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Abstract: We propose a mathematical model based in ordinary differential equations between bacterial
pathogen and Bacteriophages to describe the infection dynamics of these populations, for which we use
a nonlinear function with an inhibitory effect. We study the stability of the model using the Lyapunov
theory and the second additive compound matrix and perform a global sensitivity analysis to elucidate
the most influential parameters in the model, besides we make a parameter estimation using growth
data of Escherichia coli (E.coli) bacteria in presence of Coliphages (bacteriophages that infect E.coli)
with different multiplicity of infection. We found a threshold that indicates whether the bacteriophage
concentration will coexist with the bacterium (the coexistence equilibrium ) or become extinct (phages
extinction equilibrium), the first equilibrium is locally asymptotically stable while the other is globally
asymptotically stable depending on the magnitude of this threshold. Beside we found that the dynamics
of the model is particularly affected by infection rate of bacteria and Half-saturation phages density.
Parameter estimation show that all multiplicities of infection are effective in eliminating infected bacteria
but the smaller one leaves a higher number of bacteriophages at the end of this elimination.
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1. Introduction

Bacteriophages (phages), which are viruses that infect bacteria, are enormously abundant in the bio-
sphere. Viral particles are estimated to number about 1031, including bacteriophages [1]. Bacteriophages
can present lytic cycles or lysogenic cycles. In the lytic cycle, phages infect the host and replicate inside,
after that, they destroy its host cell to release virion progeny. While in the lysogenic cycle, phages infect
the host but do not replicate, and they integrate into the host or exist as plasmids within their host cell,
the genetic material then is transmitted to the next generation of bacteria [2, 3]. Phages have gained
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importance in medicine and industry for their application or use in the fight against antibiotic resistance
(phage therapy), as vehicles for vaccines delivery, or as display system for many proteins and antibodies,
among others [4, 5]. Phage therapy offers a number of benefits and only a few drawbacks or concerns
in the fight against the global problem of multidrug-resistant bacteria. Most of these problems can
be solved with a combination of proper phage selection, efficient formulation, and increased clinician
knowledge and familiarity with product application [6]. Understanding the dynamics of these viruses
and the bacterial host from different perspectives is vital to gain insight into the synergy that exists in this
interaction. In this sense, many mathematical models using ordinary differential equations have been
proposed to understand this dynamics, for example in [7], they studied the dynamics of lytic RNA phage
MS2 and its host E.coli C-3000, a mathematical model simulating the interaction between bacteriophages
and their bacterial hosts considering PH and temperature was developed in [8]. In [9] they studied the
non-linear kinetics between the pathogen bacteria Campylobacter jejuni and a lytic phage considering
susceptible and resistant bacteria, infected cells and free phage particles. A model considering the lytic
and lysogenic life cycles of phages and the prophage induction in the interaction between phages and
bacteria is presented in [10]. In [11], a SI type model is considered, where the equation for phages
is not explicit. In [12], the authors formulated a SIR type mathematical model where the infection
rate is a law of mass action. In all these articles either the approach is a mathematical development
without the contrast with real data [10–12] or a development with real data without bothering with
mathematical analysis [7–9]. In this sense, we formulated a mathematical model considering a free
lytic phage, sensitive bacteria and infected bacteria where the incidence rate deals with a saturation
process due to the free phages, where we explored the stability analysis of equilibrium points using
the Lyapunov indirect method. In addition, we used global sensitivity analysis to identify the model
parameters that are most relevant and we used data growth of bacteria E.Coli in presence of coliphages to
fit the parameter of the model using a genetic algorithm to study the interaction between bacteria-phages.
The organization of this paper is as follows: In Section 2, the mathematical model is formulated. In
Section 3, we found three equilibrium points, the trivial equilibrium, the phages extinction equilibrium
and the coexistence equilibrium for E.coli sensitive, E.coli infected and coliphages. In Section 4, the
stability analysis of equilibria is proved. In Section 5, sensitivity analysis is performed. In Section 6, the
most relevant parameters are estimated. Finally, in Section 7 we discuss our results.

