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Abstract: In order to generate high-quality single-photon emission computed tomography (SPECT) 
images under low-dose acquisition mode, a sinogram denoising method was studied for suppressing 
random oscillation and enhancing contrast in the projection domain. A conditional generative 
adversarial network with cross-domain regularization (CGAN-CDR) is proposed for low-dose SPECT 
sinogram restoration. The generator stepwise extracts multiscale sinusoidal features from a low-dose 
sinogram, which are then rebuilt into a restored sinogram. Long skip connections are introduced into 
the generator, so that the low-level features can be better shared and reused, and the spatial and angular 
sinogram information can be better recovered. A patch discriminator is employed to capture detailed 
sinusoidal features within sinogram patches; thereby, detailed features in local receptive fields can be 
effectively characterized. Meanwhile, a cross-domain regularization is developed in both the 
projection and image domains. Projection-domain regularization directly constrains the generator via 
penalizing the difference between generated and label sinograms. Image-domain regularization 
imposes a similarity constraint on the reconstructed images, which can ameliorate the issue of ill-
posedness and serves as an indirect constraint on the generator. By adversarial learning, the CGAN-
CDR model can achieve high-quality sinogram restoration. Finally, the preconditioned alternating 
projection algorithm with total variation regularization is adopted for image reconstruction. Extensive 
numerical experiments show that the proposed model exhibits good performance in low-dose sinogram 
restoration. From visual analysis, CGAN-CDR performs well in terms of noise and artifact suppression, 
contrast enhancement and structure preservation, particularly in low-contrast regions. From 
quantitative analysis, CGAN-CDR has obtained superior results in both global and local image quality 
metrics. From robustness analysis, CGAN-CDR can better recover the detailed bone structure of the 
reconstructed image for a higher-noise sinogram. This work demonstrates the feasibility and 
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effectiveness of CGAN-CDR in low-dose SPECT sinogram restoration. CGAN-CDR can yield 
significant quality improvement in both projection and image domains, which enables potential 
applications of the proposed method in real low-dose study. 

Keywords: SPECT; low-dose sinogram restoration; conditional generative adversarial network; cross-
domain regularization; noise suppression 

 

1. Introduction 

Single-photon emission computed tomography (SPECT) is an effective imaging modality that has 
been widely used in oncology, for treatment monitoring and lesion malignancy evaluation, and in 
clinical diagnosis of cardiovascular diseases, bone scans, pulmonary perfusion imaging, lung 
ventilation imaging and regional cerebral blood flow tomography [1]. To obtain high-quality SPECT 
images for diagnosis, the standard dose of radiotracer or radiopharmaceutical is usually administered 
to the human body, thereby making the tissue-of-interest a source of gamma radiation. The single 
events due to gamma photons emitted from the tissue-of-interest can be recorded by a detector that 
rotates around the body. The collection of such emission events can then be sorted into a set of 2D 
projection data. Tomographic reconstruction of SPECT projection data can provide diagnostic 
information via estimates of the spatial and/or temporal distribution of radioactivity within the tissue-
of-interest. The estimates are widely known as reconstructed images under appropriate representation. 
In the application of emission tomography, the absorption rate, scattering effect and background 
radiation all affect the quality of reconstructed images [2,3]. 

Despite the effectiveness of SPECT imaging in clinics, the ionizing radiation induced by its 
radiotracer poses a potential hazard to human health, especially an increased risk of cancer with a 
probability related to radiation dose. Clinically, a lower radiation dose can be achieved by reducing the 
activity of the administered radiotracer, which inevitably leads to lower photon counts recorded by the 
detector. Under these circumstances, the use of conventional image reconstruction methods to 
reconstruct projection data of low count rates usually yields images with increased Poisson noise, 
severe artifacts and decreased spatial resolution, which may degrade accuracy of diagnosis [4].  

A tremendous amount of effort has been devoted to reducing radiation dose for SPECT imaging 
while maintaining the quality of reconstructed images. Model-based iterative reconstruction (MBIR) 
is one of the major handcrafted methods for reconstructing low-dose projection data or under-sampled 
k-space data [5–7]. MBIR methods have high mathematical interpretability, and they explicitly exploit 
the projective geometry and physical principle of data acquisition. Indeed, this category of 
reconstruction methods often develops proper regularization functionals to address the ill-posedness 
of image reconstruction problems and has greatly improved image quality over algebraic 
reconstruction techniques [8]. However, the traditional MBIR methods still suffer from relatively low 
performance (e.g., residual artifacts and decreased spatial resolution) due to their limited representation 
power. Moreover, the MBIR methods exhibit low efficiency and high bias, which may limit their 
clinical use. 

In recent years, the development of deep learning technology has greatly promoted research on 
medical image reconstruction. In learning-based philosophy, the model parameters of either a 
traditional handcrafted optimization model or neural network architecture are typically optimized on a 
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given dataset. In the presence of a high-quality large-scale dataset, deep models can automatically learn 
the neural network parameters. In particular, the combination of handcrafted and learning-based 
methods is gaining more and more attention since it takes into account the advantages of both 
categories. At present, deep learning is mainly combined with handcrafted methods and applied to 
medical image reconstruction in the following three categories: network-model-based end-to-end 
reconstruction methods, post-learning (image-domain learning) methods and pre-learning (projection-
domain learning) methods. 

(1) Network-model-based end-to-end reconstruction methods generate high-quality cross-
sectional images directly from the low-dose projection data. Some previous works [9,10] discussed 
end-to-end image reconstruction utilizing generic deep neural networks. For instance, Häggström et al. 
[9] presented an end-to-end positron emission computed tomography (PET) image reconstruction 
technique (DeepPET) based on a deep convolutional encoder-decoder network architecture, which 
took PET sinogram data as input and efficiently output high-quality, quantitative reconstructed images. 
Despite the lengthy training procedure, generic-network-based end-to-end reconstruction methods 
unbiasedly learn the inverse of the system model, the appropriate noise statistical model, and the 
regularization that best fits the characteristics of the input data, provided that the training samples are 
sufficiently abundant and diverse. However, the above category is often hampered in clinical 
applications where large-scale training samples are difficult to collect, and thus generic neural 
networks are intractable to train.  

To tackle the above problem, algorithm unrolling has been proposed and extensively studied in 
recent studies [11–15]. Indeed, an algorithm unrolled network architecture is usually defined over a 
data flow graph, which is derived from the iteration procedures of the underlying reconstruction 
algorithm. In the training phase, all parameters originating from the algorithm iteration scheme are 
jointly learned in an end-to-end manner using training pairs of contaminated observation data and high-
quality label images. In the testing phase, the algorithm unrolled network has lower computational 
overhead than its corresponding iterative algorithm, and adopts optimized parameters learned from the 
training samples for a specific reconstruction task. Unrolling methods, by expanding the capacity of 
iterative algorithms, have good potential in developing efficient, high-performance and relatively-
high-generalizability network architectures from small-scale training data sets. However, compared to 
generic networks, unrolled networks usually exhibit customized structures, which may increase model 
bias and invalidate existing training schemes. In order to address both issues caused by unrolled 
networks, while reducing parameter dimensionality of end-to-end generic networks, there has been a 
large amount of research exploring two-stage image reconstruction, that is, performing intra-domain 
learning with lightweight generic networks and reconstructing images with conventional algorithms. 
Under these circumstances, generic networks are typically applied to post-processing of reconstructed 
images or pre-processing of projection data. In either case, generic networks only need to learn the 
statistical and regularization models while leaving the determination of the system matrix to 
handcrafted physical modeling. As a result, the above two categories allow utilization of lightweight 
networks and take advantage of both intra-domain learning and model-based handcrafted 
reconstruction. 

(2) The post-learning methods perform network training after traditional image reconstruction 
and usually optimize the underlying network parameters on training pairs of low-dose reconstructed 
image (network input) and normal-dose reconstructed image (label). The aim of post-learning lies in 
removing artifacts and noise from the reconstructed images generated by an iterative reconstruction 
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method under low-dose acquisition mode. For example, Li et al. proposed a new 3D self-attentive 
learning scheme to solve the low-dose CT denoising problem [16]. The 3D self-attentive module uses 
the 3D volume of the CT image to capture the spatial information between CT slices. Han et al. [17] 
were among the first to adopt the approach of residual learning in sparse-view computed tomography 
(CT) reconstruction. Specifically, through a novel persistent homology analysis they showed that the 
manifold of image artifacts is topologically simpler than that of images, and they thus developed a 
deep residual learning architecture to estimate the image artifacts and further the artifact-free images 
via subtracting the artifacts from the input images. Following the lead of residual learning, Chen et al. 
[18] combined an autoencoder, deconvolution network and shortcut connection technique into a 
residual encoder-decoder convolutional neural network (CNN) with the aim of restoring low-dose CT 
images. Based on the encoder-decoder architecture, Zhang et al. [19] further applied cells of DenseNet 
to formulate the encoder module, where feature reuse can increase the depth of a neural network while 
greatly enhancing the expressive ability of the deep model.  

