliest completion time. 
If the operation is still not unique, then the operation with a short setup time is preferred. If the selected 
operation is a flexible operation, then the FODS is adopted to determine whether the operation is still 
selected by the idle machine. If the operation is abandoned, then select another operation for the 
machine according to the principle of the RLSP. If all of the idle machines are executed in the above 
procedure once, the first round of allocation is over. If unassigned idle machines still exist after the 
first round of allocation, then the second round of operation allocation continues and the operations of 
the first-round allocation are processed on their selected machines by default. Repeat the above 
implementation until all of the idle machines have assigned operations or the remaining idle machines 
do not have any competitive operations. 

3.3.2. Implementation of the strategy 

The specific implementation steps of the OOAS are as follows, and its flowchart is shown in 
Figure 3. 

1) Schedule initialization and input the information on the operations and machines, the idle 
machine set MI and the schedulable operation set OS. And, create two empty sets: the planned operation 
set OP and the planned machine set MP. 

2) Set the initial values of the parameters: m = | MI |, r = 1. | MI | indicates the number of idle 
machines. 

3) Select the rth machine from MI and generate its competitive operation set OC according to the 
definition of the competitive operation. 

4) If OC is empty, then m- -, and go to Step 10. Otherwise, go to Step 5. 
5) Select an operation from OC based on the principle of the RLSP. 
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 The principle of the RLSP: Select the operation with the longest relative subsequent path from 
the competitive operation set. If the operation is not unique, then select the operation with the earliest 
completion time. If the operation is still not unique, then the operation with a short setup time is 
preferred. 

6) If the selected operation is a flexible operation, then go to Step 7. Otherwise, go to Step 9. 
7) Adopt the FODS, and if the machine still selects the operation, then go to Step 9. Otherwise, 

go to Step 8. 
8) Remove the operation from OC, update OC and go to Step 4. 
9) If the selected operation is determined to be the planned operation of the machine, then add 

the operation and the machine to OP and MP respectively, and remove the operation from OS. 

10) r++。 

11) If r < | MI |, then go to Step 12. Otherwise, go to Step 3. 
12) If m = 0 or m = | MI |, then go to Step 14. Otherwise, go to Step 13. 
13) Update the information on the machines and operations in OP and MP respectively; then, 

remove them from MI and go to Step 2. 
14) End. 

 

Figure 3. Flowchart of the OOAS. 
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3.4. Parallel optimization strategy 

3.4.1. Design ideas 

At a driven time, for an idle machine k with no competitive operation, if it is an available machine 
for some planned operations, then select operation i which can be finished earliest on machine k from 
these operations, and mark its planned machine k'. Assign operation i to machine k temporarily. If the 
competitive operation set of machine k' is not empty, then select the competitive operation with the 
earliest completion time on machine k'. If the selected operation i' is a flexible operation, then use the 
FODS to determine whether the machine k' will still select it. If the selection continues, then operation 
i' is determined to be the new planned operation for machine k', while operation i is finally determined 
to be the planned operation for machine k. Otherwise, select the other competitive operation with the 
earlier completion time to machine k', and use the FODS to repeat the above steps. Finally, if there is 
no competitive operation that meets the requirements, then cancel the movement of operation i to 
machine k. This strategy maximizes the avoidance of the empty load of idle machines at the driven 
time by adjusting the scheduling of the planned operations, so as to improve the parallelism between 
parallel processing operations. 

3.4.2. Implementation of the strategy 

The specific implementation steps of the POS are as follows, and its flowchart is shown in 
Figure 4. 

1) Schedule initialization and input the information on the operations and machines, the idle 
machine set MI, the schedulable operation set OS, the planned operation set OP and the planned machine 
set MP. 

2) Set the initial value of the parameter: r = 1. 
3) Select the rth machine k from MI. 
4) If there are operations of OP that can be processed on machine k, then go to Step 5. Otherwise, 

go to Step 14. 
5) Select the planned operation i that can be finished earliest on machine k and mark its original 

planned machine k'. 
6) Generate the competitive operation set OC for machine k'. 
7) If OC is empty, then operation i remains to be the planned operation for machine k'; go to Step 

14. Otherwise, go to Step 8. 
8) Select the earliest completed operation i' on machine k' from OC. 
9) If operation i' is a flexible operation, then go to Step 10. Otherwise, go to Step 12. 
10) Adopt the FODS, and if machine k' still selects operation i', then go to Step 12. Otherwise, go 

to Step 11. 
11) Remove the operation from OC and update it; then, go to Step 7. 
12) Determine operation i' as the new planned operation for machine k' and assign the planned 

scheduling process i to the machine k; then, update OP and MP. 
13) Remove operation i' from OS and update it. 
14) r ++. 
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15) If r > | MI |, then go to Step 16. Otherwise, go to Step 3. | MI | is the number of machines in 
MI. 

16) End. 

