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Abstract: Knowledge graph (KG) embedding is to embed the entities and relations of a KG into a
low-dimensional continuous vector space while preserving the intrinsic semantic associations between
entities and relations. One of the most important applications of knowledge graph embedding (KGE)
is link prediction (LP), which aims to predict the missing fact triples in the KG. A promising approach
to improving the performance of KGE for the task of LP is to increase the feature interactions between
entities and relations so as to express richer semantics between them. Convolutional neural networks
(CNNs) have thus become one of the most popular KGE models due to their strong expression and
generalization abilities. To further enhance favorable features from increased feature interactions, we
propose a lightweight CNN-based KGE model called IntSE in this paper. Specifically, IntSE not only
increases the feature interactions between the components of entity and relationship embeddings with
more efficient CNN components but also incorporates the channel attention mechanism that can adap-
tively recalibrate channel-wise feature responses by modeling the interdependencies between channels
to enhance the useful features while suppressing the useless ones for improving its performance for
LP. The experimental results on public datasets confirm that IntSE is superior to state-of-the-art CNN-
based KGE models for link prediction in KGs.

Keywords: knowledge graph embedding; convolutional neural network; channel attention; link
prediction; feature enhancement

1. Introduction

In recent years, large-scale knowledge bases such as FreeBase [1], DBpedia [2], YAGO [3], and
WordNet [4] have been widely used in various domains, including information retrieval [5], question
answering [6], and recommender systems [7]. Their powerful abilities for semantic processing and
knowledge generalization have paved a new way for data management and mining. A knowledge
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graph (KG) is a graph representation of a knowledge base in the form of a collection of fact triples
(s, r, o), each of which denotes a relation edge r between a head entity node s and a tail entity node
o. The task of knowledge graph completion (KGC) is performed to improve the integrity of the KG
which suffers from incompleteness by predicting the missing triples according to the facts. KGC can
be performed by either extracting new facts from external sources, such as online encyclopedias and
news wires [8], or by inferring them from those already in the KG. The latter approach, typically called
Link Prediction (LP), is the focus of our paper.

Knowledge graph embedding (KGE) models have been shown to achieve the best performance for
the task of link prediction in KGs among all the existing methods [9]. To learn low-dimensional vec-
tor or matrix representations of entities and relations in KGs, a lot of knowledge graph embedding
models are proposed. Specifically, the classic triple-based embedding models are mainly divided into
translation-based models (e.g., TransE [10], TransH [11], TransAH [12], TransR [13], TransD [14]), bi-
linear and tensor models (e.g., DistMult [15], SimplE [16], TuckER [17]), neural network models (e.g.,
NTN [18], ER-MLP [19], ConvE [20], ConvKB [21], Conv-TransE [22], InteractE [23], DMACM [24],
KMAE [25], JointE [26], CTKGC [27]), and complex vector models (e.g., ComplEx [28], RotatE [29],
QuatE [30]).

Among all of the above models, convolutional neural network (CNN) based KGE models are at-
tracting increasing research interest because they benefit from the explosion of deep learning tech-
niques and exhibit strong expression and generalization abilities. The performance of CNN-based
KGE models depends on the interactions between entities and relations. Considerable research ef-
forts have been devoted to increasing the interactions between entities and relations. InteractE [23]
increases interactions by embedding permutations. The directional multi-dimensional attention mech-
anism is designed to explore the deep expressive characteristic of the triple in DMACM [24]. Gaussian
kernel and multi-attention techniques are adopted to expand the entities and relation embedding in
KMAE [25]. JointE [26] utilizes 1D and 2D convolution operations jointly to extract the surface and
explicit knowledge and increase the interactions between entities and relations. However, in order to
improve performance, these models are complex with a large number of parameters. How to balance
the efficiency and effectiveness of the CNN-based KGE model is still an open problem.

In this paper, we propose a lightweight CNN-based KGE model named IntSE with channel attention
to improve the prediction accuracy for LP in KGs. Inspired by InteractE, checkered feature reshaping
and circular convolution are adopted to increase the interactions between the components of entity
and relation embeddings in IntSE. A channel attention module of IntSE is designed to enhance useful
interactions while suppressing useless ones. IntSE is light and flexible, greatly reducing the number of
parameters, but still has a competitive prediction accuracy for LP. The main contributions of this paper
are summarized as follows:

1) We propose a lightweight CNN-based KGE model named IntSE to improve the prediction ac-
curacy for LP in KGs. IntSE is efficient and effective for LP through three key components:
checkered feature reshaping, circular convolution, and channel attention mechanism. Checkered
feature reshaping and circular convolution operations are very effective for increasing interactions
between entities and relations. Moreover, the channel attention mechanism further enhances the
beneficial interactions.