2. Model formulation

Let E(t) and I(t) denote the populations sizes of sensitive bacteria and infected bacteria at time t,
respectively and C(t) the concentration of free phages at time t. Bacteria reproduce at a constant per
capita rate, which depends on the species of bacteria, in this study we consider the E.coli bacteria type
for make the simulations. We consider that there exists an intraspecific and interspecific competition
between sensitive and infected bacteria as population size increases and resources become more limited,
which is modeled by logistical growth with carrying capacity N and reproduction rate k. For the
interaction between bacteria and phages we consider the Holling II functional response because we
believe that there is saturation in the infection process, i.e., the more free phages there are, the less

sensitive bacteria there will be. In this sense the sensitive bacteria acquire infection at rate βE
C

a +C
,

where β is the infection rate of bacteria and a the half-saturation phages density, the mortality rate of this
infected bacteria is υ. The free phages growth proportionally to the concentration of infected bacteria I
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at rate αI, where α is the release rate of viral particles and decay at rate λ. From the above suppositions
we derive the following system of non-linear differential equations

dE
dt
= kE

(
1 −

E + I
N

)
− βE

C
a +C

dI
dt
= βE

C
a +C

− υI

dC
dt
= αI − λC.

(2.1)

The summary of the parameters present in the model is shown in Table 1. The set of biological interest
is given by

Ω =

{
(E, I,C) ∈ R0

+ : 0 ≤ E + I ≤ N, 0 ≤ C ≤
αN
λ

}
.

Lemma 1. The set Ω defined above is positively invariant for the solutions of the system (2.1).

Proof. Let E, I, C solutions of system (2.1) and Φ = E + I. Now, adding the first two equations of (2.1)
we obtain,

dΦ
dt
= kE

(
1 −

E + I
N

)
− υI ≤ kΦ

(
1 −
Φ

N

)
.

If Φ(0) ≤ N, the solutions to before equation satisfies 0 ≤ Φ(t) ≤ N, for all t ≥ 0. Now considering
the equation for the free phages in the system (2.1), we deduce,

dC
dt
≤ αN − λC.

If C(0) = C0 ∈ Ω, we conclude that

C(t) ≤ C0e−λt +
αN
λ

(1 − e−λt), for all t ≥ 0,

and that if t → ∞ then C(t)→ αN
λ

. Therefore, the set Ω is positively invariant. □

3. Equilibrium points

The equilibrium points of system (2.1) are given by the solutions of the system of equations

kE
(
1 −

E + I
N

)
− βE

C
a +C

= 0

βE
C

a +C
− υI = 0

αI − λC = 0.

(3.1)

From the last equation of above system we obtain

I =
λ

α
C. (3.2)

By substituing I in the first two equations of (3.1), we obtain
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kE
1 − E + λ

α
C

N

 − βE C
a +C

= 0

βE
C

a +C
−
υλ

α
C = 0.

(3.3)

We observe that the equilibrium solutions of system (3.3) are totally determined by C = 0 and C , 0.
If C = 0, from system (3.3) we get the equation

kE
(
1 −

E
N

)
= 0,

which has the solution E = 0 or E = N. Therefore, for the case C = 0, we obtain the equilibrium points
P0 = (0, 0, 0), P1 = (N, 0, 0) that always exists.

