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Abstract: The fear effect is a powerful force in prey-predator interaction, eliciting a variety of anti-
predator responses which lead to a reduction of prey growth rate. To study the impact of the fear effect
on population dynamics of the eco-epidemiological system, we develop a predator-prey interaction
model that incorporates infectious disease in predator population as well as the cost of anti-predator
behaviors. Detailed mathematical results, including well-posedness of solutions, stability of equilibria
and the occurrence of Hopf bifurcation are provided. It turns out that population density diminishes
with increasing fear, and the fear effect can either destabilize the stability or induce the occurrence of
periodic behavior. The theoretical results here provide a sound foundation for understanding the effect
of the anti-predator behaviors on the eco-epidemiological interaction.
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1. Introduction

The effect of disease on eco-epidemiology system is a significant topic from both mathematical and
ecological perspectives. The disease factor usually leads to a more complex and diverting dynamics
than those in the disease-free system [1, 2]. Within the interactions between predator and prey,
the disease could only spread in prey or predator population, also could spread between prey and
predator [3–5]. Birds (particularly pelicans) infect vibrio and die by preying on vibrio-infected fish
(particularly tilapia) at the Salton Sea in the desert of Southern California [3], which is an example of
disease spreads amongst the prey. For the disease in predator, taking fox rabies as an example, foxes
(Vulpis) infect rabies and transmit to other foxes or their prey rabbits by biting in Europe and North
America [6]. More relevant examples could be found in [7]. From the mathematical epidemiology
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point of view, one needs much more attention in the dynamics of infected predator to observe whether
the presence of the prey allows the survival of a part of the predator population [8].

A variety of diseased predator models have been proposed to study the complex interaction between
prey and predator with infected diseases [2, 9, 10] and the reference therein. Most common epidemic
model applied in predator-prey interactions is the S I-type, i.e., the predator population Y(t) is divided
into two sub-classes, namely susceptible predator S (t) and infected predator I(t), respectively [10–
12]. The infection term could be mass-action term (bilinear form) βS I or saturation form βS I

S+I [4].
The infected predators usually behave differently with susceptible ones, and suffer an additional death
rate. In a epidemic model, the global dynamics are usually determined by the basic reproduction
number R0, i.e., the disease will dies out in the population when R0 ≤ 1, and the disease will persist
in the population when R0 > 1. However, the basic reproduction number is no longer a threshold
parameter determining the global dynamics in diseased predator models, on the contrary, the dynamics
are relatively comprehensive and unexpected.

Predation is the key force in a prey-predator interaction, which could affect the size of prey
population by direct hunting [9, 13–15], and elicit a variety of anti-predator responses [16–18].
Consequently, prey tends to alter behaviors in a certain extent, such as change of habitat, foraging
activity, vigilance, physiological changes. This anti-predator behaviors accelerate the extinction,
evolution and development of prey population in the long run. Under the risk of predation, prey may
reduce its foraging activity in order to stay alert, leading to starvation which impacts on population
growth [19, 20]. Therefore, an immediately result of anti-predator behaviors is the reduction of prey
growth rate, which is the cost for prey in prey defense [19, 21–26].

Consider a simple birth-death process of the prey X(t) with the cost of anti-predator behaviors [27]:

dX
dt
= [F(k,Y)a]X − dX,

where X,Y represent the density of the prey and predator, respectively. a is the birth rate of prey, d
is the natural death rate of prey. F(k,Y) accounts for the cost of anti-predator defence due to fear,
the parameter k reflects the level of fear which drives anti-predator behaviors of prey. The fear factor
F(k,Y) has some specific assumptions under the ecological motions, for details see [20, 27].

To derive a simple diseased predator model incorporating the anti-predator defence due to fear, we
adopted the following fear effect term F(k,Y):

F(k,Y) =
1

1 + kY
=

1
1 + k(S + I)

.

Based on the results in [4, 9, 11], we can obtain the eco-epidemiological system with cost of anti-
predator behaviors as following system of nonlinear differential equations:

dX
dt
=

rX
1 + k(S + I)

−
rX2

K
−

aXS
1 + bX

,

dS
dt
=

eaXS
1 + bX

− d1S − βS I,

dI
dt
= βS I − d2I,

(1.1)
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where X, S , I represent the density of prey, susceptible predator and infected predator at time t,
respectively. r is the intrinsic growth rate of prey, K is the carrying capacity of the prey, a is the
predation coefficient, b is the predators handling time of a prey, e is the biomass conversion constant,
β is the transmissibility coefficient. d1 and d2 are the mortality rates of the susceptible predator and
infected predator, and naturally d1 < d2.