 

Figure 4. Flowchart of the POS. 

3.5. Potential operation preemption strategy 

3.5.1. Design ideas 

At a driven time, create an empty interrupted operation set. For a planned operation on its planned 
machine, if its potential operations exist, then compute the competition indicators of these operations 
in the descending order by the relative subsequent path length. If there is a potential operation for 
which the competition indicator is less than  , then the planned operation on the planned machine can 
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be interrupted by it. Otherwise, the planned operation will not be interrupted. Repeat the above 
procedure and add all of the interrupted operations into the interrupted operation set. This strategy 
makes up for the shortage of neglecting the preemption of the new schedulable operations which are 
generated at other driven times. 

3.5.2. Implementation of the strategy 

The specific implementation steps of the POPS are as follows, and its flowchart is shown in 
Figure 5. 

Start

The operation i can be 
interrupted
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of the operations in OPo  in turn
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Y
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End
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NY

Create

Quasi-schedulable operations OQ
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Potential operations OPo 
of operation i



 

Figure 5. Flowchart of the POPS. 

1) Schedule initialization and input the quasi-scheduling operation set OQ, the planned operation 
set OP and the planned machine set MP; then, create an empty interrupted operations set OI. 

2) Set the initial value of the parameter: r = 1. 
3) Select the rth planned operation from OP and generate the corresponding potential operation 

set OPo according to the definition of the potential operation. 
4) If OPo is empty, then go to Step 9. Otherwise, go to Step 5. 
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5) Arrange the operations in OPo in descending order according to the length of their relative 
subsequent paths. 

6) Calculate the competition indicator for each potential operation in turn. 
7) If there is an operation for which the competition indicator is less than  , then the planned 

operation can be interrupted; go to Step 8. Otherwise, the planned operation will not be interrupted; go 
to Step 9. 

8) Add the planned operation into OI. 
9) r++. 
10) If r > | OP |, then go to Step 11. Otherwise, go to Step 3. | OP | indicates the scale of OP. 
11) End. 

4. Algorithm design and complexity 

4.1. Algorithm design and implementation 

According to the above analysis of the main strategies, the implementation steps of the proposed 
algorithm, named MFISA, have been designed as follows.  

1) Schedule initialization and input the information on the operations and machines and setup 
times; then, initialize the data. 

2) Generate the idle machine set MI, the schedulable operation set OS and quasi-schedulable 
operation set OQ at the drive time Td. 

 Machine status mark: There are two marks for machine status. If the machine is idle, then its 
status mark is 1; if the machine is occupied, then its status mark is 0. At the initial time Td = 0, the 
status mark of all machines is 1. 

 Operation status mark: There are three marks for operation status. If the operation is 
unprocessed, then the operation status is marked as 0; if the operation is completed, then the operation 
status is marked as 1; if the operation is under processing, then the operation status is marked as 0.5. 
At the initial time Td = 0, the status mark of all operations is 1.  

 Mark conversion: At driven time Td, when an operation is assigned to a machine, the machine 
status mark is converted from 1 to 0 and the operation status mark is converted from 1 to 0.5. When 
the next driven time Td + 1 is confirmed, the status mark of the machine, for which the ending time is 
equal to Td + 1, is converted from 0 to 1; and, the status mark of the corresponding operation is converted 
from 0.5 to 0. 

 Generation of MI: Traverse the status marks of all machines, and then add the machines with 
status marks of 1 to MI. 

 Generation of OS: Traverse the status marks of all operations, and then add to OS the operations 
for which the status marks are 1 and the status marks of their predecessors are 0. In particular, at the 
initial moment, in the processing tree, all node operations with zero-entry degree are schedulable 
operations. Since the MFISA adopts the reverse-order scheduling mode, only the root node operation 
is schedulable at the initial time. 

 Generation of OQ: Traverse the status marks of all operations and add to OQ the operations for 
which the status marks are 1 and the status marks of their immediate predecessors are 0.5. 
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 Driven time: The moment that the status mark of a machine is converted to 1 is known as a 
driven time, and the scheduling system is driven to have a scheduling event, that is, a schedulable 
operation is decided to be assigned for the idle machines. 

3) Adopt the OOAS to assign the planned operations for idle machines and generate the planned 
operation set OP and the planned machine set MP. 

4) If all idle machines have been assigned planned operations, then go to Step 6. Otherwise, go 
to Step 5. 

5) Adopt the POS to deal with the unassigned idle machines and update OP and MP. 
6) The POPS is used to determine whether the current planned operation can be preempted by 

the other operations, and to generate the interrupted operation set OI. 
7) If OI is empty, then go to Step 9. Otherwise, go to Step 8. 
8) The planned machines of the operations in OI are locked for them at Td, that is, each operation 

cannot be selected by its planned machine until the next driven time. Then, update OS, retreat all 
machine statuses and all operation statuses back to the driven time Td and go to Step 3. 