2) In order to further improve the performance of link prediction, we propose a channel attention
block called LPSENet, which improves the gate mechanism of the SENet prototype. LPSENet
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improves the expression ability while reducing the model overfitting of IntSE.
3) We conduct extensive experiments on publicly available datasets to evaluate the performance of

IntSE. The results show that IntSE achieves significantly higher accuracy for LP in KGs than the
mainstream KGE models.

Paper organization: The rest of this paper is organized as follows. The existing literature related
to this work is discussed in Section 2. Our proposed IntSE models for LP are presented in Section 3.
The experimental setup and results are described in Section 4. The ablation studies which investigate
how the checkered feature reshaping, circular convolution, and channel attention mechanism affect the
performance of IntSE are discussed in Section 5. Finally, the whole paper is concluded in Section 6.

2. Related work

KGE learns an embedding representation of entities and relations of a KG in a continuous low-
dimensional vector space. Wang et al. [31], Nguyen [9], and Liu et al. [32] systematically reviewed
KGE models for knowledge graph completion (KGC). Moreover, Rossi et al. [33] and Akrami et
al. [34] conducted experimental studies to assess the effectiveness of different link prediction (LP)
methods on real-world data. According to the different ways of expressing the semantics between en-
tities and relations, there are four families of KGE models: (a) TransE [10] and its families (such as
TransH [11], TransAH [12], TransR [13], and TransD [14]) used the translation invariance to express
the association between entities and relations; (b) DistMult [15] and its improved versions [16, 17]
utilized a diagonal matrix to express the relations for model simplification; (c) ComplEx [28] and its
variants [29, 30] further extended DistMult to the complex field, which could better model the asym-
metric relations in KGs; and (d) Neural network (NN) based models (such as ER-MLP [19], NTN [13],
ConvE [20], Conv-TransE [22], ConvKB [21], InteractE [23], DMACM [24], KMAE [25], JointE [26])
used neural network to model semantics between entity embeddings and relation embeddings. Among
all the above methods, NN-based models demonstrated outstanding performance in prediction accu-
racy due to their excellent feature extraction ability. NN-based models for KGE, especially CNN-based
models, have received more attention in recent years due to the advantages of convolution operation,
such as parameter sharing, generalization, overfitting reduction, and robustness.

ConvE [20] is the first work on the CNN-based KGE model. It reshaped the head entity embed-
ding and the relation embedding separately and stacked them into a 2D convolution layer to extract
semantic features of entities and relations. The generated feature mapping was vectorized and pro-
jected into the embedding space of tail entities. Then, all candidate tail entity embedding vectors were
matched through their inner products. Conv-TransE [22] considered that the reshaping of entity and
relation embeddings in ConvE destroyed the translation invariance of the embedding vector. Thus,
it removed the embedding vector reshape operation in ConvE and directly put the known entity and
relation embeddings into the convolutional layer. The remaining procedure of Conv-TransE was the
same as that of ConvE. Thus, Conv-TransE could be regarded as a variant of ConvE. ConvKB [21]
was another CNN-based KGE model, which stacked the head entity embedding, relation embedding,
and tail entity embedding into a matrix M, and used a convolution operation with filters ω ∈ R1×3 to
act on each dimensional vector after M transposition. ConvKB was controversial since it obtained a
competitive result on the FB15k-237 [35] dataset, but a disappointing result on the WN18RR [20]. As
its performance varies with datasets and implementations, we do not compare it in our experiments.
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InteractE [23] found that the stacked feature reshaping of ConvE (see Figure 1) limited the feature
interaction between entities and relations. Thus, it increased the feature interaction between entity and
relation embeddings to improve the performance for LP. Specifically, it reshaped the entity and relation
embeddings into a checkered structure (see Figure 1), while using circular convolution to enhance the
edge feature interaction. However, feature permutation in InteractE is costly. DMACM [24] found
that the existing CNN-based KGE model ignored the directional relation characteristic and implicit
fine-grained feature in the triple. Thus, it was proposed to explore the directional information and
an inherent deep expressive characteristic of the triple by the directional multi-dimensional attention.
Then, the output of directional multi-dimensional attention could be put in the convolution neural net-
work with filters ω ∈ R1×3. KMAE [25] first expanded the entity embedding and relation embedding
into entity kernel and relation kernel using the Gaussian kernel function. Entity kernel or relation
kernel combined relation embedding or entity embedding input into a 2D convolutional layer, then
two groups of channel attention and spatial attention captured high-quality feature vector information.
JointE [26] consisted of path 1 and path 2 in two feed-forward paths. Path 1 used 1D convolution filters
over input the entity and relation embedding to extract the surface and explicit knowledge. To reduce
the number of parameters, path 2 employed different 2D convolution filters to extract the deep features
from the reshaped entity and relation embedding. The final features of the entity and relation were
obtained by element-wise addition between the output of path 1 and the output of path 2.

es

er

stack

checker

Figure 1. Different types of reshaping methods in KGE models [23].