The encoder-decoder architecture is capable of stepwise compressing the input image into a 
feature representation and then stepwise rebuilding the representation into a full dataset. This 
architecture is flexible for developing deep models that are effective in noise suppression, artifact 
removal and structure recovery for low-dose study. In particular, Ye et al. discovered that the encoder-
decoder architecture emerges from the Hankel matrix decomposition [20] and thus further proposed a 
tight frame U-Net with orthogonal wavelet frame via adding additional high-frequency paths to the 
existing U-Net architecture [21]. The novel tight frame U-Net can effectively suppress blurring 
artifacts and exhibit better high-frequency recovery than the standard U-Net in sparse-view CT 
applications. In addition, the improved GoogLeNet [22] model with multi-scale convolution kernels 
has also been proven to be practical and effective for reducing artifacts in sparse-view CT 
reconstruction [23]. The category of post-learning methods provides a promising solution to the image 
artifact issues caused by sparse-view reconstruction. However, this category requires a large-scale 
training set of reconstructed images, and thus it is often used in conjunction with the low-
computational-overhead analytic reconstruction algorithms (such as the filtered back-projection 
algorithm). Under these circumstances, the probabilistic model of noise and prior knowledge of the on 
image cannot be fully exploited.  

The random noise in a low-dose sinogram may be amplified when reconstructed by the analytic 
reconstruction algorithm without prior knowledge. Such severely contaminated reconstructed images 
may increase the difficulty of neural network training in the post-learning category. On the contrary, 
pre-learning methods give a solution to remedy the above issue. Indeed, the pre-learning methods 
perform network training in the sinogram domain prior to image reconstruction, which decreases the 
training difficulty, as compared to image-domain training. Moreover, in the pre-learning category, 
image reconstruction only needs to be performed on the small-scale test set. Therefore, the high-
computational overhead MBIR methods can be applied to the test stage to achieve further improved 
image quality.  

(3) The pre-learning methods utilize pairs of low-dose and normal-dose projection data both in 
the sinogram domain for network training. In fact, the detected projection data in low-dose acquisition 
mode suffers from data deficiency. In recent years, there has been continuous exploration of sinogram 
pre-learning methods using deep neural networks to address data deficiency. For instance, the 
denoising or interpolation of CT or SPECT projection data was primarily implemented using the U-
Net architecture combined with residual learning in [24–28]. In a similar fashion, Shiri et al. [29] used 
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a convolutional encoder-decoder architecture in the sinogram domain to generate gap-free PET 
sinograms. Furthermore, in [30], the U-Net architecture was used in combination with the long short-
term memory network (LSTM) when processing the feature map in the decoding stage, so that the 
resulting deep model takes better consideration of the sequence property across adjacent projection 
angles in the sparse-view sinogram. In the other direction, with the advent of the generative adversarial 
network (GAN) [31], various deep models based on GAN architecture have also been applied to 
sinogram interpolation in medical imaging [32]. As an example, a sinogram super-resolution GAN 
model based on a residual-network generator was developed to generate high-resolution sinograms 
from the low-resolution counterparts in [33]. Later, Li et al. [34] proposed a variant of PatchGAN to 
recover the missing projection data when solving the reconstruction problem of limited angle CT. 
Similarly, [35] studied complementary limited-angle dual-energy computed tomography imaging 
using GAN. In general, the category of pre-learning methods learns the mappings from low-quality 
projection data to their high-quality counterparts, which facilitates unbiased image reconstruction and 
thus rarely relies on empirical prior knowledge. 

Existing pre-learning methods for low-dose image reconstruction mainly address the super-
resolution issue of sinograms; however, the denoising approaches of low-count-rate and thus high-
noise sinograms are not fully explored. In the acquisition mode of reduced photon counts, the 
projection data exhibits increased Poisson noise and lower contrast. Such data degradations may be 
further amplified in the image domain due to the ill-posedness of the reconstruction problem. In order 
to improve the quality of SPECT reconstructed images under low-count-rate acquisition mode, while 
avoiding image-domain training, suppressing random noise in the projection domain and enhancing 
sinogram contrast by a pre-learning method constitute a useful approach.  

The sinogram denoising problem usually meets two main challenges. First, the spatial variations, 
correlations and smoothness of sinograms differ from SPECT images, and thus the existing image-
domain denoising models may not apply to the projection-domain study. Specifically, as compared to 
a reconstructed image, the sinogram usually exhibits lower contrast and more-distant correlation, since 
a local structure in the image usually corresponds to a specific global sinusoidal strip in the sinogram, 
and the overlapping of sinusoidal strips may degrade the sinogram contrast. Under these circumstances, 
a convolutional network architecture commonly used in the image domain requires more down-
sampling layers or larger-sized convolution kernels to characterize globally-correlated information, 
which brings computational challenges to network training. Moreover, the traditional low-level 
uniform similarity metric may not provide satisfactory recovery of high-frequency sinusoidal features 
and sinogram contrast. Second, from the perspective of estimating effective information, sinogram 
super-resolution requires interpolating the missing information of the projection domain based on 
angular correlations of sinograms in a deterministic fashion; meanwhile, sinogram denoising needs to 
correct the noise-contaminated information through a handcrafted or learned statistical model. The 
very different mechanisms may limit the application of sinogram super-resolution methods in the 
denoising problem. Indeed, the random noise due to low-count-rate data acquisition may be magnified 
during the reconstruction process; hence, the development of appropriate noise suppression 
regularization is crucial to the sinogram denoising problem. As a result, there is a real need to 
specifically develop appropriate sinogram denoising methods, which can be accomplished via 
evaluating the feasibility of generic neural networks for this category of problems.  

To address the aforementioned challenges, a conditional GAN [36] (CGAN)-based sinogram 
denoising model with cross-domain regularization (CGAN-CDR) is proposed with the aim of 
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generating high-quality sinograms for low-dose sinogram restoration in SPECT imaging. Then, a 
previously developed preconditioned alternating projection algorithm with total variation 
regularization (TV-PAPA) is adopted for image reconstruction from the restored sinogram. CGAN-
CDR is composed of U-Net as the generator to generate fake normal-dose sinograms from low-dose 
SPECT sinograms and a patch discriminator to distinguish between generated sinograms and real 
normal-dose sinograms. This adversarial learning process occurs in conjunction with cross-domain 
regularization. The main contributions of this work are as follows: (1) The generator and discriminator 
in CGAN-CDR learn via an adversarial framework, which can better restore the detailed global 
sinusoidal features and recover the original contrast of the normal-dose sinogram. (2) The cross-
domain regularization is performed in both projection and image domains, which can effectively 
ameliorate the issue of ill-posedness and serve as a constraint on the generator, thereby, helps achieve 
superior performance in noise suppression and contrast recovery. (3) Extensive numerical experiments 
are conducted to demonstrate the effectiveness of CGAN-CDR for low-dose sinogram restoration in 
SPECT imaging both qualitatively and quantitatively. 