Finally, we determine the equilibrium solutions for C , 0. In this case, the second equation of
system (3.3) is written as

E =
υλ

αβ
(a +C),

and substituting it in the first equation of system (3.3), we get

−

(
1 +
β

υ

)
C2 +

[
a(R0 − 1) − a

(
1 +
β

υ

)
−
αβ2N
kυλ

]
C + a2 (R0 − 1) = 0, (3.4)

where R0 =
βNα
λυa . Note that, when R0 < 1, the quadratic Eq (3.4) have two negative values of C, and

there is not a positive equilibrium point from the Eq (3.1), it follows that a necessary and sufficient
condition for the biological meaning of C is R0 > 1, and in this way, we get the equilibrium point
P2 = (E∗, I∗,C∗), where

E∗ =
υλ

αβ
(a +C∗) (3.5)

I∗ =
λ

α
C∗ (3.6)

C∗ =
b +

√
b2 + 4a2

(
1 + β

υ

)
(R0 − 1)

2
(
1 + β

υ

) , (3.7)

and b =
[
a(R0 − 1) − a

(
1 + β

υ

)
−
αβ2N
kυλ

]
.

The above results are summarized in the following proposition.

Proposition 1. System (2.1) always has a trivial equilibrium P0 = (0, 0, 0) and the equilibrium point
P1 = (N, 0, 0). If R0 > 1, there exists an equilibrium P2 = (E∗, I∗,C∗), in which E.coli sensitive, E.coli
infected and bacteriophages co-exist.

Le us interpret the parameter R0 =
βNα
λυa . One phage during its average lifetime, 1

λ
, infects one sensitive

bacteria, with rate βN, this infected bacteria releases α
υa number of phage particles. In this way, R0 is the

net number of phages produced by a phage in a lytic cycle, in a concentration of sensitive bacteria.
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4. Stability

In this section, we determine the asymptotic stability of the equilibrium solutions of the system (2.1).
Linearization of this system around an equilibrium P is given by x′ = J(P)x, where x = (E, I,C)T and
the matrix evaluated at P is

J(P) =


k
(
1 − E+I

N

)
− kE

N −
βC

a+C − kE
N −

βEa
(a+C)2

βC
a+C −υ βEa

(a+C)2

0 α −λ

 . (4.1)

By evaluating J at P0, we verify that the eigenvalues of J(P0) are k, −υ and −λ, in consequence P0 is

always unstable. The eingenvalues of J(P1) are −k, and −(υ+λ)±
√

(υ+λ)2+4(R0−1)
2 , which have negative real

part if R0 ≤ 1.
The result is summarized in the following proposition.

Proposition 2. The trivial equilibrium P0 is always unstable and the equilibrium P1 is locally asymptot-
ically stable if R0 ≤ 1, and unstable otherwise.

Proposition 3. If R0 ≤ 1, the equilibrium point P1 is globally asymptotically stable in Ω.

Proof. Let L the function defined by

L = E − N − N ln
( E
N

)
+ I +

υ

α
C.

It is easy to check that L(P1) = 0 and L > 0 in Ω − {P1}. Besides the orbital derivative of L along
solutions of the system (2.1) is given by

L̇ =
(
1 −

N
E

) [
kE

(
1 −

E + I
N

)
− βE

C
a +C

]
+ βE

C
a +C

− λ
υ

α
C,

which is equivalent to

L̇ = k (E − N)
(
1 −

E + I
N

)
+ βN

C
a +C

− λ
υ

α
C

L̇ = k (E − N)
(
1 −

E + I
N

)
+C

βNa 1
1 + C

a

− λ
υ

α

 .
From the inequality 1

1+C
a
≤ 1, we obtain

L̇ ≤ k (E − N)
(
1 −

E + I
N

)
+C

(
βN
a
− λ
υ

α

)
= k (E − N)

(
1 −

E + I
N

)
+ λ
υ

α
C (R0 − 1) .

Finally, from last equation L̇ < 0, in Ω − {P1} if and only if R0 ≤ 1. Therefore, we have that P1 is
globally asymptotically stable. □

Finally, to study the stability of point P2, we use the following lemma
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Lemma 2. Let A be a 3 × 3 real matrix. If tr(A), det(A) and det(A[2]) are all negative, then all of the
eigenvalues of A have negative real part.