In conclusion, CNN-based KGE models should expand feature extraction capability and increase
the interactions between the entities and relations to improve the performance of LP. The key com-
ponents of existing methods include the initial embedding of the entities and relation, the reshaping
plan of the entities and relation embeddings, the convolution operations to extract features, and the
attention-based feature calibration. Although many complex models can improve the performance for
LP, they introduce too many parameters that hinder the model’s efficiency. Thus, our goal is to design
a CNN-based KGE model that can strike a better balance between performance and cost.

3. Our model

In this section, we introduce the proposed model IntSE. We first introduce the related notations and
problem definition and then describe the architecture of IntSE in detail, as shown in Figure 2.
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Figure 2. The architecture of IntSE.

3.1. Notations and problem definition

Let E and R denote the set of entities and relation types. A Knowledge Graph (KG) G consists of a
set of fact triples (s, r, o), which is formally expressed as follows:

G = {(s, r, o) | s, o ∈ E, r ∈ R} ⊆ E × R × E

Link Prediction (LP) is to predict the missing entity in a triple (s, r, o), such as predicting o for
a given (s, r, ?) or s for a given (?, r, o). LP can be formalized as a single sample learning-to-rank
problem. A KGE-based LP method has two key components, namely encoding and scoring. The
encoding component maps the head entity s, relation r, and tail entity o to the d-dimensional vector
representations es, er, eo ∈ R

d. Then, the scoring component measures the authenticity of triples.
The goal of LP is to learn a scoring function ψ about entity and relation embeddings so that the score
ψ(s, r, o) of fact triples (s, r, o) is higher than that ψ(s′, r, o′) of non-fact triples (s′, r, o′).

3.2. IntSE: A lightweight CNN-based KGE model with channel attention

The architecture of our IntSE model is shown in Figure 2. The key components of IntSE are check-
ered feature reshaping, circular convolution operation, and channel attention mechanism. Given a
d-dimensional entity embedding vector es and a d-dimensional relation embedding vector er, IntSE
first reshapes es and er into a checkered matrix φchk(es, er) ∈ Rm×n, where m × n = 2d, and then sends
it to a 2D circular convolutional layer. Then, the convolutional layer outputs a feature map tensor
X = [x1,x2, . . . ,xC] ∈ RH×W×C, which is sent to the channel attention block for feature calibration to
generate the calibrated feature map tensor X ∈ RH×W×C. Next, X is vectorized into vec(X) ∈ RHWC,
projected to the d-dimensional vector space using the linear transformation of the parameter matrix as
W ∈ RHWC×d, and finally matched with the tail entity eo via the inner product operation.

3.2.1. Checkered feature reshaping and circular convolution operation

The checkered feature reshaping increases the feature interaction between the components of entity
and relation embeddings, and thus improves the expression ability of CNNs. Different from the stacked
feature reshaping (see Figure 1), a checkered structure (see Figure 1) arranges the entity and relation
embeddings such that no two adjacent cells are occupied by components of the same embedding to
increase the feature interaction between entity and relation embeddings. The components of entity
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and relation embedding are randomly assigned to cells of a checkered structure in IntSE. Then, a 2D
circular convolutional layer with filters ω ∈ R3×3 is adopted to extract the deep and latent knowledge
from the checkered features. Circular convolution induces more interactions than standard convolution
and thus further expands the expression ability of IntSE.

In this paper, we are inspired by InteractE and borrow the checkered feature reshaping and circular
convolution components to IntSE. Unlike the feature enumerations of InteractE, which take up a large
number of parameters, IntSE only uses one checkered feature reshaping and one circular convolutional
layer to improve the efficiency of the model.

3.2.2. Channel attention

SENet [36] explicitly defines the association between feature channels and filters the feature channel
information by self-learning the weight of each channel, so as to enhance useful features and suppress
useless features. We are inspired by SENet and related works, SENet is added to IntSE to enhance
useful interactions and improve the performance of LP. However, the improvement is still quite limited.
Therefore, we further propose a new SENet variant called LPSENet as shown in Figure 3 to enhance
the useful features for LP.

