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Abstract: The main disease that decreases the manufacturing of natural rubber is tapping panel dry-
ness (TPD). To solve this problem faced by a large number of rubber trees, it is recommended to
observe TPD images and make early diagnosis. Multi-level thresholding image segmentation can
extract regions of interest from TPD images for improving the diagnosis process and increasing the
efficiency. In this study, we investigate TPD image properties and enhance Otsu’s approach. For a
multi-level thresholding problem, we combine the snake optimizer with the improved Otsu’s method
and propose SO-Otsu. SO-Otsu is compared with five other methods: fruit fly optimization algorithm,
sparrow search algorithm, grey wolf optimizer, whale optimization algorithm, Harris hawks optimiza-
tion and the original Otsu’s method. The performance of the SO-Otsu is measured using detail review
and indicator reviews. According to experimental findings, SO-Otsu performs better than the compe-
tition in terms of running duration, detail effect and degree of fidelity. SO-Otsu is an efficient image
segmentation method for TPD images.
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1. Introduction

Due to the in-situ coagulation of rubber particles, tapping panel dryness (TPD) is a phenomenon
that causes a partial or finally complete halt of latex flow upon tapping [1]. The study of TPD is
vitally important, encompassing developmental regularity, physiological mechanisms and prevention
[2]. But observation of TPD images and accurate diagnosis are the fundamental steps in this process.
Around the world, rubber trees are planted over 15 million hectares. Faced with the large amounts of
image data and different symptoms, manual observations is time-consuming, inaccurate and prone to
misjudgments. It is a good choice to apply image processing technology in observation process. The
observation of TPD images will be effective and accurate, and not influenced by subjective factors.
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Figure 1. The normal rubber tree (left) and the rubber tree with TPD (right).

Some scholars have made initial attempts in this direction. Sun conducted research using machine
vision to recognize and plan tapping trajectories of natural rubber trees [3]. They proposed a combi-
natorial optimization algorithm that could recognize and plan the next tapping trajectory under natural
light conditions, with a success rate of 89.4%. This research could provide valuable technical refer-
ence for the development of intelligent tapping robots. To separate the secant and latex and eliminate
interference factors, image processing technology was utilized to obtain an accurate secant and latex
binary image [4]. In reference [5], an improved 2-D entropy algorithm was applied for rubber tree
image segmentation. By using the principle of two-dimensional maximum entropy and synthetically
selecting the global search of genetic algorithm and simulated annealing local hill climbing perfor-
mance, the optimal segmentation threshold was determined. The experimental results showed that this
method efficiently extracted the rubber tree cutting marks and separated the rubber latex.

As one of the basic steps of image processing, the purpose of image segmentation is separating the
entire image into several specific regions and present the objects under concern [6]. Traditional image
segmentation methods include threshold-based segmentation [7], edge-based segmentation [8], region-
based segmentation [9] and clustering segmentation [10]. Due to its ease of implementation, minimal
storage space needs, high precision and speed, thresholding segmentation is widely used. Thresholding
segmentation extract the essential information using the histogram of image under concern. The entire
image is divided into light and dark regions, where all pixels in each region has the same intensities
[11]. Thanks to the excellent performance, threshold-based image segmentation has been widely used
in medical image analysis [12], defect detection [13] and remote sensing image analysis [14]. In our
opinion, thresholding segmentation can also be used to obtain the effective results in the observation
of TPD and early diagnosis.

Thresholding techniques are frequently used to segment images, with the specific technique chosen
based on the image’s histogram and a set of threshold values. The goal of threshold-based segmentation
is to determine the optimal thresholds for an image using its histogram. A histogram is a graphical
representation of the frequency of pixel intensity values within a particular gray-level range of an
image [15]. The process of determining the optimal thresholds may involve either bi-level thresholding
(BT) [16] or multi-level thresholding (MT) [17].

Furthermore, the primary challenge lies in determining the optimal thresholds that effectively divide
an image into multiple segments. In order to address this issue, Otsu proposed a method that selects
the optimal thresholds by maximizing the in-between class variance [18]. Kapur’s entropy, another
classic thresholding approach described in [19], seeks to achieve image segmentation by maximizing
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the image entropy. Tsallis entropy, which relies on a new version of Shannon’s entropy theory [20],
was also proposed for this purpose. In [21], a new thresholding method was proposed that selects the
optimal threshold values by minimizing the cross entropy between the original and segmented images.
However, this approach can be time-consuming when performing MT segmentation tasks [22].