 The locked machine for the operation is recorded as “operation number L (machine number)”. 
For example, the corresponding machine 3 of operation 26 is locked and recorded as 26L (3). 

9) Calculate the next driven time Td + 1 and update the driven time Td = Td + 1. Then, update MI, 
OS and OQ. 

 The driven time 
1 min( )

P
d i

i
T c 


O , where i is the operation in OP; that is, the next driven time 1dT   

is equal to the earliest completion time of the planned operations. 
 Convert the status marks of all planned operations to 0.5 and convert the status marks of the 

operations for which the completion time equals to 1dT   to 0. 

 Convert the status marks of all planned machines to 0 and convert the status marks of the 

machines for which the completion time equals to 1dT   to 1. 

10) If all operations have been processed, that is, if the status mark of each operation is 0, then go 
to Step 11. Otherwise, go to Step 2. 

11) Output the scheduling information and the Gantt chart. 
12) End. 
The flowchart for the MFISA is shown in Figure 6. 
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Figure 6. Flowchart of the MFISA. 

4.2. Complexity analysis 

The total number of operations of a complex product is set to be n, where the total number of the 
flexible operations is n1, and the total number of the involved machines is m. Then, the complexities 
of the FODS, the POS, the POAS and the POPS involved in the MFISA are as follows: 

1) In the FODS, the calculation of the earliest completion time of the flexible planning path 
requires n1 times, or the calculation of the sum of the earliest completion time of the flexible sequential 
operation and its relative subsequent path length requires n1 times. The comparison with the sum of 
the completion time of the planned operation and the relative subsequent path length requires (n1 - 1) 

times. Because 1n n , if and only if 1n n , the complexity will be O(n). 

2) There are at most m idle machines involved in the OOAS, and the calculation of the 
competitive operations for each machine needs nm times. Each operation needs to be sorted once to 
find the available machine with the shortest completion time, so nm2log2(m) times are required in total. 
When adopting the principle of the RLSP, the length of the relative subsequent path needs to be 
calculated at most n times and be sorted once, so it requires nlog2(n) times executions. During the 
execution of the OOAS, the FODS is adopted at most n1 times. Therefore, the OOAS involves 
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(nm2log2(m) + nlog2(n) + n1 (n1 - 1)) times executions, so the maximum complexity is O(n2) if and only 

if 1n n . 

3) There are at most (m - 1) idle machines involved in the POS, so, to generate the competitive 
process set for each planned machine, it needs to calculate the completion times at most (n - 1)m times, 
and each operation should be sorted once to find the machine with the shortest completion time. Thus, 
it requires (n-1)m2log2(m) times executions. Then, all competitive operations need to be sorted with 
(n-1)log2(n-1) times executions. During the execution of the POS, the FODS is adopted at most n1 
times. Therefore, the POS involves ((n-1)m2log2(m) + (n-1)log2(n-1) + n1 (n1-1)) times executions, so 

the maximum complexity is O(n2) if and only if 1n n . 

4) There are at most m planned operations that need to have the preemptive judgment in the 
POPS. It needs to calculate the earliest starting times for at most (n-m) operations to generate the 
potential operations for each planned operation. Then, it needs at most m(n-m) times for comparison 
with the completion times of the planned operations. In order to judge the preemption of the potential 
operations, the competition indicators need to be calculated (n-m) times for each planned machine, so 
m(n-m) times executions are required in total, and m operations are added into the interrupted operation 
set. Therefore, the POPS involves at most (m(n-m) + m(n-m) + m) times executions, so the complexity 
is O(n). 

5) When a preemption event occurs at the driven time, it is necessary to lock m operations and 
the corresponding machines, and to reassign the operations to the idle machines at the driven time. 
Thus, ((n-1) + (n-2) +…+1) = n (n-1) / 2 times executions are needed in total for all driven times. 
In conclusion, the complexity of the MFISA in this paper is max{n(n-1)/2 O(n), n(n-1)/2 O(n2), n(n-

1)/2 O(n2), n(n-1)/2 O(n)}. Therefore, the complexity is O(n4) if 1n n , or O(n3) if 1n n . 

5. Experimental analysis 

5.1. Numerical example for MFISP 

The above analysis and design of the MFISA are not based on a particular example, so the 
algorithm and strategies in this paper have more general applicability and application significance. 
In order to further explain the execution processing and the final effect of this algorithm, this paper 
will explain it through an example and highlight the scheduling procedure that involves the 
scheduling strategies. 

The processing operation tree of a complex product A is shown in Figure 7. Each node represents 
an operation with three common attributes: the operation number, the available machine numbers and 
the processing time of each machine. In addition, the special operation contains its operation type 
information. Except for the ordinary operations, there are four special operation types; information on 
the setup times is shown in Table 2. The flexible planning path groups and the flexible sequential 
operation groups are represented by the AND sub-graphs and the OR sub-graphs in the processing 
operation tree, respectively. 
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Table 2. Setup times between different types of operations. 