Global Average Pooling

Sigmoid

Conv

Conv

ReLU

Dropout

ReLU

Dropout

X

L

A

X

H W C 

H W C 

Figure 3. The diagram of improved SENet module: LPSENet.

For a feature map tensor X = [x1, x2, . . . , xC] ∈ RH×W×C, where xi represents the feature map of i-th
channel of size H ×W, and C denotes the total number of channels. The operation flow of LPSENet is
as follows:

1) Squeeze: LPSENet performs the Global Average Pooling (GAP) on each feature channel xc to
obtain statistical information as lc in the following:

lc = p(X) =
1

WH

W,H∑
i=1, j=1

Xi j. (3.1)
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The total C statistical values are aggregated into a compressed feature tensor L = [l1, l2, . . . , lC] ∈
R1×1×C, which contains the global information of all features.

2) Excitation: To capture the dependence between channels, the gating mechanism is used to gener-
ate the weight matrix A = [a1, a2, . . . , aC] ∈ R1×1×C corresponding to each feature channel. Unlike
the gating mechanism of SENet, we design a lighter and more efficient gating mechanism. SENet
uses a gating mechanism consisting of a fully connected dimension-reduction layer, a ReLU [37]
activation layer, and a fully connected dimension-increasing layer. The fully connected layer has
a huge number of parameters and is prone to overfitting. Thus, in the LPSENet, the fully con-
nected layer is changed to the convolutional layer with filters ω ∈ R1×1, and Dropout is added to
avoid overfitting. Equations (3.2) and (3.3) formalize the gate mechanism of SENet and LPSENet,
respectively.

A = σ(W2 f (W1L)), (3.2)

A = σ( f ( f (L ? ω1) ? ω2)), (3.3)

where f is the ReLU function and σ is the Sigmoid function, W1 ∈ R
C
q ×C and W2 ∈ R

C×C
q are

learned to explicitly model the correlation between feature channels, and q is the reduction ratio,
ω1 and ω2 are the convolution filters.
Compared with the SENet, LPSENet introduces more non-linearity. Thus, it has a higher expres-
sive ability and is more robust to overfitting. The convolutional layer has the same output effect as
the fully connected layer, but reduces the number of parameters and improves the computational
efficiency. The experimental results in Section 5 will show that the LPSENet is more suitable for
LP than SENet.

3) Scale: The output weight A of the excitation operation represents the importance of each feature
channel after feature selection, and the final output of the LPSENet block X =

[
x1, x2, . . . , xC

]
∈

RH×W×C is obtained by rescaling the input feature map X with the activations:

xc = ac · xc (3.4)

where xc refers to channel-wise multiplication between the scalar ac and the feature map xc.

3.2.3. Scoring function

The goal of LP is to learn a scoring function ψ about entity and relation embeddings so that the
score ψ(s, r, o) of fact triples (s, r, o) is higher than that ψ(s′, r, o′) of non-fact triples (s′, r, o′). Table 1
summarizes the scoring functions of CNN-based KGE models, where es and er denote the 2D stack
reshapings of the entity embedding es and relation embedding er, [; ] represents the concatenation
operation, ? denotes the standard convolution operation, ω denotes the set of convolutional filters,
W and w are the learned weight matrix, φchk(Pk(es, er)) denotes k different checkered reshaping of
es and er, ♣ denotes the circular convolution, vec(·) represents the vectorization function, f and g
are non-linear functions, DM(·) represents the directional multi-dimensional attention functions of
DMACM [24], kernel(·) and Mul(·) represent the Gaussian kernel functions and multi-attention in
KMAE [25], ca(·) represents the channel attention functions of IntSE.
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Table 1. Scoring functions of CNN-based KGE models.

Model fScoring Function ψ(es, er, eo)
ConvE [20] f (vec( f (

[
es; er

]
? ω))W)eo

Conv-TransE [22] g(vec( f ([es; er] ? ω))W)eo

ConvKB [21] concat(g([es; er; eo] ? ω)w)
InteractE [23] g(vec( f (φchk(Pk(es, er))♣ω))W)eo

DMACM [24] concat( f (DM(es, er, eo)) ? ω)W
KMAE [25] g(Mul(

[
kernel(es); er

]
||
[
es; kernel(er)