Otsu’s method is a preferred thresholding segmentation approach. There are BT and MT versions.
For simple images, both BT and MT Otsu’s methods are feasible. However, in the face of images with
complex color and region, BT Otsu’s method will not complete segmentation, and MT Otsu’s method
will obtain unsatisfactory results. The computation takes longer as the threshold value rises. When
it comes to a large amount of image data, the increase in computation time will be more noticeable.
The effectiveness of Otsu’s method, therefore, needs to be optimized. Additionally, it is essential to
increase segmentation accuracy. The time-honoured Otsu’s method is still interesting today because of
the many optimized versions proposed.

With the purpose to speed up the image segmentation, scholars have proposed the improved
Otsu’s methods combining many meta-heuristic algorithms. Meta-heuristic algorithms have gained
widespread use in engineering applications, including transportation, communication, image process-
ing and more. This is due to their exceptional performance and their ability to solve optimization
problems with ease. Additionally, the No Free Lunch Theorem (NFL) [23] suggests that there is no
optimization algorithm that can perform the best across all types of problems. This has kept the re-
search in this area active and encouraged scientists to continually develop new and improved algorithms
for better optimization.

Because of higher computing overhead of conventional multilevel image thresholding approaches,
the application of meta-heuristic algorithms becomes attractive in order to reduce computing costs.The
most used meta-heuristic algorithms include Fruit Fly Optimization Algorithm (FOA) [24], Harris
hawks optimization (HHO) [25], Slime mould algorithm (SMA) [26], Monarch butterfly optimization
(MBO) [27], Colony Predation Algorithm (CPA) [28], Moth search algorithm (MSA) [29], Hunger
games search (HGS) [30], efficient optimization algorithm based on weighted mean of vectors (INFO)
[31], Runge Kutta method (RUN) [32], enhanced binary Rat Swarm Optimizer based on local-best con-
cepts of PSO and collaborative crossover operators (BERSOC) [33], hybrid method based on Butterfly
Optimization Algorithm and Ant Lion Optimizer (BOAALO) [34], modified whale optimization algo-
rithm with population reduction (mWOAPR) [35], bald eagle search optimization (BES) [36], Binary
Horse herd optimization algorithm with crossover operators (BHOA) [37], sparrow search algorithm
(SSA) [38], Grey Wolf Optimizer (GWO) [39] and the Whale Optimization Algorithm (WOA) [40].

Many scholars have proposed improved versions of Otsu’s method combined with meta-heuristic
algorithms. Huang proposed FOA-Otsu by combining FOA [41], which converges faster without sac-
rificing the segmentation accuracy. Based on a more effective algorithm for artificial bee colonies,
Bhandari enhanced Otsu’s technique. It performs well when segmenting satellite images [42]. Essam
H. Houssein proposed an efficient image segmentation method for skin cancer imaging using improved
golden jackal optimization algorithm [43]. Using a Bee Foraging Algorithm, the optimum multilayer
threshold of picture segmentation has been presented [44]. The hybrid whale optimization algorithm
(HWOA) provided the best threshold value for color picture segmentation [45].

Many scholars also focus on the improvement of strategies of Otsu’s method. Using the weighted
object variance approach, which has a high detection rate and a low false alarm rate, Yuan enhanced
the Otsu’s method for defect identification [46]. The use of histogram cumulative moments in the
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Improved Otsu method for ore segmentation was proposed in [47]. Mineral pictures with single-
peaked or negligible bimodal feature histograms may be efficiently and correctly segmented using this
technique. By constraining the gray level search range, Xu improved Otsu’s method [48], which has
superior performance compared with the original one.

Figure 2. The advantages of SO-Otsu and its value in TPD research process.

The rest of this paper is organized as follows: Section 2 concentrates on Otsu’s method and snake
optimizer. Section 3 presents an analysis of TPD image features and an improved version of Otsu’s
method. Based on this, we use Otsu’s improved approach in conjunction with the snake optimizer to
tackle the multilevel thresholding problem. We refer to the proposed method as SO-Otsu. The exper-
imental data set, evaluation indicators, and parameter tuning of the testing algorithms are presented in
Section 4. Section 5 was devoted to a detailed review and reviews of indicators. In this section, the
functionality of SO-Otsu is compared with original Otsu’s method, FOA-Otsu, SSA-Otsu, GWO-Otsu,
WOA-Otsu and HHO-Otsu on three TPD images. In detailed review, we define new evaluation metrics
to measure the details of algorithm segmentation. For indicator reviews, We plot the convergence curve
of the algorithm to visualize the optimization process. Furthermore, we also performed a statistical test
of the experimental results. The outcomes demonstrate that the proposed approach performs compa-
rably better in terms of image detail and processing time than other examined algorithms. Finally, the
conclusion and future work are shown in Section 6.

