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Abstract: The 5-methylcytosine (5mC) in the promoter region plays a significant role in biological 
processes and diseases. A few high-throughput sequencing technologies and traditional machine 
learning algorithms are often used by researchers to detect 5mC modification sites. However, high-
throughput identification is laborious, time-consuming and expensive; moreover, the machine learning 
algorithms are not so advanced. Therefore, there is an urgent need to develop a more efficient 
computational approach to replace those traditional methods. Since deep learning algorithms are more 
popular and have powerful computational advantages, we constructed a novel prediction model, called 
DGA-5mC, to identify 5mC modification sites in promoter regions by using a deep learning algorithm 
based on an improved densely connected convolutional network (DenseNet) and the bidirectional 
GRU approach. Furthermore, we added a self-attention module to evaluate the importance of various 
5mC features. The deep learning-based DGA-5mC model algorithm automatically handles large 
proportions of unbalanced data for both positive and negative samples, highlighting the model’s 
reliability and superiority. So far as the authors are aware, this is the first time that the combination of 
an improved DenseNet and bidirectional GRU methods has been used to predict the 5mC modification 
sites in promoter regions. It can be seen that the DGA-5mC model, after using a combination of one-hot 
coding, nucleotide chemical property coding and nucleotide density coding, performed well in terms of 
sensitivity, specificity, accuracy, the Matthews correlation coefficient (MCC), area under the curve and 
Gmean in the independent test dataset: 90.19%, 92.74%, 92.54%, 64.64%, 96.43% and 91.46%, 
respectively. In addition, all datasets and source codes for the DGA-5mC model are freely accessible 
at https://github.com/lulukoss/DGA-5mC. 
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1. Introduction 

DNA methylation is a dynamic, reversible and heritable form of epigenetic modification that 
occurs primarily during primordial mammalian germ cell and early embryonic development, and it is 
widely studied in the context of bioinformatics and disease [1]. DNA methylation, which influences 
gene expression, genomic imprinting, epigenetic changes and other biological processes without 
changing the DNA sequence, is crucial for human development. It can modify DNA sequences by 
attaching to the CpG region of DNA through a highly dynamic and synergistic nuclease network, and 
it accordingly controls gene expression by changing the regulatory region’s functional status without 
changing the genetic information carried by the DNA sequence [2]. One type of DNA methylation 
occurs when methyl bonds to cytosine at the cytosine guanine dinucleotide (CpG site). Currently, the 
three most prevalent forms of DNA methylation in living creatures are n4-methylcytosine (4mC), 5-
methylcytosine (5mC) and n6-methyladenine (6mA), which are not regulated by the same mechanisms 
and functions within an individual [3]. DNA molecules carry a variety of modifications, in which the 
most prevalent DNA modification in prokaryotes is 6-methyladenine (6mA), whereas the most 
prevalent DNA modification in eukaryotes is 5-methylcytosine (5mC). The regulation of gene 
expression is greatly influenced by 5mC, a key mechanism of epigenetic modification that is also 
a hotly debated subject in the field of epigenetic modification [4,5]. 

Several disorders [6–10], including cancer, such as liver, lung, kidney, cervical, ovarian and 
breast cancers, can be brought on by abnormal DNA methylation, which results in dysregulation 
of gene expression. According to the numerous studies, it also plays a role in the onset of autoimmune 
rheumatic disorders such as rheumatoid arthritis and systemic lupus erythematosus [11]. Furthermore, 
cell differentiation, immune system control and the emergence of cancer are all closely related to the 
DNA methylation of promoters and enhancers [12]. For example, promoter methylation is closely 
correlated to the incidence of several disorders, including Alzheimer’s disease [13], diabetes-related 
obesity [14,15], Parkinson’s disease [16] and malignancies [17]. DNA methylation is crucial for 
physiological and pathological research, and studies have demonstrated that it can be exploited as a 
critical biomarker for the early detection and management of diseases [18]. As one of the reversible 
epigenetic markers in humans, our research on 5mC site identification has not stagnated. Therefore, 
whether the 5mC site in the DNA promoter can be precisely recognized is significant for promoter 
methylation in cancer and human genetic diseases.  