This paper consists of six sections. In the next section, we prove the positivity and boundedness of
the solution of system (1.1). In Section 3, we provide the existence conditions of the equilibria of the
model. We analyze the stability of equilibria and show the occurrence of Hopf bifurcation in Section 4.
In Section 5, the correctness of the theoretical proof is illustrated by numerical simulation. Finally, we
summarize our results with ecological interpretations in Section 6.

2. Positivity and boundedness

In view of the ecological significance, we only consider the solutions (X(t), S (t), I(t)) of system (1.1)
on

R3
+ = {(X(t), S (t), I(t)) ∈ R3

+ : X(t) ≥ 0, S (t) ≥ 0, I(t) ≥ 0}.

Theorem 2.1. Each solution of system (1.1) with initial value (X(0), S (0), I(0)) ∈ R3
+ is positive and

ultimately bounded.

Proof. Since the right-hand side of system (1.1) is completely continuous and locally Lipschitzian
on R3

+, the solution (X(t), S (t), I(t)) with initial condition (X(0), S (0), I(0)) ∈ R3
+ exists and is unique

on R3
+.

By integrating, it follows from system (1.1) that

X(t) = X(0) exp


t∫

0

(
r

1 + k(S (τ) + I(τ))
−

rX(τ)
K
−

aS (τ)
1 + bX(τ)

)
dτ

 ≥ 0,

S (t) = S (0) exp


t∫

0

(
e

aX(τ)
1 + bX(τ)

− d1 − βI(τ)
)

dτ

 ≥ 0,

I(t) = I(0) exp


t∫

0

(βS (τ) − d2) dτ

 ≥ 0.

Hence, the solution (X(t), S (t), I(t)) of system (1.1) with the initial condition (X(0), S (0), I(0)) ∈ R3
+

remains positive.
From the first equation of (1.1), we can obtain

dX
dt
=

rX
1 + k(S + I)

−
rX2

K
−

aXS
1 + bX

≤ rX −
rX2

K
= rX

(
1 −

X
K

)
,

then
lim sup

t→∞
X(t) ≤ K.
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Let N(t) = eX(t) + S (t) + I(t), we can get

dN
dt
=

erX
1 + k(S + I)

−
erX2

K
− d1S − d2I

≤ erX −
erX2

K
− d1S − d2I

≤ erX
(
1 −

X
K

)
+ ed1X − d1N

≤
eK(r + d1)2

4r
− d1N,

then

lim sup
t→∞

N(t) ≤
eK(r + d1)2

4rd1
.

This ends the proof.
□

Remark 2.2. From Theorem 2.1, we know that all positive solutions of system (1.1) with initial
conditions (X(0), S (0), I(0)) ∈ R3

+ are defined in the following positive bounded invariant:

Γ :=
{

(X(t), S (t), I(t)) ∈ R3
+ : 0 ≤ X(t) ≤ K, 0 ≤ eX(t) + S (t) + I(t) ≤

eK(r + d1)2

4rd1

}
.

3. Existence of the equilibria

System (1.1) possesses at most three boundary equilibria:

(i) Trivial equilibrium: E0 = (0, 0, 0);
(ii) Axial equilibrium: E1 = (K, 0, 0);

(iii) Planar equilibrium: E2 = (X2, S 2, 0) exists if ea − bd1 > 0 and K > d1
ea−bd1

, where

X2 =
d1

ea − bd1
,

S 2 =
−[K(ea − bd1)2 + rd1ke] +

√
[K(ea − bd1)2 − rd1ke]2 + 4K2kre(ea − bd1)3

2Kk(ea − bd1)2 .