2. Methods 

2.1 Problem formulation 

The purpose of this work is to reconstruct a high-quality image from a low-dose sinogram. This 
work is divided into two phases as shown in Figure 1. The first phase is sinogram preprocessing, which 
restores a high-quality sinogram from the low-dose counterpart. The second phase is reconstruction of 
restored test sinograms. Assume 𝑥 ∈ ℝ௠   is the low-dose sinogram, 𝑦ଵ ∈ ℝ௠  is the high-quality 
sinogram restored by a sinogram-domain mapping F1, and 𝑦ଶ ∈ ℝௗ   represents the reconstructed 
image of sinogram y1 by a reconstruction algorithm F2. The first phase can be expressed as 

1 1( ).y F x                                   (1) 

The second phase can be expressed as 

2 2 1( ).y F y                                   (2) 

In this work, the network model CGAN-CDR is proposed to restore high-quality sinograms in the 
first phase. CGAN-CDR is based on the CGAN framework, and a cross-domain regularization model 
in both the projection and image domains is developed to address the issues of sinogram degradation 
and reconstruction ill-posedness. Image reconstruction is an ill-posed problem in which even a slight 
oscillation in the high-quality sinogram may be amplified in the image domain. Therefore, we adopt 
the previously developed MBIR method TV-PAPA [6] for reconstruction of restored test sinograms 
with the aim of suppressing image-domain oscillation and preserving edges. In fact, TV-PAPA provides 
four interesting and useful features. First, it allows us to deal with the functions involved in the 
underlying optimization problem either through their proximity operators or through their gradients. 
Indeed, for non-differentiable functions, the proximity operator can be a powerful tool; however, for 
smooth functions, the gradient may be easier to implement. Second, the iterative scheme of PAPA does 
not require matrix inversion, which is an advantage when solving large-scale reconstruction problems 
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where matrix inversion can be quite expensive. Third, through the preconditioning technique, PAPA 
suggests that the search for the solution follows the direction of search in the classical expectation 
maximization algorithm, and it thus speeds up the original convergence rate. Finally, the number and 
size of filters used in total variation (TV) regularization are small, which further reduces the 
computational cost for each iteration. 

 

Figure 1. Framework of the proposed two-phase low-dose reconstruction method. 

2.2 CGAN-CDR for sinogram restoration 

The proposed CGAN-CDR model is based on the CGAN framework and applied to the task of 
SPECT sinogram restoration. The proposed model consists of two neural networks that compete 
against each other. One neural network (U-Net) is the generator that generates fake normal-dose 
sinograms from the low-dose counterparts, while the other neural network (CNN) is the discriminator 
that evaluates the generated sinograms by comparing with the real normal-dose SPECT sinograms. 
This work takes advantage of CGAN, and modifies the original network structure so as to adapt to the 
underlying low-dose SPECT application. The overall network structure is shown in Figure 2. The low-
dose sinogram x is the input to generator network G, and y denotes the normal-dose sinogram. In the 
following sections, we will describe the generator and discriminator for CGAN-CDR in detail. 

 

Figure 2. CGAN-CDR architecture for restoring high-quality sinogram from the low-dose 
counterpart. 
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The discriminator network learns to classify the fake (low-dose sinogram, generated sinogram by 
the generator network G) and real (low-dose sinogram, real normal-dose sinogram) tuples. 

2.2.1. Generator 

SPECT sinograms typically exhibit fuzzy boundaries and relatively even gradients, which 
correspond to low-frequency information. Moreover, the recovery of high-frequency information in 
sinograms (e.g., the sinusoidal features and sinogram contrast) also requires careful consideration. U-
Net is a typical encoder-decoder neural network [37]. It can combine low-frequency information at the 
bottom layers and high-frequency information at the top layers, which best suits the underlying 
scenario. Therefore, we adopted U-Net as the generator network and added skip connections to U-Net, 
enabling low-frequency and high-frequency information in the network to flow through all the modules. 
As a result, there can be a lot of low-level information sharing inputs and outputs [38]. U-Net is 
beneficial to global coherence of restored sinograms. The specific network structure of U-Net is shown 
in Figure 3, and it consists of 4 down-sampling modules and 4 up-sampling modules. 

For input sinograms, down-sampling modules are first used for feature extraction. Each down-
sampling module is composed of two stacked “Convolution-BatchNorm-LReLU” modules. Following 
a similar philosophy to that used in the visual geometry group network model [39], we set the size of 
the convolution kernel as 3 ൈ 3 and the stride as 1 to achieve better sinogram feature extraction, and 
we adopt batch normalization processing to accelerate the convergence speed of the network. 
Meanwhile, the size of the sinogram is reduced to half of the original size by means of max pooling in 
each down-sampling module, which can enlarge the receptive field and reduce the computational cost.  

After the bottleneck module, sinograms are recovered by up-sampling modules. In each up-
sampling module, the sinogram size is enlarged to two times the original size by nearest neighbor 
algorithm, and then two convolution modules are used to retain the main information of the sinograms. 
Similarly, up-sampling modules also use batch normalization and leaky rectified linear unit (LReLU) 
to improve the speed and stability of network training.  

We further set up symmetric skip connections between each pair of up-sampling module and the 
corresponding down-sampling module. High resolution information passes directly from the encoder 
to the decoder of the same height after concatenation operation. This can provide finer features for 
sinogram edges, so that the sinogram can be better restored. In order to adapt the generator, we expand 
the size of input sinograms from 120 ൈ  128 to 128 ൈ  128 by zero-filling to facilitate network 
training. 
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Figure 3. The structure of generator network. 

2.2.2. Discriminator 

A pixel-level similarity metric function, such as the ℓଵ- or ℓଶ-norm-based grey-level loss, can 
recover overall low-frequency information of the target image. However, the recovery of high-
frequency information and the enhancement of image contrast remain challenging issues. According 
to Odena et al. [40], an adversarial network (the discriminator) potentially learns an adaptive similarity 
metric that can optimize for detailed features, edges and contrast in images beyond the low-level 
uniform similarity metric. With this lead, we exploit the discriminator network in PatchGAN [38] to 
capture and characterize the sinusoidal features within sinogram patches, since various patches in a 
sinogram exhibit different spatial variations and thus should be evaluated independently.  

Unlike traditional GAN, where the discriminator outputs a single evaluation value for the whole 
sinogram, PatchGAN is accompanied by an additional convolution operation which captures and 
evaluates the detailed sinusoidal features in various sinogram patches. Indeed, after passing through 
sequential convolution modules, the underlying sinogram is further mapped to 𝑁 ൈ 𝑁  evaluation 
matrix using an additional convolutional operation, instead of being fed into a fully connected layer. 
Each element in the 𝑁 ൈ 𝑁  evaluation matrix represents the prediction result corresponding to a 
specific patch in the generated sinogram. The realistic prediction by the 𝑁 ൈ 𝑁 evaluation matrix, 
instead of by a single value, can effectively characterize detailed features in local receptive fields and 
focus on more local regions. Finally, we average all 𝑁 ൈ 𝑁 prediction results to provide the overall 
output of the underlying discriminator. In numerical simulation, we empirically determined the patch 
size to be 13ൈ 13. By discriminating various sinogram patches, the local sinusoidal features are 
effectively extracted, which facilitates the improvement of sinogram resolution and contrast.  

The inputs of the underlying discriminator are pairs of generated and label sinograms. The 
discriminator has six modules, and its structure is shown in Figure 4. The first module consists of a 
4ൈ4 convolution operation with a stride of 2. Both the second and third modules consist of a 4ൈ4 
convolution operation with a stride of 2 and a Leaky ReLU followed by batch normalization. The 
fourth and fifth modules consist of a 4 ൈ 4 convolution operation with a stride of 1 and the 



9737 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 9728–9758. 

aforementioned Leaky ReLU. The last module remains a 4ൈ4 convolution operation with a stride of 
1. In summary, given input sinogram pairs, the discriminator network D employs a series of 
"Convolution-BatchNorm-LReLU" modules to extract high-level features in the sinogram domain. 

 

Figure 4. The structure of discriminator network D with details of convolutional modules. 
The variable y denotes the real normal-dose sinogram, and G(x) denotes the generated 
sinogram by generator network G. 