2. Algorithm principle and method

2.1. Otsu’s method

Otsu’s method, a global adaptive thresholding image segmentation algorithm, was introduced by
Nobuyuki Otsu, a Japanese scholar, in 1979 [49]. It is used to select the optimal image thresholds
by maximizing the between-class variance, which enables the separation of segmented classes in the
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most effective way possible. This technique assumes comparable pixel numbers for each class, which
facilitates successful segmentation.

2.1.1. Bi-level thresholding

In Otsu’s thresholding, the grayscale image is characterized in L gray levels (1, 2, . . . , L) having
pixels with gray-levels from the integer set {0, 1, 2, . . . , 255} [50]. In the single-level approach, the
image is separated by a threshold at a level t into two classes, namely C0 and C1. For a bi-level
thresholding problem, Otsu’s between-class variance can be expressed as:

µT = ω0µ0 + ω1µ1 and ω0 + ω1 = 1 (2.1)

where σ0 and σ1 are the variances of C0 and C1.

2.1.2. Muti-level thresholding

For multi-level thresholding, assume that m threshold levels (t1, t2, . . . , tm) split the image into m + 1
classes: C0,C1,C2, ...,Cm .the objective function for the segmentation process can be expressed by:

J(t)max = σ0 + σ1 + · · · + σm

σ0 = ω0 (µ0 − µt)2

σ1 = ω1 (µ1 − µt)2

. . .

σm = ωm (µm − µt)2

(2.2)

2.1.3. Analysis of algorithm

From the above formula, it can be seen that the solution space of the whole algorithm is a q − 1
dimensional space. Any q− 1 dimensional vector in the solution space needs to be calculated based on
the inter-class variance. Parameters, such as the inter-class mean, need to be calculated. Combining
these calculations, the time complexity of multi-threshold partitioning according to Otsu’s criterion is
O(Lq). The time complexity rises exponentially with the quantity of thresholds because of the exhaus-
tive calculation in the q−1 dimensional solution space. The multi-level thresholding approach chooses
many thresholds as opposed to the single-level thresholding method. The processed image has better
detail because there are more thresholds.

2.2. Snake Optimizer

Proposed by Fatma A. Hashim, Snake Optimizer (SO) was compared to other meta-heuristic algo-
rithms, such as MFO, HHO, TEO, GOA, WOA, L-SHADE, and L-SHADE-EpSin using 30 uncon-
strained benchmark functions from CEC 2017 and 10 functions from CEC 2020, as reported in Refer-
ence [51]. The experimental results demonstrate that SO outperforms the other algorithms. Notably,
in CEC 2017, SO achieved the best average results in 22 out of 29 functions and the second-best in 3
functions, while ranking third in the remaining 2 functions. In CEC 2020, SO ranked first in 6 func-
tions out of 10, and achieved the second-best results in 3 functions. Given its excellent performance,
we decided to use SO to optimize Otsu’s method.
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It is a brand-new meta-heuristic optimization technique that was motivated by a snake behavior:
mating activity only happens when it is cold outside and there is food available. Otherwise, the snakes
just search for food or eat the available food. The search method is split into two parts based on this
information: exploration and exploitation.

The exploration phase occurs when food is not available, and each individual will explore for food.
When the food is available, the snakes will be in exploitation phase. When the temperature is high, the
snakes will focus on eating the available food. If the area is cold, the mating process occurs.

During the mating process, the fight mode or mating mode may occur. In the fight mode, each
male will fight to get the best female and each female will try to select the best male. In the mating
mode, the mating occurs between each pair related to the availability of food quantity. If the mating
process occurs in a search space, there is a probability that the female lays eggs and hatch them into
new snakes.

Figure 3. Behavioral patterns of snakes.

The main steps of SO can be described as follows:
Step 1: Initialization
The initial population can be obtained using the following equation:

Xi = Xmin + rand × Limit (2.3)

where Xi is the position of the ith individual, rand is a random number between 0 and 1, and Limit is
the bounds of the problem.

Then, the population is divided to 2 groups: male group and female one. The best individual in
each group is found, including the best male fbest,m and the best female fbest, f and also the food position
f f ood.

The temperature temp and food quantity Q are defined by using following equations:

Temp = exp
(
−t
T

)
and Q = c1 × exp

( t − T
T

)
(2.4)

where t refers to the current iteration and T refers to the maximum number of iterations.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9645–9669.



9651

Step 2: Exploration Phase
When food is not available, the snakes search for food by selecting any random position and update

their position.