]
))eo

JointE [26] f ([es; er] ? ω1
1D ? ω

2
1D + vec(

[
es ? ωr; er ? ωs

]
)W)eo

IntSE g(vec(ca( f (φchk(es, er)♣ω)))W)eo

3.2.4. Training procedure of IntSE

In order to train the model parameters, we use the binary cross entropy with label smoothing as the
loss function [20], as shown in Eq (3.5):

Γ(p, t) = −
1
N

∑
i

(ti · log2(pi) + (1 − ti) · log2(1 − pi)), (3.5)

where p = σ(ψ(s, r, o)) indicates the probability of correct link prediction through applying the lo-
gistic sigmoid function σ(·) to the scores ψ(s, r, o) and t is the smoothing label. In this paper, we use
Adam [38] as the optimizer and label smoothing to reduce the overfitting due to the saturation of output
non-linearity at the labels [39].

4. Experiments

In this section, we first describe the setup of our experiments. Then, we present the detailed experi-
mental results and provide thorough analyses.

4.1. Experimental setup

Dataset: We use the two most widely used knowledge graph datasets for link prediction, namely
FB15k-237 [35] and WN18RR [20], in our experiments. Specifically, FB15k-237 is an improved
version of the FB15k [10] dataset derived from FreeBase [1], where all reversal relations in FB15k
are deleted to prevent test triples from being directly deduced by reverse training triples. WN18RR
is a subset of the WN18 [10] dataset derived from WordNet [4], and the inverse relationships are also
deleted similar to FB15k-237. The characteristics of the two datasets are shown in Table 2.

Table 2. Statistics of FB15k-237 and WN18RR dataset.

Dataset #entities #relations #train #valid #test
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3034 3134

Evaluation metrics: In this paper, we use the four commonly used evaluation criteria for link pre-
diction, namely, MR, MRR, Hits@1, and Hits@10, to measure the performance of different models.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 9607–9624.
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The mean rank (MR) represents the mean of the test triples’ ranks, i.e.,

MR =
1

2|T |

∑
(s,r,o)∈T

(ranks + ranko),

where |T | is the size of the test set. The mean reciprocal rank (MRR) is the average inverse of the
harmonic mean of the test triples’ ranks, i.e.,

MRR =
1

2|T |

∑
(s,r,o)∈T

(
1

ranks
+

1
ranko

).

And Hits@k is the percentage of top-k results that are correct. Among the four indicators, lower
MR and higher MRR, Hits@1, and Hits@10 indicate better performance.

Hyperparameter setting and implementation: The ranges of hyperparameters are set as follows:
the learning rate γ ∈ {0.01, 0.001, 0.005, 0.0001} , the entity and relation embedding dimension d ∈
{100, 200}, the kernel size in the 2D convolutional layer k ∈ {5, 7, 9, 11}, the reduction ratio of LPSENet
1/q, where q ∈ {2, 4, 8, 16}. In addition, the experiment also uses batch normalization and Dropout to
avoid overfitting. To decide the values of hyperparameters, each model is trained for 500 epochs via the
grid search method, and the hyperparameters with the best performance are selected according to the
MRR on the validation set [20, 23]. For the FB15k-237 dataset, the parameter settings are γ = 0.0001,
d = 200, k = 9, and q = 4, and the batch size is 128. For the WN18RR dataset, the parameter settings
are γ = 0.001, d = 200, k = 11, and q = 8, and the batch size is 256. We implemented our models with
PyTorch in Python 3. All experiments were conducted on a server with 4 Intel R© Xeon R© w-2104 CPUs
@ 3.20GHz, 32GB DDR4 RAM, and 1 NVIDIA R© GeForce R© RTX

TM
2060 GPU with 8GB GDDR6

RAM.

4.2. Experimental results and analyses

In the experiments, we compare IntSE with the six baseline models, namely ConvE [20], Conv-
TransE [22], InteractE [23], DMACM [24], KMAE [25], JointE [26].

4.2.1. Prediction accuracy

Table 3. Prediction accuracy on the FB15k-237 and WN18RR dataset.