Numerous academics have proposed computational methods to identify 5mC sites during the 
past decade. Some high-throughput sequencing techniques [19,20] were frequently used to detect 
5mC modification sites in the past, but this method was either expensive or time-consuming. 
Therefore, finding effective and robust methods to identify 5mC modification sites is urgently needed. 
However, predicting 5mC sites often relies on conventional machine learning algorithms. For instance, 
Chai et al. [21] constructed the Staem5 machine learning model based on a stacking ensemble to 
identify 5mC modification sites. Liu et al. [22] designed a fresh approach for RNA 5mC site 
prediction based on XGBoost; they named it m5Cpred-XS. Chen et al. [23] proposed a predictive 
model for RNA 5mC sites by using the model m5CPred-SVM. Recently, it was developed into a 
commonly utilized technique for categorization learning prediction due to the growing popularity of 
neural networks in deep learning. Several algorithms-based deep learning has also been used to predict 
5mC modification sites. For the case in point, Hasan et al. [24] proposed a hybrid framework for deep 
learning based on a stacking ensemble to identify 5mC sites. Shi et al. [25] constructed a model 
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R5hmCFDV based on deep voting and deep feature fusion to predict 5mC modification sites. These 
approaches are presented to promote the research of 5mC modification sites. More information on 
methods to predict 5mC modification sites and other modification sites of RNA can be referenced in 
the reviews [26–28]. 

Identifying 5mC modification sites in promoter regions is important to reveal DNA methylation 
modifications. We worked to improve the capability to obtain genome-wide promoter methylation sites 
in small cell lung cancer (SCLC) for this study because of lung cancer’s high morbidity and mortality. 
Zhang et al. [29] presented the iPromoter-5mC model for the first time. From the Cancer Cell Line 
Encyclopedia (CCLE) database, they first created an SCLC promoter methylation dataset, and then 
they processed it with CD-HIT [30] software. The iPromoter-5mC model uses one-hot encoding to 
extract 5mC sequence characteristics and a straightforward deep neural network (DNN) to predict 5mC 
modification sites in the promoter region. Then, Nguyen et al. [31] constructed a machine learning-
based predictor named 5mC-Pred, and their experimental results using the k-mers embedding feature 
encoding method on XGBoost outperformed the iPromoter-5mC model. Meanwhile, Qiu et al. [32] 
proposed a new SCLC promoter methylation dataset based on the model developed by Zhang et al. [29]. 
They proposed an m5C-HPromoter predictor based on stacking ensemble learning, and the classifier 
consists of a combination of machine learning algorithms: XGBoost, SVM, LightGBM and DNN 
algorithm. The experimental comparison with the iPromoter-5mC model was also performed on the 
same dataset used in our work and it achieved better performance. Subsequently, Cheng et al. [33] 
constructed a deep learning-based predictor, designated as BiLSTM-5mC, which was encoded with a 
combination of one-hot and nucleotide chemical properties (NCP). The best performance so far on the 
BiLSTM DNN was achieved, with the experimental results of both independent tests and five-fold 
cross-validation above the existing predictors.  

With the development of deep learning, densely connected convolutional network (DenseNet) [34] 
algorithms are becoming more and more popular in the field of bioinformatics. In 2020, Wang et al. [34] 
used a DenseNet to identify lysine acetylation sites and achieved good experimental results. In 2022, 
Jia et al. [35,36] successfully implemented the prediction of lysine succinylation sites and lysine 
glutarylation sites using the DenseNet. In deep learning networks, the traditional convolutional neural 
network will lead to a gradient disappearance problem as the number of layers rises, while the residual 
neural network (ResNet) [37] can better solve the gradient disappearance and gradient descent problem 
than the convolutional neural network. However, the depth of the ResNet determines the number of 
parameters, and, as the numbers of layers and layer weights increase, the number of parameters will 
also increase. Furthermore, the performance of the DenseNet has recently been enhanced based on 
ResNet and subsequently compared with the case of ResNet. The densely connected uniqueness of 
DenseNet effectively solves the problem of increasing the number of parameters to some extent, 
and it alleviates the gradient disappearance of the neural network, so there is no issue with training 
a deeper network.  

The term time-series data refers to the fact that sequence-type data are often temporally correlated. 
This means that the output of the network at a given moment is related to the input at the current 
moment, in addition to the output at a previous moment or moments. Recurrent neural networks [38] 
can handle time-series data; however, they suffer from gradient disappearance or gradient explosion 
during the learning process, making it difficult to establish dependencies between long distances in 
long sequences. So, in this study, we introduced a bidirectional gated recurrent unit (BGRU) [39] to 
capture the long-term dependencies between 5mC features. Due to its distinct advantages, the attention 
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mechanism [25] has recently been used in a wide range of fields. The core idea is to find the correlation 
between the original data so that we can ignore the rest of the non-dominant features and focus on the 
key features. Of course, the attention mechanism is also used by many researchers in the field of 
bioinformatics. For illustration, a multi-module deep learning system based on the attention 
mechanism, called DLF-Sul, was proposed by Ning and Li [40] to predict the S-sulfenylation sites in 
proteins. Zhang et al. [41] designed a classification model iLoc-miRNA to predict miRNA by fusing 
both attention mechanisms and a bidirectional long short-term memory network (Bi-LSTM). Thus, 
we also added the attention mechanisms to focus on the vital information between 5mC sequence 
features in this study.  