Xi = Xrand ± c2 × A × (Limit × rand + Xmin ) (2.5)

where A is the individual ability to search food, c2 is 0.05, Xrand refers to the position of random
individual and Xmin is the lower bounds of the problem.

Step 3: Exploitation Phase
When the temperature is high, the snakes are in the ordering mode. Each individual will move to

the current best food location X f ood.

Xi(t + 1) = Xfood ± c3 × Temp × rand × (Xfood − Xi(t)) (2.6)

where Xi is the position of the individual and c3 is 2.
When the temperature is low, the snakes will be in fight mode or mating mode.
In fight mode:

Xi(t + 1) = Xi(t) + c3 × F × rand × (Q × Xbest − Xi(t)) (2.7)

In mating mode:

Xi(t + 1) = Xi(t) + c3 × M × rand × (Q × Xi(t) − Xi(t)) (2.8)

where F is the fighting ability of an individual, and M is its mating ability.
After mating process, the egg may hatch to replace the worst individual.

Xworst = Xmin + rand × Limit (2.9)

where Xworst is the position of the worst individual.

3. SO-Otsu

3.1. Improvement of Otsu’s method

From Subsection 2.1, it is clear that the Otsu technique employs a global adaptive threshold segmen-
tation strategy. The gray value distribution of the entire image’s pixels has an impact on the threshold
that is chosen. Otsu’s method has the strategy of maximizing inter-class variance, which determines
that the threshold is selected in the range of a large number of pixels.

Figure 4 is the rubber tree secant image, and Figure 5 is its gray level histogram. we can see that
most pixels of the image are in the low gray-level range. While, the rubber tree secant in the image
(the objects of interest) occupies a small area, there are a small number of pixels in the high gray-level
range. The number of pixels at low gray-level is much larger than the number of pixels at high gray-
level. In the calculation process of original Otsu’s method, the proportion of pixels in high gray-level
range is small. Therefore, the selected threshold is 47, which is in low gray-level range (as shown by
the dashed red line).
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Algorithm 1: Snake Optimizer Algorithm
1 Initialize Problem Setting: Dim,UB, LB, Pop S ize(N),Max Iter(T ),Curr Iter(t)
2 Initialize the population randomly
3 Divide population N to 2 equal groups Nm and N f

4 while t ≤ T do
5 Evaluate each group Nm and N f

6 Find best male fbest,m

7 Find best female fbest, f

8 Define Temp and food quantity Q
9 if (Q ≤ 0.25) then

10 Perform exploration
11 else
12 if (Q ≥ 0.6)) then
13 Perform exploitation
14 else
15 if (rand ≥ 0.6)) then
16 Snake in Fight Mode
17 else
18 Snake in Mating Mode
19 Change the worst male and female
20 end
21 end
22 end
23 end
24 Return best solution

Figure 4. Rubber tree secant. Figure 5. Gray level histogram.
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Figure 6. The processed image according to the selected threshold.

The processed image using the selected threshold is shown in Figure 6. The segmentation effect of
rubber tree secant is very poor, because the region of interest is not be segmented. If we want to obtain
better effect of segmentation, the threshold should be selected in a high gray-level range. So, the paper
proposes an improved version of the Otsu’s method.

The image under concern is characterized in L gray-levels (1, 2, . . . , L).
First, set the proper gray-level Th is set as the first threshold. The gray-level of the image is sepa-

rated into two parts: [0,Th] and [Th + 1, L − 1], according to the selected threshold.
For an image with a N×M pixel, the number of pixels at with gray-level i is ni, and the total number

of pixels n is:

n = M · N =

L−1∑
i=0

ni (3.1)

The number of pixels in [0,Th] is nl, and the number of pixels in [Th + 1, L − 1] is nr.

nl =

Th∑
i=0

ni and nr =

L−1∑
i=Th+1

ni (3.2)

The probability that a pixel is in [0,Th] is pil,and the probability that a pixel is in [Th + 1, L − 1] is
pir .

pil =
ni

nl
and pir =

ni

nr
(3.3)

Setting a gray-level k,the range of [0,Th] is separated into two classes: C0 and C1. The range of
[Th + 1, L − 1] is the same.