Model
FB15k-237 WN18RR

MRR MR Hits@10 Hits@1 MRR MR Hits@10 Hits@1
ConvE [20] 0.325 244 0.501 0.237 0.430 4187 0.520 0.400
Conv-TransE [22] 0.330 - 0.510 0.240 0.460 - 0.520 0.430
InteractE [23] 0.354 172 0.535 0.263 0.463 5202 0.528 0.430
DMACM [24] 0.270 244 0.440 - 0.230 552 0.540 -
KMAE [25] 0.326 235 0.502 0.240 0.448 4441 0.524 0.415
JointE [26] 0.356 177 0.543 0.262 0.471 4655 0.537 0.438
IntSE 0.359 179 0.540 0.267 0.469 5007 0.532 0.439

The prediction accuracy of different models on the FB15k-237 and WN18RR datasets is shown
in Table 3. The scores of all the baselines are taken directly from the values reported in the original
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papers. The best and second-best results are highlighted by bold and underlined texts, respectively.
We observe that IntSE achieves high accuracy in both datasets: it achieves competitive performance in
all evaluation metrics and outperforms all the baselines in terms of MRR and Hits@1 on FB15k-237.
Specifically, we draw the following conclusions from the experimental results:

1) IntSE outperforms InteractE in terms of MRR, Hits@10, and Hits@1 on both datasets, which
indicates that channel attention effectively improves the performance of the CNN-based KGE
model for LP. Furthermore, IntSE obtains improvements of 2.5 and 3% over InteractE in terms of
MRR and Hits@1 on the FB15k-237 dataset. Then, on the WN18RR dataset, the improvement
rates of IntSE over InteractE on MRR and Hits@1 are 1.7 and 2.3%. These results confirm that
IntSE not only retains the advantages of InteractE but also further enhances the useful features of
InteractE.

2) Both IntSE and InteractE outperform KMAE in terms of MRR, Hits@10, and Hits@1 on both
datasets, which indicates that checkered feature reshaping and circular convolution operations
increase feature interactions between the entities and relations are effective. The ablation studies
of IntSE in Section 5 further demonstrate the effectiveness of checkered feature reshaping and
circular convolution operations.

3) It is unexpected that DMACM outperforms all the models in the MR and Hits@10 on the
WN18RR dataset. However, DMACM is inferior to others models in the MRR metrics on both
datasets. The reason may be the distinguishing feature of WN18RR, which has fewer relations
but more entities.

4) Compared to JointE, the state-of-the-art CNN-based KGE model, IntSE performs better in terms
of Hits@1 on both datasets. Moreover, they are well-matched in other metrics.

4.2.2. Prediction accuracy for different relation types

Table 4. Prediction accuracy by relation category on the FB15k-237 dataset.

ConvE [20] InteractE [23] IntSE
MRR Hits@10 MRR Hits@10 MRR Hits@10

H
ea

d
Pr

ed 1-to-1 0.374 0.505 0.386 0.547 0.391 0.561
1-to-n 0.091 0.170 0.106 0.192 0.112 0.198
n-to-1 0.444 0.644 0.466 0.647 0.472 0.652
n-to-m 0.261 0.459 0.276 0.476 0.285 0.479

Ta
il

Pr
ed

1-to-1 0.366 0.510 0.368 0.547 0.372 0.550
1-to-n 0.762 0.878 0.777 0.881 0.780 0.888
n-to-1 0.069 0.150 0.074 0.141 0.079 0.152
n-to-m 0.375 0.603 0.395 0.617 0.400 0.621

To further verify the effectiveness of IntSE, we also evaluate the performance of the models for
LP in different categories of relations on the FB15k-237 dataset. We use FB15k-237 in this set of
experiments because its relation is more diverse. Based on the average number of tail entities per head
entity and the average number of head entities per tail entity, the relation is divided into four categories:
1-to-1, 1-to-n, n-to-1, and n-to-m. Here, an average number of less than 1.5 is marked as “1” and “n”
otherwise. Among the 224 distinct relations in the test set of FB15k-237, 5.8% are 1-to-1, 11.6% are
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1-to-n, 33.9% are n-to-1, and 48.7% are n-to-m relations. But on the WN18RR dataset, the 11 distinct
relations in the test set are distributed as 2, 4, 3, and 2 in these four classes [34]. Because all the other
baselines don’t report the performance of LP in different relation categories in their papers, ConvE [20]
and InteractE [23], two classical CNN-based KGE models, are used for comparison in the experiments.
MRR and Hits@10 are used as evaluation criteria [14]. Table 4 presents the experimental results of
different models for LP on the FB15k-237 dataset. From Table 4, we find that IntSE achieves better
performance than ConvE and InteractE in all four relation categories, whether it deals with simple
relation categories (e.g., 1-to-1) or more complex relation categories (e.g., 1-to-n and n-to-m). It is
verified again that IntSE has good robustness and is suitable for link prediction tasks with various
relation categories.