In this study, we summarized the prediction methods to enable identification of 5mC modification 
sites on the same dataset and the current progress in 5mC modification site prediction. Although 
BiLSTM-5mC [33] has made considerable strides, there are still certain shortcomings to overcome. 
Therefore, we constructed a new deep learning model DGA-5mC to identify promoter 5mC 
modification sites. In this DGA-5mC model, we first used an improved DenseNet, which is the 8 × 41 
feature matrix of the original DNA sequences after one-hot, NCP and nucleotide chemical density (ND) 
hybrid encoding processing input to the dense block to obtain high-level features. Then, we added a 
BGRU network after the improved DenseNet to obtain long-term dependencies between high-level 
features and introduced a self-attention module to evaluate the importance of features. Eventually, the 
fully connected layer receives these high-level features as input, and the softmax function is used to 
calculate a probability value between 0 and 1. To make the DGA-5mC model proposed in this work 
better, we also employed a homogeneous ensemble [42] under three identical web frameworks, and 
the three probability values were averaged to obtain the final prediction probabilities. If it is larger 
than 0.5, a 5mC modified site will be identified; otherwise, it is the opposite. The DGA-5mC 
network architecture is presented in Figure 1.  

 

Figure 1. Overall flowchart of DGA-5mC. 
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2. Materials and methods 

In this study, we developed a method based on deep learning to recognize 5-methylcytosine 
locations in genome-wide DNA promoters of SCLC. In what follows, we divide the work into three 
sections: the benchmark dataset, the feature extraction technique and the classification model.  

2.1. Benchmark dataset 

The source of the benchmark data in this work was a previous study by Zhang et al [29], who 
used SCLC as a target to examine the distribution of 5mC modification sites in the promoter. They 
obtained nucleotide sequences with a length of 41 and cytosine at the center from SCLC data from the 
CCLE database [43] to improve confidence in the data. Subsequently, they used CD-HIT [30] software 
to eliminate DNA sequences with more than 80% similarity. The benchmark dataset ultimately 
obtained 893,326 promoter methylation sample sequences from the benchmark dataset, consisting 
of 69,750 positive samples and 823,576 negative samples. Here, promoter segments with 5mC sites 
were the positive samples, whereas promoter segments without 5mC sites were the negative samples. 
Although the ratio of our positive to negative samples was roughly 1:11, this imbalanced data can 
mirror the distribution of 5mC modification sites in promoters more objectively. The benchmark 
dataset is shown in Table 1.  

Table 1. Details of the benchmark dataset. 

Original dataset Positive sample Negative sample 

Total 69,750 823,576 

Training dataset 55,800 658,861 

Testing dataset 13,950 164,715 

2.2. Feature extraction methods  

We used three feature extraction methods in this work, namely, one-hot, ND and NCP encoding 
to identify 5mC modification sites in promoters, which will be presented in further detail in this section.  

2.2.1. One-hot encoding  

One-hot encoding [33] is a simple and effective feature extraction method that has been widely 
used in the field of bioinformatics. It represents the four DNA bases of adenine (A), cytosine (C), 
guanine (G) and thymine (T) on the nucleotide chain of a DNA molecule as a binary vector consisting 
of 0 and 1. Specifically, it means that the nucleotides A, C, G and T can be represented by four vectors 
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), respectively. For this work, the length of the 5mC 
site sequence in the promoter was 41bp, so each sequence was transformed into a 4 × 41 feature matrix 
after encoding with this method. The encoding process is shown in Figure 2.  
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Figure 2. One-hot encoding. 

2.2.2. NCP encoding 

Recently, the NCP [44] encoding method has been applied in many studies in bioinformatics. This 
encoding method is based on three chemical properties, and it is a relatively simple encoding scheme. 
Different nucleotides have different chemical properties, and their detailed properties are listed below.  

1) From the perspective of the functional groups contained in the nucleotides, A and C both 
contain amino groups, and G and T both contain ketone groups.  

2) In terms of the ring structure, A and G contain two ring structures, while G and C have only 
one ring structure.  

3) From the perspective of base complementary pairing, A and T are linked by two hydrogen 
bonds when paired, while G and C are linked by three hydrogen bonds when paired.  

Table 2. NCPs. 