Taking the first part as an example, the gray-level distribution probabilities ω0 and ω1 for C0 and C1

are expressed as:

ω0 =

k∑
i=0

pil and ω1 =

Th∑
i=k+1

pil (3.4)
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and

ω0 + ω1 =

Th∑
i=0

pil =
nl

n
(3.5)

The mean pixel gray-level probabilities for C0 and C1 are µ0 and µ1

µ0 =

k∑
i=0

i · pil and µ1 =

Th∑
j=k+1

i · pil (3.6)

The mean intensity µ of range of [0,Th] can be characterized as: µ =
∑Th

i=0 i · pil

The between-class variance for classes C0 and C1 is shown as:

σ2
B = ω0 (µ0 − µ)2 + ω1 (µ1 − µ)2 (3.7)

Citing the k , the optimal threshold is k∗ , which maximizes σ2
B (k∗) :

σ2
B (k∗) = max

06k6L−1
σ2

B(k) (3.8)

The obtained k∗ is the selected threshold in range [0,Th].

In the range of [Th + 1, L − 1], the above process is repeated using nr and pir. We will obtain three
thresholds.

The improved version treat the range of [0,Th] and [Th+1, L−1] as two separate images. Therefore,
during the process of selecting threshold, it can ignore the effect of the numerous pixels in low gray-
level range on the region of interest.

What’s more, the time complexity of the improved version is O
(
L2

)
, without increasing exponen-

tially with the number of thresholds.

3.2. Optimization of Otsu’s method using snake optimizer

To reduce the computation time, we combine the snake optimizer with the improved Otsu’s method
and propose SO-Otsu. In SO-Otsu, the gray level is regarded as the position of snake and the improved
Otsu’s method used as objective function. The specific steps are shown in Figure 7.
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Figure 7. Flow chart of the snake optimization algorithm.

4. Preliminaries

4.1. Experimental data set

In order to verify the effectiveness of the algorithm, three rubber tree images with tapping panel
dryness were simulated and generated. The three images with different TPD symptoms are numbered
as A, B and C. There are different characteristics in rubber tree secant.

In Figure 8, we can see that the rubber fluid has the spotty distribution feature. In Figure 9, the
boundary between the region of interest and the background is clear. The situation in Figure 10 is
between the previous two figures: the latex presents a lumpy distribution but there is a fuzzy boundary
between the target area and the background.

4.2. Evaluation indicators

Evaluation of a segmented image is a critical step to measure whether the process of segmentation
has been done accurately [52]. For evaluating the performance and quality of segmented images at dif-
ferent levels of thresholding, several techniques are used to measure the segmentation goodness. Peak

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9645–9669.
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Figure 8. A: latex distributed in a point pattern.

Figure 9. B: clear boundary between the region of interest
and the background.

Figure 10. C: clear boundary between the region of interest
and the background.

Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Feature Similarity
Index Measure are the three metrics employed in this paper (FSIM).

4.2.1. PSNR

PSNR is a quality validation metric used to find the quality difference among the original image and
segmented one [53]. PSNR can be described as follows:

PS NR = 20 log10
255

RMS E
(4.1)

where R M S E stands for the Root Mean Squared Error, which can be described as follows:

RMS E =

√∑M
i=1

∑N
j=1

(
(I(i, j) − Seg(i, j))2)
M × N

(4.2)

4.2.2. FSIM

FSIM is a measure used to map the features to measure the similarity between the original and the
segmented images [54].

FSIM depends on two major criteria: phase consistency (PC) and gradient magnitude (GM). To
ease the process of features detection, PC approach is used. To compute the image gradient, GM
approach is used. At first, the similarity among two images can be determined as follows:

S PC =
2PC1PC2 + T1

PC2
1 + PC2

2 + T1
(4.3)

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9645–9669.
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where PC1 and PC2 are the Phase Congruence (PC) for original and segmented images, respectively.
To increase the stability of S PC, T1 is used.

Then, S G is calculated.

S G =
2G1G2 + T2

G2
1 + G2

2 + T2
(4.4)

where G1 represents the gradient of the first image (original), and G2 represents the gradient of the sec-
ond image (segmented), and T2 is a positive constant number. From Eqs (4.3) and (4.4), the similarity
is calculated as follows:

S L(x) = [S PC(x)]α [S G(x)]β (4.5)

where α and β are used to adjust the importance of PCand GM.

4.2.3. SSIM

SSIM is a measure that is used to compute the similarity among the original and segmented images
[55], SSIM can be described as follows:

SSIM(I, S eg) =

(
2µ1µSeg + c1

) (
2σ1,Seg + c2

)(
µ2

I + µ2
Seg + c1

) (
σ1

I + σ2
Seg + c2

) (4.6)

The SSIM value ranges from 0 to 1, and the larger it is the more similar the image is. If the two
images are identical, the SSIM value is 1.