Type 
Machine 1 Machine 2 Machine 3 Machine 4 

I II III IV I II III IV I II III IV I II III IV 
I 0 2 2 4 0 3 4 3 0 7 7 2 0 5 8 3 
II 2 0 3 2 3 0 5 2 6 0 4 3 5 0 2 5 
III 3 3 0 5 4 5 0 2 7 4 0 3 8 2 0 5 
IV 3 2 3 0 4 3 2 0 5 3 3 0 3 5 5 0 

 

Figure 7. Processing operation tree of Product A. 

Now, the MFISA with α = 0.94 is applied to solve the scheduling problem of Product A. The 
scheduling procedure of each driven time is shown in Table 3. To make the strategies easier to 
understand, a few driven times are described in detail. 

First, we need to reverse the processing operation tree, that is, to perform priority scheduling of 
the root node and reverse scheduling along the arrow direction. At the initial time, t = 0, the schedulable 
operation set OS = {1} and the idle machine set MI = {1, 2, 3, 4}. Only Machine 2 has the competitive 
operation set OC = {1}, so, according to the OOAS, Machine 2 selects Operation 1 as its planned 
operation. At this time, the planned operation set OP = {1} and planned machine set MP = {2}. Since 
there is no potential operation of Machine 2, the final scheduling scheme is as follows: OP = {1} and 
MP = {2}.  

At t = 5, the schedulable operation set OS = {2, 3, 4} and the idle machine set MI = {1, 2, 3, 4}. 
Then, the OOAS is adopted, in the first round of allocation, the competitive operation set of Machine 
1 is OC = {2, 4}, l2 = 122.7, l4 = 60.7. According to the principle of the RLSP, Machine 1 selects 
Operation 2, and Machine 4 selects Operation 3. By updating the earliest ending time of each machine 
after the first round of allocation, the idle machine set MI = {2, 3} and there is no competitive operation 
for them; so, the second round of allocation is not required. At this time, the planned operation set OP 

= {2, 3} and planned machine set MP = {1, 4}. Then, the POS is adopted, the planned operation 3 on 
the planned machine 4 is an available operation for the idle machine 2. Operation 2 is temporarily 
assigned to Machine 3. Meanwhile, the competition operation set of Machine 4 is {4}, so Machine 2 
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selects Operation 3 as the planned operation, and Machine 4 selects Operation 4 as its new planned 
operation. At this time, the planned operation set OP = {2, 3, 4} and planned machine set MP = {1, 2, 4}.  

There is a potential operation set OPo = {5, 6} for Machine 4. According to the POPS, the 

competition indicator for Operation 4 is 5,4,4 0.907 0.94   , which means that Operation 4 may be 

preempted by Operation 5 on Machine 4. Then, lock Operation 4 up from being selected by Machine 
4 until the next driven time. Trace all of the scheduled information back to t = 5 and reschedule the 
idle machines and operations at t = 5.  

Backtracking to t = 5, the schedulable operation set OS = {2, 3, 4} and the interrupted operations 
set OI = {4L(4)}. According to the OOAS, the planned operation set OP = {2, 3} and planned machine 
set MP = {1, 4} are obtained. The planned operation 2 on the planned machine 1 is an available 
operation for the idle machine 3. According to the POS, Operation 2 is temporarily assigned to 
Machine 3. Meanwhile, the competition operation set of Machine 1 is {4}, so Machine 2 selects 
Operation 3 as the planned operation and Machine 1 selects Operation 4 as its new planned operation. 
Thus, the planned operation set OP = {2, 3, 4} and planned machine set MP = {3, 4, 1}. Since there is 
no potential operation set for MP, the final scheduling scheme at t = 5 is as follows: OP = {2, 3, 4} and 
MP = {3, 4, 1}. 