2.2.3. Loss function 

In this work, the total loss function consists of three terms. The first term is the adversarial loss 
function, which prompts the generator network to achieve the desired manifold projection and produce 
sinograms with accurate details. The second term is the projection-domain consistency loss function, 
which directly constrains the generator via penalizing the difference between the generator output and 
the label sinogram in a component-wise sense. The projection-domain loss can help recover accurate 
contrast between sinusoidal waves in the sinogram restoration process. The third term is the image-
domain consistency loss function, which imposes a similarity constraint on the reconstructed images 
of generated and label sinograms. The image-domain loss can address the issue of ill-posedness and 
serves as an indirect constraint on the generator. Indeed, sinogram noise may be amplified during an 
ill-posed reconstruction process; therefore, an effective noise-suppressed and artifact-reduced image-
domain regularization can in turn enhance the quality of generated sinograms. We refer to projection-
domain and image-domain losses collectively as the cross-domain regularization function. Finally, the 
minimax optimization problem for the CGAN-CDR can be defined as follows: 

adv sin imagemin max[ ( , ) ( ) ( )].
G D

G D G G                        (3) 

(1) Adversarial loss adv ( , )G D  

The CGAN-CDR considers the situation that the generator G and discriminator D are conditioned 
on low-dose sinogram 𝑥. The generator G generates the corresponding sinogram G(x), which is used 
to confuse the discriminator D. The learning of generator G makes the discriminator D have difficultly 
determining whether G(x) is the corresponding normal-dose sinogram y. The discriminator D learns 
progressively to distinguish between the generated sinogram G(x) and the normal-dose sinogram y. 
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This adversarial training prompts the generated sinogram G(x) to obey the empirical distribution in the 
projection domain and to exhibit high-quality normal-dose characteristics both in sinusoidal details 
and contrast. The adversarial loss can be formulated as follows: 

adv ~ ( ), ~ ( ) ~ ( )( , ) [log( ( , ))] [log(1 ( , ( )))].
data data datax P x y P y x P xG D E D x y E D x G x               (4) 

(2) Projection-domain loss sin ( )G  

The overall accuracy and noise suppression performance of generated sinograms, compared to 
the corresponding normal-dose sinograms (i.e., labels), are critical to reconstruction quality, since the 
estimation error due to the generator network model and the random noise due to the low-dose data 
acquisition scenario may be magnified during the reconstruction process. Therefore, a direct penalty 
on the generator network is necessary to improve the overall training accuracy and to enforce desired 
smoothness and spatial variation of the generated sinograms. While the adversarial loss can facilitate 
the recovery of detailed features and contrast in the target sinograms, a pixel-level similarity metric 
function tends to better denoise low-count-rate and hence low-contrast, high-noise sinograms and to 
directly improve the consistency between generated sinograms and labels. Note that a sparsity 
constraint on the difference between generated and normal-dose sinograms can further improve 
sinogram accuracy in the low-contrast scenario. As a result, we may take advantage of both adversarial 
loss and sparsity-promoting ℓଵ-norm similarity metric, thereby generating restored sinograms of low 
noise, accurate contrast and high accuracy. Indeed, the ℓଵ-norm-based projection-domain similarity 
loss function can be formulated as follows: 

sin ~ ( ), ~ ( ) 1( ) [|| ( ) || ],
data datax P x y P yG E y G x                         (5) 

where 𝑦 represents the normal-dose sinogram, and G(x) represents the restored sinogram by generator 
network G from the low-count-rate input sinogram x. Loss function (5) penalizes the disparity in the 
sinogram domain in a component-wise fashion. This projection-domain loss is a function of generator 
G, which together with the adversarial loss (4) guarantees a superior performance in recovery of 
detailed features and contrast and in suppression of severe noise. 

(3) Image-domain loss )(image G
 

The ill-posedness of SPECT image reconstruction magnifies the estimation error and Poisson 
noise in the restored sinogram, leading to critical artifacts, severe noise and even structural deformation 
of the reconstructed image. In order to directly and effectively ameliorate the above image degradations, 
we propose to penalize the difference between reconstructed images of generated and label sinograms, 
which in turn further improves the sinogram accuracy. Common reconstruction algorithms consist of 
the filtered back-projection (FBP) algorithm and iterative reconstruction algorithm. The iterative 
reconstruction algorithm is computationally expensive, which may invalidate the overall network 
training. Hence, we choose the reconstructed images after FBP to formulate the image-domain 
similarity loss function. In this manner, the quality of restored sinograms and quality of reconstructed 
images are simultaneously improved and mutually promoted. In particular, the ℓଵ-norm-based image-
domain similarity loss function is defined as follows: 
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1 1
image ~ ( ), ~ ( ) 1( ) [|| ( ( )) ( ) || ].

data datax P x y P yG E R g G x R g y                   (6) 

Here, G(x) denotes the output of generator G from the low-count-rate sinogram x, y denotes the 
normal-dose sinogram, g denotes the Ram-Lak filter used in the FBP algorithm, and 𝑅ିଵ denotes the 
inverse Radon transform. 

The generator and discriminator networks are updated in the way of alternating gradient descent. 
The detailed training procedure is shown in Algorithm 1. 

Algorithm 1: CGAN-CDR training procedure 
Initialization: hyper-parameters 𝜆 ൌ 0.6, 𝜔 ൌ 0.01, 𝑙𝑟 ൌ 0.0002, 𝛽ଵ ൌ 0.5, 𝛽ଶ ൌ 0.999 , the 
number of total epochs 𝑁௘௣௢௖௛ ൌ 1000, the batch size 𝑛 ൌ 16, the discriminator parameter 𝜃ௗ and 
generator parameter 𝜃௚ are initialized by random Gaussian distribution N(0, 0.022).  
1:  for num_epoch = 0, ..., 𝑁௘௣௢௖௛ do 
2: Sample a batch of low-dose sinogram ሼ𝑥ሺ௜ሻሽ௜ୀଵ

௡   and the corresponding normal-dose 
sinogram ሼ𝑦ሺ௜ሻሽ௜ୀଵ

௡  
3:  for i=1, …, n, do 

4:   ℓୟୢ୴
ሺ௜ሻ ሺ𝐷ሻ ← logሺ𝐷ሺ𝑥ሺ௜ሻ, 𝑦ሺ௜ሻሻሻ ൅ logሺ1 െ 𝐷ሺ𝑥ሺ௜ሻ, 𝐺ሺ𝑥ሺ௜ሻሻሻሻ 

5:  end for 

6:  Update 𝐷: 𝜃ௗ ← Adamሺ∇ఏ೏

ଵ

௡
∑ ℓୟୢ୴

ሺ௜ሻ ሺ𝐷ሻ, 𝜃ௗ, 𝑙𝑟, 𝛽ଵ, 𝛽ଶሻ௡
௜ୀଵ  

7:  for i=1, …, n, do 

8:       𝐿ሺ௜ሻሺ𝐺ሻ ← 𝜆ℓ୧୫ୟ୥ୣ ቀ𝐺൫𝑥ሺ௜ሻ൯ቁ ൅ 𝜔ℓୱ୧୬ ቀ𝐺൫𝑥ሺ௜ሻ൯ቁ ൅ logሺ1 െ 𝐷ሺ𝑥ሺ௜ሻ, 𝐺ሺ𝑥ሺ௜ሻሻሻሻ 

9:  end for 

10:  Update 𝐺: 𝜃௚ ← Adamሺ∇ఏ೒

ଵ

௡
∑ 𝐿ሺ௜ሻሺ𝐺ሻ, 𝜃௚, 𝑙𝑟, 𝛽ଵ, 𝛽ଶሻ௡

௜ୀଵ  

11: end for 

2.3. TV-PAPA 

The reconstruction problem can be formulated via the penalized maximum likelihood criterion, 
which is realized by maximizing the sum of the log-likelihood function of activity distribution vector 
f and the negative penalty term. In particular, the SPECT reconstruction optimization model reads: 

𝑓መ ≔ arg min
௙ஹ଴

ሼ〈𝐴𝑓, 𝟏〉 െ 〈lnሺ𝐴𝑓 ൅ 𝛾ሻ, 𝑢〉 ൅  𝜆𝜑ሺ𝐵𝑓ሻሽ,               (7) 

where 𝐴 ∈ ℝ௠ൈௗ  is the system matrix, and 𝛾 ∈ ℝ௠  is the vector of background counts. The 
composite function 𝜑 ∘ 𝐵  is a real-valued energy function, and 𝜆  is a positive regularization 
parameter. Specifically, when the regularization term 𝜆𝜑 ∘ 𝐵 reduces to TV, the regularization matrix 
B is specified as a first-order difference matrix. For the convenience of exposition, we consider a 
typical SPECT image as a 𝑝 ൈ 𝑝 ൈ 𝑞 hypermatrix and treat this hypermatrix as a vector in ℝ௣మ௤ in 
such a way that the ijkth entry of the image matrix corresponds to the ሺ𝑖 ൅ ሺ𝑗 െ 1ሻ𝑝 ൅ ሺ𝑘 െ 1ሻ𝑝ଶሻth 
component of the vector. In the current context, we reserve d for 𝑝ଶ𝑞. In TV regularization, B is a 
3𝑑 ൈ 𝑑 matrix defined, through the identity matrix I, the backward difference matrix D and the notion 
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of Kronecker tensor product ⨂, as 

𝐵 ≔ ቎
𝐼௤⨂𝐼௣⨂𝐷௣

𝐼௤⨂𝐷௣⨂𝐼௣

𝐷௤⨂𝐼௣⨂𝐼௣

቏  with 𝐷 ≔ ൦

0
െ1 1

⋱
െ1

⋱
1

൪. 