4.3. Parameter setting of the testing algorithm

To evaluate the performance of the proposed SO-Otsu, we used three pictures from Subsection 4.1
as the benchmark images. Due to the stochastic nature of the meta-heuristics algorithm, the results
change in every execution. Here, the experiments have been performed 30 times for each algorithm.
The performance of proposed approach was compared with six algorithms: the original Otsu’s method,
FOA-Otsu, SSA-Otsu, GWO-Otsu, WOA-Otsu and HHO-Otsu. Each algorithm’s parameter settings
are displayed in Table 1.

All these experiments have been performed using MATLAB R2016a on 10 Windows Operating
System with 16 GB RAM memory and AMD Ryzen 7 4800U CPU.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9645–9669.
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Table 1. Parameter setting of the testing algorithm.

Algorithm Parameter Setting

FOA-Otsu
maxgen 1000
popsize 100

SSA-Otsu
SearchAgents no 100
Max iteration 1000

GWO-Otsu
MaxIter 1000
pop 100

WOA-Otsu
SearchAgents no 100
Max iteration 1000

HHO-Otsu E0 [−1, 1]

SO-Otsu

C1 0.5
C2 0.05
C3 2
Max iteration no 1000
SearchAgents no 100
Th 161

5. Analysis of results

5.1. Detail review

The selected thresholds are shown as Table 2. The entire image is split into four areas based on the
thresholds. The value of each pixel is determined by the region to which it belongs. These particular
values in this study are 0, 100, 190 and 255.

The full process of the detailed evaluation is shown as Figure 11. In order to better display and
evaluate the details, we cut out the rubber tree secant from Figures 8–10. What’s more, a dotted line
(shown as the blue dotted lines in Figures 12–14) is selected at the proper region, which contains more
detail information of rubber tree secant.

According to the dotted line, the statistical information of gray level is obtained and it is shown
in Figures 15–17. In each sub-graph, the horizontal axis represents the position of each pixel on the
sampling line, while the vertical axis represents the gray value of the corresponding pixel.

In these figures, the first seven curves correspond to the statistics of each method. The last one is
the statistics of the original after gray processing. By comparing how similar each curve is to the final
one in every group, each method can be evaluated on the performance in segmenting details.
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Figure 11. The full process of the detailed evaluation.

In addition, we set a score for curve similarity:

S CORE =

L∑
i=1

score(i)

score(i) =

1, |a(i) − b(i)| ≤ 20
−1, |a(i) − b(i)| > 20

(5.1)

where i represents the horizontal axis coordinate of the curve, L is the maximum length of the horizontal
axis, a(i) represents the specific value of the processed curve at i, b(i) represents the specific value of
the original curve at i.

When the value difference between the two curves at a point is small, it is recorded as one point.
If the difference is large, one point is deducted as a penalty. Finally, adding up the score(i) to get

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9645–9669.
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S CORE. By comparing the scores in Table 2, we can see how well the algorithm is segmenting in
detail.

Figure 12. Group A. Figure 13. Group B. Figure 14. Group C.

Table 2. Detail score results.

Group Otsu FOA-Otsu SSA-Otsu GWO-Otsu WOA-Otsu HHO-Otsu SO-Otsu
A 126 27 593 1025 473 473 1096
B -163 426 -154 -311 -261 -261 883
C 583 562 619 392 583 583 909
Mean 182 348 353 369 265 265 962

In each group, SO-Otsu achieved the highest detail score, which proves that the results of SO-Otsu
processing are more consistent with the details of the original image than other algorithms.

In Figures 15–17, on the intuitive comparison of curve similarity, we have made the following
analysis.

Group A: As shown in Figure 15, in the range of [0, 100], the statistics of each method are very
similar to the last one, except for FOA-Otsu. In the range of [101, 255], SO-Otsu provides the best
results.The results of SO-Otsu are more similar to those of the final one. It reflects the fluctuation of
gray levels in the range of [101, 255]. For the other five methods, the pixels with different gray levels
are classified into the same category. In summary, SO-Otsu can distinguish the rubber tree secant from
the rubber fluid above it. SO-Otsu has a better performance in segmenting details.

Group B: As shown in Figure 16, in the whole range,the results of SO-Otsu are very similar to
those of the final one. The curve of the original image ebbs and flows. In contrast, the other five
methods cannot reflect the statistical trend of the original image, because the curve of the original
image is mapped to a straight line. SO-Otsu clearly reflects the changing trend of the original image.
Obviously, SO-Otsu performs better than the other methods in segmenting details.
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Figure 15. Statistical results of gray-level of group A.

Figure 16. Statistical results of gray-level of group B.

Figure 17. Statistical results of gray-level of group C.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9645–9669.