Chemical properties Classification Nucleotide Encoding form 

Ring structure 
Purine (two) A, G 1 
Pyrimidines (three) C, T 0 

Functional group 
Amine A, C 1 
Ketone group G, T 0 

Hydrogen bonding 
High stability C, G 0 
Weak stability A, T 1 

For the 5mC site sequence sample of the promoter in this paper, each nucleotide can be 
represented as a three-dimensional vector according to the NCP encoding form. Thus, the four 
nucleotides A, C, G and T are represented by (1, 1, 1), (0, 1, 0), (1, 0, 0) and (0, 0, 1), respectively. 
Table 2 gives the specific chemical properties and encoding representation among the nucleotides.  

2.2.3. ND encoding 

The ND [42] encoding method is also one of the DNA sequence encoding methods, and it is often 
used in combination with other encoding methods. The main principle is to take one or several bases 
in a DNA sequence sample as an element and calculate the frequency of this element occurring in the 
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sample where it is located.  
Assume that the DNA sequence samples are composed of 𝑙 nucleotides, where 𝑅  is one of the four 

nucleotides. Then, the DNA sequence samples can be expressed in the form of Eq (1).  

𝑌 𝑅 𝑅 𝑅 𝑅 … 𝑅 … 𝑅 (1)  

Take the calculation of single ND as an example, where 𝑃  is the density of the occurrence of 
nucleotide 𝑅  at position 𝑖 in the DNA sequence sample. The calculation method is shown in Eq (2).  

𝑃
∑

(2)  

where 𝑓 𝑅  is calculated as shown in Eq (3), and 𝑅  represents the mth nucleotide. 

𝑓 𝑅
1，𝑅 𝑅

0，others
(3)  

Each nucleotide can be represented as a one-dimensional vector using the ND encoding 
method. We take a 41bp long sequence “TGCCT...GAAGC” in promoter 5mC as an example: “A” 
at positions 18, 19, ..., 38 and 39 with densities of 1/18, 2/19, ..., 6/38 and 7/39, respectively; “C” at 
positions 3, 4, ..., 36 and 41 with densities of 1/3, 2/4...14/36, ..., and 15/41, respectively; “G” at 
positions 2, 6, ..., 37 and 40 with densities of 1/2, 2/6, ..., 12/37, ..., and 13/40, respectively; and “T” 
at positions 1, 5, ..., 30 and 32 with the densities of 1/1, 2/5, ..., 5/30 and 6/32, respectively. Eventually, 
this sequence can be represented as a 41-dimensional vector.  

We combined NCP encoding and ND encoding, in which each nucleotide can then be represented 
by a four-dimensional vector. Therefore, a promoter 5mC sequence can be represented as a 4 × 41 
feature matrix, as illustrated in Figure 3.  

 

Figure 3. NCP encoding and ND encoding. 

2.3. Classification model 

2.3.1. DenseNet 

The DenseNet [34] is a neural network framework based on the ResNet, which is composed of 
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three layers: the convolutional layer, the dense block layer and the transition layer. The original features 
are first convolved with the convolutional layer and then combined with several densely connected 
dense blocks and transition layers to obtain the high-level features of the sequence. The specific 
network structure is represented in Figure 4.  

To ensure maximum information transfer to and from layers, the most unique aspect of DenseNet 
is the proposed dense connection mechanism, which ensures that all layers are interconnected. 
Specifically, each layer is used as input to the subsequent layer, and it is to be connected to all of the 
previous layers in the channel dimension. This implies that each layer is connected to all previous 
layers in the channel dimension and serves as input to the next layer. There are (L (L+1))/2 
connections total for an L-layer DenseNet. It can be seen that this is a more dense way of connection. 
Moreover, DenseNet directly concatenates feature maps of different layers, which can realize feature 
reuse and improve efficiency.  

 

Figure 4. Original structure of DenseNet. 

A dense block consists of an L-layer network structure with a nonlinear transform function, and 
the specific network structure is represented in Figure 5. The nonlinear transformation function consists 
of a normalization function batch normalization (BN), rectified linear unit (ReLU) and a 3 × 3 
convolution kernel. The Lth layer of DenseNet will have L inputs, which means that the Lth layer 
receives all feature map outputs from the previous L1 layers. Its output is calculated as 

𝑥  𝐻 𝑥 , 𝑥 , … , 𝑥 (4)  

where 𝑥 , 𝑥 , … , 𝑥  denotes the feature maps from layer 0 to layer L1, which are concatenated, L 
denotes the layer, 𝑥  denotes the output of layer L and 𝐻  denotes a nonlinear transformation.  