At t = 30, the schedulable operation set is {16/17, 26, 32/35, 41}, the idle machine set MI = {2, 3} 
and the interrupted operations set OI = {26L(4)}. Operations 16 and 17 are flexible operations in the 
same flexible sequential operation group, and Operations 32 and 35 are the first-position flexible 
operations on two flexible planning paths of the same flexible planning path group. The competitive 
operation set of Machine 3 is {16/17, 35, 41}, and the competitive operation set of Machine 4 is 
{32}. According to the OOAS, the planned operations of Machines 3 and 4 are Operations 16 and 32, 
respectively. Then, according to the FODS, Operation 16 is better than Operation 17, and the planning 
path of Operation 32 is better than that of Operation 35; so, Machines 3 and 4 still keep their selection. 
At this time, the planned operation set OP = {16, 32} and planned machine set MP = {3, 4}. Finally, 
according to the POPS, it is known that neither Machine 3 nor Machine 4 will be preempted, so the final 
scheduling scheme at t = 30 is as follows: OP = {16, 32} and MP = {3, 4}. 
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Figure 8. Gantt chart of Product A obtained by the MFISA. 
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The Gantt chart is shown in Figure 8, where a gray square indicates the setup time. The final 
completion time of Product A is 141 hours; the selected orders for the two flexible sequential operation 
groups are {16  17  18} and {12  11  14  13}, and the selected planning paths of the two flexible 
planning path groups are {32  33  34} and {22}. The final positive scheduling order of operation and 
the corresponding machines for Product A are {42, 15, 31, 28, 25, 39, 21, 13, 30, 40, 22, 20, 38, 29, 
19, 34, 11, 10, 41, 18, 14, 27, 12, 17, 33, 9, 26, 32, 16, 8, 7, 5, 6, 2, 3, 4, 1} and {4, 1, 1, 3, 1, 1, 2, 4, 
2, 3, 3, 1, 2, 1, 1, 2, 2, 4, 4, 4, 3, 3, 3, 3, 4, 4, 3, 2, 1, 3, 1, 4, 2, 1, 4, 3, 2}. 

Figure 9. Gantt chart of Product A obtained by the MFISA without using the POS. 

Figure 10. Gantt chart of Product A obtained by the MFISA without using the POPS. 

To visualize the effects of POS and POPS, Figures 9 and 10 show the Gantt charts obtained 
without the POS and POPS, respectively. The makespans of Product A are 156 hours and 161 hours, 
respectively. Obviously, their makespans are much longer than that obtained via the MFISA. The 
reasons are as follows. 

Without using the POS, many operations cannot be processed in parallel with optional machines. 
For example, in Figure 9, without using the POS, Operation 4 is not assigned to any machine at t = 5, 
which delays all of the starting times of the successor operations, and Machine 3 remains idle until 
time 28.  

Without using the POPS, the processing states at some driven times will not backtrack to a better 
scheme to consider the competition of some potential operations, which can preempt the machine. For 
example, in Figure 10, without using the POPS, the processing state is not backtracked to driven time 
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5 by because Operation 6 can preempt Machine 4 from Operation 4 at time 11. Operation 6 will be 
processing on Machine 4 at time 23, which is 12 hours later than it in Figure 8. 

Table 3. Operation scheduling table. 

Driven 
time 

Schedulable operation 
Machine Next driven 

time 
Interrupted 
operation 1 2 3 4 

0 1  1   5  
5 2, 3, 4 2 II 3I  4 5 4 
5 2, 3, 4L(4) 4 3I  2 II 11  
11 6    6I 15  
15 5  5II   20  
20 7, 8 7III  8  28  
28 16/17, 26    26 28 26 
28 16/17, 26L(4)*     30  
30 16/17, 26L(4), 32/35, 41   16IV 32I 35  
35 26, 41, 31 26    36  
36 33, 41, 31     40  
40 33, 41, 31, 27, 17, 9, 11/12 9IV 33I 17IV 12II 40  
48 41, 31, 27 , 34  27   52  
52 41, 31, 34, 18   41II  52 41 
52 41L(3), 31, 34, 18   31II  52 31 
52 41L(3), 31L(3), 34, 18     53  
53 41L(3), 31L(3), 34, 18, 11/14   14IV 18IV 55  
55 41, 31, 38, 34, 10 41II    63  
63 11, 31, 38, 34, 10, 29  10IV 11II  65  
65 28, 29, 31, 34, 42 34III    73  
73 31, 28, 39, 42, 19    19IV 74  
74 41, 31, 28, 39,  13   29III  75  
75 13, 28, 31, 38, 42 38    84  
84 13, 28, 31, 20, 22/23, 42    20II 85  
85 13, 22/23, 28, 31, 42  22I 42II  90  
90 13 , 28, 30, 31, 40, 42 40II  30III  97  
97 31, 28, 39, 42, 13, 21    13IV 100  
100 28, 31, 39, 42, 21, 25  21II   103  
103 28, 39, 42, 31, 25   39III  106  
106 25, 28, 31, 42 25I    116  
116 28, 31, 42 28I    118  
118 31, 42  31II   119  
119 42, 15   15IV 42II   

*: 26L(4) indicates Operation 26 cannot be selected by Machine 4 
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Table 4. Statistics and results of the instances. 