The detailed construction of matrix B and TV regularization model may be referred to in [6]. The 
data fidelity function 〈𝐴 ⋅, 𝟏〉 െ 〈lnሺ𝐴 ⋅ ൅𝛾ሻ, 𝑢〉 , denoted by F, is the Kullback-Leibler (KL) 
divergence. 

With the above notation, the reconstruction algorithm PAPA [6] has the following iterative scheme: 

⎩
⎪
⎨

⎪
⎧ ℎ

ሺ௞ሻ
∶ൌ 𝑃ା൫𝑓ሺ௞ሻ െ 𝑆∇𝐹൫𝑓ሺ௞ሻ൯ െ 𝜇𝑆𝐵⊺𝑏ሺ௞ሻ൯,

𝑏ሺ௞ାଵሻ ൌ ൫𝛪 െ proxሺఒ ఓ⁄ ሻఝ൯ ൬𝑏ሺ௞ሻ ൅ 𝐵ℎ
ሺ௞ሻ

൰ ,

𝑓ሺ௞ାଵሻ ൌ 𝑃ା൫𝑓ሺ௞ሻ െ 𝑆∇𝐹൫𝑓ሺ௞ሻ൯ െ 𝜇𝑆𝐵⊺𝑏ሺ௞ାଵሻ൯.

                  (8) 

In scheme (8), S is a positive-definite preconditioning matrix of 𝑑 ൈ 𝑑, μ is a positive parameter, 
and 𝑏ሺ௞ሻ  is the dual iterate defined in the domain of the first-order difference transform. At each 
iteration, 𝑏ሺ௞ሻ is truncated by the soft thresholding function, and 𝐵୘𝑏ሺ௞ሻ is considered as the noise 
in the image domain. In Eq (8), we choose the preconditioning matrix S as the diagonal matrix 𝑆ሺ௞ሻ ∶
ൌ diagሺ𝑓ሺ௞ሻ/𝐴୘𝟏ሻ  at the kth iteration. The operator 𝑃ା  is a projection onto the first octant. 
Specifically, for 𝑥 ∈ ℝௗ, we have ൫𝑃ାሺ𝑥ሻ൯

௜
ൌ maxሼ𝑥௜, 0ሽ. Motivated by [41], TV-PAPA calculates 

the components of vector 𝑦 ∶ൌ proxሺఒ ఓ⁄ ሻఝ via the following formula: 

ሾ𝑦௜, 𝑦ௗା௜, 𝑦ଶௗା௜ሿ⊺ ൌ max ቄ‖ሾ𝑧௜, 𝑧ௗା௜, 𝑧ଶௗା௜ሿ⊺‖ െ ఒ

ఓ
, 0ቅ

ሾ௭೔,௭೏శ೔,௭మ೏శ೔ሿ⊺

‖ሾ௭೔,௭೏శ೔,௭మ೏శ೔ሿ⊺‖
, 𝑖 ൌ 1,2, … , 𝑑.     (9) 

Note that the iterative scheme of PAPA exhibits fast convergence due to the preconditioning 
technique and provides robust reconstruction. In addition, we compared the proposed CGAN-CDR 
with the MBIR method TV-PAPA. In order to evaluate the sinogram restoration performance of 
CGAN-CDR and its impact on reconstruction, we maintain the same solver for all competing methods. 

3. Experimental design and results 

First, we describe the datasets, evaluation metrics and experiment setting. Then, we compare 
CGAN-CDR with some state-of-the-art SPECT reconstruction methods and analyze the results from 
various aspects. We implement CGAN-CDR using PyTorch and the Python language. All experiments 
are performed on a GeForce RTX 3090. 

3.1. Datasets 

The training and test datasets exploited in the numerical experiment are obtained using 
SIMIND [42,43], which is a nuclear medicine imaging simulation software based on Monte Carlo 
algorithm and can simulate a real gamma camera to image various phantoms. To generate datasets with 
high-quality references, three digital phantoms are simulated using SIMIND: an anatomical whole-
body (WB) model from XCAT library, an anatomical torso model for ECT bone imaging (ECT) and a 
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digital geometric phantom consisting of activity gradients and uniform cylinders (geometric). In 
particular, we simulate a SIEMENS E.CAM gamma camera with low energy high resolution (LEHR) 
parallel-beam collimator. The detector orbit is circular, covering 360°, and the radius of rotation is set 
to 15 cm. The parallel-collimated SPECT projection data for the current simulation study consists of 
120 projection views in a 128-dimensional detector array with detector element size 2.2 mm. We use 
an 18% main energy window centered at 141 keV. The gamma photons within this energy window are 
considered as primary or first-order scattered photons. Moreover, we simulate a scale of 109 photon 
histories per projection view for each phantom to suppress the photon-flux fluctuation, obtaining the 
normal-dose projection dataset. The total numbers of photon counts detected in 120 projection views 
for the normal-dose projection data of three digital phantoms are presented in Table 1. The projection 
data at coronal and sagittal view angles for the three phantoms are further shown in Figure 5. 

A total of 640 2D sinograms with clear data distribution are extracted from the projection data of 
the above three phantoms to generate the training and test datasets. Indeed, the training set consists 
of 512 sinograms, accounting for 80% of the total dataset, while the test set consists of 128 sinograms, 
accounting for 20% of the total dataset. The training and test datasets are split at the slice level. In fact, 
it is noticed that the neighborhood slices belonging to the same phantom still exhibit noticeable 
disparity. Based on this observation, we find that the training and test datasets split at slice level (it is 
guaranteed that the same slice does not appear in both datasets) still exhibit different data distributions 
to a certain extent, which could prevent information leakage to some extent. From Figure 6, it can be 
seen that there are obvious distribution differences between two sample neighborhood slices, 
especially the contrast along the bone structure. Statistically, a t-test uses t-distribution theory to infer 
the probability of a difference occurring, thus determining whether the difference between two samples 
is significant. The resultant p-value can be used to reflect the level of significant difference between 
the selected two samples. Therefore, we conducted a t-test between these two reconstructed slices and 
set a significance level of p < 0.01. As a result, the t-test demonstrated a significant difference between 
the underlying two neighborhood slices (t = –4.323, p = 0.000016). 

The details of the datasets are also summarized in Table 1. The performance of the proposed 
neural network architecture at two levels of photon counting rates is explored. The two sets of low-
count-rate sinograms are obtained via simulating scales of 107 and 2×107 photon histories per 
projection view, which correspond to 1/100 and 1/50 of the normal-dose photon histories, respectively. 
The normal-dose sinograms (with 109 photon histories per projection view) are regarded as label 
sinograms, and the mapping from low-count-rate sinograms to normal-dose sinograms is learned by 
the proposed network architecture. Note that the total number of photon histories represents the number 
of photons actually simulated in a SPECT simulation study. More photon histories indicate a higher 
dosage simulated and result in a lower degree of statistical uncertainty. The examples of a low-count-
rate sinogram and its corresponding normal-dose sinogram are shown in Figure 7. The images 
reconstructed from the normal-dose sinograms by the TV-PAPA method with optimal regularization 
parameter are regarded as reference images for the training of the image-domain learning method. For 
fair comparison, we implemented 5-fold cross-validation without duplication for all the competing 
learning-based methods. 

  



9742 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 9728–9758. 

WB ECT geometric phantom 

  

 

Figure 5. The projection data at coronal (top row) and sagittal (bottom row) view angles 
for WB, ECT and geometric phantoms, respectively. 

  

(a) (b) 

Figure 6. Two neighborhood slices extracted from the normal-dose reconstructed image 
for disparity comparison. 
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Table 1. Details of datasets. The total numbers of photon counts detected in 120 views for 
the normal-dose projection data are presented. The training and test datasets are split at the 
slice level. 