9662

Group C: As shown in Figure 17, in the range of [0, 100], the statistical trend of SO-Otsu is similar
to that of the final one. In the range of [101, 255], each method performs poorly, except for SO-Otsu.
The results of the other five methods cannot show the trend of gray levels changing.

In conclusion, SO-Otsu can distinguish the rubber tree secant and the rubber fluid. It has a better
performance in segmenting details.

5.2. Indicator reviews

In this section, SO-Otsu is compared with six other algorithms: FOA-Otsu, SSA-Otsu, GWO-Otsu,
WOA-Otsu, HHO-Otsu and the original Otsu’s method. The indicators include: running time, PSNR,
FSIM and SSIM. The running time is related to the real-time environment and is an important objective
criterion. The operation results are shown in Table 3.

Table 3. Test results of seven algorithms.

Group Algorithm Time Threshold PSNR SSIM FSIM

A

Otsu 35.814 10, 53, 113 10.702 0.9967 0.6765
FOA-Otsu 1.031 10, 60, 111 13.308 0.9990 0.6116
SSA-Otsu 0.944 47, 93, 131 15.828 0.9992 0.7773
GWO-Otsu 0.929 61, 98, 148 20.851 0.9949 0.7794
WOA-Otsu 1.071 45, 94, 135 16.039 0.9990 0.7796
HHO-Otsu 1.465 45, 94, 135 16.039 0.9990 0.7796
SO-Otsu 0.383 78, 161, 194 17.620 0.9955 0.7490

B

Otsu 41.302 36, 79, 139 17.785 0.9999 0.8542
FOA-Otsu 1.216 34, 79, 137 17.691 0.9999 0.8572
SSA-Otsu 0.971 36, 79, 138 17.758 0.9999 0.8551
GWO-Otsu 1.192 35, 86, 140 17.371 0.9999 0.8501
WOA-Otsu 1.167 36, 79, 139 17.785 0.9999 0.8542
HHO-Otsu 1.507 36, 79, 139 17.785 0.9999 0.8542
SO-Otsu 0.457 53, 161, 201 19.228 0.9997 0.6942

C

Otsu 41.536 43, 88, 141 18.350 0.9995 0.8374
FOA-Otsu 1.229 42, 89, 144 18.581 0.9994 0.8384
SSA-Otsu 0.930 43, 88, 141 18.601 0.9994 0.8368
GWO-Otsu 1.137 24, 108, 171 16.807 0.9995 0.7788
WOA-Otsu 1.192 43, 88, 141 18.350 0.9989 0.8374
HHO-Otsu 1.484 43, 88, 141 18.350 0.9989 0.8374
SO-Otsu 0.480 64, 161, 203 18.834 0.9993 0.7317

* The bold shows the best score for a certain indicator.

In order to avoid the chance of experimental results, we recorded the fitness obtained in 30 exper-
iments. The statistical results are then shown in Table 4, where Min represents the minimum value,
Max represents the maximum value, Avg represents the average value and Std represents the standard
deviation.
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Table 4. The comparison results of all algorithms.

Group Algorithm Min Max Avg Std

A

FOA-Otsu -2097.4761 -2073.2134 -2083.5962 17.1563
SSA-Otsu -2090.2649 -2085.2374 -2087.1733 2.2106
GWO-Otsu -2028.5177 -2001.1134 -2042.9591 35.1368
WOA-Otsu -2099.3886 -2085.9177 -2092.6531 7.0998
HHO-Otsu -2099.3886 -2085.9177 -2092.6531 7.0998
SO-Otsu -1738.0143 -1738.0143 -1738.0143 0

B

FOA-Otsu -1343.7825 -1330.6645 -1337.4671 7.3039
SSA-Otsu -1355.2036 -1357.6066 -1356.6169 1.1588
GWO-Otsu -1324.0171 -1265.4254 -1297.5898 28.4313
WOA-Otsu -1357.6066 -1357.6066 -1357.6066 0
HHO-Otsu -1357.6066 -1357.6066 -1357.6066 0
SO-Otsu -842.1048 -840.5693 -841.0466 0.7275

C

FOA-Otsu -1478.6927 -1417.8281 -1472.1903 17.3877
SSA-Otsu -1527.7611 -1518.7764 -1526.0685 4.2035
GWO-Otsu -1450.9134 -1523.8241 -1494.3500 31.5665
WOA-Otsu -1527.6912 -1527.6912 -1527.6912 0
HHO-Otsu -1527.6912 -1527.6912 -1527.6912 0
SO-Otsu -1194.0617 -1190.9742 -1192.7038 1.3736

We plot convergence curves (shown in Figure 18) for the optimization algorithm used to optimize
the threshold in the experiments to make the comparison results more intuitive. In each sub-graph, the
horizontal axis represents the number of iterations, while the vertical axis represents the best fitness
obtained so far.