(3.1)

For epidemic models, the most critical problem is the threshold property for the extinction and
persistence of the disease, which is generally governed by the basic reproduction number R0. The
basic reproduction number can be interpreted as the expected number of secondary cases produced,
in a completely susceptible population, by a typical infected individual during its entire period of
infectiousness. Following [28], we define the basic reproduction number for the predator population in
the system (1.1) by

R0 :=
βS 2

d2
,

where S 2 is given by (3.1).
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Next, we mainly focus on the existence of positive equilibrium E3 = (X3, S 3, I3) of system (1.1).
The coordinates X3, S 3, I3 are positive solutions to the following system of equilibrium equations:

r
1 + k(S 3 + I3)

−
rX3

K
−

aS 3

1 + bX3
= 0,

e
aX3

1 + bX3
− d1 − βI3 = 0,

βS 3 − d2 = 0.

Thus,

S 3 =
d2

β
, I3 =

X3(ea − bd1) − d1

(bX3 + 1) β
,

and X3 is the positive root of (3.2) in (X2,+∞):

Q(X) = m3X3 + m2X2 + m1X + m0 = 0, (3.2)

where
m3 := −bβr(k(ea − bd1) + b(kd2 + β)),

m2 := βr(Kb2β − k(ea − bd1) − 2b(kd2 + β) + bkd1),

m1 := (−kd2a(ea − bd1) − b(akd2
2 + aβd2 − 2β2r))K − βr(−kd1 + kd2 + β),

m0 := −K(−ad2(kd1 − kd2 − β) − β2r).

If ea − bd1 > 0 and r >
ad2(β + k(d2 − d1))

β2 , we have

m3 < 0, m0 > 0.

By Descartes’ rule of signs, system (1.1) has at least one positive equilibrium E3.

Hence, we have the following results on the existence of the positive equilibrium. It is worthy to
note that the positive equilibrium is not unique due to the impact of fear effect k.

Theorem 3.1. If ea − bd1 > 0 and r > ad2(β+k(d2−d1))
β2 , then system (1.1) has at least one positive

equilibrium E3 = (X3, S 3, I3), where S 3 =
S 2
R0

, I3 =
X3(ea−bd1)−d1

(bX3+1)β and X3 is the positive root of (3.2) in
(X2,+∞).

4. Stability analysis

4.1. Local stability

Regarding the local stability of trivial equilibrium E0 and axial equilibrium E1, we have the
following results. The proof is standard, so we omit it here.

Theorem 4.1. For system (1.1),

(i) The trivial equilibrium E0 = (0, 0, 0) is unstable;
(ii) If one of the following inequalities holds:
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(ii-1) ea − bd1 < 0;
(ii-2) ea − bd1 > 0 and K < d1

ea−bd1
,

then the axial equilibrium E1 = (K, 0, 0) is stable; while E1 = (K, 0, 0) is unstable if ea − bd1 > 0 and
K > d1

ea−bd1
.

Secondly, we will show the local stability of the planar equilibrium E2 of system (1.1). For
convenience, set

r1 := d2(ea−bd1)
βe , r2 := d2(ea−bd1)(ea+bd1)

aβe2 ,

K1 := ea+bd1
b(ea−bd1) , K2 := βerd1

(ea−bd1)(βer−d2(ea−bd1)) ,

k1 := Kb(ea−bd1)2(Kb(ea−bd1)−(ea+bd1))
ae2r(ea+bd1) ,

k2 := −β((ea−bd1)(d2(ea−bd1)−βer)K+βerd1)
(Kd2(ea−bd1)2+βerd1)d2

.

(4.1)

Theorem 4.2. For system (1.1), assume that ea − bd1 > 0. If one of the following inequalities holds:

(I) r ≤ r1 and one of the following inequalities holds:

(I-1) d1
ea−bd1

< K ≤ K1;
(I-2) K > K1 and k > k1;

(II) r1 < r < r2 and one of the following inequalities holds:

(II-1) d1
ea−bd1

< K ≤ K1;
(II-2) K1 < K and k > max{k1, k2};

(III) r > r2 and one of the following inequalities holds:

(III-1) d1
ea−bd1

< K ≤ K2;
(III-2) K2 < K and k > max{k1, k2},

then equilibrium E2 is stable; otherwise, it is unstable.

Proof. The Jacobian matrix of system (1.1) at E2 is given by

J2 =


a11 a12 a13

a21 0 −βS 2

0 0 βS 2 − d2

 ,
where

a11 := X2

(
−

r
K
+

abS 2

(1 + bX2)2

)
,

a12 := −
krX2

(1 + kS 2)2 −
aX2

1 + bX2
,

a13 :=
−krX2

(1 + kS 2)2 ,

a21 :=
eaS 2

(1 + bX2)2 .