The transition layer mainly connects two adjacent dense blocks and reduces the feature map size. 
The transition layer consists of a 1 × 1 convolution and 2 × 2 AvgPooling with the structure of 
BN+ReLU+1 × 1 Conv + 2 × 2 AvgPooling, which can lead to the features’ dimensional reduction and 
show the result of compressing the model. 
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Figure 5. Structure of a dense block. 

In this study, we have modified the original network framework of DenseNet. In detail, we 
removed the first convolutional layer and inputted the original features of the one-hot encoded 
promoter 5mC sequence directly to the dense block. Furthermore, we added a BN layer between the 
dense block and the transition layer, which extracted the original feature information at a deeper level 
and improved the generalization ability of the model. The BN is given as 

𝑥
√

(5)  

𝑦 𝛾𝑥 𝛽 (6)  

where 𝜇 is the mean of the feature dataset; 𝜎  is the variance of the feature dataset; 𝛾 and 𝛽 are the 
trainable parameters.  

By repeating the experiment, we adjusted the network parameters and selected the four-layer 
dense block that can obtain the optimal prediction results. The improved DenseNet structure for this 
work was shown in Figure 1.  

2.3.2. BGRU 

To obtain the long-term dependence between the 5mC features, we added two layers of 
BGRUs [45,46] after the DenseNet to extract deeper features. The network structure is shown in 
Figure 6. The feature maps generated after the DenseNet are fed into a two-layer BGRU, which has 500 
neurons per layer, to extract higher-level features.  
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Figure 6. Structure of BGRU. 

The BGRU consists of two GRUs, including a forward GRU model that accepts forward inputs 
and a reverse GRU model that learns reverse inputs. The BGRU performance is similar to that of a Bi-
LSTM [33], which is essentially a Bi-LSTM without output gates, but with fewer parameters and lower 
computational complexity. The network structure of a BGRU is relatively simple, as it consists of only 
update gates and reset gates. Figure 7 represents a standard GRU architecture. The update gate 
indicates the state of a cell at a certain time, and a larger value indicates that more information about 
the previous state is remembered. The reset gate is applied to regulate the degree of forgetting the state 
information of the previous moment, and a smaller value means that more is forgotten. The GRU can 
be calculated as 

𝑟 𝜎 𝑊 𝑥 𝑈 ℎ
𝑧 𝜎 𝑊 𝑥 𝑈 ℎ

ℎ 𝑡𝑎𝑛ℎ 𝑊𝑥 𝑈 𝑟 ⨀ℎ
ℎ 1 𝑍 ⨀ℎ 𝑍 ⨀ℎ

(7)  

where 𝜎  is the sigmoid function, W and U are the weight matrices, ⨀  denotes the element 
multiplication, ℎ  denotes the hidden state at the previous moment, ℎ  denotes the hidden state at the 
current moment, 𝑥  denotes the input sequence information, 𝑟  denotes the reset gate and 𝑧  denotes the 
update gate.  

 

Figure 7. Inner structure of a GRU. 
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2.3.3. Self-attention 

After processing through the BGRU, we introduced another self-attention module [25] to learn 
the importance of the features, as shown in Figure 8. We have taken the 5mC high-level feature output 
after the self-attention module and then input them into a two-layer fully connected layer. The first 
layer consists of 240 neurons with a dropout mechanism with a 50% random deletion rate, and the 
second layer consists of 40 neurons with a random deletion rate of 20% for the dropout mechanism. 
We chose softmax [25] as the activation function for the DGA-5mC model to obtain the predicted 
probability of the 5mC sites in the promoter.  

The self-attention mechanism module converts the input data into three vectors: 𝑞 , 𝑘  and 𝑣 . The 
output vector is a weighted sum of each value vector, and it is obtained by querying the correlation of 
the vector with the corresponding vector to calculate the weight of each value vector. The calculation 
method is shown as 

𝑞 𝑊 𝑏
𝑘 𝑊 𝑏
𝑣 𝑊 𝑏

𝑤
,

∑ ,

(8)  

where 𝑊  , 𝑊   and 𝑊   are the parameter matrices; 𝑞  , 𝑘   and 𝑣   stand for the query, key and value 
vectors, respectively; 𝑤  is the weight assignment to the input vectors.  

 

Figure 8. Structure of self-attention. 