The convergence diagram indicates that each group undergoes a similar change throughout the
iterations: the best fitness obtained gradually converges as the iteration progresses. Additionally, it can
be observed that curve SO exhibits a rapid convergence rate, which can be attributed to the optimizing
effect of the SO algorithm. However, it is evident that the SO curve does not converge to the identical
value as the other algorithms. The reason for this discrepancy is that the optimization process employed
by the SO-Otsu algorithm involves an enhanced version of the Otsu’s method proposed by us, while
the optimization employed by the other algorithms utilizes the original Otsu’s method.

In terms of time, compared with the original Otsu’s method, SO-Otsu has a huge improvement in
running time. What’s more, SO-Otsu reduces the running time by 50% compared with the other four
methods.

Thanks to the strategy of the SO-Otsu, the selected thresholds are more proper. Because they are not
limited to the range with more pixels (just like the other six methods), which means that the interested
region with less pixels could get more attention. The proper thresholds lead to better image processing
results. This is the reason why SO-Otsu performs best in detail reviews.

For the PSNR mean values, SO-Otsu is the first. In group A, the results of SO-Otsu are ranked
in the second, GWO-Otsu provides the highest PSNR. However, compared with the original Otsu’s
method, the results of SO-Otsu have a 70% increase. In group B, SO-Otsu provides the highest PSNR.
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Compared with the other five methods, the results of SO-Otsu have a 10% increase in group B. And
in group C, the results obtained by the six methods show little difference, but SO-Otsu provides the
highest PSNR. In summary, SO-Otsu has a better performance in PSNR, which means that it has less
distortion.

In terms of SSIM mean values, the variation between the six methods is negligible, with all SSIM
values exceeding 0.9990. This suggests that all methods perform well in preserving structural similar-
ity.

Regarding FSIM mean values, the performance of the SO-Otsu algorithm is not particularly strong.
In group A, it ranks fourth, while in groups B and C, it ranks last. This indicates that the algorithm is
not effective at preserving Feature Similarity.

Based on the statistical data presented in Table 4, it is evident that the convergence range of SO-
Otsu differs from that of other algorithms, as verified by Figure 18. Further analysis of the mean
value and standard deviation indicates that the outcomes yielded by SO-Otsu exhibit a higher level
of consistency. Furthermore, it can be observed that the WOA-Otsu and HHO-Otsu algorithms yield
identical outcomes. Moreover, both Group B and Group C exhibit a standard deviation of 0, implying
that these two algorithms are highly stable. Conversely, GWO-Otsu demonstrates a considerably large
standard deviation in each group, indicating that GWO-Otsu has a poor algorithmic stability.

Figure 18. Convergence curve of every group for all algorithm.

In conclusion, SO-Otsu obtains excellent results in the test of PSNR , which means that SO-Otsu has
a great performance in reducing distortion. Based on the statistical findings, it can be concluded that
SO-Otsu exhibits high stability. Moreover, SO-Otsu has the ability to preserve additional details of the
original image during segmentation, resulting in improved performance in capturing finer segmentation
details. Additionally, the optimization strategy employed in SO-Otsu results in reduced computational
complexity compared to alternative algorithms, enabling it to perform well in terms of execution time
evaluation.

On the one hand, it is regrettable that SO-Otsu did not achieve the top score in the SSIM evalua-
tion. However, the scores of several algorithms were only slightly different, within a margin of one
thousandth, which we consider acceptable. On the other hand, in the FSIM evaluation, SO-Otsu did
not perform as well, indicating that it lacks an advantage in preserving feature stability.
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6. Summary

In order to strengthen the ability of segmenting details, we improve the Otsu’s method. To solve
the multilevel thresholding problem, snake optimizer is used as the optimization function. Combining
the above two aspects, SO-Otsu is proposed for segmenting rubber tree secant. In the detail review,
SO-Otsu provides excellent segmenting results. SO-Otsu outperforms the other five methods. In the
indicator reviews, SO-Otsu has the best performance in running time and PSNR. Therefore, SO-Otsu
has Faster computation speed and less distortion. In terms of FSIM, SO-Otsu obtains a poor grade.
However, it is worth sacrificing FSIM score for faster computation speed and better segmentation
details.

For future works, it is recommended to apply SO-Otsu in the situation where higher computational
efficiency is sought. Also, SO-Otsu is likely to perform excellently when the region of interest is
smaller and its gray levels are different from other areas.
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