Hence, the characteristic equation of J2 is given as

f (λ)(λ − βS 2 + d2) = 0, (4.2)
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where
f (λ) := λ2 − a11λ − a12a21.

Clearly, one can see that J2 has three eigenvalues λ1, λ2 and λ3 = βS 2 − d2. Since a12 < 0, a21 > 0, then
−a12a21 > 0.

From (3.1), we can obtain

a11 = X2

(
−

r
K
+

abS 2

(1 + bX2)2

)
=

X2Φ

2Kka2e2 ,

where

Φ := ab

√(
K (ea − bd1)2

− rd1ke
)2
+ 4 K2kre (ea − bd1)3

− ab(K(ea − bd1)2 + rd1ke) − 2rka2e2.

Note that the sign of Φ depends on

Φ̃ := a2b2
((

K (ea − bd1)2
− rd1ke

)2
+ 4 K2kre (ea − bd1)3

)
−(ab(K(ae − bd1)2 + rd1ke) + 2rka2e2)2

= 4a2kerP(k),

where
P(k) := −ae2r (ea + bd1) k + Kb(ea − bd1)2(Kb(ea − bd1) − (ea + bd1)).

One can obtain that P(k) is decreasing with respect to k. If K ≤ ea+bd1
b(ea−bd1) holds, we have P(0) ≤ 0, which

means that P(k) < 0 for all k > 0; if K > ea+bd1
b(ea−bd1) and k > k1 hold, we can get P(k) < 0. Therefore,

when one of the following inequalities holds:
(i) K ≤ ea+bd1

b(ea−bd1) ;
(ii) K > ea+bd1

b(ea−bd1) and k > k1,
we can obtain a11 < 0, which implies that the real parts of λ1 and λ2 are all negative.

It follows from system (3.1) that

βS 2 − d2 =
−β[K(ea − bd1)2 + rd1ke] + β

√
[K(ea − bd1)2 − rd1ke]2 + 4K2kre(ea − bd1)3

2Kk(ea − bd1)2 − d2

=
Θ

2Kk(ea − bd1)2 ,

where

Θ := −K (ea − bd1)2 (2 kd2 + β) − β ekrd1 + β

√(
K (ea − bd1)2

− rd1ke
)2
+ 4 K2kre (ea − bd1)3.

Note that the sign of Θ depends on

Θ̃ := β2
(
K (ea − bd1)2

− rd1ke
)2
+ 4β2 K2kre (ea − bd1)3

− (K (ea − bd1)2 (2 kd2 + β) + β ekrd1)2

= −4Kk(ae − bd1)2
[
(Kd2(ea − bd1)2 + βerd1)d2k + β((ea − bd1)(d2(ea − bd1) − βer)K + βerd1)

]
.

Then if one of the following inequalities holds:
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(I) ea − bd1 > 0 and r ≤ d2(ea−bd1)
βe ;

(II) ea − bd1 > 0, r > d2(ea−bd1)
βe and one of the following inequalities:

(II-1) K ≤ βerd1
(ea−bd1)(βer−d2(ea−bd1)) ;

(II-2) K > βerd1
(ea−bd1)(βer−d2(ea−bd1)) and k > k2 := −β((ea−bd1)(d2(ea−bd1)−βer)K+βerd1)

(Kd2(ea−bd1)2+βerd1)d2
,

we have λ3 = βS 2 − d2 < 0.
Thus, we can arrive at the conclusion. □

It should be pointed out that another way to state Theorem 4.2 is as follows.

Remark 4.3. For system (1.1), assume that ea−bd1 > 0 andR0 < 1. If one of the following inequalities:

(I)
d1

ea − bd1
< K ≤ K1;

(II) K > K1 and k > k1

holds, then the planar equilibrium E2 is stable; otherwise, it is unstable.

Next, we will show the local stability of the positive equilibrium E3 of system (1.1).
The Jacobian matrix of system (1.1) at E3 is given by

J3 =


b11 b12 b13

b21 0 −d2

0 βI3 0

 ,
where

b11 = X3

(
−

r
K
+

abS 3

(1 + bX3)2

)
,

b12 =
−krX3

(1 + k(S 3 + I3))2 −
aX3

1 + bX3
< 0,

b13 =
−krX3

(1 + k(S 3 + I3))2 < 0,

b21 =
eaS 3

(1 + bX3)2 > 0.