2.3.4. Ensemble learning 

In machine learning, we input independent test datasets to several of the same or different models, 
and then calculate several predictions and average them. This ensemble learning method is known as 
model averaging. The advantage of model averaging is that different models do not usually produce 
identical errors on the independent test dataset, and it is a very powerful method for reducing 
generalization errors. In this study, the homogeneous ensemble algorithm refers to the use of the same 
feature extraction and model framing methods for the same training dataset. It makes use of the very 
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idea of model averaging introduced above. In this study, we used five-fold cross-validation. The 
training dataset was divided into five parts, four of which were used for training and one for validation. 
For the training dataset, we put the validation set into three models in each fold, through which three 
predictions were obtained. And, the three predictions were averaged to get the validation results for 
each fold. For the independent test dataset, the same method was used as that for the training dataset. 
The exact structure of the ensemble learning algorithm is shown in Figure 9. It is worth noting here 
that Models 1, 2 and 3 in Figure 9 are the same model framework, which is all network frameworks in 
the DGA-5mC model without the homogeneous ensemble learning. In detail, the promoter 5mC 
sequence is processed by one-hot, NCP, and ND hybrid coding to obtain an 8 × 41 feature matrix. We 
first inputted this 8 × 41 matrix into the improved DenseNet to obtain the high-level features. Next, 
we added a BGRU network to obtain the long-term dependencies between high-level features. 
Subsequently, a self-attention module was introduced to evaluate the importance of the features. 
Finally, the high-level features were fed into the fully connected layer and a probability value 
between 0 and 1 was derived using softmax. 

 

Figure 9. Ensemble learning figure of 5-fold cross-validation. 

2.3.5. Performance evaluation 

In this study, we selected five commonly used classifier evaluation metrics to evaluate the 
prediction performance of the DGA-5mC model, including the sensitivity (Sn), specificity (SP), 
Gmean, accuracy (ACC) and Matthews correlation coefficient (MCC); the specific definitions are 
respectively given as 
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𝑆𝑛

𝑆𝑃

𝐺𝑚𝑒𝑎𝑛 √𝑆𝑛 𝑆𝑃
𝐴𝐶𝐶

𝑀𝐶𝐶

(9)  

where TP refers to true positives, computing the number of positive samples that are truly predicted as 
positive. FP refers to false positives, i.e., the number of negative samples that are incorrectly classified 
as positive. TN indicates true negatives, corresponding to the number of negative samples that are 
correctly classified. FN denotes false negatives, or the number of positive samples that are incorrectly 
classified as negative. Sn and SP respectively represent the proportion of positive and negative samples 
predicted correctly, and G-mean is a composite of positive sample accuracy and negative sample 
accuracy. ACC represents the proportion of the whole sample predicted correctly, and MCC can 
accurately evaluate the performance of the model.  

In addition, we have also introduced the receiver operating characteristic (ROC) curve [47] 
and calculated the area under the ROC curve (AUC) to evaluate the overall performance of the 
predictor. The value of AUC is in the range of [0, 1], and its value is positively correlated with the 
prediction performance, where the larger the value of AUC, the better the overall performance of 
the predictor.  

3. Results and discussion 

In this study, we first evaluated the 5mC sequence feature extraction encoding method and 
conducted ablation experiments on the network architecture of the DGA-5mC deep learning model. 
Then, we evaluated the performance of the DGA-5mC predictor and obtained the experimental results 
for five-fold cross-validation and independent testing. Finally, we also performed a comparison with 
existing predictors, which showed superior performance in the Sn, MCC and AUC metrics.  

3.1. Contrasting various feature extraction techniques 

In the DGA-5mC network framework proposed in this paper, we compared the performance of 
three different feature encoding methods, including one-hot encoding, NCP and ND encoding 
(NPF+ND) and their hybrid encoding (one-hot+NPF+ND). As described in Section 2.2 introduced 
earlier, One-hot encoding and NPF+ND encoding can encode the nucleotide sequences of 5mC or non-
5mC sites into a matrix of size 4 × 41, respectively. One-hot+NPF+ND hybrid encoding can encode 
the nucleotide sequences of 5mC or non-5mC sites into a matrix of size 8 × 41.  

We inputted the feature matrices generated by these three encoding methods into the DGA-5mC 
network framework respectively; the experimental results on the training dataset and the independent test 
dataset are shown in Tables 3 and 4. It was easy to see that one-hot+NPF+ND hybrid coding was the 
best in terms of five performance evaluation metrics. Therefore, we adopted one-hot+NPF+ND hybrid 
encoding as the final encoding method in this study.  
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Table 3. Feature encoding methods based on 5-fold cross-validation on training dataset. 

Encoding Sn SP ACC MCC AUC Gmean 

One-hot 0.9027 0.9245 0.9228 0.6411 0.9634 0.9135 

NCP+ND 0.8990 0.9265 0.9244 0.6407 0.9626 0.9126 

One-hot+NCP+ND 0.9044 0.9250 0.9234 0.6417 0.9639 0.9146 

Table 4. Feature encoding methods based on independent test dataset. 