A proof of this lemma can be found in [13]. The matrix A[2] in lemma is the second additive
compound [14], which is define by

A[2] =


a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 ,
where A is a 3 × 3 real matrix

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
Now, we show that the trace and determinant of the Jacobian (4.2) and the determinant of the

second additive compound are all negative, which allows us to conclude that the point E2 is locally
asymptotically stable . To see this, we evaluated J defined in (4.1) at P2 to get

J(P2) =


− kE∗

N − kE∗
N −

βE∗a
(a+C∗)2

βC∗

a+C∗ −υ βE∗a
(a+C∗)2

0 α −λ

 , (4.2)

Evidently tr(J(P2)) = − kE∗
N − υ − λ < 0 and

det(J(P2)) = −υλ
kE∗

N
−
αβ2aE∗C∗

(a +C∗)3 +
αkβE∗2a

N(a +C∗)2 −
λkβE∗C∗

N(a +C∗)

=
kE∗

N

(
αβE∗a

(a +C∗)2 − υλ

)
−
αβ2aE∗C∗

(a +C∗)3 −
λkβE∗C∗

N(a +C∗)
< 0,

because from the Eq (3.5), we have

αβE∗a
(a +C∗)2 − υλ =

υλa
(a +C∗)

− υλ = −
υλC∗

(a +C∗)
. (4.3)

The second compound of Jacobian matrix (4.2) is

J[2](P2) =


−

(
kE∗
N + υ

)
βE∗a

(a+C∗)2
βE∗a

(a+C∗)2

α −
(

kE∗
N + λ

)
− kE∗

N

0 βC∗

a+C∗ −(υ + λ)

 . (4.4)

Whose determinant is
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det(J[2](P2)) = −(υ + λ)
(
kE∗

N
+ υ

) (
kE∗

N
+ λ

)
+
αβ2aE∗C∗

(a +C∗)3 −
kE∗βC∗

N(a +C∗)

(
kE∗

N
+ υ

)
+
α(υ + λ)βE∗a

(a +C∗)2

= −(υ + λ)
(
kE∗

N
+ υ

) (
kE∗

N
+ λ

)
−

kE∗βC∗

N(a +C∗)

(
kE∗

N
+ υ

)
+
αβE∗a

(a +C∗)2

(
βC∗

(a +C∗)
+ υ + λ

)
,

= −(υ + λ)
(
kE∗

N
+ υ

) (
kE∗

N
+ λ

)
−

kE∗βC∗

N(a +C∗)

(
kE∗

N
+ υ

)
+

(
αβE∗a

(a +C∗)2 − υλ

) (
βC∗

(a +C∗)
+ υ + λ

)
+ υλ

(
βC∗

(a +C∗)
+ υ + λ

)
.

From Eq (4.3),we have

det(J[2](P2)) = −(υ + λ)
(
kE∗

N
+ υ

) (
kE∗

N
+ λ

)
−

kE∗βC∗

N(a +C∗)

(
kE∗

N
+ υ

)
−
υλC∗

(a +C∗)

(
βC∗

(a +C∗)
+ υ + λ

)
+ υλ

(
βC∗

(a +C∗)
+ υ + λ

)
= −(υ + λ)

(
kE∗

N
+ υ

) (
kE∗

N
+ λ

)
+ υλ (υ + λ) −

kE∗βC∗

N(a +C∗)

(
kE∗

N

)
−
υλC∗

(a +C∗)

(
βC∗

(a +C∗)
+ υ + λ

)
+ υ

βC∗

(a +C∗)

(
λ −

kE∗

N

)
= −(υ + λ)

(
kE∗

N
+ υ

) (
kE∗

N
+ λ

)
+ υλ (υ + λ) −

kE∗βC∗

N(a +C∗)

(
kE∗

N

)
−
υλC∗

(a +C∗)

(
βC∗

(a +C∗)
+ υ + λ

)
+ υ

βC∗

(a +C∗)

(
λ −

k(a +C∗)
aR0

)
.