(4.3)

The characteristic equation of J3 is given as

λ3 + A1λ
2 + A2λ + A3 = 0, (4.4)

where
A1 = −b11,

A2 = βd2I3 − b12b21,

A3 = −b11βd2I3 − b13b21βI3.

(4.5)

Note that if A1 > 0 holds, then b11 < 0, which means that A3 > 0. According to Routh-Hurwitz
criterion, the positive equilibrium E3 is locally asymptotically stable when A1 > 0 and A1A2 − A3 > 0.

Therefore, we can establish the following statement.

Theorem 4.4. Assume that ea − bd1 > 0 and r > ad2(β+k(d2−d1))
β2 hold. The positive equilibrium E3 of

system (1.1) is locally asymptotically stable if A1 > 0 and A1A2−A3 > 0, where Ai, i = 1, 2, 3 is defined
as in (4.5). Otherwise, it is unstable.
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Remark 4.5. Theorem 4.4 gives a sufficient condition about the stability of the positive equilibrium E3

for system (1.1). However, the complexity of model (1.1) leads to the failure to theoretically
demonstrate how the fear factor affects the stability of the positive equilibrium. This will be discussed
later through numerical simulations.

4.2. Hopf bifurcation

In this subsection, we take k as the bifurcation parameter. The characteristic equation of system (1.1)
at E3 is (4.4), and Ai(k), i = 1, 2, 3 are defined as (4.5).

Theorem 4.6. Hopf bifurcation near the positive equilibrium E3 for system (1.1) occurs whenever the
critical parameter k attains the value k = kh in the domain:

Ω =

kh ∈ R
+ : ∆(kh) := [A1(k)A2(k) − A3(k)]|k=kh = 0 with A2(kh) > 0,

[
d∆(k)

dk

] ∣∣∣∣∣∣
k=kh

, 0

 .
Proof. If k = kh, the characteristic Eq (4.4) equals

λ3 + A1(kh)λ2 + A2(kh)λ + A3(kh) = 0, (4.6)

then (4.6) can be factorized as
(λ2 + A2(kh))(λ + A1(kh)) = 0. (4.7)

Clearly, (4.7) has three roots: λ1 = i
√

A2(kh), λ2 = −i
√

A2(kh) and λ3 = −A1(kh). The roots are of the
form λ1 = p1(k)+ ip2(k), λ2 = p1(k)− ip2(k) and λ3 = −p3(k), where pi(k)(i = 1, 2, 3) are real numbers.

From the characteristic Eq (4.4), we can get

dλ
dk
= −
λ2A′1 + λA

′
2 + A′3

3λ2 + 2A1λ + A2
, (4.8)

where ′ = d
dk . Substituting λ = i

√
A2 into (4.8), we obtain that

A′3 − A2A′1 + iA′2
√

A2

2(A2 − iA1
√

A2)
= −

d∆(k)
dk

2(A2
1 + A2)

+ i

 √A2A′2
2A2

−
A1
√

A2
d∆(k)

dk

2A2(A2
1 + A2)

 ,
which implies that [

dRe(λ)
dk

] ∣∣∣∣
k=kh
= −

d∆(k)
dk

2(A2
1 + A2)

∣∣∣∣
k=kh
.

By using monotonicity condition in the real part of the complex root dRe(λ)
dk |k=kh , 0, the transversality

condition d∆(k)
dk |k=kh , 0 can be obtained to ensure the existence of Hopf bifurcation. □

5. Numerical simulations

Results from numerical simulations are provided in this section to demonstrate our theoretical
results. As we will show, the observations shed lights on the impact of fear factor. We choose the
parameters of system (1.1) as follows:

r = 0.8, a = 0.2, b = 0.1, e = 0.9, d1 = 0.05, β = 0.1, d2 = 0.053. (5.1)
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Then we have

ea − bd1 = 0.175 > 0,
d1

ea − bd1
= 0.286,

r1 =
d2(ea − bd1)
βe

= 0.103, r2 =
d2(ea − bd1)(ea + bd1)

aβe2 = 0.106,

K1 =
ea+bd1

b(ea−bd1) = 10.571, K2 =
βerd1

(ea−bd1)(βer−d2(ea−bd1)) = 0.328.