No. of 
instanc
es 

OPs.a MAs.b FPPGs.c FSOGs.d FOs.e
JMRW MLW ECT MFISA 

MS.f CT.g MS.f CT.g MS.f CT.g 
Average 
MS.f 

MS.f (best 
known) 

Average CT.g 

1 50 5 3 2 25 614 0.08 606 0.02 783 0.03 558.55  543 0.23 
2 50 5 4 2 26 414 0.19 400 0.02 442 0.00 290.73  287 0.25 
3 66 5 4 4 44 724 0.13 520 0.03 576 0.00 454.55  441 0.26 
4 59 5 4 2 35 713 0.13 709 0.05 631 0.02 531.73  496 0.22 
5 62 5 3 3 38 833 0.09 695 0.00 702 0.02 487.27  480 0.21 
6 144 10 4 4 52 719 0.73 649 0.09 753 0.08 432.64  424 1.10 
7 127 10 2 3 32 528 0.36 730 0.09 825 0.02 484.73  432 0.55 
8 144 10 4 4 52 747 0.39 847 0.09 956 0.09 542.36  513 0.72 
9 134 10 3 3 40 563 0.33 697 0.09 630 0.05 360.64  335 1.05 
10 160 10 2 3 35 775 0.33 1093 0.09 1051 0.03 600.73  575 0.98 
11 300 15 4 7 83 834 1.03 1139 0.36 1229 0.09 625.09  572 3.18 
12 307 15 8 3 85 868 1.92 1300 0.22 1264 0.08 644.73  596 3.62 
13 293 15 5 6 101 1122 1.38 1137 0.19 1390 0.13 623.64  593 3.93 
14 294 15 2 7 84 775 1.38 829 0.33 780 0.19 465.27  429 4.97 
15 279 15 3 2 47 710 1.17 1079 0.19 967 0.11 477.18  456 2.82 
16 435 20 6 3 105 689 2.56 1031 0.33 1027 0.14 489.00  431 8.49 
17 390 20 8 6 93 552 2.05 550 0.33 614 0.14 360.55  343 8.79 
18 411 20 8 2 72 666 2.53 799 0.28 815 0.08 440.55  416 7.95 
19 371 20 2 6 67 703 2.25 1065 0.38 943 0.14 495.18  463 7.95 
20 372 20 3 2 34 763 2.06 1694 0.19 1613 0.09 637.27  621 3.48 
21 491 25 6 3 69 581 4.17 686 0.31 713 0.16 349.45  329 15.77 
22 487 25 6 5 96 707 2.73 1301 0.19 1122 0.14 510.91  488 10.37 
23 448 25 2 4 45 600 3.45 1042 0.27 889 0.16 443.55  420 11.92 
24 526 25 4 8 124 741 4.06 1002 0.22 1156 0.20 465.00  421 23.99 

            Continued on next page 
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No. of 
instanc
es 

OPs.a MAs.b FPPGs.c FSOGs.d FOs.e
JMRW MLW ECT MFISA 

MS.f CT.g MS.f CT.g MS.f CT.g 
Average 
MS.f 

MS.f (best 
known) 

Average CT.g 

25 504 25 7 5 113 608 3.09 906 0.17 849 0.17 407.00  392 14.80 
26 667 30 8 6 166 652 5.92 787 0.28 872 0.28 387.73  368 32.10 
27 687 30 8 6 153 733 6.25 710 0.30 758 0.30 377.27  363 31.44 
28 647 30 7 6 157 792 5.13 1481 0.22 1315 0.38 557.55  525 27.80 
29 662 30 5 8 143 711 6.47 981 0.38 788 0.42 464.27  433 32.45 
30 622 30 7 6 117 806 6.14 1555 0.28 1501 0.34 629.45  610 18.17 

a: number of operations; b: number of machines; c: number of flexible planning path groups; d: number of flexible sequential operation groups 
e: number of flexible operations; f: makespan; g: CPU time 

 

Figure 11. Results of MFISA with different values of  .
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5.2. Experiments for MFISP 

In order to research the effectiveness of the proposed MFISA for the MFISP, we use the hypothesis 
test cases. Because there is no published integrated algorithm for the MFISP, we chose three typical 
dispatching rules: earliest completion time (ECT), job with most remaining work (JMRW) and 
machine with least workload (MLW); these were used to enable comparison with the MFISA. Because 
the MFISA does not describe the operations by jobs due to the reprocessing of some subassemblies, in 
this study, the dispatching rule JMRW was modified to give priority to the operation with the longest 
relative subsequence path. The number of actual scheduling operations of a complex product in the 
MFISP cannot be fixed, so 30 complex products with different scales and quantities of operation and 
equipment were selected. The process parameters of these products and the results of the above four 

algorithms are shown in Table 4. We chose [0.9,1]   with the step length of 0.01 for the proposed 

algorithm, where a total of 11 groups of experiments were carried out. Table 4 shows the best results 
and average values of these 11 groups of experiments. The results of these 11 groups of experiments 
are shown in Figure 11. For further intuitive illustration, the confidence intervals of the optimal 
solutions and CPU time are shown in Figure 12. 

 

Figure 12. Comparison of JMRW, MLW, ETC and MFISA results for the MFISP: (a) 
relative fitness and (b) CPU time. 