Then, by removing the brackets of the first two terms, the positive term is canceled and the last term
is negative if R0 <

k
λ

and we can get det(J[2](P2)) < 0. Since R0 > 1, we must impose that k > λ. We
summarize it in the next proposition.

Proposition 4. If R0 > 1 and R0 <
k
λ

(k > λ), the point P2 is locally asymptotically stable.

Remark 1. We emphasize that R0 <
k
λ

and k > λ is one of the many restrictions that can be imposed
and is not a determining condition to guarantee mathematically that the determinant of matrix (4.4) is
negative. In Section 7, we explore the condition k > λ, k < λ with R0 >

k
λ
.

5. Sensitivity analysis

In order to determine which are the parameters that most affect the competition dynamics between
sensitive and infected bacteria with bacteriophages, we use uncertainty and sensitivity analyses, which
focus on measuring the effect of the parameters inputs k, N, β, a, υ, α, and λ on the output variables E(t),
I(t) and C(t). Therefore, we use the data in Table 1 and the Latin hypercube sampling (Lhs) and Partial
rank correlation coefficients (PRCCs) to assess global uncertainty and sensitivity analyses following the
methodology proposed in [15].
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Table 1. Model parameters.

Parameter Definition Range Value Reference
k bacterial growth rate [0.4, 1.8] 1.11 This study
N carrying capacity [2.5, 4] 3.2 This study
β The infection rate of bacteria [1, 20] Estimated for different MOI -
a Half-saturation phages density [0.07, 20] Estimated for different MOI -
υ Lysis rate of infected bacteria [0.05, 4] 1.002 [7]
α The release rate of viral particles [1.4, 1.8] 1.63 [8]
λ decay rate of viral particles [0.0003, 2] 1.032 × 10−2 [9]

We begin by describing the sensitivity analysis for the sensitive bacteria E shown in the Figure 1. There
are three parameters that have a strong influence on this variable, namely k, β and a. The parameter k is
positively correlated and is initially responsible for the sensitive bacterial load increase, immediately
this parameter loses relevance, the parameter a becomes positively correlated, helping the variable E to
grow. While, the parameter β is negatively correlated which means that if we increased this parameter
there will be a decrease in the E.coli bacteria.

We now continue to describe the sensibility analysis for infected bacteria variable I. There are
two influencing parameters in this variable, these are β and a. The parameter β is strongly positively
correlated over the time and that is because it is the infection rate of bacteria, therefore we have an
increase in the infected bacteria load while we rise this parameter. The parameter a is negatively
correlated over the time, which means that the larger this parameter is, there will be a decrease in
infected bacteria load because there will be fewer virus particles free to infect bacteria see Figure 2.

Figure 1. PRCCs of the sensibility analysis performed for the sensitive bacteria E, plotted
over a time course.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9712–9727.
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Figure 2. PRCCs of the sensibility analysis performed for the infected bacteria I, plotted over
a time course.

Finally, we discuss the sensibility analysis for Bacteriophages C. The parameters that most affect this
variable are β and a. We emphasize that these parameters are not in the equation for C. The parameter β
(the infection rate of bacteria) is strongly positively correlated over the time and this is because the larger
this parameter is, the more bacteria will be infected and therefore the more phages will be released. The
parameter a (Half-saturation phages density) is negatively correlated over the time, this means that if we
increase this parameter the phage growth will be slower because there will be fewer infected bacteria
releasing virus due to the presence of fewer free viral particles see Figure 3.

Figure 3. PRCCs of the sensibility analysis performed for the Coliphages C, plotted over a
time course.