4.2.3. Prediction accuracy by feature permutation

IntSE only uses one checkered feature reshaping and one circular convolutional layer; that is, the
number of feature permutation perm in IntSE is one. We conduct experiments in the same setting to
further evaluate the impact of feature permutation on the prediction accuracy of InteractE and IntSE.
Table 5 presents the experimental results. We can see that the prediction accuracy of InteractE and
IntSE drops slowly with the increase of perm on the FB15k-237 dataset. IntSE and InteractE work best
when perm is one. This result is consistent with that reported in the paper InteractE [23]. Nevertheless,
IntSE is still superior to InteractE in all cases under all the metrics. From Table 5, we can further
conclude that increasing the beneficial feature interactions is crucial to improve the performance of
CNN-based KGE models.

Table 5. Prediction accuracy with varying feature permutation on the FB15k-237 dataset.

InteractE [23] IntSE
perm = 1 perm = 2 perm = 3 perm = 1 perm = 2 perm = 3

MRR 0.353 0.353 0.349 0.354 0.353 0.350
Hits@10 0.537 0.534 0.533 0.539 0.537 0.535
Hits@20 0.619 0.616 0.613 0.620 0.615 0.614
Hits@40 0.694 0.692 0.688 0.695 0.691 0.688
Hits@80 0.764 0.761 0.759 0.766 0.763 0.758
Hits@160 0.829 0.824 0.822 0.830 0.827 0.822

4.2.4. Parameter efficiency

We also evaluate the parameter efficiency of different models on the FB15k-237 dataset. Table 6
presents the experimental results. The number of parameters in IntSE is larger than ConvE because
IntSE adopts 96 convolution filters of size 9 × 9 while ConvE adopts 32 convolution filters of size
3 × 3. The fully-connected layer of IntSE has much more parameters than ConvE. The number of
parameters in IntSE is nearly equal to that of InteractE when the feature permutation perm is one. The
channel attention mechanism of IntSE is lightweight with only a few thousand additional parameters.
The number of parameters in InteractE increases significantly with the feature permutation perm be-
cause the number of parameters in the convolution and fully-connected layers of InteractE is positively
correlated with perm.
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Table 6. Parameter efficiency of different models on the FB15k-237 dataset.

Model ConvE [20]
InteractE [23]

IntSE
perm = 1 perm = 2 perm = 3 perm = 4

Parameters 4.96M 10.7M 18.38M 26.07M 33.75M 10.7M

5. Ablation studies

There are three key components in IntSE: checkered feature reshaping, circular convolution oper-
ation, and channel attention mechanism. Based on the public FB15k-237 dataset, ablation studies are
conducted to evaluate the effects of these key components on the performance of IntSE. Specially, we
evaluate the effects of the three different channel attention mechanisms on the performance of IntSE.

5.1. Key components of IntSE

The effects of key components on the performance of IntSE are shown in Table 7. The sr, cr,
sc, cc, and ca denote the stacked feature reshaping, checkered feature reshaping, standard convolu-
tion, circular convolution, and channel attention components, respectively. From Table 7, we can see
that checkered feature reshaping, circular convolution operation, and channel attention are three com-
ponents that significantly contribute to the performance of IntSE. The channel attention mechanism
significantly boosts performance in all cases. Although cr + cc outperforms most variants of IntSE
with the help of checkered feature reshaping and circular convolution, it is inferior to IntSE. IntSE
obtains improvements of 4 and 3.5% over cr + cc in terms of MRR and Hits@1 with the help of the
channel attention mechanism. These findings further demonstrate the effectiveness of IntSE and the
importance of the channel attention mechanism.

Table 7. Effect of key components on the performance of IntSE.

Model MRR MR Hits@10 Hits@1
sr+sc (ConvE) 0.325 244 0.501 0.237
sr+sc+ca 0.342 181 0.525 0.251
cr+sc 0.338 185 0.519 0.249
cr+sc+ca 0.350 193 0.536 0.262
cr+cc 0.346 175 0.532 0.258
cr+cc+ca (IntSE) 0.359 179 0.540 0.267

5.2. Different channel attention mechanisms

The channel attention mechanism is the key component of IntSE. To further confirm the necessity
of the channel attention mechanism, we evaluate the effects of the three different channel attention
mechanisms on the performance of IntSE. Specifically, SENet [36] is the first work to boost the repre-
sentation power of a CNN by enhancing channel relationship; SKNet [40] is the first to explicitly focus
on the adaptive receptive field size of neurons by introducing the attention mechanism; ECA-Net [41]
is the most effective channel attention module of deep CNNs in computer vision applications. Table 8
presents the detailed results of IntSE variants with different channel attention mechanisms under the
four evaluation indicators: MR, MRR, Hits@1, and Hits@10.
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Table 8. Performance of IntSE with different channel attention mechanisms.