In Figure 11, it is obvious that the optimal result of each product obtained by the MFISA may 
differ with different α. This is because these products are structured differently and the MFISP is NP-
hard. Also, the differences between the results were not huge. Thus, we randomly chose the case with 
α = 0.94 as an example. In Figure 12(a), it is clear that the average results of the MFISA are better than 
those of the other three algorithms, and all of the optimal results (best-known) were obtained by the 
MFISA. Also, the MFISA with α = 0.94 performed better than the other three algorithms. Most of the 
results of the other three algorithms were far from the optimal solutions, among which the MLW 
performed the worst. However, in Figure 12(b), we can see that the CPU times of the MFISA are much 
slower than those of the other algorithms. If there is a dynamic disturbance, the MLW is the fastest 



9808 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 9781-9817. 

algorithm to respond, but it also sacrifices the makespans of the complex products. 
The results show that the scheduling results of the proposed algorithm are the most favorable. As 

the operation scale increases, this advantage becomes more obvious. In fact, all of the optimal solutions 

were obtained by it with a suitable [0.9,1]  . Among all of the comparisons, the MFISA had the best 

performance.  

5.3. Numerical example for FISP 

When the number of flexible operations is zero and there are no special types of operations, the 
MFISP will degenerate into the normal FISP, which only considers the flexibility of machines. The 
MFISA can also be applied to solve the scheduling for the normal FISP. 

Now, we take the processing operation tree of Product B in Figure 13 as an example. The other 
three flexible integrated algorithms, i.e., the DPFISA [36] and CMFISA [37], which have better 
scheduling effects on the FISP, and the RLFISA [40], which is the latest algorithm, were compared 
with the MFISA. The Gantt chart for each is shown in Figure 14. The completion time of the scheduling 
scheme obtained by the MFISA was 120 hours, which is the same as that of the DPFISA and much 
less than the 155 hours obtained by the CMFISA. The result shows that the MFISA can also better 
solve the FISP. 

 

Figure 13. Processing operation tree of Product B. 

5.4. Experiments for FISP 

To further illustrate the effectiveness of the MFISA for solving the normal FISP, we randomly 
generated 13 groups of test instances with the operation and equipment combination of [50,100,200] 
× [5,10,15] and [400,600] × [15,20]. Each group contained 10 test instances of the same scale, for a 
total of 130 instances. In this study, 13 groups of test instances were divided into low density, medium 
density and high density based on the average number of operations per machine. Low density refers 
to the instances in which the average number of operations per machine is less than 20. High density 
refers to the instances in which the average number of operations per machine is more than 30, and the 
remaining instances are at medium density. The scales of all instances are shown in Table 5.  
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Figure 14. Gantt charts obtained by four algorithms: (a) Gantt chart of the DPFISA, (b) 
Gantt chart of the MFISA, (c) Gantt chart of the CMFISA and (d) Gantt chart of the 
RLFISA. 

Table 5. Scales of 13 test groups. 

Test Number of operations Number of machines Density level 
FIS_1 50 5 low 
FIS_2 50 10 low 
FIS_3 50 15 low 
FIS_4 100 10 low 
FIS_5 100 15 low 
FIS_6 200 15 low 
FIS_7 200 10 medium 
FIS_8 100 5 medium 
FIS_9 400 15 medium 
FIS_10 400 20 medium 
FIS_11 200 5 high 
FIS_12 600 20 high 
FIS_13 600 15 high 

The final results of the MFISA with α = 0.94, the DPFISA, the CMFISA and the RLFISA are 
shown in Figures 15 and 16. In order to make the results more intuitive, the confidence intervals of the 
optimal solutions and the CPU times for the four algorithms under different production densities are 
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shown in Figures 17–19. 

 

Figure 15. Results of the four algorithms on a combination of operations and equipment 
of [50,100,200] × [5,10,15]: (a) 50 operations on five machines, (b) 50 operations on 10 
machines, (c) 50 operations on 10 machines, (d) 100 operations on five machines, (e) 100 
operations on 10 machines, (f) 100 operations on 10 machines, (g) 200 operations on five 
machines, (h) 200 operations on 10 machines and (i) 200 operations on 10 machines. 

As shown in Figure 15, when the production scale is low-density, the average result of the MFISA 
with different values of α is the best. Compared with the average result, the solution with α = 0.94 was 
not the best among all α values, but it was still better than the other three algorithms. It indicates that, 
regardless of the α value, overall, the MFISA outperforms the other algorithms. Among the other 
algorithms, the RLFISA is the most recently published algorithm, but its performance is worse than 
the DPFISA. However, the RLFISA had the best running time of the four algorithms, while the MFISA 
was the slowest. 

As shown in Figure 16, when the production scale is medium-density, the average results of the 
MFISA are still the best, but the effect is weaker than that of low density. When α is 0.94, the 
performance of the MFISA is still better than that of the other three algorithms. On the whole, most of 
the results of the MFISA are better than those of the other algorithms. The optimization effect of the 
RLFISA was better than that of the other two algorithms. However, the CMFISA had the best running 
time of the four algorithms, while the MFISA was the slowest. 
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Figure 16. Results of the four algorithms on a combination of operations and equipment 
of [400,600] × [15,20]: (a) 400 operations on 15 machines, (b) 400 operations on 20 
machines, (c) 600 operations on 15 machines and (d) 600 operations on 20 machines. 