Example 5.1 (The stability of E1).
We adopt K = 0.2, k = 0.01, then system (1.1) has trivial equilibrium E0 = (0, 0, 0) and axial

equilibrium E1 = (0.2, 0, 0). In this case, one can know that the conditions of Theorem 4.1 are satisfied,
which means that E1 is locally asymptotically stable. The numerical results are shown in Figure 1.

0 50 100 150 200 250 300 350 400

t

0

0.05

0.1

0.15

0.2

0.25

0.3
X(t)
S(t)
I(t)

Figure 1. Population dynamics of X(t), S (t) and I(t) of system (1.1) with K = 0.2, k = 0.01.

Example 5.2 (The impacts of K and k on the stability of E2).
In this example, we will choose three values of carrying capacity K for numerical experiments. We

conclude that the carrying capacity and fear effect are other key factors related to the extinction of
infected predators, in addition to the basic reproduction number R0.

Firstly, we take K = 0.3 < K2, then we have k = 0.1 which yields that R0 = 0.263 < 1. In
this case, system (1.1) has trivial equilibrium E0 = (0, 0, 0), axial equilibrium E1 = (0.3, 0, 0), and
planar equilibrium E2 = (0.286, 0.139, 0) . By Theorem 4.5, E2 is locally asymptotically stable, see
Figure 2(a). Thus, when the carrying capacity of the prey K is small, no matter what the level of fear k
is, the small size of prey population will lead to the extinction of infected predators.

Secondly, for comparison, we take K2 < K = 15 , then

k1 =
Kb(ea−bd1)2(Kb(ea−bd1)−(ea+bd1))

ae2r(ea+bd1) = 0.149,

k2 = −
β((ea−bd1)(d2(ea−bd1)−βer)K+βerd1)

(Kd2(ea−bd1)2+βerd1)d2
= 10.873.

Choosing k = 0.1 < max{k1, k2} which yields R0 = 5.792 > 1, then we have

A1 = 0.25791 > 0, A1A2 − A3 = 0.00523 > 0.
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In this case, system (1.1) has trivial equilibrium E0 = (0, 0, 0), axial equilibrium E1 = (15, 0, 0),
planar equilibrium E2 = (0.286, 3.070, 0), and positive equilibrium E3 = (7.351, 0.530, 7.125). By
Theorem 4.5, E2 = (0.286, 3.070, 0) is unstable. On the contrary, E3 = (7.351, 0.530, 7.125) is locally
asymptotically stable. The numerical simulation is shown in Figure 2(b).

Finally, we take K2 < K = 60, then we have

k1 =
Kb(ea−bd1)2(Kb(ea−bd1)−(ea+bd1))

ae2r(ea+bd1) = 6.629,

k2 = −
β((ea−bd1)(d2(ea−bd1)−βer)K+βerd1)

(Kd2(ea−bd1)2+βerd1)d2
= 12.238.

Choosing k = 30 > max{k1, k2} which yields that R0 = 0.649 < 1, system (1.1) has trivial equilibrium
E0 = (0, 0, 0), axial equilibrium E1 = (60, 0, 0), and planar equilibrium E2 = (0.286, 0.344, 0). By
Theorem 4.5, E2 is locally asymptotically stable, see Figure 2(c). Thus, when the carrying capacity of
the prey K is relatively large, a high level of fear k will lead to the extinction of infected predators.
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(a) K = 0.3, k = 0.1
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(b) K = 15, k = 0.1
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(c) K = 60, k = 30

Figure 2. The impacts of K and k on the stability of E2.

Example 5.3 (The impact of k on the stability of E3). We adopt K = 60, then we have kh = 0.26. In
the next, we will choose three values of k, corresponding to the local stability of E3, Hopf bifurcation,
and instability of E3, to illustrate the impact of fear factor on the population dynamics.