Model MRR MR Hits@10 Hits@1
IntSE-SENet 0.358 183 0.538 0.266
IntSE-SKNet 0.350 193 0.527 0.262
IntSE-ECANet 0.346 223 0.529 0.250
IntSE-ECANet’ 0.355 184 0.536 0.263

IntSE-SENet performs the best among all models compared. To our surprise, ECA-Net brings side
effects on IntSE. Especially the IntSE-ECANet model, which integrates checkered feature reshaping,
circular convolution operation, and ECA-Net, has the lowest performance. The main reason is that a
KG has different data characteristics from images and video. The IntSE model is so simple that there is
only one convolution layer with a small input size, while deep CNNs in computer vision applications
often have very large input sizes. Detailed analyses of the experimental results lead to the following
views in the CNN-based KGE models for LP:

1) The channel attention is more important than the spatial attention. SKnet uses soft attention
to fuse the features of multiple convolution branches with different kernel sizes. The fact that
IntSE outperforms IntSE-SKNet for LP indicates that the convolution kernel size of IntSE is
more appropriate. Moreover, since IntSE-SENet outperforms IntSE-SKNet, we again confirm
that channel attention is more important than spatial attention. The experimental results in [42]
also show that the channel-first order is slightly better than the spatial-first order. Therefore, we
should pay more attention to explicitly defining the association between feature channels so as to
improve the performance for LP.

2) The global cross-channel interaction is more important than local cross-channel interaction. Al-
though ECA-Net is an efficient and effective channel attention mechanism for deep CNNs, the
performance of IntSE-ECANet is lower than IntSE-SENet. The possible reason is that a fast 1D
convolution with kernel size k in ECA-Net only captures the local cross-channel interaction rather
than the global cross-channel interaction. To verify the hypothesis, we conduct additional exper-
iments on a model named IntSE-ECANet’ which adopts a variant of ECANet with only a single
fully connected layer. Since IntSE-ECANet’ exhibits better performance than IntSE-ECANet, we
further confirm that the global cross-channel interaction is more important than the local cross-
channel interaction in CNN-based KGE models for LP. We observe that IntSE-SENet performs
the best among all models compared. This indicates that the two fully connected layers designed
in SENet to capture the non-linear global cross-channel interactions are effective, and we can
improve the performance of the CNN-based KGE model on LP by introducing SENet.

5.3. Different gating mechanisms of SENet

The channel attention module of IntSE is LPSENet which changes the gating mechanism of SENet.
In the LPSENet, the fully connected layer is changed to the convolutional layer with filters ω ∈ R1×1,
and Dropout is added to avoid overfitting. We also evaluate the performance of IntSE with different
gating mechanisms. The results are shown in Table 9. We can see that IntSE achieves better perfor-
mance with the gating mechanism of LPSENet. The reason is that it has a higher expressive ability and
more robustness to overfitting.
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Table 9. Performance of IntSE with different gating mechanisms in channel attention.

Model MRR MR Hits@10 Hits@1
IntSE-SENet 0.466 5123 0.530 0.434
IntSE 0.469 5007 0.532 0.439

6. Conclusion remarks

A lightweight CNN-based knowledge graph embedding (KGE) model with channel attention called
IntSE is proposed in this paper. Although CNN-based KGE models attract more attention from the
research and achieve higher LP accuracy than other KGE models, they often contain too many param-
eters and have very low efficiency. We do our utmost to explore the balance between the efficiency and
effectiveness of the CNN-based KGE model and propose IntSE through extensive experiments. The
key idea of IntSE is to increase the favorable feature interactions between the entities and relations in a
triple of KG. Checkered feature reshaping and circular convolution operations increase the feature in-
teractions, and the channel attention further enhances useful feature interactions in IntSE. The ablation
studies are carried out to explore the effectiveness of each component on the IntSE for LP. Especially
the impacts of different channel attention mechanisms (i.e., SENet, SKNet, and ECA-Net) on IntSE are
investigated. Compared with the state-of-the-art CNN-based KGE models, IntSE mostly achieved the
best performance under various evaluation criteria on public datasets. These extensive experimental
results substantiate the efficiency and effectiveness of our model.

In future work, we would like to explore whether other improved versions of SENet can further
improve the performance of InteractE and investigate whether incorporating the spatial attention mod-
ule into IntSE can boost its performance. In addition, it would also be interesting to consider how to
improve the performance of KGE models for other downstream tasks, e.g., question answering [6],
recommendation [7], and entity resolution [31].
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