Encoding Sn SP ACC MCC AUC Gmean 

One-hot 0.9005 0.9255 0.9235 0.6407 0.9638 0.9129 

NCP+ND 0.8991 0.9264 0.9243 0.6421 0.9636 0.9126 

One-hot+NCP+ND 0.9019 0.9274 0.9254 0.6464 0.9644 0.9146 

3.2. Ablation experiment for model architecture 

We conducted ablation experiments on the network framework to determine which combination 
of the four methods was most suitable as the network framework for the model. The results of the 
ablation experiments based on the five-fold cross-validation of the training dataset are presented in 
Table 5. The results of the ablation experiments based on the independent test dataset are shown in 
Table 6. In Tables 5 and 6, the results of seven experimental combinations are shown, and the results 
of the best combination are indicated in bold. If there is a marker “√” in the corresponding row of each 
network method, it means that the method was selected for this experiment; if not, it means that the 
method was not selected.  

This shows that the network framework with a combination of the four methods works best. This 
network framework extracted more advanced features compared to other network frameworks, and it 
was the best in terms of the MCC metric. Therefore, we finally chose a combination of four methods 
as our network framework model for DGA-5mC.  

Table 5. Ablation experiments based on 5-fold cross-validation on training dataset. 

DenseNet √ √ √ √ √ √
BGRU  √ √ √ √ √
Self-Attention   √ √ √  √
Ensemble   √ √
Sn 0.9515 0.8985 0.9558 0.9504 0.8899 0.9108 0.9044
SP 0.8996 0.9228 0.8680 0.8595 0.9252 0.9223 0.9250
ACC 0.9037 0.9209 0.8749 0.8666 0.9224 0.9214 0.9234 
MCC 0.6125 0.6330 0.5566 0.5402 0.6327 0.6406 0.6417 
AUC 0.9637 0.9104 0.9572 0.9524 0.9585 0.9627 0.9639 
Gmean 0.9252 0.9104 0.9108 0.9038 0.9069 0.9165 0.9146
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Table 6. Ablation experiments based on independent test dataset. 

DenseNet √ √ √ √ √ √
BGRU  √ √ √ √ √
Self-Attention   √ √ √  √
Ensemble   √ √
Sn 0.9607 0.8776 0.9468 0.9615 0.8826 0.8874 0.9019
SP 0.8950 0.9301 0.8753 0.8337 0.9279 0.9299 0.9274
ACC 0.9001 0.9260 0.8808 0.8437 0.9244 0.9266 0.9254
MCC 0.6086 0.6381 0.5634 0.5082 0.6357 0.6439 0.6464 
AUC 0.9646 0.9603 0.9571 0.9488 0.9592 0.9640 0.9644
Gmean 0.9262 0.9089 0.9102 0.9115 0.9214 0.9106 0.9146

3.3. Performance of DGA-5mC on the training dataset 

To analyze the performance of DGA-5mC, we performed a five-fold cross-validation on the 
training dataset. The five-fold cross-validation performance of the DGA-5mC model on the training 
dataset is shown in Figure 10. It is not difficult to find that the values of the Sn, SP, ACC, MCC, AUC 
and Gmean metrics on the training dataset are very stable and fluctuate relatively little, effectively 
avoiding the problem of overfitting. Therefore, this indicates that the DGA-5mC model had good 
performance on the training dataset.  

 

Figure10. Performance of DGA-5mC on the training dataset. 

The ROC curve of the DGA-5mC model on the training dataset is shown in Figure 11, and 
the mean value of AUC was 0.9639. The AUC values for each fold of cross-validation were greater 
than 0.96. This indicates that our proposed DGA-5mC model has good stability.  
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Figure 11. ROC curve for DGA-5mC on the training dataset. 

3.4. Comparison with existing predictors 

The five-fold cross-validation performance of the DGA-5mC model compared to three existing 
prediction methods on the same dataset is shown in Table 7. It is worth noting that this work has an 
unbalanced ratio of positive and negative samples in the training dataset. However, we did not train 
the DGA-5mC model by processing the unbalanced data into balanced data as in the case of the 
BiLSTM-5mC model. Therefore, this made the training process biased toward the identification of 
majority class samples (promoter fragments without 5mC sites). As can be seen in Table 7, the DGA-
5mC model had a higher Sn than the other three prediction methods, including being 9.48% higher 
than the model BiLSTM-5mC, which is the latest prediction method, at the cost of a 1.54% decrease 
in SP and a 0.68% decrease in ACC. Since our dataset was a large amount of unbalanced data, 
comparing ACC is not meaningful, and MCC is an important measure of unbalanced data. It can be 
seen that, although SP and ACC were slightly reduced, the MCC assessment index was 1.82% higher 
than its BiLSTM-5mC model counterpart, and the AUC was basically the same as that for the 
BiLSTM-5mC model, proving that the predictive model DGA-5mC proposed in this paper focuses 
more on the accurate identification of minority class samples (promoter fragments with 5mC sites) 
than the other three prediction methods. Taking into consideration both positive and negative sample 
precision, we achieved a value of 91.46% by using the Gmean metric for both the five-fold cross-
validation and independent test datasets. 