Phantom The size of 3D 
projection data  

The total number 
of detected photon 
counts 

The number of 
sinograms in 
training set 

The number 
of sinograms 
in test set 

WB 128 × 289 × 120 4.3 × 107 231 58 
ECT 128 × 318 × 120 1.3 × 108 254 64 
geometric 128 × 33 × 120 2.1 × 107 27 6 

 

 

(a) (b) (c) (d) 

Figure 7. Various forms of the projection data. (a) the projection at coronal view for ECT 
phantom; (b) a 2D sinogram extracted from the low-count-rate projection data of ECT 
phantom; (c) the 2D sinogram corresponding to subfigure (b), extracted from the normal-
dose projection data of ECT phantom; (d) the reconstructed image of the normal-dose 
sinogram in subfigure (c) by TV-PAPA with regularization parameter of 0.01. 

3.2. Evaluation metrics 

In order to carry out quantitative analysis, we use two global image quality metrics, the peak-to-
noise ratio (PSNR) and structural similarity (SSIM), and two local image quality metrics, coefficient 
of variation (COV) and mean lesion contrast, to measure the quality of reconstructed images. 

3.2.1. Global image quality metrics 

PSNR is an objective evaluation metric to measure the noise level or image distortion. The higher 
the PSNR is, the less distortion and the better quality of the generated image. It is defined as follows: 

2

10

MAX
PSNR 10log ( ),

MSE
y                          (10) 

where MSE is the mean square error between reconstructed image and ground-truth, 𝑦 is the ground 
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truth, and MAX௬ is the possible maximum pixel value in the image. 
SSIM is a common similarity measure between two images. SSIM ranges from 0 to 1. The closer 

the value is to 1, the more similar two images are. The SSIM is a more suitable assessment of clinical 
information in medical images. It is defined as follows: 

1 2

2 2 2 2
1 2

(2 )(2 )
SSIM( , ) ,

( )( )
x y xy

x y x y

c c
x y

c c

  
   

 


   
                    (11) 

where 𝑥 and 𝑦 are reconstructed image and ground truth, respectively, 𝜇௫ is the mean of 𝑥, 𝜇௬ is 
the mean of 𝑦, 𝜎௫

ଶ and 𝜎௬
ଶ represent the variances of 𝑥 and 𝑦, respectively, 𝜎௫௬ is the covariance 

of 𝑥 and 𝑦, and c1, c2 are two variables to stabilize the division with weak denominator. 

3.2.2. Local image quality metrics 

For better quantitative analysis, we further exploit local image quality metrics, coefficient of 
variation (COV) and mean lesion contrast, to evaluate the reconstructed images. In an image 
processing task, COV is usually employed to characterize the pixel-level variability in the restored 
image, and it is defined as follows: 

COV௞ ≔ ୗ୲ୢೖ

௠ೖ
,                              (12) 

where Std௞ denotes the standard deviation of the 𝑘th region-of-interest (ROI), and 𝑚௞ denotes the 
mean value of the 𝑘th ROI. 

The mean lesion contrast provides a useful measure for the contrast recovery degree of the 
selected ROI quantitatively. We calculate the mean lesion contrast using 2D ROIs in the transaxial 
cross-sections through sphere center. The background ROIs are of the same size as the target. We define 
5 of them distributed around the corresponding target and obtain their mean value. The absolute mean 
contrast is then defined as follows: 

𝐶௔: ൌ ⟨|𝑇 െ 𝐵|⟩,                           (13) 

where T is the mean activity in the target ROI for a given noise realization, B is the mean activity over 
5 surrounding circular background ROIs for the same realization, and the notation 〈∙〉 denotes the 
average over multiple independent noise realizations. 

3.3. Experimental setting 

The loss weights in the minimax optimization model (3) are determined as 𝜔 ൌ 0.6 and 𝜆 ൌ
0.01. The underlying minimax optimization problem is solved by ADAM algorithm in an alternating 
fashion with 𝛽ଵ  = 0.5 and 𝛽ଶ  = 0.999. The maximum number of training epochs is 1000. The 
learning rate is set to 2 ൈ 10ିସ for the first 900 epochs. In the remaining 100 epochs, the learning 
rate gradually decreases from 2 ൈ 10ିସ to zero for a stabilized convergence. 

In this work, we compare the proposed CGAN-CDR with the traditional MBIR method TV-PAPA, 
a sinogram-domain learning method with U-Net, and two image-domain restoration methods, block-
matching and 3D filtering (BM3D) and an image-domain learning method with residual coder 
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convolutional neural network (RED-CNN).  
TV-PAPA was proposed to solve the penalized maximum likelihood emission computed 

tomography (ECT) reconstruction problem [6]. More details of TV-PAPA are given in Section 2.3. In 
the numerical experiment, we observe that reconstruction of the low-count-rate projection data for 
ECT phantom achieves the optimal visual effect when the regularization parameter of TV-PAPA is set 
to 1.2. For the WB and digital geometric phantoms, the optimal visual effects of low-count-rate 
reconstruction are obtained with regularization parameters of 0.2 and 0.15, respectively. The 
competing U-Net shares the same architecture as the generator network G in CGAN-CDR. BM3D [44] 
is recognized as a classical image denoising algorithm. We use a maximum likelihood expectation 
maximization (ML-EM) algorithm to reconstruct low-count-rate sinograms and then employ BM3D 
to denoise the reconstructed images. RED-CNN [18] is a well-known image-domain learning method 
for restoring high-quality reconstructed images 

 
(a) (b) (c) (d) 

Figure 8. Reconstructed images of low-count-rate test sinogram: (a) raw low-count-rate 
reconstructed image as input of RED-CNN, (b) the reconstructed image of original RED-
CNN network structure, (c) the reconstructed image of modified RED-CNN and (d) 
reconstructed image of normal-dose sinogram as the label image. 

In order to achieve better performance for RED-CNN, we have modified the original network 
structure of RED-CNN to fit the underlying training dataset. While maintaining the residual structure, 
five convolution and deconvolution modules in the original network architecture are extended to 
eleven modules, and the number of convolution kernels is increased from 96 to 128. Moreover, the 
activation function for the encoding modules is changed from the original ReLU to LeakyReLU. The 
above modifications can enlarge the receptive field of RED-CNN and better capture and characterize 
the more distant correlations (for example, the bone structure) in reconstructed images. The visual 
improvement of the modified RED-CNN is shown in Figure 8. We can readily see that the modified 
RED-CNN has better restoration performance, and the restored image exhibits more reasonable visual 
appearance. 

3.4. Visual comparison 

In order to make a comprehensive visual comparison among the competing restoration and 
reconstruction methods, we show and qualitatively evaluate the restored sinograms, when available, 
and reconstructed images in this section. In both sinogram- and image-domain methods, the goal is 
always to reconstruct high-quality images from low-dose SPECT projection data. 
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3.4.1. Visual comparison of restored sinograms 

Regarding projection-domain performance, we can see from Figure 9 that both U-Net and CGAN-
CDR exhibit reasonable sinogram restoration. When compared with the normal-dose sinogram, the 
restored sinogram by CGAN-CDR is more realistic-looking than that produced by U-Net, both in 
sinusoidal detail and contrast. Indeed, we readily find more details and better contrast of the restored 
sinogram by CGAN-CDR shown in Figure 10, which demonstrates the zoomed-in yellow ROI in 
Figure 9. As indicated by the blue and red arrows, the proposed CGAN-CDR can better restore the 
original sinusoidal waves and recover contrast of the normal-dose sinogram, as compared to U-Net. 
This sinogram realism gain may lead to an improvement of global reconstruction accuracy and 
structure restoration in the image domain, which shall be explored in subsequent sections. 

 
(a) (b) (c) (d) 

Figure 9. The restored sinograms by two competing projection-domain models: (a) low-
dose sinogram, (b) U-Net restoration, (c) CGAN-CDR restoration and (d) normal-dose 
sinogram. 

 
(a) (b) (c) 

Figure 10. Zoomed-in images of the yellow ROI in Figure 9: (a) U-Net, (b) CGAN-CDR 
and (c) normal-dose sinogram. 

3.4.2. Visual comparison of reconstructed images 

In order to evaluate the subsequent reconstruction performance of the proposed sinogram 
restoration model, we select a representative slice from the ECT phantom for visual comparison, as 
shown in Figure 11. For all the competing sinogram-domain restoration methods and the image-
domain RED-CNN, we reconstruct the restored/low-count-rate sinograms using TV-PAPA with a 
regularization parameter of 0.01. When TV-PAPA is used as a competing reconstruction method, we 
determine its optimal regularization parameter for the respective phantom, as indicated in Section 3.3. 
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For the image-domain denoising algorithm BM3D, we employ an ML-EM algorithm to reconstruct 
the low-count-rate sinograms. We have marked three ROIs in Figure 11(g) for highlighted visual 
assessment. 