Firstly, we take k = 0.1 < kh which yields that R0 = 5.881 > 1, then system (1.1) has trivial
equilibrium E0 = (0, 0, 0), axial equilibrium E1 = (60, 0, 0), planar equilibrium E2 = (0.286, 3.117, 0)
and a unique positive equilibrium E3 = (24.047, 0.530, 12.213). In this case, we obtain that

A1 = 0.29863 > 0, A1A2 − A3 = 0.00065 > 0,

which means that E3 is local asymptotically stable. The numerical results are shown in Figure 3.
Secondly, we take k = 0.26 = kh which yields that R0 = 4.682 > 1, then system (1.1) has trivial

equilibrium E0 = (0, 0, 0), axial equilibrium E1 = (60, 0, 0), planar equilibrium E2 = (0.286, 2.481, 0)
and a unique positive equilibrium E3 = (12.975, 0.530, 9.665). In this case, we obtain that

A1 = 0.14694 > 0, A1A2 − A3 = 0,

which means that system (1.1) undergoes a Hopf bifurcation and there is a limit cycle around E3.
The numerical results and the bifurcation diagrams of system (1.1) with respect to the parameter k are
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shown in Figures 4 and 5, respectively. Comparing Figures 3 and 4(a), one can see that there are two
different implications induced by the fear factor k: the first is that the stability of E3 converts from
stable into unstable, and the second is the decrease of values of X3 and I3 of E3.

Finally, we take k = 0.5 > kh which yields that R0 = 3.821 > 1, then system (1.1) has trivial
equilibrium E0 = (0, 0, 0), axial equilibrium E1 = (60, 0, 0), planar equilibrium E2 = (0.286, 2.025, 0)
and a unique positive equilibrium E3 = (7.685, 0.530, 7.322). In this case, we can obtain that

A1 = 0.07642 > 0, A1A2 − A3 = −0.00051 < 0,

which means that E3 is unstable. The numerical results are shown in Figure 6. One can find that
the difference between Figures 4 and 6 is the decrease of values of E3 from (12.975, 0.530, 9.665) to
(7.685, 0.530, 7.322), which is induced by the impact of the feat factor.
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Figure 3. Population dynamics of X(t), S (t) and I(t) of system (1.1) with K = 60, k =
0.1 < kh.
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Figure 4. Population dynamics of X(t), S (t) and I(t) of system (1.1) with K = 60, k = 0.26 =
kh. (a) Time-series plots; (b) Phase portraits in 3-dimensional space.
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Figure 5. Bifurcation diagram of the system (1.1) with respect to the parameter k. Here
K = 60, other parameters are taken as in (5.1).
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Figure 6. Population dynamics of X(t), S (t) and I(t) of system (1.1) with K = 60, k = 0.5 >
kh. (a) Time-series plots; (b) Phase portraits in 3-dimensional space.

6. Conclusions

In this paper, we explored a predator-prey model that incorporates infectious disease in predator
population and the cost of anti-predator behaviors. The cost of anti-predator behaviors is measured by
a fear effect k leading to an reduction of prey’s birth rate. We fulfill a complete stability analysis of
equilibria for system (1.1) and show that the system (1.1) exhibits the Hopf bifurcation. Biologically,
we focus on the impact of fear effect on the population dynamics. As we will see later, the cost of a
high level of fear effect is disastrously. The main findings are summarized in the following.

1) Small size of prey population leads to the extinction of infected predators.
If the carrying capacity K is relatively small, the planar equilibrium E2 is stable, see Figure 2(a).
Thus, no matter what the level of fear effect k is, a small size of prey population will lead to the
extinction of infected predators.

2) Low level of the fear effect doesn’t impact on the population dynamics.
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If the level of fear effect k < kh, the positive (coexistence) equilibrium E3 is stable, see Figure 3.
Hence, we conclude that a small fear effect k is not the key disturbance and does not change the
coexistence dynamics of system (1.1). However, the densities of the prey and infected predator
gradually decrease as k increasing.

3) Certain medium level of the fear effect lead to periodic oscillation.
If k = kh, the fear effect can destabilize the stability of E3 and will benefit the occurrence of
periodic oscillation. In other words, system (1.1)undergoes a limit cycle, see Figures 4 and 5.

4) High level of the fear effect leads to complex dynamics and the infected predator can go to
extinction.
If k > kh, E3 is unstable, see Figure 6. Therefore, a large fear effect k persistently and dramatically
influence the population dynamics of prey and predator. Furthermore, if the level of the fear factor
k is extremely high, the planar equilibrium E2 is stable, see Figure 2(c). The prey will respond to
perceived predation risk and show a variety of anti-predator responses, dramatically decreasing
the recruitment of susceptible predator, which will lead to an extinction of infected predator.
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