 

(a)                                (b) 

Figure 17. Comparison results for four algorithms for low density: (a) relative fitness and 
(b) CPU time. 
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(a)                                (b) 

Figure 18. Comparison results for four algorithms for medium density: (a) relative fitness 
and (b) CPU time. 

 

(a)                                (b) 

Figure 19. Comparison results for four algorithms for high density: (a) relative fitness and 
(b) CPU time. 

As shown in Figure 19, the average results of the MFISA are still the best when the production 
scale is high-density. When α is 0.94, the performance of the MFISA is still better than the other three 
algorithms, but the running time is much longer than those of the other algorithms. Overall, the MFISA 
outperformed the other algorithms for the most instances. Among the other three algorithms, the 
DPFISA had a better optimization effect. 

Based on Figures 17–19, it can be found that the optimization effect of the MFISA always keeps 
a high level no matter the value of α. The optimization effects of the RLFISA and the CMFISA 
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obviously decrease with the increase of the production density. The optimization effect of the DPFISA 
improves with the increase of the production density. The running times of the four algorithms increase 
greatly with the increase of production density. 

6. Discussion 

In summary, the complementarity of all strategies has great influence on the performance of the 
proposed strategies when applied to solve both the MFISP and FISP.  

For the FISP, the previous approaches involved studying the characteristics of the processing tree 
by focusing on the shortest processing time of each operation to simplify the flexible problem, such as 
using the DPFISA and CMFISA. This ignores the influence of other processing times on all processing, 
artificially reducing the effect of optimization. The proposed algorithm makes up for this shortcoming 
and uses the average processing time to define the remaining workload of the processing tree, that is, 
the RSP. The OOAS was designed based on the RSP; it reduces the workload of the machines by 
selecting the proper competitive operations, and it avoids the accumulation of serial operations by 
making the operations on the critical path complete earlier. 

Previous event-driven-based approaches only dispatch operations per driven time  according to 
one certain principle, such as CMFISA. This may cause device load imbalance, resulting in longer 
processing times for concurrent operations. Besides, some algorithms only focus the schedulable 
operations at a current driven time or current layer priority in the processing tree, such as the DPFISA, 
RLFISA and CMFISA. This may cause new schedulable processes generated at other driven times or 
layers to lose potentially idle devices. To avoid the above shortages, the proposed algorithm uses the 
POS to supplement the results of employing the OOAS in parallel, and it uses the POPS to backtrack 
the driven times. The POS maximizes the avoidance of the empty load of idle machines at the driven 
time by adjusting the scheduling of the planned operations, so as to improve the parallelism between 
parallel processing operations. The POPS achieves the preemption of the new schedulable operations, 
providing a better solution to previous driven times. 

The experimental results in Figures 17–19 show that the MFISA performs better than the 
comparison algorithms without considering the production scale density. And, a suitable α can control 
it to find a more optimal solution. Since the change of α is controlled in a small range (0.9~1) and there 
is no obvious rule between the results, α can be randomly selected within this range. Also, since the 
running time of the proposed algorithm is short, it can also be run several times with different α to get 
a more optimized result. 

For the MFISP, in addition to the above advantages, the FODS is very helpful for the proposed 
algorithm when dynamically determining whether the current flexible operation is optimal. However, 
typical dispatching rules have no special strategy to deal with the flexible planning path group, so 
flexible operations cannot be optimally scheduled. The experimental results in Table 4 show that the 
MFISA is better than the comparison algorithms even when the operation scale is increased. 

7. Conclusions and future research 

In this paper, we address the MFISP for complex products. We establish the relevant mathematical 
model and build the extension processing operation tree by mapping the flexible sequential operation 
groups and the flexible planning path groups to the AND sub-graphs and OR sub-graphs. Then, we put 
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forward the MFISA to solve the scheduling of the MFISP. Therefore, the conclusions are as follows. 
1) The FODS ensures the compact serial processing between flexible operations and shortens 

the completion time of products as much as possible. 
2) The OOAS reduces the workload of the machines by selecting the proper competitive 

operations and avoids the accumulation of serial operations by making the operations on the critical 
path complete earlier. 

3) The POS avoids the empty load of the machines at the driven time by readjusting the 
scheduling scheme. 

4) The POPS achieves the preemption of the new schedulable operations. 
5) The MFISA can not only effectively solve the MFISP, but it can also better solve the FISP. 
Based on the MFISA proposed in this paper, it can also be mixed with strategies for multi-

workshops or other constrains to solve an extension of the MFISP, and it can be further extended to 
dynamic environments. 
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