It is obvious that in the case of low-count-rate sinogram reconstruction, the traditional handcrafted 
methods BM3D and TV-PAPA exhibit much worse reconstruction visual appearance, as compared to 
the learning-based approaches. The severe noise and the loss of anatomical structures in the 
reconstructed images may limit the clinical use of handcrafted methods in very-low-dose SPECT 
imaging. Moreover, in ROI II, both CGAN-based sinogram restoration methods can better recover the 
accurate bone structure, while the image-domain RED-CNN and the projection-domain U-Net perform 
inferiorly and exhibit structural deformation to different extents. In ROIs I and III, we further see that 
RED-CNN still exhibits moderate oscillation and severe structural deformation. U-Net and CGAN-
based sinogram restoration methods, on the contrary, maintain the original structural characteristics of 
the label image. In addition, as compared to the CGAN-based projection-domain methods, the U-Net 
sinogram restoration method tends to produce blurrier bone structures and higher noise. Among all the 
above competing methods, CGAN-CDR performs the best in terms of noise and artifact suppression, 
contrast recovery and structure preservation. In particular, CGAN-CDR exhibits the best denoising and 
contrast-enhancement performance in the low-contrast region (i.e., the chest region).  

In sum, Figure 11 shows that the proposed CGAN-CDR facilitates the generation of a realistic 
looking image compared to the label. For reference, we indicate the PSNR (the first value in the bracket) 
and SSIM (the second value in the bracket) metrics of the six competing methods obtained at the 
underlying cross section in the caption of Figure 11. 

 
(a) (b) (c) (d) 

 

 

(e) (f) (g)  

Figure 11. Transaxial cross sections through chest regions, generated using (a) BM3D 
(23.25, 0.6960), (b) TV-PAPA (23.49, 0.7472), (c) RED-CNN (28.97, 0.9187), (d) U-Net 
(33.13, 0.9579), (e) CGAN (36.66, 0.9746), and (f) CGAN-CDR (36.43, 0.9810), and the 
corresponding (g) label image. 

For a closer look at the visual comparison, the image patches in ROI III for the four learning-
based restoration methods in Figure 11 are zoomed in, as shown in Figure 12. From a visual perspective, 
the bone structures restored by the image-domain RED-CNN exhibit blurry appearance and misleading 
contrast, and they suffer from severe deformation. The projection-domain U-Net performs relatively 
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poorly in both contrast recovery along the bone structure and noise suppression. In contrast with the 
above network architectures, which typically exploit component-wise loss functions to compare the 
network output against the label at pixel or detector-bin level, the CGAN-based projection-domain 
methods exhibit obvious advantage in structure maintenance and contrast recovery, as pointed to by 
red arrows in Figure 12. The proposed CGAN-CDR performs the best in every visual aspect, especially 
in noise reduction, contrast recovery and structural detail preservation. Overall, CGAN-CDR generates 
the most realistic-looking sinogram and reconstructed image among competing methods. 

   

Figure 12. Zoomed-in area in blue box in Figure 11. (a) RED-CNN, (b) U-Net, (c) CGAN, 
(d) CGAN-CDR, (e) label. 

To further compare the proposed CGAN-CDR with the image-domain RED-CNN and the 
projection-domain U-Net in the reconstruction of the geometric phantom, we select the central cross-
sectional slice from the geometric phantom for presentation. We can see from Figure 13 that learning-
based methods can well maintain the original geometric structures in the geometric phantom. The 
image-domain RED-CNN realizes high-contrast yet high-oscillation image restoration. In terms of 
noise suppression, RED-CNN and U-Net perform relatively poorly, as indicated in the rectangular 
regions. The proposed CGAN-CDR performs the best in both contrast recovery and noise suppression, 
without loss of spatial resolution. As shown in Figure 13(d), the ROIs in the yellow rectangle and four 
red circles are used for calculation of coefficient of variation and mean lesion contrast, respectively, in 
the subsequent Section 3.6.2. 

 
(a) (b) (c) (d) 

Figure 13. Reconstructed cross-sectional slices of geometric phantom. The areas in yellow 
rectangle and four red circles indicate ROIs for calculation of image quality metrics. (a) 
RED-CNN, (b) U-Net, (c) CGAN-CDR, and (d) label reconstruction. 

(a) (b) (c) (d) (e) 
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To distinguish the visual performance of the competing methods more intuitively, we also present 
surface plots and corresponding contours for better visualization in Figure 14. In terms of contour plots, 
both the proposed CGAN-CDR and the projection-domain U-Net outperform the image-domain RED-
CNN in the sense that the former two methods can better preserve the linearly varying contours along 
the horizontal direction and avoid closed contours that indicate local oscillations. Furthermore, in the 
low-activity region (as indicated by the cold contours), the CGAN-CDR model achieves superior 
performance in preserving parallel contour lines, as compared to the U-Net model. This indicates that 
in the cold region of an image, the proposed CGAN-CDR may have better noise suppression ability 
than U-Net. 

 

 

 

Figure 14. Surface plots and corresponding contour lines of reconstructed geometric cross-
sectional slices by three learning-based methods. 
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3.5. Quantitative results 

3.5.1. Global image quality analysis 

The global image quality metrics PSNR and SSIM of reconstructed images are employed for 
quantitative comparison of reconstruction accuracy. Mean values of PSNR and SSIM averaged over 
the test dataset of WB and ECT phantoms are shown in Table 2. Traditional handcrafted methods 
BM3D and TV-PAPA produce much lower PSNR and SSIM values, as compared to learning-based 
approaches. It is indicated that in very-low-dose SPECT imaging, handcrafted methods perform rather 
poorly in overall reconstruction accuracy. Moreover, the proposed CGAN-CDR obtains the highest 
average values in both PSNR and SSIM. It is notable that the above quantitative results of 
reconstruction accuracy are essentially in agreement with the visual performance in Figure 11. This 
quantitative experiment suggests that CGAN-CDR can maintain high-accuracy image reconstruction 
in a low-dose SPECT imaging scenario. The overall accuracy improvement comes primarily from the 
introduction of an adversarial network into the traditional optimization process. The cross-domain 
regularization can further improve reconstruction accuracy and better suppress noise and recover 
image contrast (as shown in the subsequent section), via imposing similarity penalty in both sinogram 
and image domains. 

Table 2. Quantitative results of global reconstruction accuracy of ECT phantoms with six 
competing reconstruction/restoration methods. 

Method PSNR SSIM 
BM3D 22.88 0.7315 
TV-PAPA 24.79 0.8234 
RED-CNN 31.54 0.9518 
U-Net  36.17 0.9753 
CGAN 37.68 0.9763 
CGAN-CDR 38.75 0.9855 

3.5.2. Local image quality analysis 

In order to better assess the local quantitative performance of the proposed CGAN-CDR and 
compare with the other two learning-based methods, RED-CNN and U-Net, two sets of ROIs in the 
digital geometric phantom are selected to calculate two local image quality metrics, coefficient of 
variation (COV) and mean lesion contrast, respectively. 

Table 3. Quantitative comparison of COV for four competing methods obtained at the 
yellow rectangular ROI in Figure 13(d). 

Method Coefficient of variation 
RED-CNN 0.0996 
U-Net 0.0360 
CGAN 0.0337 
CGAN-CDR 0.0312 
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The yellow rectangular ROI in Figure 13(d) was selected for COV calculation. Indeed, the 
amplitude of COV can be used to represent the degree of noise suppression. Numerical comparison of 
COV is shown in Table 3. We can see that the proposed CGAN-CDR achieves the lowest COV value 
for the selected flat, wide ROI in the low-dose imaging scenario. In particular, as compared to the pure 
CGAN, the proposed CGAN-CDR exhibits slightly better COV performance. This observation 
validates the feasibility of cross-domain regularization in terms of noise suppression. 