6. Parameter estimation

From the last section we note that β and a are the parameters that most affect the output variables E(t),
I(t) and C(t). Therefore, we select these parameters to be estimated using experimental data published

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9712–9727.
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in [16], in particular those for E.coli ATCC® 11775™ (gram-negative) and T4-like A coliphages,
where they elaborate curves for bacterial growth curves in the presence of bacteriophages using the
MOI 0.01, 0.1 and 1 to compare and analyze the activity of bacteriophages. The data used here are
shown in the Figure 4. Since the data in [16] only show the total remaining bacteria, i.e., the data used
do not distinguish between infected and susceptible bacteria, nor does it show coliphages growth data,
we find the least square between the data and the sum of sensitive and infected bacteria E(t) + I(t). To
do this, we use a evolutionary algorithm called genetic algorithms (ga) where the function to minimize
was f min(β, a) =

∑
i{datai − [E(i) + I(i)]}2, where E(t) and I(t) are the outputs of the model (2.1), for

an explanation of how the ga works see [17].

Figure 4. Growth of E.coli bacteria under different Multiplicities of infection.

First, we estimated parameters for the control curve, for this purpose we use the equation

dE
dt
= kE

(
1 −

E
N

)
, (6.1)

the simulations give the values k = 1.11 and N = 3.2, and the result is shown in figure 5. Second, we
estimated the parameter β and a of the model (2.1) when MOI is 0.01, 0.1 and 1. The estimates of these
parameters are shown in the Table 2 and the curve fits are shown in the Figures 6(a), 7(a) and 8(a). In
the case MOI 0.01, we observed that the growth curve of the bacteriophages is slow compared to the
other two MOI used, this generates a higher growth of the E.coli bacteria and in this sense it would take
more time for its extinction. In addition, we observed a higher growth in the coliphages due to a higher
amount of sensitive bacteria. There is a change between sensitive bacteria and infected bacteria that
occurs faster when the MOI is higher, from which it is observed that the faster this change occurs, the
less sensitive bacteria and bacteriophages we will have at the end.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9712–9727.
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Table 2. Parameter estimation for different MOI.

MOI β a Initial condition [S(0) I(0) C(0)]
0.01 2.6 0.22 [0.24 0 0.0024]
0.1 3.81 0.4428 [0.19 0 0.019]
1 18.92 6.68 [0.18 0 0.18]

Figure 5. E.coli control growth without presence of coliphages.

(a) (b)

Figure 6. The Figure (6a) shows the estimated growth curve of susceptible E.coli bacteria and
infected E.coli bacteria in the presence of coliphages when the MOI is 0.01 and (6b) shows
the growth curves of each population.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9712–9727.
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(a) (b)

Figure 7. The Figure (7a) shows the estimated growth curve of susceptible E.coli bacteria
and infected E.coli bacteria in the presence of coliphages when the MOI is 0.1 and (7b) shows
the growth curves of each population.

(a) (b)

Figure 8. The Figure (8a) shows the estimated growth curve of susceptible E.coli bacteria
and infected E.coli bacteria in the presence of coliphages when the MOI is 1 and (8b) shows
the growth curves of each population.

7. About stability condition R0 <
k
λ

In the proposition 4, we impose the condition that R0 <
k
λ

and k > λ, and this assure the local
stability of coexistence point P2, but what happen if eventually k < λ or R0 >

k
λ
. To explore this we

use data in table 1 and the values of β and a in the table 2 for MOI 0.01. In this case, we have k > λ,
and R0 >

k
λ
. If we change the value of λ to 0.8 we will have k > λ, and R0 >

k
λ
, and the simulation that

appear in the Figure 9.
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(a) (b)

Figure 9. The Figure (9a), k > λ and R0 >
k
λ

R0 = 4662.3 k
λ
= 84.091, the eingenvalues

of Jacobian are −1.01734, 0.00086 ± 0.09097i and (9b) k > λ, and R0 >
k
λ
, R0 = 76.927

k
λ
= 1.3875, the eingenvalues of Jacobian are −1.77200, −0.02718 ± 0.54719i.