The independent test performance of the DGA-5mC model and other prediction methods on the 
same dataset is shown in Table 8. It can be seen that the DGA-5mC model developed in this research 
achieved the best performance and outperformed the other three models in terms of the Sn, MCC and 
AUC metrics. The Sn metric was 0.9019, which was 3.58% higher than that for the BiLSTM-5mC 
model of the latest prediction method. However, the SP and ACC values from our method were slightly 
lower than those for the BiLSTM-5mC model, but they were higher than those for the other two models, 
iPromoter-5mC and 5mC-Pred. This may be due to the very low Sn for the BiLSTM-5mC model, 
resulting in an elevated SP, with a large amount of imbalanced data biasing the identification of most 
class samples (promoter fragments without 5mC sites) during training. The BiLSTM-5mC model 
reuses the number of positive samples 10 times and divides the number of negative samples into 11 
copies. Thus, the 1:11 unbalanced data was converted into 1:1 balanced data, resulting in 11 sub-models 
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of balanced data. Each model needed to be trained, and eventually 11 sub-models were trained. In 
contrast, the DGA-5mC model has the advantage that it can feed unbalanced data directly into that 
model, requiring only one model to be trained. In terms of computational effort, the DGA-5mC model 
has fewer parameters than the BiLSTM-5mC model, so it requires less time. Therefore, the DGA-5mC 
model is preferred over the other models. 

The ROC curve of DGA-5mC on the independent test dataset is shown in Figure 12, with a value 
of 0.9644 for AUC. In summary, the DGA-5mC model achieved excellent performance on both the 
training dataset and the independent test dataset, outperforming the other existing predictors. These 
comparative results indicated that the DGA-5mC model has better generalization ability and stronger 
prediction ability to accurately identify the potential 5mC sites.  

Table 7. 5-fold cross-validation performance of DGA-5mC and other predictors. 

Predictor Sn SP ACC MCC AUC Gmean 

iPromoter-5mC 0.8746 0.9039 0.9016 0.5743 0.9566  

5mC-Pred 0.8990 0.9200 0.9180 0.6260 0.9620  

BiLSTM-5mC 0.8096 0.9404 0.9302 0.6235 0.9644  

DGA-5mC 0.9044 0.9250 0.9234 0.6417 0.9639 0.9146 

Table 8. Independent test dataset performance of DGA-5mC and other predictors. 

Predictor Sn SP ACC MCC AUC Gmean 

iPromoter-5mC 0.8777 0.9042 0.9022 0.5771 0.9570  

5mC-Pred 0.8950 0.9200 0.9180 0.6250 0.9620  

BiLSTM-5mC 0.8661 0.9374 0.9303 0.6384 0.9635  

DGA-5mC 0.9019 0.9274 0.9254 0.6464 0.9644 0.9146 

 

Figure 12. ROC curve for DGA-5mC on the independent testing dataset. 
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4. Conclusions 

We developed a novel deep learning model, named DGA-5mC, to accurately identify 5mC 
modification sites in the genome-wide promoter region of SCLC cell lines in this research. The 
following three features of our model are wherein the significant novelties lie. First, we added ND 
encoding to the BiLSTM-5mC model encoding method and used their hybrid encoding to extract the 
original features of DNA sequences. Second, the ratio of positive to negative samples in the dataset for 
this work was unbalanced at 1:11. The DGA-5mC model algorithm automatically handles large 
proportions of unbalanced data for both positive and negative samples and does not require manual 
processing into balanced data, which highlights the reliability and superiority of the model. Lastly, we 
investigated the improved network framework of DenseNet and BGRU methods based on deep 
learning methods. We added a self-attentive module and classified it with fully connected layers, using 
a homogeneous ensemble. The experimental findings demonstrated that our proposed DGA-5mC 
model shows better prediction and generalization ability than the existing advanced models.  

The accomplishment of the model will assist researchers in better identifying 5mC modification 
sites in the promoter region. In the future, we will extend this work by trying to build a network of 
servers, which will provide numerous conveniences. Furthermore, all datasets and the source code of the 
DGA-5mC model can be accessed for free at https://github.com/lulukoss/DGA-5mC.  
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