As shown in Figure 13(d), four red circular ROIs were further selected for calculation of mean 
lesion contrast. We particularly select three central slices from the geometric phantom and exploit ROIs 
with the above location and size at each slice. We then calculate the average of mean lesion contrasts 
over three slices for each underlying circular ROI. Figure 15 shows the comparison of three competing 
methods in the metric of mean lesion contrast. The horizontal labels 1 to 4 represent, respectively, four 
circular ROIs with different radii from small to large. We note that the projection-domain CGAN-CDR 
and U-Net both perform better than the image-domain RED-CNN in contrast recovery, especially on 
small ROIs (e.g., ROIs 1 and 2). Contrast increases monotonically with the radius of ROI. Small ROI 
can be employed to simulate early lesion. Hence, contrast recovery of small ROI plays an important 
role in the SPECT reconstruction task. Figure 15, together with the above image quality analysis, 
suggests that the proposed method generates reconstructed images of superior quality, both 
qualitatively and quantitatively, without sacrificing the image contrast. 

 

Figure 15. Averaged mean lesion contrasts for four circular ROIs in the geometric phantom. 

3.6. Performance robustness 

In order to verify the robustness of the proposed CGAN-CDR model with respect to different noise 
levels, we further simulated a higher noise level for a representative sinogram selected from the test 
dataset. Indeed, we generated Poisson-distributed projection data for a transaxial slice crossing through 
the chest region and lying in the test dataset via a random number generator. The generated sinogram 
exhibits higher-level Poisson noise, as compared to the SIMIND-simulated training set of projection 
data (shown in Figure 16). 

Three competing models, RED-CNN, U-Net and the proposed CGAN-CDR, learned from the 
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aforementioned training dataset and were employed to restore the underlying higher-noise test 
sinogram, as shown in Figure 17. Note that RED-CNN is a post-learning method applied in the image 
domain, while U-Net and the proposed CGAN-CDR are pre-learning methods performing sinogram 
denoising. From Figure 17, we see that in a transferred scenario of higher noise level, the proposed 
CGAN-CDR can better recover the bone structure of the reconstructed image, especially the detailed 
structure around the spine. This observation demonstrates the robustness of CGAN-CDR in structural 
maintenance with respect to different noise levels. 

 

(a) (b) 

Figure 16. Poisson noise contaminated sinogram for a transaxial slice crossing through the 
chest region and lying in the test dataset: (a) SIMIND-simulated sinogram for the 
underlying test slice; (b) higher-noise sinogram created by a random number generator. 

 

(a) (b) (c) (d) 

Figure 17. Reconstructed images of the underlying test slice restored by three competing 
models: (a) the image-domain RED-CNN, (b) the projection-domain U-Net, (c) the 
proposed projection-domain CGAN-CDR and (d) label reconstruction. 

3.7. Test results of different phantom 

To explore the generalizability performance of the proposed CGAN-CDR, an adult male phantom 
(XCAT-male) was introduced from the XCAT library with different data distribution from the training 
data. We utilize SIMIND to simulate a SIEMENS E.CAM gamma camera with low energy high 
resolution (LEHR) parallel-beam collimator. The detector orbit is circular, covering 360°, and the 
radius of rotation is set to 15 cm. The parallel-collimated SPECT projection data for the current 
simulation study consists of 120 projection views in a 128-dimensional detector array with detector 
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element size 2.2 mm. We use an 18% main energy window centered at 141 keV. The low-count-rate 
projection data is obtained via simulating a scale of 104 photon histories per projection view. A total of 
206 sinograms of valid test data are obtained from the XCAT-male phantom. A representative 
reconstructed slice in the chest region of the XCAT-male phantom under the normal-dose acquisition 
is shown in Figure 18, and its bone structure is different from the samples in Section 3.1. The training 
data in Section 3.1 is used to perform the respective training for all comparison methods, and then the 
data of the XCAT-male phantom is tested. Similarly, we evaluate the reconstruction accuracy of each 
method for test data with different data distribution by calculating average PSNR and SSIM, and the 
results are shown in Table 4. This simulation shows that for the XCAT-male phantom with different 
data distribution from the training data, the learning-based methods outperform the traditional iterative 
method TV-PAPA in terms of reconstruction accuracy. The proposed CGAN-CDR exhibits potentially 
superior generalizability performance in terms of overall reconstruction accuracy, as compared to the 
other competing learning-based methods. 

 

Figure 18. A representative reconstructed slice in the chest region of the XCAT-male 
phantom under the normal-dose acquisition. 

Table 4. Quantitative results of global reconstruction accuracy of XCAT-male phantom 
with four competing reconstruction/restoration methods. The regularization parameter of 
TV-PAPA is 1. 

Method PSNR SSIM 

TV-PAPA 20.90 0.6858 

U-Net  22.92 0.7477 

CGAN 22.16 0.6982 

CGAN-CDR 23.44 0.7435 

4. Discussion 

In SPECT imaging, the dose of radioactive tracer is a crucial factor for image quality; however, 
the ionizing radiation induced by the radiotracer poses a potential hazard to human health. Therefore, 
reducing the dose of the radiotracer meanwhile guaranteeing the image quality is a critical issue in the 
research of SPECT imaging. In the acquisition mode of reduced photon counts, the projection data 
exhibits increased Poisson noise, more-distant correlation and lower contrast. Such data degradations 
may be further amplified in the image domain due to the ill-posedness of the reconstruction problem, 
which intrinsically restricts reconstruction algorithms to obtain high-quality results. To address these 
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challenges, we propose the network model CGAN-CDR for low-count-rate SPECT sinogram 
restoration. The adversarial loss can facilitate the recovery of detailed sinusoidal features and contrast 
in the projection sinogram. In order to further guarantee high accuracy and low noise of the generated 
sinogram, we add a cross-domain regularization function to the adversarial loss, which can address the 
issue of ill-posedness due to image reconstruction. The numerical simulation results indicate that the 
proposed model is superior to the other competing models in terms of both visual appearance and 
quantitative analysis. 

The generator of the proposed CGAN-CDR model is composed of an encoder and a decoder. The 
encoder model stepwise extracts multiscale sinusoidal features from the input sinogram, and the 
decoder model stepwise rebuilds the feature representation into a sinogram. We particularly introduce 
long skip connections into the network architecture of the generator via concatenation in a symmetrical 
manner, so that the low-level features in the projection domain (i.e., the contrast and contours of 
sinusoidal waves) can be better shared and reused, and the spatial and angular sinogram information 
lost during down-sampling can be better recovered. We employ the discriminator in the previous 
PatchGAN network model to capture and characterize the detailed sinusoidal features within sinogram 
patches, since various local patches in a sinogram exhibit different spatial variations and correlations, 
and thus should be evaluated independently. The realistic prediction achieved by an evaluation matrix, 
instead of by a single evaluation value per traditional GAN, can effectively characterize detailed 
features in local receptive fields. Numerical results show that the proposed network model exhibits 
good performance in the task of low-count-rate sinogram restoration. 

The projection-domain pre-learning method, by its essence, cannot satisfactorily address the issue 
of ill-posedness due to image reconstruction. Provided that the training data are sufficiently abundant, 
a better approach for the above issue is to perform network learning in both projection and image 
domains via combining the recently developed dual-domain strategy with adversarial framework. The 
projection-domain consistency constraint directly constrains the generator via penalizing the difference 
between the generator output and the label sinogram in a component-wise sense, which helps recover 
accurate contrast between sinusoidal waves in the sinogram restoration process. The image-domain 
consistency regularization imposes a similarity constraint on the reconstructed images of the generated 
and label sinograms, which can address the issue of ill-posedness and serves as an indirect constraint 
on the generator. Therefore, an effective noise-suppressed and artifact-reduced image-domain 
regularization can in turn enhance the quality of generated sinograms. Moreover, since the training 
procedure of an adversarial framework is rather time-consuming, how to develop a lightweight 
adversarial network remains a challenging future research direction. 

5. Conclusions 

In this paper, the CGAN-CDR model based on a generative adversarial network is proposed for 
low-dose sinogram restoration to suppress random oscillation and enhance contrast in SPECT imaging. 
The adversarial framework in CGAN-CDR can better restore the detailed global sinusoidal features 
and recover the original contrast of the normal-dose sinogram. Meanwhile, the cross-domain 
optimization in both projection and image domains can effectively ameliorate the issue of ill-posedness 
and serve as both direct and indirect constraint on the generator; thereby, it helps to achieve excellent 
performance in noise reduction and contrast recovery. Extensive numerical experiments show that 
learning-based methods are superior to traditional methods. Moreover, the proposed CGAN-CDR 
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performs best both qualitatively and quantitatively, indicating that the proposed model has the potential 
to reduce the radioactive tracer dose required for SPECT imaging without compromising the quality 
of reconstructed images. 
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