We conclude that the condition in proposition 4, is sufficient but not necessary. We want to note that
in all the parameter estimates shown in the Figures 6, 7 and 8, we have that k > λ and R0 > k/λ, and
the eigenvalues of the Jacobian matrix have complex conjugates with positive real part, this means that
if we increase the observation window to 600 hours we will see oscillations as in the Figure 9a. Now
we explore k < λ, and R0 >

k
λ

and k > λ, and R0 <
k
λ
. If we change the value of λ to 1.46 we will have

k < λ, and R0 >
k
λ
. the results are shown in Figure 10.

(a) (b)

Figure 10. The Figure (10a), k < λ, and R0 >
k
λ
, R0 = 42.152 k

λ
= 0.76027, the eingenvalues

of Jacobian are −2.37630, −0.06455 ± 0.64459i and (10b) k > λ and R0 <
k
λ

R0 = 1.7352
k
λ
= 2.22, the eingenvalues of Jacobian are −1.38423, −0.63084, −0.25147. For this simulation

we use λ = 0.5, β = 1.2 and a = 7.2.
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8. Discussion

The relationship between phages and bacteria has become relevant because it could play an im-
portant role in antibiotic resistance, however this dynamic is complex and has been described by a
variety of dynamics at different levels. Here we formulated a mathematical model where we consider
the populations of sensitive bacteria, infected bacteria and bacteriophages, and for incidence rate we
used an nonlinear function with an inhibitory effect. We found three possibilities for Bacteria-phages
relationships: uninfected bacteria, infected bacteria and phages become extinct simultaneously (triv-
ial equilibrium); extinction of infected bacteria and phages (bacteriophages extinction equilibrium);
sensitive bacteria, infected bacteria and phages coexist (coexistence equilibrium). The local stability
of the three equilibrium point was analyzed by using the Lyapunov’s indirect method and the second
additive compound matrix. The trivial equilibrium is always unstable, the phages extinction equilibrium
is locally asymptotically stable when R0 ≤ 1 and unstable otherwise. The coexistence equilibrium is
locally asymptotically stable when R0 > 1 and R0 <

k
λ
, we clarify that the last inequality is based on our

calculations and it is a sufficient condition but not necessary to obtain stability, since our simulations
suggest that stability may occurs when R0 >

k
λ
. Something interesting happened with the results of

the parameter estimation, although the curve fits are good, we have that the stability condition is not
satisfied because k > λ and R0 > k/λ and moreover the eigenvalues of the Jacobian matrix have complex
conjugates with positive real part. The effect of this is that we will have oscillations that will last in
time, which means that we will have periodic increases in the populations of coliphages, the infected
and sensitive bacteria as shown in Figure 9a.

From the analysis of sensitivity we concluded that the more influential parameter in the model are the
infection rate of bacteria (β) and Half-saturation phages density (a). The parameter β helps to increase
the density of infected bacteria and the density of phages and decrease the density of sensitive bacteria.
while the parameter a plays an inhibitory role, the larger it is, the less number of free viral particles will
infect sensitive bacteria, which implies a smaller number of infected bacteria.

The model and the parameter estimation suggested there is a higher growth of the E.coli bacteria
when the MOI is 0.01 than 0.1 and 1, this has two implication the coliphages curve growth slow and
time of extinction of bacteria is greater, besides due to a higher amount of sensitive bacteria we will
have a higher density of phages at the end. One limitation of these estimates is that the data set used
does not distinguish between sensitive bacteria and infected bacteria, nor is there data for the growth of
coliphages. More experiments are needed where the growth curves of the infected E.coli bacteria and
that of the coliphages are considered to improve the estimates made for our model. Despite the enormous
effectiveness of phages to control pathogenic bacteria in vitro, there are some problems when applying
them to clinical situations, we mention some of them: the therapeutic bacteriophages are not easily
identifiable [18], the stability of therapeutic formulations is entirely dependent on bacteriophage [19].
Bacteria have defense mechanisms that can prevent infection by phages, but a phage cocktail can reduce
this risk [6].
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